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Abstract

The mass adoption of the internet has resulted in the exponential growth of products and

services on the world wide web. An individual consumer, faced with this data deluge, is

expected to make reasonable choices saving time and money. Organizations are facing increased

competition, and they are looking for innovative ways to increase revenue and customer loyalty.

A business wants to target the right product or service to an individual consumer, and this

drives personalized recommendation. Recommender systems, designed to provide personalized

recommendations, initially focused only on the user-item interaction. However, these systems

evolved to provide a context-aware recommendations. Context-aware recommender systems

utilize additional context, such as genre for movie recommendation, while recommending items

to users. Latent factor methods have been a popular choice for recommender systems. With

the resurgence of neural networks, there has also been a trend towards applying deep learning

methods to recommender systems.

This study proposes a novel contextual latent factor model that is capable of utilizing the

context from a dual-perspective of both users and items. The proposed model, known as the

Group-Aware Latent Factor Model (GLFM), is applied to the event recommendation task. The

GLFM model is extensible, and it allows other contextual attributes to be easily be incorporated

into the model. While latent-factor models have been extremely popular for recommender

systems, they are unable to model the complex non-linear user-item relationships. This has

resulted in the interest in applying deep learning methods to recommender systems. This

study also proposes another novel method based on the denoising autoencoder architecture,

which is referred to as the Attentive Contextual Denoising Autoencoder (ACDA). The ACDA

model augments the basic denoising autoencoder with a context-driven attention mechanism

to provide personalized recommendation. The ACDA model is applied to the event and movie

recommendation tasks.

The effectiveness of the proposed models is demonstrated against real-world datasets from

Meetup and Movielens, and the results are compared against the current state-of-the-art base-

line methods.
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Chapter 1

Introduction

1.1 Motivation

The mass adoption of the Internet has resulted in the dawn of the big data era. There is

abundance of data in every domain in the world today, and organizations are looking for ways

to draw intelligence from this data. Consumers, inundated with this data deluge, are looking to

make smart decisions based on the numerous choices that are available. Whether it is a movie

a person would like to watch, a book that the individual wishes to read, or a place the person

desires to visit, the consumer wants to make the best possible decision with a view towards

making the most effective use of time and money. Organizations are looking to have an edge

in the competitive marketplace, and therefore, they are looking to market their services and

products in an intelligent way by recognizing the needs of the consumers.

Recommender systems aim to provide the intelligence that benefits both organizations and

consumers. A business benefits in the form of increased revenue and customer loyalty, whereas

consumers benefit by attaining the satisfaction of consuming the right product and services.

First-generation recommender systems were rudimentary as they provided generic recommen-

dations targeted towards all users. However, recommenders evolved with time to provide per-

sonalized recommendation targeted to a specific user by utilizing the known preferences of the

user to predict the unknown preferences of that user on other items. Recommender systems

1



2 Chapter 1. Introduction

are designed to perform either rating prediction, or top-N recommendation. While the goal of

both methods is to provide personalized recommendations, they vary in the approach. Rating

prediction works by considering explicit feedback data, such as users providing ratings for the

Netflix movies. Top-N recommendation, on the other hand, is suitable for both explicit and

implicit feedback systems. An implicit feedback system is one that attempts to gather the

user’s preference via implicit actions, such as viewing history, or mouse-clicks while navigating

a website.

While earlier recommender systems focused solely on the user-item interaction, there is a grow-

ing trend of utilizing contextual data to provide a more meaningful personalized recommenda-

tion. A comprehensive study on contextual recommendations [ASST05] highlights the fact that

the decision making by consumers is contingent on certain context, instead of being invariant

of it. The same consumers may prefer different products or services under a different context.

Therefore, accurate prediction of consumer preferences depends upon the relevant contextual

information being incorporated into a recommendation method. The context augments the ba-

sic user-item interaction to achieve a higher quality of recommendation. The need to utilize the

context for recommendation resulted from the observation that the user-item interaction never

occurs in isolation, and there are additional factors that can be used to explain the interaction.

