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ABSTRACT
Venue recommendation systems aim to effectively rank a list of in-
teresting venues users should visit based on their historical feedback
(e.g. checkins). Such systems are increasingly deployed by Location-
based Social Networks (LBSNs) such as Foursquare and Yelp to
enhance their usefulness to users. Recently, various RNN architec-
tures have been proposed to incorporate contextual information
associated with the users’ sequence of checkins (e.g. time of the
day, location of venues) to effectively capture the users’ dynamic
preferences. However, these architectures assume that different
types of contexts have an identical impact on the users’ preferences,
which may not hold in practice. For example, an ordinary context –
such as the time of the day – reflects the user’s current contextual
preferences, whereas a transition context – such as a time interval
from their last visited venue – indicates a transition effect from past
behaviour to future behaviour. To address these challenges, we pro-
pose a novel Contextual Attention Recurrent Architecture (CARA)
that leverages both sequences of feedback and contextual informa-
tion associated with the sequences to capture the users’ dynamic
preferences. Our proposed recurrent architecture consists of two
types of gating mechanisms, namely 1) a contextual attention gate
that controls the influence of the ordinary context on the users’ con-
textual preferences and 2) a time- and geo-based gate that controls
the influence of the hidden state from the previous checkin based
on the transition context. Thorough experiments on three large
checkin and rating datasets from commercial LBSNs demonstrate
the effectiveness of our proposed CARA architecture by signifi-
cantly outperforming many state-of-the-art RNN architectures and
factorisation approaches.
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1 INTRODUCTION
Users in Location-Based Social Networks (LBSNs), such as Yelp and
Foursquare, can share their location with their friends by making
checkins at venues (e.g. museums, restaurants and shops) they have
visited, resulting in huge amounts of user check-in data. Effective
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Figure 1: An illustration of the user’s sequence of checkins,
where each timestamp of the checkin is highlighted in blue,
∆t and ∆д are the time interval and the distance between
checkins at time step τ , respectively (red text).

venue recommendation systems have become an essential applica-
tion for LBSNs that facilitate users finding interesting venues based
on their historical checkins. Collaborative filtering techniques such
as Matrix Factorisation (MF) [17] are widely used to recommend
a personalised ranked list of venues to the users. MF-based ap-
proaches typically aim to embed the users’ and venues’ preferences
within latent factors, which are combined with a dot product opera-
tor to estimate the user’s preference for a given venue. Approaches
on MF typically encapsulate contextual information about the user,
which can help to make effective recommendations for users with
few historical checkins, known as the cold-start problem [22, 30, 32].

In recent years, various approaches have been proposed to lever-
age Deep Neural Network (DNN) algorithms for recommenda-
tion systems [3, 10, 11, 21, 28, 31]. Among various DNN tech-
niques, the Recurrent Neural Network (RNN) models have been
widely used to extend the MF-based approaches to capture users’
short-term preferences from the users’ sequence of observed feed-
back [1, 21, 26, 28, 31, 37]. Here, the short-term (dynamic) prefer-
ences assume that the next venue visited by a user is influenced by
his/her recently visited venues (e.g. users may prefer to visit a bar
directly after dinner at a restaurant).

A common technique to incorporate RNN models (e.g. Long
Short-Term Memory (LSTM) units [13] and Gated Recurrent Units
(GRU) [4]) into MF-based approaches is to feed a sequence of user-
venue interactions/checkins into the recurrent models and use the
hidden state of the recurrent models to represent the users’ dy-
namic preferences [21, 28, 31, 35]. Next, the user’s preference of
a target venue is estimated by calculating the dot product of this
representation of the user’s dynamic preferences (i.e. the output
of the recurrent models) and a latent factor of the target venue.
Although this technique can enhance the effectiveness of MF-based
approaches, we argue that directly applying traditional RNN-based
models to capture the users’ dynamic preferences is not effective
for Context-Aware Venue Recommendation (CAVR). In particular,
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the traditional RNN models are limited as they can only take the se-
quential order of checkins into account and cannot incorporate the
contextual information associated with the checkins (e.g. timestamp
of a user’s checkin and the geographical location of the checkin).
Indeed, such contexts have been shown to play an important role
in producing effective CAVR recommendations [6, 22, 30, 32].

To address the above challenge, various approaches have been
proposed to extend the RNN models to incorporate the contextual
information of observed feedback into various recommendation
settings excepting CAVR [1, 14, 19, 23, 26, 29, 37]. For example, Zhu
et al. [37] proposed an extension of LSTM (TimeLSTM) by intro-
ducing time gates that control the influence of the hidden state of a
previous LSTM unit based on the time interval between successive
observed feedbacks. Indeed, they assume that the shorter the time
interval between two successive feedback, the stronger the correla-
tion between these two feedbacks and vice versa. However, their
proposed model was designed for a particular type of contextual
information (i.e. time intervals) and is not flexible to incorporate
other types of context (e.g. distance between venues). We argue
that the time gates proposed by Zhu et al. [37] are not effective to
model the sequences of checkins in LBSNs. Figure 1 illustrates the
user’s sequential order of checkins. Let’s consider the time intervals
and distances between three successive checkins cτ−1, cτ and cτ+1.
With Zhu et al.’s time gates, checkin cτ−1 (cτ ) will have a small
impact on checkin cτ (cτ + 1) due to the long time interval between
cτ−1 (cτ ) and cτ (cτ + 1). This is counter-intuitive since checkin cτ
may have a strong impact on checkin cτ+1 due to the geographical
distance between them. For example, a user may decide to visit a
museum near the restaurant they had dinner at the previous day.
Although the time interval from the previous checkin is long (> 24
hours), geographically, the restaurant and museum are close.

Recently, several works (e.g. CGRU [26] and LatentCross [1], for
product and movie recommendation systems, respectively) have
extended traditional RNN architectures for recommendation sys-
tems to incorporate different types of contextual information of
the observed feedback sequences. However, we argue that their
proposed architectures are limited for context-aware venue recom-
mendation in several respects. In Figure 1, we highlight two types
of contextual information associated with sequences of checkins,
namely: the ordinary and transition contexts. The ordinary context
represents the (absolute) timestamp and the geographical position
of the checkin, while the transition context represents the (rela-
tive) time interval and distance between successive checkins. A
disadvantage of the aforementioned RNN architectures is that they
rely on a quantised mapping procedure (i.e. to convert continuous
values of time intervals and distances to discrete features and rep-
resent these transition contexts using low-dimensional embedding
vectors), which may result in a loss of granularity. In addition, their
proposed architectures treat the ordinary and transition contexts
dependently. However, we argue that these contexts influence the
user’s dynamic preference differently and should be considered
independently. Indeed, the ordinary context reflects the user’s con-
textual preference on a venue, while the transition context reflects
the influence that one checkin has on its successor.

