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Multi-scale cortical keypoints for realtime
hand tracking and gesture recognition

M. Farrajota’, M. Saleiro', K. Terzic', JM.F. Rodrigues' and J.M.H. du Buf!

Abstract— Human-robot interaction is an interdisciplinary
research area which aims at integrating human factors, cog-
nitive psychology and robot technology. The ultimate goal is
the development of social robots. These robots are expected to
work in human environments, and to understand behavior of
persons through gestures and body movements. In this paper
we present a biological and realtime framework for detecting
and tracking hands. This framework is based on keypoints
extracted from cortical V1 end-stopped cells. Detected keypoints
and the cells’ responses are used to classify the junction type.
By combining annotated keypoints in a hierarchical, multi-scale
tree structure, moving and deformable hands can be segregated,
their movements can be obtained, and they can be tracked over
time. By using hand templates with keypoints at only two scales,
a hand’s gestures can be recognized.

I. INTRODUCTION

Automatic analysis of humans and their actions has received
increasingly more attention in the last decade. One of the
areas of interest is recognition of human gestures, as these
are frequently used as an intuitive and convenient way
of communication in our daily life. Recognition of hand
gestures can be widely applied in human-computer interfaces
and interaction, games, robot control, augmented reality, etc.

In computer vision there are numerous approaches for
hand detection, tracking and gesture recognition, although
to the best of our knowledge none is really biologically
inspired. Kim et al. [7] presented a method for hand tracking
and motion detection based on a sequence of stereo color
frames. Bandera et al. [1] presented an approach to recognize
gestures which are composed of tracked trajectories of differ-
ent body parts, where each individual trajectory is described
by a set of keypoints. Gestures are characterized through
global properties of the trajectories which are involved. Suk
et al. [17] explored a method for recognizing hand gestures
in a continuous video stream based on a dynamic Bayesian
network.

Holte et al. [5] presented an approach to invariant gesture
recognition using 3D optical flow in a harmonic motion
context. Employing a depth map as well as an intensity
image of a scene, they used the latter to define a region of
interest for the relevant 3D data. Their gesture recognition is
based on finding a 3D version of optical flow which results
in velocity-annotated point clouds. These are represented
efficiently by introducing motion context. The motion con-
text is transformed into a view-invariant representation by
applying spherical harmonic basis functions, which yields
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a harmonic motion context representation. Finally, a prob-
abilistic classifier is applied to identify which gesture best
describes a string of primitives. Shen et al. [15] proposed a
new visual representation for hand motions based on motion
divergence fields, which can be normalized to gray-scale
images. Salient regions detected by the MSER algorithm
(Maximum Stable Extremal Regions) are then identified in
the motion divergence maps. From each detected region, a
local descriptor is extracted which captures the local motion
pattern.

Our approach is similar to that of [10] in terms of
simplicity, with hand tracking although we do not apply color
segmentation. A recent development is the “Haar Cascade”
for detecting e.g. eyes, mouths, noses and faces [18], [9],
also for tracking hands [2]. Algorithms are already included
in OpenCV and they are very fast because they employ Haar
wavelets, but these wavelets only coarsely resemble Gabor
wavelets which are used to model cortical simple cells in
area V1.

Recently we presented cortical models based on multi-
scale line/edge and keypoint representations, also with key-
point annotation [4], [12], [14]. These representations, all
based on responses of simple, complex and end-stopped
cells in cortical area V1, can be integrated for different pro-
cesses: visual reconstruction or brightness perception, focus-
of-attention (FoA), object segregation and categorization,
and object and face recognition. The integration of FoA,
region segregation and object categorization is important for
developing fast gist vision, i.e., which types of objects are
about where in a scene. We also developed an initial model
for cortical optical flow based on keypoints [4]. Experiments
have strengthened the idea that neurons in a specialized
region of the cerebral cortex play a major role in flow
analysis [21], that neuronal responses to flow are shaped by
visual strategies for steering in 3D environments [20], and
that flow processing has an important role in the detection
and estimation of scene-relative object movements [19].

