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Abstract Wireless Sensor Networks (WSNs) are increasingly being adopted
in critical applications. In these networks undesired events may undermine
the reliability level; thus their effects need to be properly assessed from the
early stages of the development process onwards to minimize the chances of
unexpected problems during use.

In this paper we propose two heuristic strategies: what-if analysis and
robustness checking. They allow to drive designers towards optimal WSN de-
ployment solutions, from the point of view of the connection and data delivery
resiliency, exploiting a formal approach based on the event calculus formal
language.

The heuristics are backed up by a support tool aimed to simplify their
adoption by system designers. The tool allows to specify the target WSN in
a user-friendly way and it is able to elaborate the two heuristic strategies by
means of the event calculus specifications automatically generated. The WSN
reliability is assessed computing a set of specific metrics. The effectiveness of
the strategies is shown in the context of three case studies.
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1 Introduction & Motivation

The extensive use of Wireless Sensor Networks (WSNs) in critical applica-
tion scenarios stresses the need to verify their reliability properties at design
time, in order to prevent wrong design choices that could affect the success
of large-scale industrial applications. Examples of such applications are health
monitoring (Hao and Foster, 2008), Ambient Intelligent (AmI) systems (Coro-
nato and De Pietro, 2010) and environmental monitoring (Xu et al, 2004). The
correct operation of a WSN is affected by several undesired events, such as the
crash of a node due to the cheap hardware adopted (Cinque et al, 2012b), bat-
tery exhaustion (El Abdellaoui et al, 2012) and the unreliability of the wireless
medium (Yu et al, 2012). These, in turn, may isolate whole portions of the
network or cause packets to be lost during their traversal to the destination.

If not adequately considered at design time, these events may cause severe
failures with dangerous consequences, such as, a health monitoring system
not able to report critical alerts about a patient status to a medical center,
or a structural monitoring system unable to report a developing crack in a
structure.

Formal methods are widely adopted in the literature to verify the correct-
ness of a WSN specification at design time (Boonma and Suzuki, 2010; Zoum-
boulakis and Roussos, 2011; Bromuri and Stathis, 2009; Blum and Magill,
2011). They appear to be particularly suitable for applying heuristic strate-
gies adopted in the WSN field.

However, their practical use for the verification of reliability properties of
WSNs has received little attention, due to the distance between system engi-
neers and formal methods experts and the need to re-adapt the formal spec-
ification to different design choices. Even if some development teams would
invest on the definition of a detailed specification of WSN correctness prop-
erties, a design change (e.g., different network topology, number of produced
packets) could require to rethink the formal specification, incurring in extra
undesirable costs. To address the issues listed above, we also introduce a tool
for the automated application of the heuristic strategies in order to assess
WSN resiliency facilitating the work of the designers.

The contribution of the work is manifold:

– we define a formal approach for failure detection in WSNs considering the
formal specification of WSN correctness split in two logical sets: a general
correctness specification, valid independently of the particular WSN under
study, and a structural specification related to the properties of the tar-
get WSN (e.g., number of nodes, topology, channel quality, initial battery
charge), designed to be generated automatically;
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– we consider specific WSN reliability metrics, such as connection resiliency,
coverage, data delivery resiliency, network capacity and power consumption,
used as drivers to guide design choices;

– we propose two heuristic strategies (starting from the same specification):
i) what-if analysis, to observe how the WSN behaves in response to a given
sequence of events of interest for the designer, and ii) robustness checking,
to verify the long term robustness of the WSN against random sequences of
undesired events, useful to identify corner cases and reliability bottlenecks.

– we develop an automated verification tool, named ADVISES (AutomateD
VerIfication of wSn with Event calculuS), to simplify the adoption of the
proposed approach. It is realized i) to automatically generate the structural
specifications given the properties of a target WSN (e.g. topology), ii)
to automatically perform the two heuristic strategies, iii) to perform the
reasoning starting from the correctness and structural specifications and
iv) to compute reliability metrics starting from the event trace produced
by a reasoner;

– we show the usefulness of the proposal in the context of three case studies,
to show how the proposed framework and tool can help system engineers
to take decisions upon key design questions such as: “How many nodes are
covered in the WSN if a given sequence of failures occurs?”, “How many
failures the WSN is able to tolerate so that a minimum coverage level is
guaranteed?”, “How the WSN behaves, in terms of delivered packets, if
the channel quality changes (e.g., to consider environments with different
levels of harshness)?”.

This research is partially based on our previous results (Testa et al, 2012).
In this paper we extend the formal specification considering new events: packet
loss event and battery exhaustion event, we present the what-if analysis and
robustness checking techniques as heuristic strategies applied using a formal
approach; moreover, we provide additional experimental results that show how
the two strategies practically work and allow to make interesting considera-
tions; finally we report the results of detailed comparison of our approach with
the related work in the area of WSN heuristics and resiliency assessment.

The rest of the paper is organized as follows. Section 2 presents related
work, while in Section 3 we introduce the formal approach defining the gen-
eral correctness and structural specifications of a WSN respectively. Heuristic
strategies considered in this work are discussed in Section 4 and the ADVISES
tool is shown in Section 5. Cases studies and results are presented in Section
6 and a comparison of our work with the cited related work is reported in
Section 7. Finally Section 8 concludes the paper.

2 Related Work

Laprie (2008) defined resiliency as the persistence of reliability when facing
changes. In facts, assessing the resiliency of a WSN means essentially to eval-
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uate the effects of a change affecting the WSN, in terms of the variation on
the metrics of interest or in terms of the overall behavior of the network.

Since the reliability was defined as the ability of a system to deliver a
service that can justifiably be trusted (Avizienis et al, 2004), we can claim
that the concept of resiliency is strictly related to the concept of reliability.

Typically a node failure in a WSN has the effect of modifying the system
topology by the removal of a communication node and its corresponding links.
A node may fail due to several reasons, such as, battery discharge (either
natural or abnormal), hardware faults of the sensing and computation plat-
forms (such as bit flips and stuck-at-zero) induced by the harsh environment,
software defects of the sensor program, etc.

In WSNs several failures/recoveries of nodes influence the expected behav-
ior and quality of the WSN (Cinque et al, 2013). For this reason, it becomes
important to apply the concept of connection resiliency, here defined as the per-
sistence of network connectivity in spite of WSN changes, related to the WSN
topology. Since a real WSN configuration is not generally a fully connected
graph, successive failures may result in a disconnection of the system, namely
a disconnection failure, and therefore prevent a set of nodes from reaching the
sink (i.e. isolated nodes).

However, the service delivered by the WSN does not encompass only the
connection, but also the computation, i.e., even when sensor nodes are poten-
tially connected (a path exists between nodes and sink node), packet losses
can still occur, e.g., due to physical causes (wireless channel interference) or
software causes (sender or receiver buffer overflow). For this reason, the con-
cept of data delivery resiliency can be defined as the persistence of the amount
of data delivered to the sink node of the WSN, despite WSN changes.

Finally, other metrics of interest to qualify the resilient operation of a WSN
can be evaluated: the power consumption of nodes, because a node may fail
due to battery discharge (either natural or abnormal), the coverage of the
monitored area to analyze the time interval in which the WSN can operate,
while preserving a given number of nodes connected to the sink node, and the
network capacity to measure the average amount of packets received by the
sink node

At present, most of the papers propose heuristic algorithms for optimum
utilization of energy in WSNs. For instance, Arivubrakan and Dhulipala (2012)
and Santos et al (2012) present techniques to minimize the power consump-
tion of the wireless sensor nodes. In particular Arivubrakan and Dhulipala
(2012) propose an algorithm for consume low energy without degrading the
performance; Santos et al (2012) focus on the WSN organization by designing
topologies based on clusters which minimize the power consumption of the
wireless sensor nodes. However, they focus on the optimization of the power
consumption of a wireless sensor node without evaluating the overall reliability
of the WSN deployment in terms of coverage, connection resiliency and data
delivery resiliency.