To address these challenges, we propose a Contextual Attention
Recurrent Architecture (CARA) that leverages the sequential of
users’ checkins to model the users’ dynamic preferences. In partic-
ular, our contributions are summarised below:

• We propose a Contextual Attention Recurrent Architecture
(CARA) that independently incorporates different types of
contextual information to model the users’ dynamic prefer-
ence for CAVR. Our proposed recurrent architecture differs
from the recently proposed CGRU [26] and LatentCross [1]
architectures in three aspects: (1) CARA includes gating
mechanisms that control the influence of the hidden states
between recurrent units, (2) CARA supports both discrete
and continuous inputs and (3) CARA treats different types of
context differently, In contrast, both CGRU and LatentCross
do not support these features.

• Within the CARA architecture, we propose two gating mech-
anisms: a Contextual Attention Gate (CAG) and a Time- and
Spatial-based Gate (TSG). The CAG controls the influence
of context and previous visited venues, while TSG controls
the influence of the hidden state of the previous RNN unit
based on time interval and geographical distances between
two successive checkins. Note that our proposed TSG differs
from the time gates in TimeGRU [37] as we can incorporate
multiple types of context, whereas TimeGRU supports only
the time intervals. To the best of our knowledge, this work
is the first that incorporates geographical information into
an RNN architecture for CAVR.

• We conduct comprehensive experiments on 2 large-scale real-
world datasets, from Brightkite and Foursquare, to demon-
strate the effectiveness of our proposed CARA architecture
for CAVR by comparing with state-of-the-art venue recom-
mendation approaches. The experimental results demon-
strate that CARA consistently and significantly outperforms
various existing strong RNN models.

This paper is structured as follows: Section 2 provides a back-
ground in the literature on CAVR, as well as recent trends in apply-
ing Deep Neural Networks to recommendation systems; Section 3
details specific existing RNN-based recommendation architectures
from the literature, and highlights 5 limitations in these approaches;
Section 4 details our proposed CARA architecture that addresses
all 5 limitations; Experimental setup and results are provided in
Sections 5 & 6, respectively. Concluding remarks follow in Section 7.

2 BACKGROUND
Context-Aware Venue Recommendation (CAVR). Collaborative

Filtering (CF) techniques such as Matrix Factorisation (MF) [17],
Factorisation Machines [24] and Bayesian Personalised Ranking
(BPR) [25] have been widely used in recommendation systems.
Such factorisation-based approaches assume that users who have
visited similar venues share similar preferences, and hence are
likely to visit similar venues in the future. Previous works on venue
recommendation have shown that the contextual information asso-
ciated with the users’ observed feedback (time of the day, location)
play an important role to enhance the effectiveness of CAVR as
well as to alleviate the cold-start problem [6, 7, 22, 30, 32, 34, 36].
For example, Yao et al. [30] extended the traditional MF-based ap-
proach by exploiting a high-order tensor instead of a traditional
user-venue matrix to model multi-dimensional contextual infor-
mation. Manotumruksa et al. [22] and Yuan et al. [32] extended
BPR to incorporate the geographical location of venues to alleviate
the cold-start problem by sampling negative venues based on an



assumption that users prefer nearby venues over distant ones. Zhao
et al. [36] proposed Spatial-TEmporaL LAtent Ranking (STELLAR),
which recommends a list of venues based on the user’s context such
as time and recent checkins.

Deep Neural Network Recommendation Systems. With the impres-
sive successes of Deep Neural Network (DNN) models in domains
such as speech recognition, computer vision and natural language
processing (e.g. [9, 15, 33]), various approaches (e.g. [3, 10, 11, 18,
19, 21, 31]) have been proposed to exploit DNN models for recom-
mendation systems. For example, He et al. [11] and Cheng et al. [3]
proposed to exploit Multi Layer Perceptron (MLP) models to cap-
ture the complex structure of user-item interactions. An advantage
of such MLP-based models is their ability to capture the user’s com-
plex structure using a DNN architecture and a non-linear function
such as sigmoid. Liu et al. [18], Liu et al. [19] and Manotumruksa et
al. [21] all exploited Recurrent Neural Networks (RNNs) to model
the sequential order of the users’ observed feedback. Due to the
complex and overwhelming parameters of DNNmodels, such DNN-
based CF approaches are prone to overfitting. Several empirical
studies [10, 11, 27] have demonstrated that the use of generalised
distillation techniques, such as dropout & regularisation, as well
as pooling techniques can alleviate the overfitting problems inher-
ent to DNN-based models. However, while the previous attempts
mentioned above mainly focus on how to exploit DNN models to
enhance the quality of recommendations, few attempts have fo-
cused on how to extend such DNN models to address particular
challenges in recommendation systems. In this work, we propose
to extend the traditional RNN architecture to incorporate the con-
textual information for CAVR. The next section describes the most
recent work extensions of RNN for recommendation systems.

3 RECURRENT NEURAL NETWORK MODELS
FOR RECOMMENDATION SYSTEMS

We first formalise the problem statement. Then, we briefly describe
the MF-based approaches that exploit RNN models to model the
sequential order of users’ feedback (Section 3.2) and state-of-the-
art recurrent architectures that take contextual information into
account (Section 3.3). Note that these recurrent architectures were
not originally proposed for CAVR but are sufficiently flexible to
be applied to this task. For simplicity, we explain their proposed
architectures in the context of venue recommendation and use
a Gated Recurrent Unit (GRU) architecture [4] to explain their
proposed architectures. Finally, Section 3.4 summarises the elicited
limitations of these MF-based and RNN-based approaches. Later,
in Section 4, we describe our proposed recurrent architecture that
addresses these limitations.

3.1 Problem Statement
The task of context-aware venue recommendation is to generate a
ranked list of venues that a user might visit given his/her preferred
context and historical feedback (e.g. previously visited venues from
checkin data). Let ci, j,t ∈ C denote a user i ∈ U who has checked-
in into venue j ∈ V at timestamp t . Note that ci, j,t = 0 means
user i has not made a checkin at venue j at time t . LetV+i denote
the list of venues that the user i has previously visited, sorted by
time and let Si denote the set of sequence of checkins (e.g. Si =

{[c1], [c1, c2], [c1, c2, c3]}). si,t =
{
c = (i, j, t̀) ∈ C | t̀ < t

}
⊂ Si de-

notes the sequence of checkins of user i up to time t . We use sτi,t
to denote the τ -th checkin in the sequence. tτ denotes the times-
tamp of τ -th checkin. latj , lnдj are the latitude and longitude of
checkin/venue j.