In this paper we present a biologically-inspired method
for tracking deformable objects based on keypoints extracted
from cortical end-stopped cells. We focus on human hands
and gestures which is necessary for joint human-robot manip-
ulation of objects on top of a table: pointing and grasping etc.
Our contributions are a realtime cortical hand detector, a new
tracking and gesture recognition algorithm, and significantly
faster keypoint annotation and tracking algorithms. The ad-
vantage of using annotated keypoints is that they provide
more information than mere point clouds. The disadvantage
is that the filtering involved is very expensive in terms of
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CPU time, hence keypoint detection has been implemented
on a GPU. The rest of this paper is organized as follows.
In Section II we explain keypoint detection and annotation,
and in Section III optical flow computation. Hand tracking is
explained in Section IV, and we conclude with a discussion
in Section V.

II. MULTI-SCALE KEYPOINT ANNOTATION

Keypoints are based on cortical end-stopped cells [12]. They
provide important information because they code local image
complexity. Moreover, since keypoints are caused by line
and edge crossings, detected keypoints can be classified by
the underlying vertex structure, such as K, L, T and +
shaped junctions, and the angles can be employed. This is
very useful for most if not all matching problems: object
recognition, stereo disparity and optical flow. In this section
we briefly describe the multi-scale keypoint detection and
annotation processes.

Recently the original model [12] has been improved such
that multi-scale keypoints can be detected in realtime. The
improvements concern several important aspects: (1) a new
approach to merging keypoints resulting from single- and
double-stopped cell responses improves precision at coarse
scales; (2) instead of applying many convolutions with filter
kernels tuned to many scales and orientations, a Gaussian
pyramid is used and all filters are applied in the frequency
domain (FFT), which speeds up enormously keypoint extrac-
tion at coarse scales; (3) subpixel localization is used, which
improves precision at fine scales and partially compensates
the loss of precision at coarse scales caused by using the
Gaussian pyramid; and (4) a scale selection mechanism
is introduced, which significantly reduces the number of
duplicated keypoints across scales. These improvements are
detailed in a forthcoming paper. Below we briefly describe
the algorithms.

The basic principle for multi-scale keypoint detection is
based on Gabor quadrature filters which provide a model of
cortical simple cells [12]. In the spatial domain (x,y) they
consist of a real cosine and an imaginary sine, both with a
Gaussian envelope. Responses of even and odd simple cells,
which correspond to real and imaginary parts of a Gabor
filter, are obtained by convolving the input image with the
filter kernel, and are denoted by RZ,(x,y) and RY,(x,y),
s being the scale, ¢ the orientation (6; = im/Np) and Ny
the number of orientations (here 8) with i = [0, Ny — 1].
Responses of complex cells are modeled by the modulus
Cs,i(x,y). As mentioned before, there are two types of
end-stopped cells, single and double. These are applied to
Cs,; and are combined with tangential and radial inhibition
schemes in order to obtain precise keypoint maps K(z,y).
For a detailed explanation with illustrations see [12]. Below,
the scale of analysis s will be given by ), the wavelength
of the Gabor filters, expressed in pixels, where A\ = 1
corresponds to 1 pixel.

In order to classify any detected keypoint, the responses of
simple cells RZ, and Rgi are analyzed, but now using Ny =

S,

2Ny orientations, with ¢y, = kn /Ny and k = [0, Ny — 1].
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This means that for each of the 8 simple-cell orientations
on [0, 7] there are two opposite analysis orientations on
[0,27], e.g., 01 = 7/Np results in ¢; = 7/Ny and ¢g =
97 /Np. This division into response-analysis orientations is
acceptable according to [6], because a typical cell has a
maximum response at some orientation and its response
decreases on both sides, from 10 to 20 degrees, after which
it declines steeply to zero; see also [3].

Classitying keypoints is not trivial, because responses
of simple and complex cells, which code the underlying
lines and edges at vertices, are unreliable due to response
interference effects [3]. This implies that responses must be
analyzed in a neighborhood around each keypoint, and the
size of the neighborhood must be proportional to the scale
of the cells. The validation of the line and edge orientations
which contribute to the vertex structure is based on an
analysis of the responses of complex cells Cs;(z,y). At
a distance of A, and for each direction ¢y, responses in
that direction and in neighboring orientations ¢y, with
l = {-2,-1,0,1,2}, are summed with different weights
equal to 1/2!l. After this smoothing and detection of local
maxima, each keypoint is then annotated by a descriptor of
16 bits which codes the detected orientations. In the case of
keypoints caused by blobs with no underlying line and edge
structures, all 16 bits are zero.

This method is an improvement of the previous method
[4]. It provides a more detailed descriptor of the underlying
line and edge structures, with a significant increase in perfor-
mance and with a negligible loss of precision. The first five
images in Fig. 1 illustrate keypoint detection and annotation
at the given scales. For more illustrations see [12].