Yuan and Hollick (2012) propose and implement heuristics for the optimal
configuration of number of channels and topology of the routing tree of a WSN.
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Despite they consider a heuristic approach to assess resiliency of a WSN, it
cannot be considered to evaluate the robustness of a WSN in terms of delivered
packets.

Several approaches have been proposed in the literature for the quantitative
evaluation of WSN properties.

Simulative approaches are reported by Titzer et al (2005), Levis et al (2003)
and Zhang et al (2009). They are realized by means of behavioral simulators
i.e., tools able to reproduce the expected behavior of a WSN-based system
by means of a code-based description. These approaches are more oriented to
the verification of behavioral properties or performance indicators, and not
oriented to the observation of reliability properties. No heuristic method is
proposed.

Lee et al (2004) and Di Martino et al (2012) adopt analytical approaches
to assess the resiliency and performance of WSNs. Lee et al (2004) define a
mathematical model of the energy consumption of nodes to study and forecast
the network lifetime. Di Martino et al (2012) introduce an approach for the
automated generation of WSN resiliency models, based on a variant of Petri
nets. However, they do not apply heuristics and it is not always possible to
observe non-functional properties of WSNs by means of analytical approaches,
since models need to be redefined and adapted to the specific network.

The analysis of WSNs with formal approaches has recently started to be
considered by the scientific community. Formal approaches are very useful
to understand a particular behavior of a WSN on the basis of a reasoning
performed considering an initial sequence of events.

Ölveczky and Thorvaldsen (2007) propose a formal language to specify a
WSN and develop a tool to simulate it. However, the proposed solution is not
adaptive and not heuristic-based: the formal specification that describes the
behavior of a WSN has to be rewritten whenever the considered WSN changes.
Man et al (2009) propose a methodology for modeling, analysis and develop-
ment of WSNs using a formal language; they focus on power consumption as
resiliency concern disregarding node crash/isolation and packet loss.

Other papers focus on formal modeling of WSN protocols. Chen et al (2013)
provide an extensive review of automated formal verification techniques of ad
hoc routing protocols for WSN; Katelman et al (2008) propose a formally-
based system redesign methodology used to redesign a version of the LMST
topology protocol that ensures network connectivity under realistic deploy-
ment conditions. Elleuch et al (2011) apply a probabilistic framework to for-
mally reason about the expected values of coverage intensity in a WSN. In both
cases they only check the connectivity of the network without considering data
delivery resiliency or connection resiliency to understand the tolerance degree
of a WSN. Meanwhile Fehnker et al (2009) propose a graphical specification
style which by means of a visualization studies the effect of topologies in per-
formance analysis presenting interference problem but without providing any
reliability metrics (like the data delivery resiliency).

A model-driven performance engineering framework for WSNs, named Mop-
pet, is introduced by Boonma and Suzuki (2010); it uses the event calculus
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formalism to estimate the performance of WSN applications in terms of power
consumption of each sensor node. Whilst our contribution shares similarities
to the work presented by Boonma and Suzuki (2010), we focus however not
only on power consumption but also on coverage and resiliency to undesired
events.

By studying the current proposed formal approaches, we realize that no
heuristic strategy has been introduced yet in order to assess the resiliency of
a WSN. We assert that, applying a formal approach, heuristic techniques can
be very helpful to easily lead designers towards good deployment choices.

We also propose an automatic process, supported by a user friendly tool,
for adapting the specifications to the target WSN and for elaborating the
heuristic strategies and computing reliability metrics automatically, starting
from the analysis of the reasoning output.

Finally we note that an open issue with formal specifications of WSNs is
that they need to be adapted when changing the target WSN configuration,
e.g., in terms of the number of nodes and topology. To address this problem,
in this work we provide separated specifications and thus conceive two logical
sets of specifications (see Section 3).

3 Formal Approach

3.1 Event Calculus

Since the normal and failing behavior of a WSN can be characterized in terms
of an event flow (for instance, a node is turned on, a packet is sent, a packet
is lost, a node stops to work due to crash or battery exhaustion, etc.), we
adopt an event-based formal language. In particular, among several event-
based formal languages, we choose event calculus (Shanahan, 1999), since its
simplicity, its wide adoption in the sensor networks arena (Boonma and Suzuki,
2010; Zoumboulakis and Roussos, 2011; Bromuri and Stathis, 2009; Blum and
Magill, 2011) and the possibility to formally analyze the behavior of a system
as event flows, offering simple ways to evaluate the reliability metrics of our
interest.

Event calculus was proposed for the first time by Kowalski and Sergot
(1986) and then it was extended by Miller and Shanahan (1996). It belongs to
the family of logical languages and is commonly used for representing and rea-
soning about the events and their effects. Fluent, event and predicate are the
basic concepts of event calculus (Shanahan, 1999). Fluents are formalized as
functions and they represent a stable status of the system. For every timepoint,
the value of fluents or the events that occur can be specified. This language is
also named narrative-based : there is a single time line on which events occur
and this event sequence represents the narrative. Narrative is useful to under-
stand a particular behavior of a WSN. Reliability metrics can be valuated by
analyzing the narrative generated by an event calculus reasoner based on the
specification of the target WSN.
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To check the proposed correctness properties defined in event calculus
we use the Discrete Event Calculus (DEC) Reasoner. The DEC Reasoner
(Mueller, 2005) uses satisfiability (SAT) solvers and by means of this we are
able to perform reasoning like deduction, abduction, post-diction and model
finding. It is documented in details in (Mueller, 2005) in which its syntax is
explained (e.g. the meaning of the symbols used in the formulas).

3.2 General Correctness Specification

The formal approach is founded on the definition of a core formal specification
in event calculus. The main idea is to formalize the correctness properties
allowing engineers to verify if a given WSN design, specified in terms of number
of nodes, position of nodes, channel quality and initial battery level, is able to
satisfy given design constraints.

In particular, in this paper the evaluation of design constraints is based
on the measurement of the following WSN reliability metrics proposed by
Di Martino et al (2012) and by Chiasserini and Garetto (2004):

– Connection Resiliency represents the number of node failures and discon-
nection events that can be sustained while preserving a given number of
nodes connected to the sink;

– Coverage is the time interval in which the WSN can operate, while pre-
serving a given number of nodes connected to the sink;

– Data Delivery Resiliency is the number of node failures and disconnection
events that can be sustained while preserving a given number of correct
packets delivered to the sink;

– Power Consumption is the battery power consumed by each sensor, useful
to estimate the expected lifetime of the WSN.

– Network Capacity, also defined as the overall throughput at the sink, is the
total arrival rate of the packets coming from all the sensors and received
by the sink.

Overall these metrics allow to evaluate the expected resiliency of a WSN
in terms of its robustness to failure events, its capacity to cover a given area
and its duration (lifetime). Clearly, other metrics can be defined for other
purposes, following the same approach. The metrics are evaluated by analyzing
the narrative generated by the reasoner based on the specification of the target
WSN. To ease the modification of the specification upon changes in the WSN
design, in terms of number and position of nodes, channel quality, etc., we
define the specification as two logical sets:

– General Correctness Specification (described in this section) - a set of
correctness properties specifications, valid independently of the particular
WSN under study.

– Structural Specification (described in next section) - a set of specifications
and parameters related to the properties of the target WSN, e.g., number
of nodes, network topology, quality of the wireless channel (in terms of
disconnection probability) and initial charge of batteries.
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The general specification is defined once and used across different WSN
designs. The structural specification, instead, has to be adapted when changing
the target WSN. The proposed ADVISES tool, described later in the paper,
aims to simplify this operation, by accepting the structural specification in a
user friendly format and by generating automatically the files needed by the
event calculus reasoner.

