2,681 research outputs found

    Exploiting T-junctions for depth segregation in single images

    Full text link

    Solid-phase epitaxial regrowth of amorphous layers in Si(100) created by low-energy, high-fluence phosphorus implantation

    No full text
    Medium energy ion scattering has been used to study the kinetics of solid-phaseepitaxial regrowth (SPEG) of ultrathin amorphous layers formed by room-temperature implantation of 5keV energy phosphorus ions into Si (100). The implants create P distributions with peak concentrations up to ∼7×10²¹cm⁻³. SPEG has been driven by rapid thermal annealing, 475°C⩽TA⩽600°C, for times up to 2000s. At each temperature, the regrowth velocity is enhanced in the early stages due to the presence of phosphorus but then slows sharply to a value more than an order of magnitude below the intrinsic rate. The critical phosphorus concentration at the transition point for TA=475°C regrowth is ∼6×10²⁰cm⁻³ and increases steadily with anneal temperature. Time-of-flight secondary ion mass spectroscopy profiles confirm the onset of phosphorus push out, where the advancing recrystallization front enters the transition region. Supplementary cross-sectional transmission electron microscopy evidence confirms the existence of a local strain field.This work has been supported by the Natural Sciences and Engineering Research Council of Canada

    Recurrent rearrangements of human amylase genes create multiple independent CNV series

    Get PDF
    The human amylase gene cluster includes the human salivary (AMY1) and pancreatic amylase genes (AMY2A and AMY2B), and is a highly variable and dynamic region of the genome. Copy number variation (CNV) of AMY1 has been implicated in human dietary adaptation, and in population association with obesity, but neither of these findings has been independently replicated. Despite these functional implications, the structural genomic basis of CNV has only been defined in detail very recently. In this work, we use high-resolution analysis of copy number, and analysis of segregation in trios, to define new, independent allelic series of amylase CNVs in sub-Saharan Africans, including a series of higher-order expansions of a unit consisting of one copy each of AMY1, AMY2A, and AMY2B. We use fiber-FISH (fluorescence in situ hybridization) to define unexpected complexity in the accompanying rearrangements. These findings demonstrate recurrent involvement of the amylase gene region in genomic instability, involving at least five independent rearrangements of the pancreatic amylase genes (AMY2A and AMY2B). Structural features shared by fundamentally distinct lineages strongly suggest that the common ancestral state for the human amylase cluster contained more than one, and probably three, copies of AMY1

    Filling-in the Forms: Surface and Boundary Interactions in Visual Cortex

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-l-0409); Office of Naval Research (NOOO14-95-1-0657)

    Ice Core Science Meets Computer Vision: Challenges and Perspectives

    Get PDF
    Polar ice cores play a central role in studies of the earth's climate system through natural archives. A pressing issue is the analysis of the oldest, highly thinned ice core sections, where the identification of paleoclimate signals is particularly challenging. For this, state-of-the-art imaging by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) has the potential to be revolutionary due to its combination of micron-scale 2D chemical information with visual features. However, the quantitative study of record preservation in chemical images raises new questions that call for the expertise of the computer vision community. To illustrate this new inter-disciplinary frontier, we describe a selected set of key questions. One critical task is to assess the paleoclimate significance of single line profiles along the main core axis, which we show is a scale-dependent problem for which advanced image analysis methods are critical. Another important issue is the evaluation of post-depositional layer changes, for which the chemical images provide rich information. Accordingly, the time is ripe to begin an intensified exchange among the two scientific communities of computer vision and ice core science. The collaborative building of a new framework for investigating high-resolution chemical images with automated image analysis techniques will also benefit the already wide-spread application of LA-ICP-MS chemical imaging in the geosciences.Comment: 9 pages, 2 figures, submitted to Frontiers in Computer Science, section Computer Visio