For example, the genre is an important context for movie recommendation, and time-of-day and

geographic distance are essential contextual attributes for point-of-interest recommendation.

Recommender systems primarily deal with two entities, users and items, with the preference

or rating of the user u on item i being denoted by r(u, i). The goal of the recommender system

is then to use the observed ratings or preferences, which may be provided via explicit feedback

or learnt via implicit actions, to predict the user’s preference on other items. The predicted

rating of the user u on an item is denoted by r̂(u, i). The recommender system learns to make

predictions by learning the parameters that minimize the loss between the actual preference

[r(u, i)] and the predicted prefrence [r̂(u, i)].

Recommender systems can broadly be categorized into the following types:

• Collaborative Filtering Recommender Systems
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• Content-Based Recommender Systems

• Hybrid Recommender Systems

Collaborative filtering (CF) has been been the most popular method for recommender systems.

The CF method can further be classified into Neighborhood-based methods and Model-based

methods. Neighborhood-based methods, such as UserKNN and ItemKNN, rely on a similarity

measure to find the nearest neighbors. UserKNN predicts the preference of a user based on

the similarity of that user with its k nearest users. ItemKNN, on the other hand, performs the

prediction based on the similarity of the user’s past item preference with the k nearest items.

While the neighborhood methods are easier to implement, their performance degrades with

sparse datasets when the similarity is hard to determine based on limited historical preferences

of a user or item. This problem is particularly severe in cold-start conditions, which is caused

by new users and items with no prior history of preferences. Model-based methods utilize

machine learning methods to model the user-item interaction. There are many model-based

techniques that have been used for recommendation, such as the bayesian models, clustering,

regression, matrix factorization based latent factor models, and in recent times, deep learning

models. Since model-based methods don’t rely on the nearest neighbors, they are better at

handling sparse datasets and the cold-start problem. Latent factor based models have been

the most popular method for recommendation, and they are typically realized using matrix

factorization. While latent factor models and other model-based methods have been prevalent

in the past, they are limited to modeling the linear relationships between users and items. The

resurgence in neural network architecture has resulted in deep learning methods being applied

to recommender systems. The deep learning methods, which are also considered as model-

based methods, are capable of modeling the complex non-linear relationships between users

and items. While other machine learning methods require the model features to be identified

explicitly, deep learning methods are capable of learning complex data representations without

any prior feature knowledge.

Content-based recommenders utilize the content of the information describing the user or item,

such as the user profile or item description, to perform the recommendation. Since the user
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profile and item description consist of textual data, the content-based methods utilize a measure

such as term frequency / inverse document frequency (TF-IDF) to find the similarity between

the content. While recommending an item to a user, the content-based recommender finds

the similarity between the item’s description and the description of other items that the user

has preferred in the past based on the TF-IDF score. The recommender may also recommend

based on the TF-IDF score of the user’s profile and the item’s description. For example, a

content-based recommender may recommend a web page to the user based on the similarity

of the content of that page with other pages that the user has visited. The similarity of the

page content may be computed using TF-IDF. Content-based recommenders work well with

sparse datasets and do not suffer from the cold-start problem. However, they are limited by

the amount of content available for providing a meaningful recommendation.

Hybrid algorithms combine the collaborative filtering and content-based approaches. These

methods attempt to use the best of both worlds by incorporating the user-item interaction

model, and including the content-based method to overcome the data sparsity and cold-start

problems. The hybrid methods are difficult to implement, however, they have shown good

performance on specific tasks and datasets.

1.2 Overview

The objective of this study is to propose two novel model-based methods for personalized

recommendation:

• The first approach, known as Group-Aware Latent Factor Model (GLFM), is a latent

factor model realized using matrix factorization.