The general correctness specification is described in the following. It spec-
ifies that a WSN performs correctly if none of the following undesired events
(or failures) happen: (i) isolation event, i.e., a node is no more able to reach
the sink; (ii) packet loss event, i.e., a packet is lost during the traversal of the
network; (iii) battery exhaustion event, i.e., a node stops to work since it has
run out of battery. Events (i) and (ii) can be caused by more “basic events”,
such as the stop of one or more nodes (e.g., due to crash or battery exhaustion)
or the temporary disconnection of a node to its neighbor(s) due to transmis-
sion errors. Event (iii) is generated by considering the initial battery charge
and the energy request of nodes due to packet sending and receiving activities
(in general assumed to be power demanding activities with respect to CPU
activities). We concentrate on all of the three main events described previously
considering the results of a Failure Modes and Effect Analysis conducted on
WSNs by Cinque et al (2012a). Moreover the proposed approach is conceived
to extend the specifications with other events, if needed.

3.2.1 Isolation event

The isolation event happens when a node is no more able to reach the sink
of the WSN, i.e., the gateway node where data are stored or processed. The
isolation might be caused by more simple, basic events, such as a stop of a
node, due to an arbitrary crash, or battery exhaustion and the disconnection
of a node from another node. For instance, let us consider the Figure 1 and
let us suppose that node i is the only one allowing the transmission of data
between the sink node and the subnet A. We want to check when the subnet
A is isolated from the rest of network. We suppose that node i is connected
with node j and k. If node i fails, the nodes j and k (and all the nodes of the
subnet A) are alive but isolated and so the whole subnet A is isolated. More
in general, if a subnet depends on a node and this node becomes isolated then
all of the nodes of the subnet are isolated.

Fig. 1: Isolation of a WSN subnet
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Table 1: Basic elements of the specification for the isolation event

Elements Name Description
Sorts sensor Reference sensor for events and fluents

to sensor Sensor used in case of connection (i.e. a sen-
sor connects to another sensor)

from sensor Sensor used in case of disconnection (i.e. a
sensor disconnects from another sensor)

Basic
Events

Start(sensor) Occurring event when a sensor turns on

Stop(sensor) Occurring event when a sensor turns off
Connect(sensor, to sensor) Occurring event when a sensor connects to

another sensor
Disconnect(sensor, from sensor) Occurring event when a sensor disconnects

from another sensor
Generated
Events

Isolate(sensor) Occurring event when a sensor is isolated
from the network

Join(sensor) Occurring event when there is at least a
connection between a sensor and one or
more sensors

Fluents IsAlive(sensor) True when a Start event occurs for a sensor
IsLinked(sensor, to sensor) True when a Connect event occurs

IsReachable(sensor) True when a sensor is reachable from the
sink node

In Table 1 we report the basic elements (sorts, events and fluents) used
for the specification. We distinguish basic events from generated events. These
last events are generated by the reasoner on the basis of the specification and
of the sequence of basic events actually occurred. Listing 1 shows the rules that
represent the core of the specification for an isolation event. In lines 1-5 we
define a rule to verify when a node becomes isolated. A sensor can be isolated
if it is initially reachable, alive and, considering a link with another sensor,
there is no sensor that is alive, reachable and connected with the sensor. Also

Listing 1: Correctness Specification for the Isolation event

1 [sensor,from_sensor, time]Neighbor(from_sensor,sensor) & HoldsAt(IsReachable(sensor),time)
2 & HoldsAt(IsAlive(sensor),time) & (!{from_sensor2} (HoldsAt(IsAlive(from_sensor2),
3 time) & HoldsAt(IsReachable(from_sensor2),time) &
4 HoldsAt(IsLinked(sensor,from_sensor2),time)) & Neighbor(from_sensor2,sensor)) ->
5 Happens(Isolate(sensor),time).
6
7 [sensor,from_sensor, time] ( !HoldsAt(IsReachable(sensor),time) & HoldsAt(IsAlive(sensor),
8 time) & HoldsAt(IsAlive(from_sensor),time) & HoldsAt(IsReachable(from_sensor),time))
9 & HoldsAt(IsLinked(sensor,from_sensor),time) & Neighbor(from_sensor,sensor) ->

10 Happens(Join(sensor),time).
11
12 [sensor,from_sensor, time] ((HoldsAt(IsAlive(from_sensor),time) &
13 HoldsAt(IsReachable(from_sensor),time) & HoldsAt(IsLinked(sensor,from_sensor),time))
14 | !HoldsAt(IsReachable(sensor),time) | !HoldsAt(IsAlive(sensor),time)) &
15 Neighbor(from_sensor,sensor) ->
16 !Happens(Isolate(sensor),time).
17
18 [sensor,from_sensor,time] ( HoldsAt(IsReachable(sensor),time) |
19 !HoldsAt(IsAlive(sensor),time) | !HoldsAt(IsLinked(sensor,from_sensor),time) |
20 !HoldsAt(IsAlive(from_sensor),time) | !HoldsAt(IsReachable(from_sensor),time)) &
21 Neighbor(from_sensor,sensor)->
22 !Happens(Join(sensor),time). �
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Table 2: Basic elements of the specification for the packet loss event

Elements Name Description
Sorts pkt Packet id

source Sensor that sends the packet
Basic
Events

Send(pkt,source) Occurring event when a sensor
starts the delivery of a packet
(pkt) towards the sink node

Generated
Events

Receive(pkt, source) Occurring event when sink node
receives a packet

Catch(pkt,source, sensor, from sensor) Occurring event when a sensor
catches a packet from one of its
neighbor sensors

Forward(pkt,source, sensor, to sensor) Occurring event when a sensor,
once caught a packet sent by a
sensor, forwards it to its neigh-
bor sensor

PacketLoss(pkt, source) Occurring event when a packet is
lost

Fluents IsInDelivery(pkt, source) True when a packet delivery
starts

IsOnChannel(pkt,source, sensor, to sensor) True when a packet is in trans-
mission on the channel between
two nodes

IsLost(pkt, source) True when a packet is lost

we report (in lines 7-10) another rule which allows to check a Join event.
In particular the rule declares that if a sensor is not reachable, because is
isolated, and alive and its neighbor sensor is also alive and reachable and
there is a connection between them then the sensor can join the network and
becomes reachable again. In the last two rules (in lines 12-16 and 18-22) we
define conditions in which Isolate and Join events cannot occur.

3.2.2 Packet Loss event

When there is a failure in a node or a link between a couple of nodes is
disrupted then all of the packets that are in delivery towards this node are
lost. In turn, these packets are not delivered to the sink. For instance, let us
consider Figure 2. Node A sends a packet pkt to node B. If node B crashes it
cannot receive the packet from node A and forward it to a node towards the
sink; so the packet is lost.

In Table 2 we report the basic elements (sort, events and fluents) used for
the specification related to the packet loss event. Again, events are divided in
basic and generated ones.

In the Listing 2 there are the rules that represent the core of the speci-
fication for the packet loss event. By means of the rule defined in lines 1-2,
we assert that when a Send event comes from the WSN, a Forward event is

Fig. 2: Example of packet loss
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generated and the packet delivery starts. In the lines 4-9 and 11-16, we define
the Catch event that occurs when, being the packet on the channel between a
couple of nodes, the receiving sensor is alive, the packet is not lost and there
is a connection between the nodes. Note that we also included a concurrency
control in order to manage packets that come from different nodes. Also, we
can check the end of a packet delivery (lines 24-25) when it is caught by the
sink node and so it is received.

Finally, in lines 27-32 we report the rule that checks when a packet is lost.
Considering a packet, that is not lost, in delivery towards the sink node and
on the channel between two nodes, when a disconnection event between the
two nodes or the failure of receiving node occurs then there is a packet loss
event.

3.2.3 Battery Exhaustion event

A battery exhaustion event happens when a node completely consumes its
available energy. To this aim, we adopt a sort in the specification for each
sensor node, called level, which represents the level of the battery of the node,
and that is decremented each time the node sends, catches or forwards a packet.