3.2 Recurrent-based Factorisation Approaches
Factorisation-based approaches aim to approximate matrix C by
finding a decomposition of C into latent factors. For example, the
predictions by an approach based on aMatrix Factorisation (MF) [17]
are generally obtained from a dot product of latent factors of users
U ∈ R |U |×d and venues V ∈ R |V |×d where d is the number
of latent dimensions (i.e. ĉi, j = ϕuTi ϕvj ), and ϕui and ϕvj are
the latent factors of user i and venue j, respectively. Various ap-
proaches [21, 28, 31, 35] have been proposed to extend MF by ex-
ploiting Recurrent Neural Network (RNN) models to capture the
user’s dynamic preferences from the sequence of user’s checkins. In
particular, given the sequence of a user’s checkins Si,t , the output of
a RNN model, hτ , is used to represent a user’s dynamic preferences
and modify the MF-based approaches as follows:

ĉi, j = (ϕui + hτ )Tϕvj (1)

However, the operation that combines latent factors (ϕui ,ϕvj ) and
hidden state hτ need not be limited to the dot product and sum-
mation. Previous works [10, 11, 21] have shown that using either
element-wise product or concatenation operators between the la-
tent factors and hidden state hτ , with a non-linear function such
as a sigmoid function, are more effective than the simple dot prod-
uct operation in capturing the complex structure of user-venue
interactions. In this paper, we argue that the current RNN-based
factorisation approaches [21, 28, 31, 35] that exploit traditional
RNN models to capture the users’ dynamic preferences are not
effective, because they only consider the sequence of previously
visited venues and ignore the contextual information associated
with the checkins (Limitation 1).

3.3 Gating Mechanisms of Recurrent Models
In this section, we discuss extensions of traditional RNN models
proposed in previous works [1, 4, 26, 37]. Traditional RNN models
usually suffer from the vanishing gradient problem when the mod-
els are trained from long sequences of observed checkins [4, 13].
Recurrent units such as Long-Short Term Memory (LSTM) [13] and
Gated Recurrent Unit (GRU) [4] are extensions of traditional RNN
models that use gating mechanisms to control the influence of a
hidden state of previous step, hτ−1.

3.3.1 Gated Recurrent Units. To alleviate the gradient problem,
Chung et al. [4] proposed a variant of RNNmodels, Gated Recurrent
Units (GRU), which consists of gating mechanisms that control the
influence of the hidden state of previous unit hτ−1 in the current
unit at time step τ . Indeed, GRU can learn to ignore the previous
units if necessary, whereas traditional RNN models cannot. In par-
ticular, given the user’s sequence of checkins si,t and the user’s
dynamic preference at time step τ , the hidden state, hτ , is estimated
using the gating mechanisms, which are defined as:

[zτ , rτ ] = σ (Wϕvτj + Rhτ−1 + b) (2)

h̃τ = tanh(Wϕvτj + R(rτ ⊙ hτ−1)) (3)



hτ = (1 − zτ )hτ−1 + zτ h̃τ (4)

where zτ , rτ are update and reset gates, respectively. h̃τ is a can-
didate hidden state, ϕvτj is the latent factor of the venue j that user
i visited at time step τ (i.e. sτi,t ). σ () and tanh() are the sigmoid and
hyperbolic tangent functions, respectively. R is a recurrent connec-
tion weight matrix that captures sequential signals between every
two adjacent hidden states hτ and hτ−1, using ⊙, which denotes the
element-wise product. Finally,W ,b are, respectively, the transition
matrix between the latent factors of venues, and the corresponding
bias. We note that θr = {W ,R,b} denotes the set of parameters of
the GRU units. The advantage of GRU over the traditional RNN
models is the ability to control the influence of the hidden state of
previous step hτ−1 based on the reset and update gates zτ , rτ as
well as the candidate hidden state h̃τ (see Equation (4)).

From now on, we explain the recurrent architectures proposed
in recent works [1, 26, 37] in terms of the GRU architecture, due to
its relative simplicity (i.e. less parameters compared to LSTM). It is
of note that none of these architectures were originally proposed
for CAVR but are sufficiently flexible to be applied to the CAVR task.
However, for reasons of uniformity, we explain all of the following
approaches in terms of the CAVR task, thereby replacing item with
venue, etc.

3.3.2 TimeGRU. While the GRU architecture can alleviate the
vanishing gradient problem, it cannot leverage contextual informa-
tion associated with the checkins. Zhu et al. [37] proposed to extend
the GRU units to incorporate the time interval (i.e. the transition
contexts) between successive checkins 1. The left box of Figure 2
illustrate their proposed GRU units. In particular, they modify the
candidate hidden state h̃τ (Equation (3)) with their proposed time
gate Tτ , which is defined as:

Tτ = σt (Wϕvτj + σ (∆tτWt ) + b (5)

h̃τ = tanh(Wϕvτj + R(rτ ⊙ Tτ ⊙ hτ−1) + b) (6)

where ∆tτ = tτ − tτ−1 is the time interval between checkins sτi,t
and sτ−1

i,t . tτ captures the correlation between the current venue
vτj and the time interval ∆tτ . Then, the time gateTτ is used to con-
trol the influence of previous hidden state hτ−1 in Equation (6). In
particular, the previous hidden state hτ−1 is not only controlled by
the reset gate rτ but also by their proposed time gate Tτ . We argue
that there are two limitations that arise. First, TimeGRU can only
incorporate the transition context (i.e. the time intervals between
successive checkins, ∆tτ ) but not the current context of the user,
(i.e. the ordinary context, such as the time of the day when the user
makes a checkin) (Limitation 2). Second, their proposed time gate
is not sufficiently flexible to incorporate different types of transi-
tion context associated with the checkins such as the geographical
distance between two successive checkins (Limitation 3).

3.3.3 Context-aware GRU architectures. To address Limitation
2, Smirnova and Vasile [26] proposed a Contextual RNN architec-
ture that can incorporate both the transition and ordinary context

1Although Zhu et al. [37] used the LSTM architecture to explain their proposed re-
current units, they claimed that their proposed architecture is sufficiently flexible to
apply to a GRU architecture.

of observed checkins2. Their contributions were two fold: context-
dependent venue representations and contextual GRU units. As
shown in the second box in Figure 2, they proposed a concatenation
integration function to model context-dependent venue representa-
tions. In particular, at a given time step τ , the input of the GRU unit
is the concatenation of the latent factors of the ordinary and tran-
sition contexts as well as the latent factors of the venue. Since both
the ordinary and transition contexts for the time dimension are
continuous values (e.g. the timestamp tτ , time interval ∆tτ and ge-
ographical distance ∆дτ ), previous works [1, 14, 26, 36] have relied
on mapping approaches to represent such context. For example, the
ordinary context such as timestamp tτ can be split into discrete fea-
tures - month, hour of the day and day of theweek. Next, 12, 24 and 7
bits are used to represent the month, hour and day, respectively, and
convert the binary code into a unique decimal digit as a timestamp
id. Similarly, the transition context - e.g. as the time interval ∆tτ
can be quantised as the time interval id using the following function
ind(∆tτ ) = ⌈∆tτδT ⌉, where δT is a 1-hour interval. This technique
can be similarly applied to quantise the geographical distance ∆дτ .
Then, the timestamp tτ , the time interval ∆tτ and the geograph-
ical distance ∆дτ can be represented as latent factors of time, time
interval and distance, ϕtτ ,ϕ∆tτ ,ϕ∆дτ ∈ Rd , respectively.

