4,571 research outputs found

    Neural Graph Collaborative Filtering

    Full text link
    Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.Comment: SIGIR 2019; the latest version of NGCF paper, which is distinct from the version published in ACM Digital Librar

    Contextual Attention Recurrent Architecture for Context-aware Venue Recommendation

    Get PDF
    Venue recommendation systems aim to effectively rank a list of interesting venues users should visit based on their historical feedback (e.g. checkins). Such systems are increasingly deployed by Location-based Social Networks (LBSNs) such as Foursquare and Yelp to enhance their usefulness to users. Recently, various RNN architectures have been proposed to incorporate contextual information associated with the users' sequence of checkins (e.g. time of the day, location of venues) to effectively capture the users' dynamic preferences. However, these architectures assume that different types of contexts have an identical impact on the users' preferences, which may not hold in practice. For example, an ordinary context such as the time of the day reflects the user's current contextual preferences, whereas a transition context - such as a time interval from their last visited venue - indicates a transition effect from past behaviour to future behaviour. To address these challenges, we propose a novel Contextual Attention Recurrent Architecture (CARA) that leverages both sequences of feedback and contextual information associated with the sequences to capture the users' dynamic preferences. Our proposed recurrent architecture consists of two types of gating mechanisms, namely 1) a contextual attention gate that controls the influence of the ordinary context on the users' contextual preferences and 2) a time- and geo-based gate that controls the influence of the hidden state from the previous checkin based on the transition context. Thorough experiments on three large checkin and rating datasets from commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture by significantly outperforming many state-of-the-art RNN architectures and factorisation approaches

    An Ontology-Based Recommender System with an Application to the Star Trek Television Franchise

    Full text link
    Collaborative filtering based recommender systems have proven to be extremely successful in settings where user preference data on items is abundant. However, collaborative filtering algorithms are hindered by their weakness against the item cold-start problem and general lack of interpretability. Ontology-based recommender systems exploit hierarchical organizations of users and items to enhance browsing, recommendation, and profile construction. While ontology-based approaches address the shortcomings of their collaborative filtering counterparts, ontological organizations of items can be difficult to obtain for items that mostly belong to the same category (e.g., television series episodes). In this paper, we present an ontology-based recommender system that integrates the knowledge represented in a large ontology of literary themes to produce fiction content recommendations. The main novelty of this work is an ontology-based method for computing similarities between items and its integration with the classical Item-KNN (K-nearest neighbors) algorithm. As a study case, we evaluated the proposed method against other approaches by performing the classical rating prediction task on a collection of Star Trek television series episodes in an item cold-start scenario. This transverse evaluation provides insights into the utility of different information resources and methods for the initial stages of recommender system development. We found our proposed method to be a convenient alternative to collaborative filtering approaches for collections of mostly similar items, particularly when other content-based approaches are not applicable or otherwise unavailable. Aside from the new methods, this paper contributes a testbed for future research and an online framework to collaboratively extend the ontology of literary themes to cover other narrative content.Comment: 25 pages, 6 figures, 5 tables, minor revision

    Machine Learning Models for Context-Aware Recommender Systems

    Get PDF
    The mass adoption of the internet has resulted in the exponential growth of products and services on the world wide web. An individual consumer, faced with this data deluge, is expected to make reasonable choices saving time and money. Organizations are facing increased competition, and they are looking for innovative ways to increase revenue and customer loyalty. A business wants to target the right product or service to an individual consumer, and this drives personalized recommendation. Recommender systems, designed to provide personalized recommendations, initially focused only on the user-item interaction. However, these systems evolved to provide a context-aware recommendations. Context-aware recommender systems utilize additional context, such as genre for movie recommendation, while recommending items to users. Latent factor methods have been a popular choice for recommender systems. With the resurgence of neural networks, there has also been a trend towards applying deep learning methods to recommender systems. This study proposes a novel contextual latent factor model that is capable of utilizing the context from a dual-perspective of both users and items. The proposed model, known as the Group-Aware Latent Factor Model (GLFM), is applied to the event recommendation task. The GLFM model is extensible, and it allows other contextual attributes to be easily be incorporated into the model. While latent-factor models have been extremely popular for recommender systems, they are unable to model the complex non-linear user-item relationships. This has resulted in the interest in applying deep learning methods to recommender systems. This study also proposes another novel method based on the denoising autoencoder architecture, which is referred to as the Attentive Contextual Denoising Autoencoder (ACDA). The ACDA model augments the basic denoising autoencoder with a context-driven attention mechanism to provide personalized recommendation. The ACDA model is applied to the event and movie recommendation tasks. The effectiveness of the proposed models is demonstrated against real-world datasets from Meetup and Movielens, and the results are compared against the current state-of-the-art baseline methods