III. OPTICAL FLOW

Keypoint detection may occur in cortical areas V1 and V2,
whereas keypoint annotation requires bigger receptive fields
and could occur in V4. Optical flow is then processed in
areas V5/MT and MST, which are related to object and ego
motion for controlling eye and head movements.

Optical flow is determined by matching annotated key-
points in successive camera frames, but only by matching
keypoints which may belong to a same object. To this
purpose we use regions defined by saliency maps. Such maps
are created by summing detected keypoints over all scales
s, such that keypoints which are stable over scale intervals
yield high peaks. In order to connect the individual peaks and
yield larger regions, relaxation areas proportional to the filter
scales are applied [12]. Here we simplify the computation
of saliency maps by simply summing the responses of end-
stopped cells at all scales, which is much faster and yields
similar results. Figure 1 (bottom-right) illustrates a saliency
map.

We apply a multi-scale tree structure in which at a very
coarse scale a root keypoint defines a single object, and at
progressively finer scales more keypoints are found which
convey the object’s details. Below we use five scales: A =
[4,12] with AX = 2. All keypoints at A = 12 are supposed
to represent individual objects, although we know that it is
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Fig. 1.
all 5 scales, keypoint annotation at scales A = 4, 8 and 12, and the frame’s
saliency map where red indicates higher and blue lower saliency.

Left to right and top to bottom: input frame, keypoints detected at

possible that several of those keypoints may belong to a
same object. Each keypoint at a coarse scale is related to one
or more keypoints at one finer scale, which can be slightly
displaced. This relation is modeled by down-projection using
grouping cells with a circular axonic field, the size of which
(A\) defines the region of influence; see [4].

As mentioned above, at a very coarse scale each keypoint —
or central keypoint CKP — should correspond to an individual
object [12]. However, at the coarsest scale applied, A = 12,
this may not be the case and an object may cause several
keypoints. In order to determine which keypoints could
belong to the same object we combine saliency maps with
the multi-scale tree structure.

At this point we have, for each frame, the tree structure
which links the keypoints over scales, from coarse to fine,
with associated regions of influence at the finest scale. We
also have the saliency map obtained by summing responses
of end-stopped cells over all scales. The latter, after thresh-
olding, yields segregated regions which are intersected with
the regions of influence of the tree. Therefore, the intersected
regions link keypoints at the finest scale to the segregated
regions which are supposed to represent individual objects.

Now, each annotated keypoint of frame ¢ can be compared
with all annotated keypoints in frame i — 1. This is done
at all scales, but the comparison is restricted to an area
with radius 2 instead of A\ at each scale in order to allow
for larger translations and rotations. In addition, (1) at fine
scales many keypoints outside the area can be skipped since
they are not likely to match over large distances, and (2)
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at coarse scales there are less keypoints, A is bigger and
therefore larger distances (motions) are represented there.
The tree structure is built top-down, but the matching process
is bottom-up: it starts at the finest scale because there the
accuracy of the keypoint annotation is better. Keypoints are
matched by combining three similarity criteria with different
weight factors:

(a) The distance D serves to emphasize keypoints which
are closer to the center of the matching area. For having D =
1 at the center and D = 0 at radius 2\, we use D = (2\ —
d)/2X\ with d the Euclidean distance (this can be replaced
by dynamic feature routing [4], [13]).

(b) The orientation error O measures the correlation of
the attributed orientations, but with an angular relaxation
interval of +27 /Ny applied to all orientations such that also
a rotation of the vertex structure is allowed. Similar to D, the
summed differences are combined such that O = 1 indicates
good correspondence and O = 0 a lack of correspondence.
Obviously, keypoints marked “blob” do not have orientations
and are treated separately.

(c) The tree correspondence C' measures the number of
matched keypoints at finer scales, i.e., at any scale coarser
than the finest one. The keypoint candidates to be matched in
frame ¢ and in the area with radius 2\ are linked in the tree
to localized sets of keypoints at all finer scales. The number
of linked keypoints which have been matched is divided by
the total number of linked keypoints. This is achieved by
sets of grouping cells at all but the finest scale which sum
the number of linked keypoints in the tree, both matched and
all; for more details see [4].