Next, Smirnova and Vasile [26] extended the transition matrix
W of the GRU unit to be context-dependent, thereby aiming to
capture the users’ dynamic contextual preferences. In particular,
they introduce the contextual matrix U , to condition the transition
matrixW of a GRU unit as follows:

zτ = σ (Wxτ ⊙ Uuxc
τ ) + Ruhτ−1

rτ = σ (Wxτ ⊙ Urxc
τ ) + Rrhτ−1

h̃τ = σ (Wxτ + Rh (rτ ⊙ hτ−1) ⊙ Uhxc
τ )

(7)

where xτ = [ϕvτj ;ϕtτ ;ϕ∆tτ ;ϕ∆дτ ] and xcτ = [ϕtτ ;ϕ∆tτ ;ϕ∆дτ ]
are their proposed context-dependent venue and context represen-
tations, respectively. Recently, building upon Smirnova and Vasile’s
work [26], Beutel et al. [1] explored various approaches to effectively
incorporate the latent factors of context xcτ into RNNmodels. They
proposed LatentCross, a technique that incorporates contextual in-
formation in the GRU, by performing an element-wise product of
the latent factors of context xcτ with the model’s hidden states hτ .
The third box in Figure 2 illustrates how LatentCross works. The
inputs of the GRU unit are the concatenation of all latent factors xτ
(black line) and the concatenation of latent factors of context xcτ
(red line). In particular, they modify Equation (4) with the latent
factors of context, xcτ , as follows:

hτ = (1 + xcτ ) ⊙ [(1 − zτ )hτ−1 + zτ h̃τ ] (8)

Note that both CGRU and LatentCross are the most recent works
that explore various techniques to incorporate context into recur-
rent models. However, we argue that there are two limitations in
their proposed GRU architectures. First, their proposed architec-
tures treat the ordinary and transition context similarly. We argue
that different types of context might influence the user’s dynamic
preferences differently (Limitation 4). For example, the ordinary

2Although proposed and evaluated in the context of e-commerce item recommendation,
recall that we explain this approach in the context of venue recommendation.



Figure 2: Diagrams of existing recurrent architectures and our proposedContextual AttentionRecurrent Architecture (CARA).

context should influence the user’s contextual preference on a cur-
rent visited venue, while the transition context should influence
the correlation between the current and previously visited venues.
Second, there is a loss of granularity from the quantisation mapping
functions used to represent the transition context (Limitation 5).

3.4 Summary of Limitations
To conclude, in the above analysis, we have identified five limita-
tions of RNN-based models from the literature [1, 26, 28, 31, 37]:
Limitation 1: There is an inherent disadvantage in the traditional
RNN models that model the user’s sequential order of checkins
by leveraging only the sequence of previously visited venues and
ignoring the context associated with the checkins.
Limitation 2: The GRU architecture for which this limitation ap-
plies (TimeGRU [26]) can only incorporate transition contexts.
Limitation 3: The time gating mechanism proposed by Zhu et
al. [37] is not sufficiently flexible to incorporate different types of
context.
Limitation 4: GRU architectures for which this limitation applies
(CGRU [26] and LatentCross [1]) treat the ordinary and transition
context similarly.
Limitation 5: There is an inherent disadvantage in the GRU archi-
tectures (CGRU [26] and LatentCross [1]) that rely on the quantised
mapping procedures to represent the transition context.

Next, we describe our proposed Contextual Attention Recurrent
Architecture (CARA), which addresses all of the elicited limitations.

4 CONTEXTUAL ATTENTION RECURRENT
ARCHITECTURE (CARA)

We propose a novel Contextual Attention Recurrent Architecture
(CARA) for context-aware venue recommendation that effectively
incorporates different types of contextual information from sequen-
tial feedback to model users’ short-term preferences (Section 4.2).
The proposed recurrent architecture consists of two types of gat-
ing mechanisms: namely Contextual Attention Gate (CAG) as well
as Temporal and Spatial Gates (TSG), which are described in Sec-
tion 4.2 and Section 4.3, respectively. In particular, our proposed
recurrent architecture with contextual gates aims to address all
Limitation 1-5. Later, in Section 6, we evaluate the effectiveness
of our proposed recurrent architecture in comparison with various
state-of-the-art context-aware RNN models.

4.1 Proposed Recurrent Architecture for
Context-aware Venue Recommendation

Our proposed CARA architecture is illustrated in the rightmost box
of Figure 2. The architecture consists of 4 layers: namely input, em-
bedding, recurrent and output layers. In particular, CARA aims to
generate the ranked-list of venues that a user might prefer to visit at
time t based on the sequences of checkins su,t . To address Limita-
tion 1, in the input layer, at time step τ , given a user i , venue j and
time tτ , we compute the time interval and geographical distance
between the given venue j and venue k previously visited at time
step τ − 1, as ∆tτ = tτ − tτ−1 and ∆дτ = dist(latj , lnдj , latk , lnдk ),
respectively. dist() is the Haversine distance function. In the embed-
ding layer, the latent factors of the user ϕui ∈ U , venue ϕvτi ∈ Q
and time ϕtτ ∈ M are generated. θe = {U ,V ,M} denotes the set of
parameters of the embedding layer. Note that we only consider the
time of checkins as the ordinary context but our proposed architec-
ture is flexible to support multiple types of ordinary context (e.g.
current weather of the day).