    A review on trust propagation and opinion dynamics in social networks and group decision making frameworks

    Get PDF
    On-line platforms foster the communication capabilities of the Internet to develop large- scale influence networks in which the quality of the interactions can be evaluated based on trust and reputation. So far, this technology is well known for building trust and harness- ing cooperation in on-line marketplaces, such as Amazon (www.amazon.com) and eBay (www.ebay.es). However, these mechanisms are poised to have a broader impact on a wide range of scenarios, from large scale decision making procedures, such as the ones implied in e-democracy, to trust based recommendations on e-health context or influence and per- formance assessment in e-marketing and e-learning systems. This contribution surveys the progress in understanding the new possibilities and challenges that trust and reputation systems pose. To do so, it discusses trust, reputation and influence which are important measures in networked based communication mechanisms to support the worthiness of information, products, services opinions and recommendations. The existent mechanisms to estimate and propagate trust and reputation, in distributed networked scenarios, and how these measures can be integrated in decision making to reach consensus among the agents are analysed. Furthermore, it also provides an overview of the relevant work in opinion dynamics and influence assessment, as part of social networks. Finally, it identi- fies challenges and research opportunities on how the so called trust based network can be leveraged as an influence measure to foster decision making processes and recommen- dation mechanisms in complex social networks scenarios with uncertain knowledge, like the mentioned in e-health and e-marketing frameworks.The authors acknowledge the financial support from the EU project H2020-MSCA-IF-2016-DeciTrustNET-746398, FEDER funds provided in the National Spanish project TIN2016-75850-P , and the support of the RUDN University Program 5-100 (Russian Federation)

    SCFM: Social and crowdsourcing factorization machines for recommendation

    Get PDF
    With the rapid development of social networks, the exponential growth of social information has attracted much attention. Social information has great value in recommender systems to alleviate the sparsity and cold start problem. On the other hand, the crowd computing empowers recommender systems by utilizing human wisdom. Internal user reviews can be exploited as the wisdom of the crowd to contribute information. In this paper, we propose social and crowdsourcing factorization machines, called SCFM. Our approach fuses social and crowd computing into the factorization machine model. For social computing, we calculate the influence value between users by taking users’ social information and user similarity into account. For crowd computing, we apply LDA (Latent Dirichlet Allocation) on people review to obtain sets of underlying topic probabilities. Furthermore, we impose two important constraints called social regularization and domain inner regularization. The experimental results show that our approach outperforms other state-of-the-art methods.This project is supported by the National Natural Science Foundation of China (Nos. 61672340, 61472240, 61572268)

    Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors

    Full text link
    In the modern e-commerce, the behaviors of customers contain rich information, e.g., consumption habits, the dynamics of preferences. Recently, session-based recommendations are becoming popular to explore the temporal characteristics of customers' interactive behaviors. However, existing works mainly exploit the short-term behaviors without fully taking the customers' long-term stable preferences and evolutions into account. In this paper, we propose a novel Behavior-Intensive Neural Network (BINN) for next-item recommendation by incorporating both users' historical stable preferences and present consumption motivations. Specifically, BINN contains two main components, i.e., Neural Item Embedding, and Discriminative Behaviors Learning. Firstly, a novel item embedding method based on user interactions is developed for obtaining an unified representation for each item. Then, with the embedded items and the interactive behaviors over item sequences, BINN discriminatively learns the historical preferences and present motivations of the target users. Thus, BINN could better perform recommendations of the next items for the target users. Finally, for evaluating the performances of BINN, we conduct extensive experiments on two real-world datasets, i.e., Tianchi and JD. The experimental results clearly demonstrate the effectiveness of BINN compared with several state-of-the-art methods.Comment: 10 pages, 7 figures, KDD 201
    corecore