• The second method is a model based on the neural network architecture, which is referred

to as the Attentive Contextual Denoising Autoencoder (ACDA).

The proposed methods differ from existing work in the literature as they incorporate context

in an innovative and novel way, which has not been previously done. This study expains both
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the models in detail, and applies the proposed models to recommendation tasks against real-

world datasets. Both the proposed models are observed to perform better than the current

state-of-the-art methods.

The Group-Aware Latent Factor Model (GLFM) is a context-aware supervised learning method

that utilizes certain contextual attributes from a dual-perspective of users and items. The

GLFM model is extensible as it allows additional contextual attributes to be incorporated

to the basic implementation. This study applies the GLFM model to the task of event rec-

ommendation. Event recommendation has become popular with the advent of Event-Based

Social Networks (EBSNs), such as Meetup. EBSNs allows like-minded individuals to social-

ize and collaborate of topics of mutual interest by organizing real-world events. Users in an

EBSN organize themselves into groups, and events are held at physical venues. Therefore, the

group and venue are contextual attributes that can be considered for event recommendation.

The group contextual attribute is considered from a dual-perspective–the user’s perspective

signifies the group as a topic of interest, whereas the event perspective signifies the group in

terms of the organization style and logistics. The GLFM models incorporates the group from

a dual-perspective by modeling it as two different latent representations, one from the user’s

perspective, and the other from the event’s perspective. The GLFM model is also extended by

incorporating other contextual attributes such as venue, event popularity, time-of-day and ge-

ographical distance. The contextual attributes are either represented by their respective latent

representation, or modeled as a bias.

Users in a EBSN express their interest in attending an event by providing a RSVP 1 for an event.

Users typically respond to events that they are interested in attending, and ignore the others.

Therefore, the dataset contains more positive preferences as compared to negative/unobserved

preferences. The GLFM model uses pairwise learning to account for unobserved preferences.

The objective function is setup to maximize the loss based on the diffrence in score of a positive-

negative preference pair. The parameters of the model are estimated using Stochastic Gradient

Descent (SGD). The GLFM effectively handles the cold-start condition that arises from new

users and new events. There are always new users that join the EBSN, and events are always

1RSVP is a French expression, which means “please respond”
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short-lived. In the absence of historical preferences of the user or event, the recommendation

task becomes challenging. The GLFM model utilizes the contextual parameters in the absence

of the historical user / event data to perform the recommendation. Extensive experiments

are performed on the GLFM model and its contextually-aware variants, and the results are

compared with other state-of-the-art recommenders. The results demonstrate that the GLFM

model performs better than the other methods on both the regular and cold-start experimental

settings. The GLFM model is explained in detail in chapter 3.

The second method proposed in this study is the Attentive Contextual Denoising Autoencoder

(ACDA) model. The ACDA is an unsupervised learning method based on a neural network

architecture. Neural networks have experienced a resurgence with surge in big data and dis-

tributed computing. Deep learning methods based on neural networks have been primarily

applied to tasks related to computer vision and natural language processing. However, there

is recent interest in applying deep learning models to recommender systems. The ACDA is

based on the denoising autoencoder neural network architecture, which is augmented with a

context-driven attention mechanism.

Autoencoders [GBC16] are unsupervised feed-forward neural networks that learn a represen-

tation of the data that is of much lower dimensionality than the input. The network then

attempts to recover the original input from this lower dimensionality representation at the

output. These two steps are referred to as encoding and decoding respectively. Denoising au-

toencoders [GBC16] are a variant of the basic autoencoder that corrupt the input and attempt

to recover it at the output with the objective of learning a more robust representation. The

mapping of the input to a lower dimension representation is considered as projecting the data

into a latent space. It has been shown in the literature that the denoising autoencoder archi-

tecture is a nonlinear generalization of latent factor models [KBV09, MS07]. The attention

mechanism is utilized in neural network architectures to focus on certain parts of the input

data in terms of the relevance. The ACDA model is based on the denoising autoencoder, and it

applies the contextual attributes to the lower dimensional data representation via the attention

mechanism. The partially corrupted user’s preference on items is input into the ACDA model,

which is then mapped to a lower dimensional representation in the hidden layer. The contextual
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attributes are applied to the lower dimensional representation via the attention mechanism, and

the model then reconstructs the lower dimensional representation back to its original form at

the output layer. The model is trained to minimize the loss between the corrupted input and

its reconstructed form at the output layer.