Listing 2: Correctness Specifications for the packet loss event

1 [pkt,sensor,to_sensor,time]Happens(Send(pkt,sensor),time) & Neighbor(to_sensor, sensor) ->
2 Happens(Forward(pkt,sensor,sensor,to_sensor),time).
3
4 [sensor,from_sensor,source,pkt,time] HoldsAt(IsOnChannel(pkt,source,from_sensor,sensor)
5 ,time) & (!{sensor2,from_sensor2,source2,pkt2}
6 HoldsAt(IsOnChannel(pkt2,source2,from_sensor2, sensor2),time) & source!=source2 &
7 sensor=sensor2) & HoldsAt(IsAlive(sensor),time) &
8 HoldsAt(IsLinked(from_sensor,sensor),time) & !HoldsAt(IsLost(pkt,source),time) ->
9 Happens(Catch(pkt,source,sensor, from_sensor),time).

10
11 [sensor,from_sensor,pkt,from_sensor2, pkt2,source, source2, time]
12 HoldsAt(IsOnChannel(pkt,source,from_sensor, sensor),time) &
13 HoldsAt(IsOnChannel(pkt2,source2,from_sensor2, sensor),time) & source<source2
14 & HoldsAt(IsAlive(sensor),time) & HoldsAt(IsLinked(from_sensor,sensor),time) &
15 !HoldsAt(IsLost(pkt,source),time)->
16 Happens(Catch(pkt,source,sensor, from_sensor),time).
17
18 [sensor,to_sensor,from_sensor,source,pkt,time]
19 Happens(Catch(pkt,source,sensor, from_sensor),time) & Neighbor(sensor, from_sensor)
20 & Neighbor(to_sensor, sensor) & HoldsAt(IsAlive(sensor),time) &
21 !HoldsAt(IsLost(pkt,source),time) ->
22 Happens(Forward(pkt,source,sensor,to_sensor),time+1).
23
24 [from_sensor,source,pkt,time] Happens(Catch(pkt,source,1, from_sensor),time) ->
25 Happens(Receive(pkt,source),time).
26
27 [sensor,to_sensor,source,pkt,time] HoldsAt(IsInDelivery(pkt,source),time) &
28 !HoldsAt(IsLost(pkt,source),time) &
29 HoldsAt(IsOnChannel(pkt,source,sensor,to_sensor),time) & Neighbor(to_sensor, sensor) &
30 (!HoldsAt(IsLinked(sensor,to_sensor),time) | Happens(Stop(to_sensor),time) |
31 !HoldsAt(IsAlive(to_sensor),time) ) ->
32 Happens(PacketLoss(pkt,source),time). �
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Table 3: Basic elements of the specification for the battery exhaustion event

Elements Name Description
Sorts level The current battery level of a sensor

levelnew The new battery level of a sensor after RX/TX
operations related to a packet

capacity Value which indicates the maximum battery ca-
pacity of a sensor, in terms of the maximum num-
ber of packets that it can send

Basic
Events

- -

Generated
Events

New Consume(level,sensor) Occurring event when the battery level of a sensor
decreases after the forwarding of a packet

Old Consume(level,sensor) Event created for specification reasons
Fluents BatteryLevel(level,sensor) True when the battery charge of a sensor is equal

to a certain level

In Table 3 we report the basic elements (sort, events and fluents) used for
the specification related to the battery exhaustion event. For this specification,
the basic events are the same shown for the previous specifications. Hence, we
only report generated events.

In the Listing 3 there are the rules that represent the core of the specifi-
cation for the battery exhaustion event. When a Forward event occurs (due
to a sending of a packet) and the battery level of the sensor is positive then
we consider the new consume level (lines 1-4). In the lines 6-7 we can see that
when the battery level of a sensor, that is alive, is zero then a failure for the
node occurs (Stop event) due to its battery exhaustion.

3.3 Structural Specification

General correctness specifications are complemented by a structural specifica-
tion of the target WSN. This is mainly related to the topology of the WSN
and completed by parameters regarding the initial level of batteries and the
quality of channels. Differently from the specifications described in the previ-
ous Section, this specification varies on the basis of the characteristics of the
target WSN.

To specify the topology, we use the predicate Neighbor (already used in
the previous specifications) to indicate how nodes are linked in the topology.
For instance, considering the topology in Figure 3, let us suppose node i is

Listing 3: Correctness Specification for the battery exhaustion event

1 [pkt,sensor,to_sensor,source,level,time] Happens(Forward(pkt, source, sensor,to_sensor),
2 time) & HoldsAt(BatteryLevel(level,sensor),time) & level>0 ->
3 Happens(Old_Consume(level,sensor),time) &
4 ({levelnew}levelnew=level-1 & Happens(New_Consume(levelnew,sensor),time)).
5
6 [sensor,time] HoldsAt(BatteryLevel(0,sensor),time) & HoldsAt(IsAlive(sensor),time) ->
7 Happens(Stop(sensor),time). �
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Listing 4: Example of Neighbor predicate Specification

1 [sensor1,sensor2] Neighbor(sensor1,sensor2) <-> (
2 (sensor1=i & sensor2=j) |
3 (sensor1=i & sensor2=k)
4 ). �

connected with j and k and let us consider a tree graph where the sink node
(root node) is the node i and the nodes j and k are child nodes.

Fig. 3: Example of tree graph with 3 nodes

The resulting specification is reported in Listing 4, where sensor1 is the
parent node (i) and sensor2 is the child node (for this example, j and k).
Clearly, this specification can be adapted easily whenever the WSN topology
changes.

The role of the Neighbor predicate is very important to understand when an
axiom can be applied. Let us examine the axiom related at a possible isolation
event (lines 1-5 of Listing 1) and let us apply it for the Figure 3. The described
implication is true when, given a couple of nodes (sensor, from sensor), the
conditions about isolation are true and there is a link between the nodes (in
this case, between node j and i or between node k and i). This, for instance,
can never be true for the couple of nodes j and k, since there is not a physical
link between them.

Regarding the parameters, their values can be used to check the correct-
ness properties of the WSN under different conditions, i.e., under different
assumptions on the initial charge of batteries (e.g., to verify a WSN in the
middle of its life), or under different environmental conditions affecting the
quality of the channels (impacting on the probability to have a disconnection
event when checking the robustness of the WSN).

4 Heuristic Strategies

To provide useful support for resiliency assessment of a WSN, we perform two
different heuristic strategies (starting from the same specification): i) What-If
Analysis, to observe how the WSN behaves in response to a given sequence
of events of interest for the designer, and ii) Robustness Checking, to discover
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Listing 5: Example of initial event trace

1 Happens(Stop(j),1).
2 Happens(Stop(k),3).
3 Happens(Start(k),4).
4 Happens(Disconnect(k,i),5).
5
6 completion Happens �

the long term robustness of the WSN against random sequences of undesired
events, useful to identify corner cases and reliability bottlenecks.

4.1 What-if Analysis

The goal of a What-If scenario analysis is to observe the behavior of the
target WSN under various circumstances. To this aim, we need to indicate an
initial event sequence (Event Trace) in the structural specification along with
the topology specification and all the values belonging to the target WSN.
The Event Trace is a combination of predicates written in the event calculus
language in the following form:

Happens(event, timepoint).

where event is an occurrence (i.e. a sensor stops or disconnects, ...) and time-
point is a number to fix the succession of the events. This type of heuristic
strategy allows us to figure out what happens if certain events occur by means
of the reasoning performed by the event calculus reasoner; we have observed
that event calculus is particularly suitable to apply this strategy.

For example, as Listing 5 shows, by means of Happens predicates, we can
declare that at timepoint 1 sensor j stops, at timepoint 3 sensor k stops,
etc. In this way, by means of the event calculus reasoner, we can observe
the consequences of any initial sequence of events of interest for the designer,
e.g., to test the robustness of the designed topology against the temporary
unavailability (failure/recovery) of a given set of nodes or to quantify to what
extent a modification of the topology can be beneficial for the network.