The three parameters are combined by grouping cells
which can establish a link between keypoints in frame ¢ — 1
and 7. Mathematically we use the similarity measure S =
aO + BC + vD, with = 0.4 and § = v = 0.3. These
values were determined empirically. The candidate keypoint
with the highest value of S' in the area (radius 2)) is selected
and the vector between the keypoint in frame ¢ — 1 and the
matched one in frame ¢ is computed. Remaining candidates
in the area can be matched to other keypoints in frame
i, provided they are in their local areas. Keypoints which
cannot be matched are discarded. Figure 2 (top two rows)
illustrates a sequence of 10 frames with a moving hand with
detected optical flow vectors.

IV. HAND TRACKING AND MOTION
RECOGNITION

Moving objects are segregated and detected by analyzing
the optical flow vectors of their multi-scale tree structures.
Only trees with keypoints with sufficiently large vectors
(displacements of more than 2 pixels between frames) are
considered. Deformable objects can be distinguished from
rigid ones because some or even all their multi-scale trees
possess different motion vectors, i.e., different directions
and/or velocities.

Hands performing gestures are a particular class of de-
formable objects. Hand and gesture recognition is obtained
by using a simple and fast algorithm. This algorithm relates
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Fig. 2. Top two rows, left to right: initial, combined and final frames of a
moving hand sequence; optical flow of two frames; and combined optical
flow of the sequence. Bottom five rows: another sequence with tracked hands
marked by their bounding boxes. Bottom-right: the combined centers of the
boxes.

keypoint positions in previously prepared templates with
those detected in acquired image frames. The templates are
prepared by simply capuring images of a person with specific
hand gestures, after which the hand regions are selected and
the keypoint information is stored in small lists; see below.
The matching algorithm exploits keypoints at scales not too
fine, A = 8 and 12, because the number of keypoints is
not too big and we are not interested in tiny details. At each
scale, and for each template, the angle and the Euclidean dis-
tance from each keypoint to all other keypoints are computed.
Let us call these primary and secondary keypoints. This
yields many but relatively small lists, one for each primary
keypoint. Since angles and distances to secondary keypoints
are relative to a primary keypoint, all lists are translation and
rotation invariant. Typically, a template counts 10 keypoints
at scale A = 8, such that there are 10 lists each with 9
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elements. At scale A\ = 12 there are less. At the moment we
only use five templates; see Fig. 3.

Let us first assume that no prior information of a new im-
age frame is available: no known hand position and gesture,
and no tracking information. All already available keypoints
(because of optical flow) at the two scales and in the entire
frame are processed sequentially. In the matching process,
the primary keypoint of one template list is positioned at a
frame’s keypoint, and its secondary keypoints are matched
with those in the frame: at positions according to the angles
and distances. In order to introduce some flexibility in the
matching, for the number of hand-gesture templates cannot
be too large, we apply a position tolerance: about 1/5th the
size of the template, for example 20 x 25 pixels in the case
of a template of 100 x 125 pixels. The lists are also mirrored
about the major dimension of the template (for the palm and
back side of the hand) and rotated by applying only 16 angles
because of the position tolerance. Hence, each list involves
checking 32 keypoint configurations, or typically 2 x 10 x 32
lists per template, but the matching is fast because a discrete
lookup table is used and both the lists and the lookup table
are in the CPU’s cache memory. When at least 50% of all
keypoints in a template list match those in the neighborhood
of a frame’s keypoint, at one of the two scales, the matching
template determines the hand’s gesture, its position is known
as is its bounding box.

Translation and rotation invariance are obtained by con-
sidering (rotated and mirrored) relative angles and distances
between keypoints. In order to also achieve scale (size)
invariance in the future, each gesture must be represented
by several templates captured with different hand sizes
(hand-camera distances). A larger number of sizes results in
more reliable detection, but costs more CPU time. However,
the additional cost is rather low because it only involves
matching of many but very small keypoint lists.

By combining optical flow with the hand-gesture detector,
hands can be tracked and recognition becomes more robust
and faster. Tracking is achieved by combining the last valid
hand template, its position in the last frame, and the actual
optical flow. This reduces false positives and speeds up the
tracking process. At the beginning of the process, camera
frames are processed until at least one hand has been
detected. Then, the processing of the following frames is
simplified by searching the area(s) around the position(s)
of the last detected hand(s). Nevertheless, the remaining
part of the frames must be analyzed because a hand can
be temporarily occluded or a new one can enter the frame.
However, this can be done once or twice per second.