The ACDA model is generic and it can be applied to both rating prediction and top-N recom-

mendation tasks. This study applies the ACDA model to the top-N recommendation tasks of

event and movie recommendation. Datasets from Meetup and Movielens are used for the event

and movie recommendation tasks respectively. The performance of the proposed ACDA model

is compared on these datasets against the state-of-the-art recommenders. The experimental

results demonstrate the effectiveness of the ACDA model as compared to the other methods.

The ACDA model is explained in chapter 4.

The main contributions of this study can be summarized as follows.

• This study proposes a novel extensible latent factor model, referred to as the Group-Aware

Latent Factor Model (GLFM). GLFM is realized using matrix factorization, and it incor-

porates contextual attributes from a dual-perspective for personalized recommendation.

The model can be extended to add other contextual attributes that are related to only

the user or item.

• The GLFM model is applied to the task of event recommendation, where it considers the

group contextual attribute, which is associated with both the user and event, from a dual

perspective.

• The GLFM model incorporates other context attributes, such as venue, event popularity,

temporal influence and geographical distance. These contextual attributes are consid-

ered individually and grouped together to form variations of the GLFM model. The

performance of the different GLFM variants is studied via extensive experiments.

• The GLFM model is demonstrated to be suitable for addressing the cold-start problem.

Experimental results validate the suitability of the model for both regular and cold-start

conditions.
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• This study also proposes a generic model based on the neural network architecture, which

is referred to as the Attentive Contextual Denoising Autoencoder (ACDA) model. The

ACDA model is based on the denoising autoencoder architecture, which is augmented

with a context-driven attention mechanism.

• The ACDA model is presented as a generic method for both rating prediction and top-N

recommendation.

• The ACDA model is applied to the task of event recommendation by utilizing the group

and venue as contextual attributes. The results, based on extensive experiments against

the Meetup dataset, demonstrate the effectiveness of the approach against the other state-

of-the-art recommenders.

• The ACDA model is also applied to the task of movie recommendation by utilizing the

genre as a contextual attribute. Extensive experiments against the Movielens dataset

demonstrate the superior performance of the proposed ACDA method as compared to

the other state-of-the-art baseline methods.

1.3 Outline

The introduction section provides the motivation for this work, and it also provides a brief

overview of the chapters that follow. The GLFM model is presented in chapter 3, and the

ACDA model is presented in chapter 4. Chapters 3 and 4 are self-contained and may be

reviewed independently. Chapter 2 outlines the current work in the literature related to this

study, and chapter 5 concludes this study by providing future direction.



Chapter 2

Related Work

The objective of this study is to apply machine learning models to context-aware recommender

systems with a focus towards event and movie recommendation. This section outlines the

existing work in the literature related to this study.

2.1 Context-Aware Recommendation

There is a growing trend towards context-aware recommendations. A comprehensive study on

contextual recommendations [ASST05] proposes a multidimensional recommendation model

that extends the user-item interaction with contextual data. The proposed multidimensional

model is similar to the OLAP-based models widely used in data warehousing applications

related to databases. The proposed model is applied to movie recommendation considering

contextual data such as, when the movie was seen, with whom and where. Karatzoglou et al.

propose Multiverse recommendation model [KABO10], which is based on tensor factorization,

a generalization of matrix factorization framework. The Multiverse model includes contextual

data as additional dimensions of the data in the form of tensors. Contextual video recommen-

dation is also addressed by a study [MYHL11], which proposes a contextual model based on

multi-modal content relevance and user feedback.