4.2 Robustness Checking

For Robustness Checking we intend a heuristic strategy to statically analyze
the behavior of a WSN in front of a number of failures that can occur during
its operation. It is generated a failure tree (in which there are several failure
combinations) and we perform a pruning of this tree on the basis of the desired
reliability requirements.
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We distinguish two types of robustness checking analysis. The first one
aims to analyze the robustness of the network, in terms of coverage, against a
variable number of failures (Stop and Disconnection events), from 1 to n, where
n is selected by the user, considering all combinations without repetitions. It
is particularly useful to evaluate the coverage and connection resiliency of the
network and pinpoint weak points in the topology. The second one aims to
analyze how the target WSN behaves during a periodic sending of packets if
random failures happen, causing packets to be lost. It is useful to evaluate the
data delivery resiliency of the network. These two types of robustness checking
analysis are detailed in the following.

Coverage Robustness Checking. By means of coverage robustness checking,
we can check how many node failures the network can tolerate, while guaran-
teeing a given minimum level of coverage. For example if we consider a network
composed by m nodes and a threshold coverage equal to 50%, we may want to
understand what are the sequences of failures causing more than m/2 nodes to
be isolated (i.e., coverage under the specified threshold) and how the resiliency
level varies when varying the sequences of failures. This allows to evaluate the
maximum (and minimum) resiliency level reachable by a given topology and
what are the critical failure sequences, i.e., the shortest ones causing a loss of
coverage. These are particularly useful to pinpoint weak points in the network.
We developed an algorithm to generate automatically the sequences of failures
(Stop and Disconnection events) against which checking the robustness of the
WSN. The algorithm is implemented by the ADVISES tool (introduced in the
next Section), and it is aimed to reduce the number of failure sequences to be
checked. The principles are to avoid repetitions and to end the sequence as
soon as the coverage level becomes lower than the user defined threshold. For
instance, we start considering all the cases when there is one failure.

By means of the reasoner we compute the coverage; if the coverage is
above the threshold, the resiliency is surely greater than 1, because there is
just one failure and it is tolerated in all cases. In the generic k − th step, we
consider sequences of k failures. If the generic sequence {f1, f2, ..., fk} leads to
a coverage below the threshold, we do not consider sequences starting with a
{f1, f2, ..., fk} prefix in the (k + 1) − th step. By considering the percentage
of sequences with k failures where the coverage is above the threshold, let us
say rk%, we can say that the resiliency is k in rk% of cases.

The described process is summarized by means of the algorithm for the
computation of event sequences with n failures shown in listing 6.

Let failures be the maximum number of failures in a row that user wants
to consider. At the first step, the algorithm considers all of the possible failure
event sequences with only one failure performing reasoning on the basis of the
event traces composed by one single failure.

Then, we have resiliency computation to check if for every obtained event
trace, there is coverage and thus resiliency: if the experiment with trace i
produces coverage lower than the set threshold, it is deleted otherwise this
trace will be included among the new traces (”good” traces). Percentage of
resiliency: number of ”good” traces (1 failure) out of the total number of the
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Listing 6: Algorithm for the computation of event sequences with n failures

1 int f=1;
2 while (f<=failures)
3 {
4 if f==1
5 {
6 Computation of all combinations with 1 failure
7 gen_traces()
8
9 Storing these traces in a combination file

10
11 create_and_reason() //Create and make reasoning on these traces
12 new_traces = compute_resiliency() // Resiliency computation
13
14 Percentage of resiliency: number of traces with coverage upper the threshold (dim)

/ all of the events (total number of single failures)
15 per_resiliency = (dim*100) / events_map.size();
16 }
17
18 2 or more failures
19 else
20 {
21 for (int ev =0; ev<new_traces.size(); ev++)
22 {
23 gen_traces()
24
25 Create and make reasoning on these traces
26 create_and_reason(traces_pp,f_count,events_map, coverage,con_resiliency);
27
28 Resiliency computation: if the experiment with the ’ev’-th trace produces

coverage false, it is deleted otherwise this trace will stay in ’
traces_temp’ (temporary)

29 traces_temp=compute_resiliency(traces_pp, events_map,f_count,output_r);
30
31 Insert the traces, contained in ’traces_temp’ and related to this for cycle,

in a global file; in this last file there are all the traces to
consider for the experiments with upper number of failures.

32 for (int traces_temp_ind =0; traces_temp_ind<traces_temp.size();
traces_temp_ind++)

33 {
34 traces_all.addElement(traces_temp.elementAt(traces_temp_ind));
35 }
36
37 Calculate total number of combinations.
38
39 Percentage of resiliency: number of traces with coverage upper the threshold

(dim) / all of the combinations (den)
40 per_resiliency = dim * 100 / den;
41 new_traces = traces_all;
42 }
43
44 f++; // counter of the while cycle
45 } �

possible one-failure sequences; this value is provided by the ADVISES to figure
out the traces to bring in the next step of the algorithm.

In case of failure event sequences composed by two or more failures, the
algorithm performs the same previous operations but in an extended version.
We consider the combination of all the traces with the number of failures
equal to the algorithm cycle. For instance, if we have to consider sequences of
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2 failures, for every event trace computed at the step 1 (only one failure) we
obtain n-1 event traces composed by two failures adding a single failure that
has not already occurred in the sequence.

Thus, if after the first cycle we have the following event traces composed
by single failures

{f1, f2, f3, . . . fn}

after the second cycle we have the following event traces composed by two
failures:

{f1f2, f1f3, f1f4, . . . f1fn, f2f1, f2f3, f2f4, . . . f2fn, . . . fnf1, . . . fn−1fn}

Note that, to prune the search tree of the algorithm, we compute the new
event traces only starting from previous event traces that lead to a coverage
higher than the desired value.

We perform reasoning on the basis of the new obtained event traces which
are composed by as many failures as it is the value of the current cycle.

The next step is the resiliency computation, to check if for every obtained
event trace the coverage is still above the desired value: if the experiment
with the ”ev”-th trace produces a coverage below the desired threshold, it
means that the network is not resilient to such an event trace, otherwise the
trace will be kept in traces temp (temporary); the new traces, contained in
traces temp are inserted in a global file; in this last file there are all the traces
that have been considered as ”good” (leading to a coverage higher that the
set threshold).

To calculate the percentage of resiliency we have to compute the total
number of the obtained combinations; this number depends on the number of
failures that the algorithm is taking in account in the current cycle and the
number of possible failures (Stop/Disconnect events).

For instance, if the number of f count(cycle counter) is 2 and the total
number of failures is 12, we have that all the possible combinations of sequences
composed by 2 failures is 12!/(12-2)! = 12*11 = 132.

The algorithm ends when all the traces, composed by a number of failure
events equal to value chosen by the user, have been analyzed.

Data Delivery Robustness Checking. In this case we want to check the ro-
bustness of the WSN in case of failures when there are packets being delivery
on the network. To do this, we model each link of the WSN on the basis of
the Gilbert-Elliott Channel Model (Elliott, 1963), and we associate to each
link a disconnection probability (indicating the channel quality), set as a pa-
rameter by the user together with the structural specification. In this way, the
user can simulate different scenarios, e.g., environments with different channel
conditions.

We simulate that, assuming a periodic WSN, every sensor sends period-
ically a packet to the sink. At the same time we randomly generate failures
(failures node and/or disconnection events), taking into account disconnection
probabilities.
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The data delivery resiliency is computed as the maximum number of fail-
ures that can be sustained while a given fraction of packets (above a given
threshold) is still received at the sink.

5 The ADVISES Tool

A Java-based tool, called ADVISES (AutomateD VerIfication of wSn with
Event calculuS), has been designed and implemented to facilitate the appli-
cation of the proposed heuristic strategies.