For final gesture recognition we assume that the person
keeps his hand stable at about the same position, such that
the optical flow of the hand is zero or very small. This can
be a few camera frames, i.e., a fraction of a second, but
it depends on the application: in human-robot interaction
while manipulating objects on a table, only occasional final
gestures like pointing and grasping are important, but in a
game a continuous stream of positions and gestures may be
required. The bottom five rows in Fig. 2 show a sequence



Cognitive Assistive Systems (CAS 2012): Closing the Action-Perception Loop 13

Fig. 3.
rows: template matching at A = 8 (3rd row) and A = 12 (4th row). Bottom:
the five hand templates used.

Top two rows: four examples of recognized gestures. Middle two

with two tracked hands. The bottom-right image combines
the centers of the bounding boxes. Even if the hands are
very close or partly overlapping, the tracking process can
separate them. Figure 3 shows recognized gestures (top),
the matching process at two scales (middle), and the five
templates (bottom). Our method can also be applied to track
other deformable objects, for example human bodies; see
Fig. 4. This figure shows a sequence of frames while a person
straightens after picking up a bottle, and then brings his arm
with the bottle close to the body while also straightening his
head. In contrast to hand gestures, templates of body gestures
remain to be developed and applied.

V. DISCUSSION

In this paper we presented a biologically inspired method for
hand detection, with tracking and gesture recognition. After

workshop held in conjunction with IROS 2012

Fig. 4. The optical flow model applied to a person after fetching a bottle
from the floor. The sequence shows vectors between successive frames. The
two bottom images show the combined vectors while straightening (left),
followed by bringing the arm and bottle close to the body and moving the
head (right). Significant motions attributed to tracked, segregated regions
are indicated by the red arrows.

optimizing the keypoint-detection algorithm and by limiting
the number of scales, the method works in realtime when
using a webcam, and it yields good results despite the fact
that color information has not yet been used. The method was
expected to work well because of our previous experience
with cortical models: the keypoint scale-space provides very
useful information for constructing saliency maps for Focus-
of-Attention (FoA), and faces can be detected by grouping
facial landmarks defined by keypoints at eyes, nose and
mouth [12]. In [14] we have shown that the line/edge scale-
space provides very useful information for face and object
recognition. Obviously, object detection and recognition are
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related processes, with a seamless integration in the cortical
so-called where and what pathways, i.e., the dorsal pathway
(where is it?) and ventral one (what is it?). However, there
may be no clear dichotomy in the sense that keypoints are
only used in the where pathway and lines and edges only in
the what pathway.

Since local clusters of keypoints are mostly related to in-
dividual moving objects, object segregation can be achieved
and objects can be tracked. Cortical areas MT and MST are
involved in optical flow and in egomotion, but recent results
obtained with fMRI showed no clear neural activity in their
ventral (what) and dorsal (where) sub-areas. Instead, there is
elevated activity in between the sub-areas [16]. This might
indicate that optical flow at MT level is processed separately
or involves both pathways. The fact that the use of only
keypoints can lead to very good results in optical flow and
object (hand) segregation and tracking may indicate some
“preference” of the dorsal (where) pathway for keypoints.
This idea is strengthened by the fact that area MT also plays
a role in the motion-aftereffect illusion [8], which is tightly
related to motion adaptation and prediction.

Being a biologically inspired model, keypoint detection
involves filtering input frames with many kernels (complex
Gabor functions). We apply eight orientations but only a few
scales in order to achieve realtime processing when using
a normal webcam: five scales for optical flow and region
segregation, of which only two scales are used for hand and
gesture detection. The main limitation is the Gabor filtering
with keypoint detection. The improved algorithm has already
been implemented on a GPU, allowing to process at least 10
frames/s with a maximum resolution of 600 x 400 pixels and
using at least 6 scales if they are not too fine. The GPU’s
memory of 1 GByte is the bottleneck for using larger images
and fine scales because of the Gaussian pyramid.

Ongoing research focuses on motion prediction, a process
which occurs in cortical area MST. In addition, instead of
only extrapolating hand positions, also the gestures can be
tracked and extrapolated, such that the number of templates
to be matched can be reduced. Nevertheless, although cur-
rently a few distinct gestures are being used, extrapolation
may involve more “intermediate” gestures and therefore
templates. The ultimate goal is to apply a 3D hand model in
the entire process. This can be done by employing cheap and
off-the-shelf solutions like a Kinect [11] or two webcams
with a biological disparity model. The same applies to
human bodies: the tracking and prediction of body joints
by exploiting all spatio-temporal information.
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