Chen et al. propose a model for tweet recommendation that incorporates contextual attributes

9
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to improve the recommendation quality [CCZ+12]. The proposed method peforms the recom-

mentation by modeling contextual attributes, such as the tweet topic level, user social relations,

authority of the tweet author and the quality of the tweet. A study on contextual movie rec-

ommendation [SLH13] proposes a context-aware recommendation model that performs joint

matrix factorization, combining the mood-specific movie similarity measure with the similarity

measure that takes into account the movie plot keywords. Context is also applied while recom-

mending services. Li et al. [LCLS10] model personalized recommendation of news articles as a

contextual-bandit problem, where the model recommends articles to users based on the accom-

panying contextual information, while simultaneously adapting the article selection strategy

based on the user click feedback. Contextual recommendation is also prevalent in music rec-

ommendation. A study [CZW+07] performs emotional allocation modeling by characterizing

the mood of the user based on the web pages the user visited. This emotional context is used

to recommend music to the user.

Contextual information is also predominant in event recommendation due to the availability

of many contextual attributes, such as venue, time-of-day, event popularity and geographic

distance. Du et al. [DYM+14] considered spatial and temporal context to predict event atten-

dance. Macedo and Marinho [dMM14] conducted a large-scale analysis of several factors that

impact user preferences on events. They observed that users tend to provide RSVPs close to the

occurrence of the events. Macedo et al. [MMS15] further proposed a context-aware approach

by exploiting various contextual information including social signals based on group member-

ships, location signals based on the users’ geographical preferences, and temporal signals derived

from the users’ time preferences. Chen and Sun [CS16] proposed a social event recommendation

method that exploits a user’s social interaction relations and collaborative friendships. Zhang

et al. [ZWF13] perform group recommendations for events by exploiting matrix factorization

to model interactions between users and groups. By considering both explicit features (e.g.,

location and social features) and implicit patterns, the proposed approach demonstrated im-

proved performance for group recommendations. A group recommender for movies is proposed

based on content similarity and popularity [PN13]. A recent study [PLCZ15] proposed a gen-

eral graph-based model to solve three recommendation tasks for event-based social networks
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in one framework, namely recommending groups to users, recommending tags to groups, and

recommending events to users. The work models the rich information with a heterogeneous

graph and considers the recommendation problem as a query-dependent node proximity prob-

lem. Another study [JL16] on event-based social networks, such as Meetup, investigates how

social network, user profiles and geo-locations affect user participation when the social event is

held by a single organizer. Lu et al. [LVT+16] presented a system that extracts events from

multiple data modalities and recommends events related to the user’s ongoing search based on

previously selected attribute values and dimensions of events being viewed.

The existing work in the literature signifies the importance of context-aware recommendation

in every aspect of life. Context is utilized while recommending products, movies, services, social

media and social events.

2.2 Cold-Start Problem

Cold-start is a prevalent problem in recommender systems as it is generally difficult for a model

to handle new users and items. The cold-start problem is often alleviated by utilizing content

information [FFCC13]. Word-based similarity methods [PB07] recommend items based on

textual content similarity in word vector space. Collaborative Topic Regression (CTR) couples

a matrix factorization model with probabilistic topic modeling to generalize to unseen items

[WB11]. Collective matrix factorization (CMF) [SG08] simultaneously factorizes both rating

matrix and content matrix with shared item latent factors. SVDFeature [CZL+12] combines

content features with collaborative filtering. The latent factors are integrated with user, item,

and global features.

In [DYM+14], topic modeling [BNJ03] is utilized to learn topics of users based on the content

of their attended events, and then the similarity between topic factor of user and events is cal-

culated, which is an important component of their method. Recently, Zhang and Wang [ZW15]

explicitly addressed the cold-start problem in event recommendation by modeling the event con-

tent text. Liao and Chang [LC16] proposed a rough set based association rule approach. Sun
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et al. [SWCF15] integrated sentiment information from affective texts into recommendation

models. The cold-start problem in tag recommendation is studied in [MBAG16].