Next, the latent factors of venue ϕvτj , the latent factors of the
given time ϕtτ and the contextual transition features ∆дτ and ∆tτ

are passed to the recurrent layer. The output of the recurrent layer
is the hidden state of the recurrent unit at time step τ , hτ , which is
defined as follows:

hτ = f (ϕvτj ,ϕt
τ ,∆tτ ,∆дτ ;θr ) (9)

where θr = {W ,R,U ,b} denotes the set of parameters of the recur-
rent layer. More details on the recurrent units in the recurrent layer
that generates the hidden state hτ are described in Section 4.2 and
Section 4.3 (Equations (13) - (18)). Finally, in the output layer, we es-
timate the preference of user i on venue j at timestamp t as follows:

ĉi, j,t = ϕuTi hτ (10)

where hτ ∈ Rd is the hidden state of the recurrent layer. Previous
works [1, 26, 37] have followed the pointwise paradigm, by using
the softmax function to estimate the probability distribution over
all venues given the hidden state hτ and update the parameter
based on the cross entropy loss (i.e. classification loss). However,
others have shown that pairwise ranking losses result in more effec-
tive learning than those based on classification loss [2, 20–22, 25].
Therefore, we apply the pairwise Bayesian Personalised Ranking
(BPR) [25] to learn the parameters Θ = {θe ,θr }, as follows:

J(Θ) =
∑
i ∈U

∑
si,t ∈Si

∑
(i, j,t )∈si,t

∑
k ∈V−si,t

log(σ (ĉi, j,t − ĉi,k,t )) (11)



Figure 3: Our proposed Contextual Attention Recurrent Ar-
chitecture (CARA). The Rectangle symbols indicate inputs
of the unit, a red-dashed rectangle symbol indicates the out-
put of the unit and the circle symbols are the units’ gates.

4.2 Contextual Attention Gate (CAG)
We now describe how we extend the traditional Gated Recurrent
Unit (GRU) to incorporate the ordinary context associated with the
observed checkins in order to address Limitation 2. In particular,
we further describe how to calculate the hidden state hτ in Equa-
tion (9). Inspired by [8], we propose the Contextual Attention Gate
(CAG), α ∈ Rd , which controls the influences of the latent factor
of time δtτ at each state as follows:

ατ = σ (Wα,hhτ−1 +Wα,tϕt
τ + bα ) (12)

The attention gate ατ (red circle in Figure 3) aims to capture the
correlation between the latent factor ϕtτ at current step τ and the
hidden state hτ−1 of previous step. Our proposed attention gate
aims to capture the influence of the user’s dynamic preferences
hτ−1 on the current context tτ . Then, we modify Equations (2)-(4)
with the attention gate ατ as follows:

[zτ , rτ ] = σ (Wϕvτj + Rhτ−1 +W (ατ ⊙ ϕtτ ) + b) (13)

h̃τ = tanh(Wϕvτj + R(rτ ⊙ hτ−1) +W (ατ ⊙ ϕtτ ) + b) (14)

hτ = (1 + (1 − ατ ) ⊙ ϕtτ ) ⊙ [(1 − zτ )hτ−1 + zτ h̃τ ] (15)
Unlike previous works [1, 26] that combine the latent factors of the
venues and time using the concatenation operation, i.e. [vτ ;ϕtτ ]
(see Section 3.3.3), we argue that these two latent factors should
be treated independently. Ideally, the ordinary context associated
with checkins represents the user’s contextual preferences abotu
the venue, while the latent factors of the venues represent charac-
teristics of the venues. Indeed, we can include the ordinary context,
e.g. the latent factor of time ϕtτ , into the GRU units in two ways:
namely at the beginning and the end of the GRU unit. Cui et al. [5]
described the inclusion of context features before the GRU unit
as pre-fusion (blue box in Figure 3), and the inclusion of context
features after the GRU unit as post-fusion (yellow box in Figure 3).
In particular, by including the latent factor of time tτ through pre-
fusion (Equations (13) & (14), tτ will affect the update of the hidden
state of the current GRU unit though the update and reset gates
zτ , rτ as well as the candidate hidden state h̃τ . However, by includ-
ing the latent factor of time ϕtτ through post-fusion (Equation (15)),
tτ have more effect on the hidden state hτ , the output of the GRU
unit, and hence affects the next hidden state of next step hτ + 1.

Our proposed attention gate ατ controls the influence of the latent
factor of time tτ on pre- and post- fusion. In particular, to address
Limitation 4, our proposed CARA architecture uses a CAG gate
to model the ordinary context and use TSG gates to model the
transition context, which is described in the next section.

4.3 Time-and Spatial-based Gates (TSG)
In the previous section, we explained how to extend the GRU units
to incorporate the ordinary context associated with observed check-
ins. As mentioned in Section 1, to effectively model the users’ se-
quential order of checkins, we need to take the transition context
into account. In this section, we describe how to extend the GRU
units to incorporate the transition context such as the time inter-
vals and the geographical distances between successive checkins.
The green-dashed boxes and purple circle in Figure 3 illustrate our
proposed Time- and Spatial-based Gates (TSG). To address Limita-
tions 3 & 5, inspired by the time gates proposed Zhu et al. [37], we
propose to extend their time gate to incorporate the geographical
distance between two checkins, ∆дτ , as follows:

Tτ = σt (Wtxϕv
τ + σ (∆tτWt ) + bt ) (16)

Gτ = σt (Wдxϕv
τ + σ (∆дτWд + bд)) (17)

where ∆tτ and ∆дτ are time interval and distances between check-
ins cτ and cτ−1, respectively. Note that unlike previous works [1, 18,
19, 26], our proposed TSG gates support using continuous values
for a transition context, hence they do not rely on the quantised
mapping procedure to represent a transition context. Then, we pro-
pose to combine these two gates using the element-wise product
TGτ = Tτ ⊙ Gτ and modify Equation (14) as follows:

h̃τ = tanh(Wϕvτj + R(rτ ⊙TGτ ⊙ hτ−1) +W (ατ ⊙ ϕtτ ) + b) (18)

The TGτ gate and the reset gate rτ together control the influence
of the hidden state of previous step hτ−1. Unlike the time gate pro-
posed by Zhu et al. [37], theTGτ gate takes both the time intervals
and the geographical distance of two successive checkins into ac-
count. Hence, even if the time interval between two checkins is
long, the influence of the hidden state hτ−1 may not be decreased
if the distance between the two checkins is short, based on the
assumption we mentioned in Section 1. Later in Section 6, we com-
pare the effectiveness of our proposed TSG gate in comparison with
the time gate approach proposed by Zhu et al. [37].

5 EXPERIMENTAL SETUP
In this section, we evaluate the effectiveness of our proposed Con-
textual Attention Recurrent Architecture (CARA) in comparison
with state-of-the-art recurrent models. In particular, to address
Limitations 1 - 5, we address the following research questions:
RQ1 Can we enhance the effectiveness of traditional recurrent ar-

chitecture by leveraging the ordinary and transition contexts
associated with the sequence of checkins?

RQ2 Is it important to model ordinary and transition contexts sep-
arately?

RQ3 Does the use of the absolute continuous values of the transition
context preserve the influence of successive checkins?