By means of a graphical user interface (GUI), shown in Figure 4, the user
can simply specify i) the topology of the target WSN, using a connectivity
matrix (topology section of the GUI), ii) the formal correctness specifications
(for checking isolation events, packet losses and battery exhaustion), iii) the
temporal window size to consider, in terms of the number of timepoints (EC
section), iv) the number of packets that each sensor can send, v) the number
of failures (in case of coverage robustness checking as chosen heuristic strat-
egy), vi) the battery capacity of a sensor and the needed energy for RX/TX
operations (both expressed in Joule), vii) the metrics to calculate (for coverage
and data delivery resiliency it is necessary also the threshold value), viii) the
channel model (in case of data delivery robustness checking), ix) the initial
battery level, x) the initial event trace (to perform what-if scenario analysis
as heuristic strategy).

Figure 5a shows an example of a dialog associated with the Channel Model
button, where the user can specify the disconnection probability of every link
of the WSN. In Figure 5b we show how a user can choose the initial battery
level of each sensor. These values are expressed in percentages. Figure 6 shows
an example of dialog associated with the New Trace Event button, where the
user can specify the initial event trace to conduct what-if analysis. Note that
the user can completely specify the WSN and values associated with his case

Fig. 4: ADVISES GUI
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(a) Channel Model (b) Initial Battery Level

Fig. 5: Channel Model and Initial Battery Level

Fig. 6: Example of an initial Event Trace specified by the user

Fig. 7: Workflow

study, without the need to know the details about the underlying formalism,
which is hidden by the ADVISES tool.

Figure 7 shows the workflow of the ADVISES tool. Once user inputs are
inserted and settings have been chosen (i.e. Channel Model, Initial Battery
Level and initial Event Trace), the ADVISES tool is able to automatically
generate in a file (that can be visualized pressing the Create EC file button) the
structural specification with initial conditions (timepoints, number of sensors
and packets, battery levels, etc.) in terms of event calculus formalism. This
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file, together with the general correctness specification, is then provided by the
ADVISES tool as input to the DECReasoner (the most used event calculus
reasoner), which produces the outcome as the result of the reasoning (this
happens when the user presses the Run button). The obtained trace (more
than one, in case of robustness checking) is analyzed by the ADVISES tool to
evaluate the reliability metrics, namely coverage, connection resiliency, data
delivery resiliency, network capacity and power consumption (when the user
selects the respective checkboxes in the Metrics section of the GUI). Finally
ADVISES performs a heuristic strategy chosen by the designer and then sends
messages in order to inform or alert him about resiliency related to a particular
WSN deployment.

5.1 Metric computation

By means of a parser that analyzes the traces produced by the DECReasoner,
the ADVISES tool calculates the reliability metrics. The computation of Cov-
erage and Connection Resiliency depends on a threshold parameter, to be
indicated as a percentage by the user in the GUI (see the “Threshold” text
field in the Metrics section in figure 4). The threshold expresses the fraction
of failed and isolated nodes that the user can tolerate, given its design con-
straints. For instance, over a WSN of 20 nodes, a threshold set to 100% means
that all the 20 nodes have to be connected, whereas 50% means that the user
can tolerate at most 10 isolated nodes.

Considering the threshold value, we calculate the Coverage analyzing the
IsReachable(sensor) and IsAlive(sensor) fluents found to be true in the event
trace produced by the reasoner: if a -IsReachable(x) or a -IsAlive(sensor) fluent
is true in the event trace, this means that node x became isolated or it stopped.
For example in the case of coverage at 50%, for a WSN with 7 nodes, there
is coverage when at least 4 nodes are not isolated (i.e., they are reachable).
Hence, as soon as 4 different nodes are no reachable nor alive (looking at
the fluents), the network is not covered anymore. The coverage can be then
evaluated as the interval [0, t], being t the timepoint of the last failure or
disconnection event before the isolation (e.g., the timepoint of the event that
caused the isolation of a number of nodes exceeding the threshold).

The Connection Resiliency can then be evaluated as the number of fail-
ure and disconnection events (namely, Stop(sensor) and Disconnect(sensor,
from sensor) events) that happen within the coverage interval, excluding the
last failure/disconnection event, that is, the one that actually leads the number
of isolated nodes to overcome the threshold. For example, if we have coverage
in the interval [0, 6], and during this period 3 failure/disconnection events can
be counted, than the connection resiliency is 2, that is, the WSN was able to
tolerate 2 failures or disconnections while preserving more than 50% of the
nodes connected.

Even the computation of the Data Delivery Resiliency depends on a thresh-
old parameter indicated by the user as the percentage value. By means of this
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percentage value, the user can express the fraction of the number of packets
that can be lost. For instance, over a WSN of 30 nodes, a sensors sends 10
packets; if this threshold is equal to 60%, it means that at most 4 packets can
be lost. Considering the threshold value, the ADVISES tool calculates the data
delivery resiliency analyzing the IsInDelivery(pkt,source) fluent in the event
trace produced by the reasoner: if a +IsInDelivery(pkt,source) fluent is true
in the event trace, this means that a packet has been sent by a sensor and it
is in delivery; if a -IsInDelivery(pkt,source) fluent is true, this means that a
packet has been received by the sink node and it is not in delivery anymore.
If the number of instances where the fluent -IsInDelivery(pkt,source) is equal
to the number of instances where the fluent textit+IsInDelivery(pkt,source),
then every packet has been correctly received by the sink node, otherwise this
means that some packet is lost. As soon as the fraction of lost packets becomes
lower than the threshold value then the ADVISES tool verifies the number of
failures (Stop and Disconnect events) occurred; the number of the occurred
failures represents the value of the data delivery resiliency.

Network Capacity is calculated in a similar way to the Data Delivery Re-
siliency. Also in this case, the event trace produced by the reasoner is analyzed
by searching the IsInDelivery(pkt,source) fluent to check if all the packets have
been received by the sink node. Respect to the previous metric, the network
capacity is represented as a normalized value ranging between 0 (if sink node
does not receive any packet) and 1 (if sink node receives all the packets sent
by the nodes). This value represents the average of the delivery rate of all the
packets sent by all the nodes of a network.

Power Consumption is computed analyzing the BatteryLevel (level, sensor)
fluent. For each timepoint, if a +BatteryLevel(level,sensor) fluent is true then
the ADVISES tool updates the battery consumption of the related sensor
with the new value equal to level. After the last timepoint, for each sensor the
ADVISES tool computes the percentage of power consumption. If the behavior
of nodes is known (e.g., each node sends packets periodically, with a known
period), this information can be used to evaluate the lifetime of the network
as the time when the number of alive and not isolated nodes falls below the
coverage threshold.

6 Case studies & Results

In this section we report the results from three representative case studies
considered to show the application of our two heuristic strategies for assessing
WSN resiliency exploiting our formal approach.

We have focused on the criticality of WSN-based healthcare systems in-
volved in patient monitoring scenarios as reported by Ko et al (2010), Hande
et al (2006) and Chipara et al (2010). The considered systems are composed
by WSNs containing 7/15 nodes.

The case studies have been realized taking in account indoor environments
and TMOTE SKY XM1000 wireless sensors (running TinyOS, as operating
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system for WSNs, that implements a contention based MAC protocol) which
follow the IEEE 802.15.4 standard (ZigBee). We have chosen these wireless
sensors since they offer high data rate requiring ultra low power.

In the table 4 we summarize the main features considered in order to per-
form the case studies. In particular, the type of MAC layer is the Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA). We can assert the MAC
mechanism provided by our IEEE 802.15.4-based wireless sensors successfully
reacts on connectivity of the network since it supports retransmission and
automatic synchronization to networks mechanisms.