The existing work in the literature signifies the importance of handling the cold-start condition.

Both the models proposed in this study are suitable for handling the cold-start condition, and

the GLFM model in particular is shown to effectively handle the cold-start problem.

2.3 Latent Factor Modeling

Latent factor models are among the most popular methods for recommender systems. La-

tent factor models, such as as matrix factorization [KBV09], probabilistic matrix factorization

[MS07], and other variants [AC09, BKV07, Kor10, ZMK15, Cao15] demonstrated effectiveness

in various recommendation tasks [SZW+12, HSL14, YSQ+15]. Among the various MF models

proposed, SVD++ [Kor08] is one of the most widely used models. SVD++ integrates the im-

plicit feedback information from a user to items, and the user latent factors are complemented

by the latent factors of the items to which the user has provided explicit feedback.

Matrix factorization has been adapted to learn from relative pairwise preferences rather than

absolute ones. One of the most effective techniques is based on Bayesian Personalized Ranking

(BPR) [RFGST09], which has been shown to provide strong results in many recommendation

tasks. There are several extensions of BPR, which include pairwise interaction tensor factor-

ization [RST10], multi-relational matrix factorization[KGDFST12], richer interactions among

users [PC13], and non-uniformly sampled items [GDFST12]. Other pairwise learning based col-

laborative filtering models include EigenRank [LY08] and probabilistic latent preference analysis

[LZY09]. A pairwise ranking based geographical factorization method was recently proposed

[LCL+15] for point-of-interest recommendation. This study also utilizes the pairwise ranking

approach in the GLFM model for the event recommendation task.
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2.4 Deep Learning for Recommender Systems

Recently, a surge of interest in applying deep learning to recommendation systems has emerged.

Neural Matrix Factorization [HLZ+17a] addresses implicit feedback by jointly learning a matrix

factorization and a feedforward neural network. [WYZ+17] unify the generative and discrim-

inative methodologies under the generative adversarial network [GBC16] framework for item

recommendation, and question answering. A recent survey [SK] provides a comprehensive

overview of deep learning for recommender systems.

Autoencoders [GBC16] have been a popular choice of deep learning architecture for recom-

mender systems. Specifically, denoising autoencoders [GBC16] are based on an unsupervised

learning technique for learned representations that is robust to partial corruption of the input

pattern [VLBM08]. This eventually led to denoising autoencoders being used for collaborative

personalized recommenders. One of the early works that applied deep learning to recommender

systems is based on the Restricted Boltzmann Machines (RBM) [SMH07]. The authors of the

RBM study propose a method for rating prediction that uses Contrastive Divergence as the

objective function to approximate the gradients. Wu et al. [WDZE16] propose a collabora-

tive denoising autoencoder model that utilizes an additional input encoding for the user latent

factor for recommendation based on implicit feedback. Chen et al. [CWSB14] introduced the

marginalized denoising autoencoder model that offer a better performance by reducing the

training time. The AutoRec model [SMSX15] for collaborative filtering proposes two variants:

user-based (U-AutoRec) and item-based (I-AutoRec) denoising autoencoders that respectively

take the partially observed user vector or item vector as input. The study evaluates both models

on the Netflix dataset and concludes that the I-AutoRec performs better than the U-AutoRec

model due to the high variance in the number of user ratings. An existing study proposes a

hierarchical bayesian model called collaborative deep learning model (CDL) [WWY15], which

is based on stacked denoising autoencoders. The CDL model tightly couples the deep repre-

sentation learning of the content information and collaborative filtering for the ratings matrix

in a unified model. Neural Collaborative Filtering [HLZ+17b] is another hybrid technique that

combines matrix factorization and multi-layer perceptron to learn the user-item interactions.
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Other forms of autoencoders have also been used for recommendation tasks. Li et al.[LS17]

propose a variational autoencoder that learns the deep latent representation and the implicit

relationalship between users and items from ratings and content data. AutoSVD++ [ZYX17]

is a recent study that combines contrastive autoencoders and matrix factorization to provide

recommendations based on content data and implicit user feedback. This study proposes the

ACDA recommender model that incorporates the contextual information via the attention

mechanism into the denoising autoencoder architecture.