Furthermore, as discussed in Section 3.4, no previous work has
proposed a gatingmechanism that can incorporate multiple types of



Table 1: Statistics of the three used datasets.
Brightkite Foursquare Yelp

Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix 0.93 1.16 0.07

transition contexts such as time-base context and the geographical
information of venues. Hence, our final research question:
RQ4 Can our proposed Time- and Spatial-based Gates (TSG) that

leverages multiple types of transition contexts (i.e. the time
intervals and geographical distances between successive check-
ins) enhance the effectiveness of traditional recurrent units in
capturing the user’s dynamic preferences?

5.1 Datasets & Measures
We conduct experiments using three publicly available large-scale
LBSN checkin datasets. In particular, to show the generalisation
of our proposed architecture across multiple LBSN platforms and
sources of feedback evidence, we use two checkin datasets from
Brightkite3 and Foursquare4, and a rating dataset from Yelp5. We fol-
low the common practice from previousworks [11, 21, 25] to remove
venues with less than 10 checkins. Table 1 summarises the statistics
of the filtered datasets. To evaluate the effectiveness of our proposed
CARA architecture and following previous works [11, 21, 25], we
adopt a leave-one-out evaluation methodology: for each user, we se-
lect their most recent checkin as a ground truth and randomly select
100 venues that they have not visited before as the testing set, where
the remaining checkins are used as the training set. The context-
aware venue recommendation task is thus to rank those 101 venues
for each user given their preferred context (i.e. time), aiming to rank
highest the recent, ground truth checkin. We conduct two separate
experiments, namely: Normal Users (those with ≥ 10 checkins) and
Cold-start Users (< 10 checkins) to evaluate the effectiveness of our
proposed CARA architecture in the general and cold-start settings.
Recommendation effectiveness is measured in terms of Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG) on the
ranked lists of venues – as applied in previous literature [11, 21, 31].
In particular, HR considers the ranking nature of the task, by taking
into account the rank(s) of the venues that each user has previously
visited/rated in the produced ranking, while NDCG goes further by
considering the checkin frequency/rating value of the user as the
graded relevance label. Finally, significance tests use a paired t-test.

5.2 Baselines
We compare our proposed Contextual Attention Recurrent Archi-
tecture (CARA) with various baselines, which can be categorised as
the state-of-the-art RNN architectures and other factorisation-based
approaches. As mentioned before that some approaches and frame-
works may not be originally proposed for CAVR but are sufficiently
flexible to be applied to this task without any disadvantages. We
implement all baselines and our proposed approach using Keras6,

3https://snap.stanford.edu/data/
4https://archive.org/details/201309_foursquare_dataset_umn
5https://www.yelp.com/dataset_challenge
6https://github.com/fchollet/keras

a deep learning framework built on top of Theano7. Our imple-
mentations are released as open source8. The choice of recurrent
models is fixed to the GRU units proposed by Zhang et al. [4]. Ta-
ble 2 distinguishes various baselines into different aspects as well
as indicate their limitations mentioned in Section 3.4. The summary
of the baselines are described below:

5.2.1 Recurrent Neural Network Architectures.

RNN. A traditional recurrent architecture proposed by Zhang
et al. [35] that only takes the sequence of venues into account and
ignores any contextual information associated with the checkins,
used by [21, 28, 31] (see Section 3.3.1).

STGRU. A Spatial and Temporal recurrent model proposed by
Liu et al. [19] that incorporates the transition context (i.e. the time
intervals and distance between checkins) (see Section 2).

CAGRU. An extension of STGRU proposed by Liu et al. [18],
which can incorporate both the ordinary and transition contexts
(see Section 2).

TimeGRU. An extension of the GRU architecture that includes
the time gate to incorporate the time interval between successive
checkins. It was proposed by Zhu et al. [37] (see Section 3.3.2).

CGRU. An extension of the GRU architecture that can incorpo-
rate multiple types of context. It was proposed by Smirnova and
Vasile [26] (see Section 3.3.3).

LatentCross. An extension of CGRU that supports pre and post
fusion inputs. It was proposed by Beute et al. [1] (see Section 3.3.3).

5.2.2 Factorisation Approaches.

MF. The traditional matrix factorisation proposed by Koren et
al. [17] that aims to accurately predict the users’ checkin on the
unvisited venues.

BPR. The classical pairwise ranking approach, coupled with ma-
trix factorisation for user-venue checkin prediction, proposed by
Rendle et al. [25].

GeoBPR. An extension of BPR that incorporate geographical
location of venues to sample negative venues that are far away
from the user’s previous visits. It was proposed by Yuan et al. [32].

STELLAR. A Spatial-TEmporaL LAtent Ranking framework for
CAVR that aims to recommend the list of venues based on the user’s
preferred time and last successive visits. It was proposed by Zhao
et al. [36]. Note that this is the only context-aware framework that
does not rely on the RNN-based approaches to model the users’
sequential order of checkins.

NeuMF. A Neural Matrix Factorisation framework9, proposed by
He et al. [11], which exploits Multi-Level Perceptron (MLP) models
to capture the complex structure of user-item interactions.

DRCF. ADeep Recurrent Collaborative Filtering framework, pro-
posed by Manotumruksa et al. [21], which extends NeuMF [11] to
exploit the traditional RNN to model the sequential order of users’
checkins. DRCF consists of two components, with each component

7http://deeplearning.net/software/theano
8https://github.com/feay1234/CARA
9https://github.com/hexiangnan/neural_collaborative_filtering

https://snap.stanford.edu/data/
https://archive.org/details/201309_foursquare_dataset_umn
https://www.yelp.com/dataset_challenge
https://github.com/fchollet/keras
http://deeplearning.net/software/theano
https://github.com/feay1234/CARA
https://github.com/hexiangnan/neural_collaborative_filtering


Table 2: Summary of factorisation-based approaches and Gated Recurrent Unit architectures.
Factorisation Approaches Recurrent Neural Network Architectures

MF [17] BPR [25] GeoBPR [32] STELLAR [36] NeuMF [11] DRCF [21] RNN [35] STGRU [19] CAGRU [18] TimeGRU [37] CGRU [26] LatentCross [1] CARA
Neural networks × × × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sequential-based × × × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Context-aware × × only geo ✓ × × × ✓ ✓ only time ✓ ✓ ✓
Ordinary/Transition × × × ✓ × × × only transition ✓ only transition ✓ ✓ ✓
Special gates × × × × × × × × × ✓ × × ✓
Limitations - - - - - - 1-5 2-5 2,4,5 4,5 4,5 4,5 -

having its own recurrent layer. Hence, to permit a fair compari-
son, we only compare CARA with its best-performing component,
GMRF, which uses an element-wise product to combine the latent
factors and the hidden units of the RNN model [21, Section 4.2]).