The first case study is based on what-if scenario analysis and its aim is to
show how this heuristic strategy, utilizing the ADVISES tool, can be adopted
to test a WSN configuration empirically observing its behavior given a certain
event sequence. The last two case studies are based on robustness checking.
In these cases, the aim is to show how a heuristic strategy, as the robustness
checking, can be helpful to analyze a WSN design and drive engineers’ choices
before the real deployment.

In particular, the third case study has been realized to check the robustness
related to data delivery of packets sent by sensors of a WSN exploiting the
Gilbert-Elliott Channel Model (Elliott, 1963).

Table 4: Features of the sensor nodes involved in the case studies

TMOTE SKY XM10000
Feature Description
Standard IEEE 802.15.4 (ZigBee)

Frequency band 2.4 GHz (ISM)
Transmission rate 250 Kbps

Radio Chipset CC2420 RF which provides reliable wireless
communications

Power Consumption 18.8 mA (RX)
17.4 mA (TX)

MAC Layer features Encryption with AES-128
CSMA-CA
Retransmission
Synchronization to networks
Security

Microcontroller TI MSP430F1611
Operating System TinyOS

Storage 10KB RAM
48 KB Flash
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6.1 Case study 1 (what-if analysis): A WSN realized in our laboratory

As first case study, we consider the topology of a WSN constructed by mount-
ing ten sensor nodes placed according to a tree schema (Figure 8); node 1 (the
root of the tree) is the sink of the network. The distance between the couples
of nodes (in parent-child relationship) is set to about 2 meters.

In this case study we are interested to evaluate the behavior of the net-
work, in terms of coverage, connection resiliency and data delivery resiliency,
when the following sequence of basic events occurs: Send(1,5) at timepoint 1,
Send(1,9) at timepoint 2, Stop(4) at timepoint 4 and Disconnect(3,1) at time-
point 7. For a coverage threshold set at 70%, we should observe that coverage
interval is equals to [0, 7] (i.e., when node 3 disconnects from node 1 at time
point 7, 4 nodes are not reachable, namely 3, 4, 8 and 9) and the connection
resiliency is equals to 1 (i.e., only the Stop(4) event is tolerated).

For a data delivery resiliency threshold set at 60%, we should observe that
the packets sent by node 5 and node 9 are received by the sink without being
lost. The initial event trace produced by the ADVISES tool is given in Listing
7.

The ADVISES tool generates the values for the range of sensors and time-
points, again analyzing user inputs. In this case, we know that the network is
composed by 10 nodes that can send at most 1 packet and we want to observe
what it could happen in 10 timepoints.

Also in this case, the outcome produced by the DECReasoner (see Listing
8) reports the event trace by means of which we can validate our assumptions.

Fig. 8: Topology of the WSN realized in our laboratory (case study 1)

Listing 7: Initial event trace for the WSN of case study 1

1 Happens(Send(1,5),1).
2 Happens(Send(1,9),2).
3 Happens(Stop(4),4).
4 Happens(Disconnect(3 , 1),7).
5
6 completion Happens �
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Listing 8: Outcome of the DECReasoner for the case study 1

0
1
Happens(Forward(1, 5, 5, 2), 1).
Happens(Send(1, 5), 1).
2
+IsInDelivery(1, 5).
+IsOnChannel(1, 5, 5, 2).
Happens(Catch(1, 5, 2, 5), 2).
Happens(Forward(1, 9, 9, 3), 2).
Happens(Send(1, 9), 2).
3
-IsOnChannel(1, 5, 5, 2).
+IsInDelivery(1, 9).
+IsOnChannel(1, 9, 9, 3).
Happens(Catch(1, 9, 3, 9), 3).
Happens(Forward(1, 5, 2, 1), 3).
4
-IsOnChannel(1, 9, 9, 3).
+IsOnChannel(1, 5, 2, 1).
Happens(Catch(1, 5, 1, 2), 4).
Happens(Forward(1, 9, 3, 1), 4).
Happens(Receive(1, 5), 4).
Happens(Stop(4), 4).
5
-IsAlive(4).
-IsInDelivery(1, 5).
-IsOnChannel(1, 5, 2, 1).
+IsOnChannel(1, 9, 3, 1).
Happens(Catch(1, 9, 1, 3), 5).
Happens(Receive(1, 9), 5).
6
-IsInDelivery(1, 9).
-IsOnChannel(1, 9, 3, 1).
7
Happens(Disconnect(3, 1), 7).
8
-IsLinked(3, 1).
Happens(Isolate(3), 8).
9
-IsReachable(3).
Happens(Isolate(8), 9).
Happens(Isolate(9), 9).
10
-IsReachable(8).
-IsReachable(9). �
In fact, we can observe that when node 4 stops, there are still 9 reachable
nodes. When there is a disconnection between nodes 3 and 1, there are 6
reachable nodes. For this reason the coverage is 7 because in the interval [0, 7]
the covered nodes are 9 on 10 (90%); the connection resiliency is equal to 1.

Finally, the data delivery resiliency is 100%; the packets sent by node 5
and node 9 are correctly received by the sink.

6.2 Case study 2 (robustness checking): Is it worth to add a node?

As a first case study for robustness checking let us consider a simple WSN
with 6 nodes (Figure 9a). This topology is commonly adopted to monitor a
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Table 5: Results of simple linear topology

Outcome
Simple linear topology

6 sensors 6 sensors + 1 extra

No. of Failures 1 2 3 4 1 2 3 4

Connection Resiliency 1 0 0 0 1 2 0 0

Percentage of Cases 20% - - - 66% 24% - -

linear structure, such as a tunnel or an oil pipeline (Jawhar et al, 2008). We
have considered every couple of adjacent sensors is placed at a distance of 4
meters following a linear schema.

From the figure, it is intuitive to conclude that node 2 represents the most
critical reliability bottleneck for this topology, since it has to route the packets
from all other nodes to the sink.

The simplicity of the topology allows to reason on reliability bottlenecks
and on potential improvements. In particular, the objective of the case study
is to quantify the benefits, in terms of connection resiliency, of adding one
extra node (see Figure 9b) between the sink node (node 1) and node 4 at a
distance equal to 6 meters from these two nodes.

In order to obtain the results, shown in Table 5, we have considered in
both topologies a reasoning performed on 10 timepoints, a coverage threshold
value equal to 70% (5 reachable nodes) and a number of failures from 1 to 4.

For both topologies we report the number of failures, the connection re-
siliency and the percentage of the cases in which the connection resiliency is
not 0. For example in the simple linear topology (without extra node), explor-
ing all of the cases in which 1 failure occurs, we have connection resiliency
equal to 1 in 20% of the cases. In the other cases, the coverage is below 70%.
If 2 failures occur, we have no cases in which coverage is above 70% and so,
the maximum connection resiliency level achievable is 1. This confirms numer-
ically that the topology is extremely fragile and susceptible to failures in the
majority of cases when undesired events occur.

If we add an extra node then we gain benefits because we triple the chances
(66%) to have connection resiliency with coverage >70% in case of 1 failure,
and we have coverage upper than threshold value also when 2 failures occur (in
the 24% of the cases). Hence, in this case the maximum connection resiliency
level is 2. In this way we can assert that adding a node (accounting for 17%

(a) WSN with line topology (b) WSN with extra node in line topology

Fig. 9: WSN with line topology (case study 2)
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of extra cost) in the proximity of the sink allows to significantly boost the
robustness of the WSN, by triplicating the chances of survival in case of 1
failure, and by doubling the maximum connection resiliency achievable.

6.3 Case study 3 (robustness checking): Robustness checking in harsh
environments

In the last case study we consider a WSN with 8 nodes reported in Figure 10.
In particular we want to observe how the WSN would react and, consequently,
how the percentage of data delivery would change with different disconnection
probabilities. This is useful to check the robustness of the WSN in different
deployment scenarios, e.g., from environments with a good channel quality
(for instance, an outdoor scenario in good whether conditions, with no inter-
ferences) to harsh environments (such as, indoor scenario with fading due to
obstacles and walls and electromagnetic interferences due to the presence of
other wireless devices).