    Ice Core Science Meets Computer Vision: Challenges and Perspectives

    Get PDF
    Polar ice cores play a central role in studies of the earth's climate system through natural archives. A pressing issue is the analysis of the oldest, highly thinned ice core sections, where the identification of paleoclimate signals is particularly challenging. For this, state-of-the-art imaging by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) has the potential to be revolutionary due to its combination of micron-scale 2D chemical information with visual features. However, the quantitative study of record preservation in chemical images raises new questions that call for the expertise of the computer vision community. To illustrate this new inter-disciplinary frontier, we describe a selected set of key questions. One critical task is to assess the paleoclimate significance of single line profiles along the main core axis, which we show is a scale-dependent problem for which advanced image analysis methods are critical. Another important issue is the evaluation of post-depositional layer changes, for which the chemical images provide rich information. Accordingly, the time is ripe to begin an intensified exchange between the two scientific communities of computer vision and ice core science. The collaborative building of a new framework for investigating high-resolution chemical images with automated image analysis techniques will also benefit the already wide-spread application of laser-ablation inductively-coupled plasma mass spectrometry chemical imaging in the geosciences

    The Art of Seeing and Painting

    Get PDF
    The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understand paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Multi-scale cortical keypoints for realtime hand tracking and gesture recognition

    Get PDF
    Human-robot interaction is an interdisciplinary research area which aims at integrating human factors, cognitive psychology and robot technology. The ultimate goal is the development of social robots. These robots are expected to work in human environments, and to understand behavior of persons through gestures and body movements. In this paper we present a biological and realtime framework for detecting and tracking hands. This framework is based on keypoints extracted from cortical V1 end-stopped cells. Detected keypoints and the cells’ responses are used to classify the junction type. By combining annotated keypoints in a hierarchical, multi-scale tree structure, moving and deformable hands can be segregated, their movements can be obtained, and they can be tracked over time. By using hand templates with keypoints at only two scales, a hand’s gestures can be recognized

    FGF signaling and cell state transitions during organogenesis

    Get PDF
    Organogenesis is a complex choreography of morphogenetic processes, patterns and dynamic shape changes as well as the specification of cell fates. Although several molecular actors and context-specific mechanisms have already been identified, our general understanding of the fundamental principles that govern the formation of organs is far from comprehensive. The application of the concept of ‘rebuild it to understand it’ from synthetic biology represents a promising alternative to the classical approach of ‘break it to understand it’ in order to distill biological understanding from complex developmental processes. According to this ‘rebuilding’ concept, in this study we sought to develop an experimental approach to induce the formation of organs from progenitor cells ‘on demand’ and to investigate the minimum requirements for such a process. The zebrafish lateral line chain cells are a powerful in vivo model for our study because they are a group of naïve multipotent progenitor cells that display mesenchyme-like features. In order to bring these cells to form organs, we used the well-known role of the FGF signaling pathway as a driver of organogenesis in the lateral line and developed an inducible and constitutively active form of the fibroblast growth factor receptor 1a (chemoFGFR). The cell-autonomous induction of this chemoFGFR in chain cells effectively triggered the formation of fully mature organs and thus enabled spatial and temporal control of the organogenesis process. Next, we asked what it takes to form an organ de novo. We used a combination of real-time microscopy, single cell tracking, polarity quantification, and mosaic analysis to study the cell behaviors that result from chemoFGFR induction. The picture that emerges from these analyses is that de novo organs form through a genetically encoded self-assembly process that is based on the pattern of chemoFGFR induction. In this scenario, cells expressing chemoFGFR aggregate into clusters and epithelialize as they sort out of non-expressing cells. We found that this sorting process occurs through cell rearrangement and slithering, which involves an extensive remodeling of the cell-cell contacts. Chain cells that do not express chemoFGFR can envelop these chemoFGFR expressing cell clusters and form a rim at the cluster periphery. This multi-stage process leads to the establishment of the inside-outside pattern of de novo organs, which is used as a blueprint for cell differentiation. In summary, in this study we provide insights into the mechanisms involved in the self-assembly of organs from a naïve population of progenitor cells
    corecore