5.3 Recommendation Parameter Setup
Following [11, 21], we set the dimension of the latent factors d and
hidden layers hτ of our proposed CARA architecture and all of the
RNN-based approaches to be identical: d = 10 across both datasets.
Following He et al. [11], we randomly initialise all embeddings and
recurrent layers’ parameters,θr ,θe ,θh , with a Gaussian distribution
(with a mean of 0 and standard deviation of 0.01) and apply the mini-
batch Adam optimiser [16] to optimise those parameters, which
yields faster convergence than SGD and automatically adjusts the
learning rate for each iteration. We initially set the learning rate to
0.00110 and set the batch size to 256. As the impact of the recurrent
parameters such as the size of the hidden state, have been explored
in previous work [11, 12, 27], we omit varying the size of the hidden
layers and the dimension of the latent factors in this work. Indeed,
larger sizes of hidden layers and dimensions may cause overfitting
and degrade the generalisation of the models [11, 12, 27].

6 EXPERIMENTAL RESULTS
Table 3 reports the effectiveness of various state-of-the-art GRU rec-
ommendation architectures, in terms of HR@10 and NDCG@10 on
the three used datasets. Similarly, Table 4 reports the performance
of our proposed CARA architecture in comparison with various
factorisation approaches (as described in Section 5.2.2). Both ta-
bles contain two groups of rows, which report the effectiveness of
various approaches under the Normal Users and Cold-Start Users
experiments, respectively.

Firstly, on inspection of our reimplementations of the state-of-
the-art GRU baselines in Table 3, we note that the relative venue rec-
ommendation quality of the baselines on the three datasets in terms
of both HR and NDCG are consistent with the results reported for
the various baselines in the corresponding literature [1, 18, 19, 26,
35, 37]. For instance, the extensions of the GRU architecture that in-
corporate the contextual information (LatentCross, CGRU, CAGRU,
STGRU and TimeGRU) outperforms RNN across three datasets. Sim-
ilarly, among the factorisation baselines in Table 4, we also observe
the relative improvements of GeoBPR, STELLAR, NeuMF and DRCF
compared to MF and BPR across the three datasets. While previous
works (e.g. [1, 11, 26, 37]) used different datasets, our reimplemen-
tations of their approaches obtain similar relative improvements.

Comparing CARA with various GRU architectures in Table 3 on
the Normal Users experiment, we observe that CARA consistently
and significantly outperforms all the GRU baselines, for HR and
NDCG, across all datasets. In particular, CARA improves NDCG
by 5.47-8.93% and 2.42-10.50% over the recently proposed GRU
10The default learning rate setting of the Adam optimiser in Keras.

Table 3: Performance in terms of HR@10 and NDCG@10
between various approaches. The best performing result is
highlighted in bold; − and ∗ denote a significant difference
compared to the best performing result, according to the
paired t-test for p < 0.05 and p < 0.01, respectively.

Brightkite Foursquare Yelp
Model HR NDCG HR NCDG HR NDCG

Normal Users
RNN 0.6657* 0.4407* 0.8302* 0.5762* 0.4164* 0.2146*
TimeGRU 0.7005* 0.4816* 0.8570* 0.6167* 0.4342* 0.2240*
STGRU 0.6888* 0.5493* 0.8496* 0.6865* 0.4254* 0.2365*
CAGRU 0.7180* 0.5545* 0.8498* 0.6474* 0.3799* 0.1989*
CGRU 0.6969* 0.5659* 0.8592* 0.6985* 0.5194* 0.3005*
LatentCross 0.7063* 0.5727* 0.8616* 0.6964* 0.5210* 0.2991*
CARA 0.7385 0.6040 0.8851 0.7154 0.5587 0.3272

Cold-Start Users
RNN 0.6959* 0.4550* 0.8247 0.5260* 0.2420* 0.4540*
TimeGRU 0.7314* 0.5071* 0.8182 0.5788* 0.2398* 0.4592*
STGRU 0.7081* 0.5686* 0.7273* 0.5722* 0.2543* 0.4404*
CAGRU 0.7628 0.6035* 0.8377 0.6353 0.2205* 0.4055*
CGRU 0.7054* 0.5788* 0.7662* 0.5996- 0.3325* 0.5524*
LatentCross 0.7108* 0.5811* 0.8052* 0.6600 0.3223* 0.5398*
CARA 0.7648 0.622 0.8636 0.6505 0.3493 0.5748

architectures CAGRU, CGRU and LatentCross, for the Brightkite
and Foursquare checkin datasets, respectively. These results imply
that our proposed CARA architecture with Contextual Attention
Gate (CAG) and Time-and Spatial-based Gate (TSG) is more effec-
tive than the state-of-the-art GRU architectures in modelling the
sequences of users’ checkins. Within the second groups of rows
in Table 3, we further analyse the effectiveness of our proposed
CARA architecture by comparing with the GRU baselines in the
Cold-Start Users experiment. Similar to the results observed from
the Normal Users experiment, CARA consistently and significantly
outperforms all GRU baselines across three datasets in terms of HR
and NDCG, except for NDCG on the Foursquare dataset, where La-
tentCross is statistically indistinguishable from CARA (difference in
HR < 1.5%). Next, we note that unlike the Brightkite and Foursquare
checkin datasets, the Yelp dataset consists of only user-venue rat-
ings, and hence the sequential properties of visits to venues cannot
be observed. Consequently, on both normal and cold-start user ex-
periments, the performances of several GRU baselines (TimeGRU,
STGRU and CAGRU) that consider the contextual information of
the ratings are as effective as the RNN baseline that only considers
the sequence of the user’s ratings. In contrast, our proposed CARA
architecture, which controls the influence of previous ratings based
on both the time interval and geographical distance, is still the most
effective across the different types of datasets. Overall, in response
to research question RQ1, we find that our proposed CARA archi-
tecture, which leverages the sequences of users’ checkins as well as
the ordinary and transition contexts associated with the checkins,
is effective for CAVR for both normal and cold-start users.



Table 4: As per Table 3; comparison between our proposed
CARA architecture and various factorisation baselines.

Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG

Normal Users
MF 0.6206* 0.3470* 0.6656* 0.3818* 0.3539* 0.1734*
BPR 0.6890* 0.4333* 0.7550* 0.4834* 0.4992* 0.2691*
GeoBPR 0.7339 0.4672* 0.8216* 0.5395* 0.5570 0.3020*
STELLAR 0.7267* 0.5635* 0.8751* 0.6984* 0.5356* 0.2969*
NueMF 0.7073* 0.5358* 0.8361* 0.5842* 0.4927* 0.2734*
DRCF 0.7363 0.5670* 0.8805 0.6814* 0.5209* 0.2890*
CARA 0.7385 0.6040 0.8851 0.7154 0.5587 0.3272

Cold-Start Users
MF 0.6768* 0.3913* 0.6623* 0.3650* 0.3748* 0.1868*
BPR 0.7519 0.4907* 0.7792- 0.4961* 0.5273* 0.2946*
GeoBPR 0.8093 0.5262* 0.8312 0.5486* 0.5802 0.3202*
STELLAR 0.7406* 0.5580* 0.8052- 0.6007- 0.5537* 0.3147*
NueMF 0.7160* 0.5894* 0.7922- 0.6227 0.5102* 0.2956*
DRCF 0.7409* 0.5618* 0.8442 0.6542 0.5399* 0.3083*
CARA 0.7648- 0.6220 0.8636 0.6505 0.5748 0.3493

In addressing research questions RQ2 and RQ4, we compare
CARA with GRU architectures that consider both the ordinary
and transition context (CAGRU, CGRU and LatentCross). Note that
these GRU baselines treat the ordinary and transition context simi-
larly and rely on the quantised mapping procedures to represent
the contexts. However, as mentioned in Section 3.3.3, we argue
that different types of context might influence the user’s dynamic
preferences differently. In addition, using the mapping procedure
to convert the continuous values of the transition context can lead
to a loss in granularity. From the results in Table 3, we observe that
our proposed CARA architecture that leverages the absolute contin-
uous values of the transition context (i.e. the time interval ∆tτ and
the geographical distance ∆дτ – see Section 4.3) is more effective
than the CAGRU, CGRU and LatentCross baselines in capturing
the transition effects between successive checkins. In particular,
our proposed Contextual Attention Gate (CAG) enables the CARA
architecture to treat the ordinary and transition separately, while
these GRU baselines do not do so.

Next, we compare our proposed CARA architecture with the
state-of-the-art factorisation approaches. From the first group of
rows in Table 4, we observe that CARA consistently and signif-
icantly outperforms all the factorisation baselines across three
datasets in terms of HR and NDCG. In particular, comparing with
STELLAR, the state-of-the-art CAVR that considers both the con-
textual information and the sequences of users’ checkins, CARA
obtains 7.19% and 10.21% improvements in terms of NDCG for
Brightkite and Yelp datasets, respectively. In addition, comparing
with DRCF, the recent DNN framework that exploits RNN models
to capture the users’ dynamic preferences, our proposed CARA ar-
chitecture significantly outperforms DRCF by 6.53%, 5% and 13.22%
in terms of NDCG for Brightkite, Foursquare and Yelp datasets,
respectively. Furthermore, we also observe that CARA significantly
outperforms STELLAR and DRCF by 10-13% in terms of NDCG for
the Brightkite and Yelp datasets.We also highlight that GeoBPR uses
an advanced geo-based negative sampling technique [32], while
CARA uses traditional negative sampling, similar to BPR. CARA is
as effective as GeoBPR in terms of HR on Brightkite and Yelp (i.e. no

significant differences are observed), while using a less advanced
sampling technique. We underline that CARA can be adapted to
use GeoBPR’s negative sampling, which we leave to future work.

We further investigate the effectiveness of our proposed CARA
architecture and the GRU baselines under different settings. In par-
ticular, Figure 4 presents the performances on the Brightkite and
Yelp datasets11 – in terms of HR@10 and NDCG@10 – of various
GRU architectures, by considering the users with particular time
intervals ∆t (hours) and geographical distances ∆д (km) between
their last checkin and ground-truth checkin. Regarding the effec-
tiveness of CARA, we observe that CARA consistently outperforms
all GRU baselines in terms of HR and NDCG, while CARA outper-
forms the GRU baselines in term of NCDG for the Brightkite dataset.
In particular, with respect to research question RQ4, CARA consis-
tently outperforms TimeGRU in terms of HR and NDCG across the
Brightkite and Yelp datasets. These results imply that our proposed
CARA architecture, which consists of Time- and Spatial-basedGates
(TSG), is more effective than TimeGRU, the GRU baseline that con-
siders only the time intervals. Therefore, by considering both the
time interval and the geographical distance between two succes-
sive checkins, CARA can generate better recommendations than
TimeGRU. Next, to address research question RQ3, we compare
CARA with CGRU and LatentCross, the GRU baselines that rely
on the quantised mapping procedures to represent the transition
contexts (Limitation 4), on the Yelp and Brightkite datasets11. The
results from Figure 4 demonstrate that our proposed CARA archi-
tecture, which supports the continuous values of the transition
contexts, outperforms CGRU and LatentCross on both settings (i.e.
fixed geographical distances ∆д = 1 km and ∆д = 5 km).

Furthermore, Figure 4 demonstrates that the effectiveness of all
approaches for the Brightkite dataset decreases as the time intervals
between two successive checkins increases because users are less
likely to be influenced by venues they visited long time ago. More-
over, the experimental results using a fixed geographical distance
of ∆д = 1 km on both datasets demonstrate the ability of CARA in
capturing the users’ dynamic preferences (as discussed in Section 1).
In particular, even when the time interval between two checkins
is long (e.g. more than 864 hours) but the geographical distances
are small, CARA still outperforms all baselines, demonstrating the
value of learning using nearby checkins as well as recent checkins.

7 CONCLUSIONS
In this paper, we proposed a novel Contextual Attention Recurrent
Architecture (CARA) for Context-Aware Venue Recommendation
(CAVR), positioned within five elicited limitations with respect to
the state-of-the-art GRU architectures that adapt GRU units. In
particular, our proposed architecture consists of two gating mecha-
nisms: namely 1) the Contextual Attention Gate (CAG) that con-
trols the influence of the ordinary and transition contexts on the
users’ dynamic preferences and 2) the Time-and Spatial-based Gates
(TSG) that control the influence of the hidden state of previous GRU
units based on the time intervals and geographical distances be-
tween successive checkins. Our comprehensive experiments on
three large-scale datasets from the Brightkite, Foursquare and Yelp
commercial LBSNs demonstrate the significant improvements of
our proposed CARA architecture for CAVR in comparison with

11While Figure 4 only shows results for Brightkite and Yelp, the results for Foursquare
– omitted for lack of space – are consistent.



Figure 4: Performance between our proposed CARA architecture and various GRU architectures on the Brightkite and Yelp
datasets by varying the time interval ∆t in term of hours with the fixed values of the geographical distances ∆д (1 and 5 km).

various state-of-the-art GRU architectures, as well as various recent
factorisation approaches, in both normal and cold-start settings.
Indeed, significantly CARA improves NDCG by 5-13% over the
recent DRCF framework [21] across the three datasets. For future
work, we plan to extend the CARA architecture to incorporate ad-
ditional information such as the social relationships between users
to further improve the quality of recommendation for CAVR.
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