To do this, we model each link of the WSN on the basis of the Gilbert-
Elliott Channel Model Elliott (1963), and we associate to each link a discon-
nection probability (indicating the channel quality), set as a parameter by the
user together with the structural specification. In this way, the user can sim-
ulate different scenarios, e.g., environments with different channel conditions.

We simulate that, assuming a periodic WSN, every sensor sends period-
ically a packet to the sink. At the same time we randomly generate failures
(failures node and/or disconnection events), taking into account disconnection
probabilities. The data delivery resiliency is computed as the maximum num-
ber of failures that can be sustained while a given fraction of packets (above
a given threshold) is still received at the sink.

Specifically, we analyze the percentage of delivered packets when every link
has a probability of disconnection ranging from 5% to 40% with step 5%. We
expect that, the more the disconnection probability grows, the more failures
occur, and the less is likely that a packet is delivered to the sink. In particular,
we want to check under which operational conditions the network is still able
to deliver more than 50% of packets to the sink.

The graph in Figure 10b shows the results of the study, where O.F. (Oc-
curred Failures) represents the number of the occurred failures and D. Pkt.
(Delivered Packets) the percentage of delivered packets. Both the values are
reported as a function of the disconnection probability from 5% to 40%. Each
point of the graph is obtained by repeating the experiment 3 times, letting
the ADVISES tool generate different random sequences starting from the dis-
connection probability set by the user. For this reason, each point represents
a mean value and also standard deviation bars are reported. From the graph,
we can observe the expected inverse relationship between the trend of the
occurred failures and the trend of delivered packets: when the probability of
disconnection increases, also the number of the failures increases, whereas the
number of the delivered packets decreases.
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Table 6: Network capacity of the sink on the basis of disconnection probability
(Case study 3)

Disconnection Probability Network Capacity

5% 0.747

10% 0.638

15% 0.603

20% 0.465

25% 0.440

30% 0.425

35% 0.425

40% 0.210

It is interesting to observe a certain resilience of the network for discon-
nection probability values ranging from 20% to 35%. In this range it seems
that, even if the number of failures keeps increasing as expected, the net-
work is redundant enough to tolerate them. Hence the percentage of delivered
packets remains the same, and we need to stress the network up to a 40% of
disconnection probability to observe a more significant loss in the percentage
of delivered packets. Considering instead our requirement on checking up to
which conditions the WSN is able to deliver more than 50% of packets to the
sink, we can observe that this requirement is satisfied up to a disconnection
probability of 15% and a number of failures below 5. This means that the data
delivery resiliency for this network is 5 (with the threshold set to 50%), and
that the WSN is able to conform to expectations only if deployed in an envi-
ronment where quality of channels is such that the disconnection probability
of links does not overcome the critical level of 15%.

(a) WSN topology with 8 nodes (b) Results of the case study

Fig. 10: Topology and results of the case study 3
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For this case study, we have also computed the network capacity metric
since we have considered the packet delivery. From the table 6, evaluating the
result of the figure 10b, it is worth to claim that the higher is the disconnection
probability of the links in the WSN, the lesser is the network capacity of the
sink, or in other words the total arrival rate of packet received by the sink;
this is due to a higher loss of the packets during their delivery. Even in the
case of the lowest disconnection probability (5 %) the WSN does not exploit
all the available throughput (the network capacity is 0.747); this means that
considered data flows do not saturate the sink.

7 Related Work Comparison

In order to appreciate the innovative contribution of our heuristic strategies
applied using a formal approach, we compare (in Table 7) the characteristics
of the analyzed work, discussed in Section 2, with ADVISES tool. The aim of
this comparison is to show what are the advantages that other work cannot
benefit.

For each work we analyzed if some formal method has been used, if some
heuristic strategy has been adopted, which reliability metrics have been con-
sidered, if specifications have been separated (in case of work based on formal
approach), if the work is supported by some tool, and finally if some case study
has been presented.

From our related work we can see that few apply formal approaches to
study the behavior of WSN from the same perspective we do in this work.
Therefore a better understanding of how formal approaches have been applied
in the WSN area can be interesting. We have noticed that among the most
important reliability metrics, the power consumption is the only one that has
been considered extensively. Instead data delivery resiliency and connection
resiliency are the least analyzed; our aim has been to consider all the four
reliability metrics and until now there is no work that considers all these that
we have considered in this paper in order to assess WSN resiliency exploiting
the power of the formal methods and heuristic strategies.

The majority of papers propose a tool and present results by means of
some case study. The Separated specifications column, one of the main ad-
vantages of the ADVISES tool, emerges: for the first time specifications are
separated considering the general specifications on one side and the structural
specifications dependent on the WSN topology on another side.

Therefore we can confirm that the ADVISES tool meets several important
characteristics that allow us to easily apply heuristic strategies for assessing
WSN resiliency using an event-based formal approach demonstrating its nov-
elty in the field of reliability research for WSNs.
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8 Conclusion

This paper has described two heuristic strategies for assessing WSN resiliency:
What-If analysis and Robustness Checking. These strategies have been applied
exploiting an event-based approach, and related ADVISES tool, for the auto-
mated reliability assessment of WSNs using event calculus as formal language.
Using this formalism we have presented a set of general correctness specifica-
tions, valid for any WSN that are integrated with a structural specification,
automatically generated for the particular WSN under study. In this way, the
same core specification can be re-used to elaborate heuristics for a WSN under
design, without requiring system engineers to have knowledge of the adopted
formalism.

The effectiveness of the proposed heuristic strategies has been shown in the
context of three case studies. They have shown how the results are useful to
understand the behaviour of a WSN when a particular event sequence occurs,
to drive design choices (e.g., whether is worth to add a node) and to check
limit operational conditions (the minimum channel quality required to let the
WSN work to expectations).

The definition of the general correctness specifications (for isolation, packet
loss and battery exhaustion event) has been an hard and long task since we had
to write their informal descriptions in event calculus formalism, to realize some
initial simple scenario and verify/test them by means of the DECReasoner.

Among them we found particular criticality of the packet loss event speci-
fication and thus battery exhaustion event specification (because the last one
is linked to the packet loss event). While the reasoning performed on the spec-
ification for the isolation event takes a reasonable time to be performed, the
reasoning performed on the specification for packet loss (and for battery ex-
haustion) requires orders of magnitude longer times. This is due to the more
complex logic that characterizes this specification.

This issue is also reflected on case studies. We have considered topologies
of WSNs adopted in typical critical scenarios, such as healthcare and indoor
surveillance (with 7/15 nodes). During the experimental phase, we have also
tested the correct functioning of the specification with topologies with more
nodes (about 100) but the reasoning time becomes impractical on our com-
modity hardware, due to the state space explosion problem. While this issue
does not affect the conceptual validity of the approach and its use on typi-
cal critical WSNs, it undermines its practical adoption for large WSNs. To
face this scalability problem, we are currently conceiving a method to divide a
large topology in several sub-topologies (equivalent to WSN clusters), perform
reasoning on each sub-topology in parallel and finally join the results taking
in account the dependences between the sub-topologies.

The outcomes obtained by the event calculus reasoner report events hap-
pening in a given timepoint and their cause-effect relationships, without any
information about the actual time (e.g. it is not known the exact temporal
instant of a certain event in seconds).
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For this reason, in our paper we have focused on the metrics which are not
time-dependent (i.e. connection resiliency, data delivery resiliency, network
capacity and power consumption). In the case of coverage metric we have
computed it considering the number of the timepoints.

We base our approach on sensors that are fixed (such as beacons) and with
a established data routing reducing a topology like a spanning tree that is
valid for a WSN. As future work we plan to extend the use of the specification
also for mobile scenarios specifying further events that notify wireless sensor
movements within clusters and from cluster to cluster.
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