2.5 Attention Mechanism

The attention mechanism has been widely adopted in deep learning for tasks related to im-

age recognition and natural language processing [XBK+15, BCB14]. The significance of the

attention mechanism has been highlighted in a study [CCB15], where the mechanism has been

applied to structured output problems that involve multimedia content. However, there has

been minimal work in the literature that applies the attention mechanism to recommender

systems. The existing works utilize the attention mechanism for recommender systems are

based primarily on the Convolutional Neural Network (CNN) and the Recurrent Neural Net-

work(RNN) architectures. Sungyong et al. [SHYL17a] integrate a local and global attention

mechanism with a CNN to model review text in the hopes of producing more interpretable rec-

ommendations. Likewise, [CZH+17] introduce item- and component-level attention to address

multimedia collaborative filtering on implicit datasets. Factorization machines [Ren10] combine

higher order pairwise interactions between features, but treat each feature with equal weight.

Motivated by this idea, [XYH+17] learns to weigh the importance of each feature with an at-

tention mechanism. The attention mechanism has also be used for hashtag recommendation

using a CNN based model [GZ16]. Yet another study [SHYL17b] utilizes an attention-based

CNN for personalized recommendation based on review text. The ACDA model integrates the

attention mechanism with the denoising autoencoder architecture to process contextual data

for personalized recommendation.



Chapter 3

Group-Aware Latent Factor Model

(GLFM)

3.1 Background

Event recommender systems have gained prevalence with the advent of Event-Based Social

Networks (EBSNs). EBSNs, which allow like-minded people to gather together and socialize

on a wide range of topics, have experienced increased popularity and rapid growth. Due to

the huge volume of events available in EBSNs, event recommendation becomes essential for

users to find suitable events to attend. Meetup1, one of the largest EBSNs today, has over

24 million members, with approximately 200,000 groups in 181 countries. There are approxi-

mately 500,000 events organized every month on Meetup. The sheer volume of available events,

especially in large cities, often undermines the users’ ability to find the ones that best match

their interests. Consequently, personalized event recommendation is essential for overcoming

such an information overload.

Users of an EBSN indicate their interest to attend an event by responding to a RSVP2 for

the event. Meetup generates over 3 million RSVPs every month. The RSVP indicates a user’s

1http://www.meetup.com
2RSVP is a French expression, which means “please respond”

15
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preference on an event, and it allows future events to be recommended to the user. The events

are hosted by groups at venues that are often in the vicinity of the local community. Such group

structures provide additional context for event recommendation, and the context provided is

unique as it can be used from a dual perspective: user-oriented and event-oriented. The user-

oriented perspective regards a group as a topic of interest so that users associated with a

group are interested in the same topic with the group. On the other hand, the event-oriented

perspective views a group as an organizing entity. The events organized by the same group

have the same organizing style such as logistics, event planning, structure, quality of talks, etc.

These two perspectives complement each other and together they form a complete view of a

group.

This study proposes a dual-perspective latent factor model for group-aware event recommen-

dation by using two kinds of latent factors to model the dual effect of groups: one from the

user-oriented perspective (e.g., topics of interest), and another from the event-oriented perspec-

tive (e.g., event planning and organization). Pairwise learning is used to exploit unobserved

RSVPs by modeling the individual probability of preference via the logistic and Probit sigmoid

functions. These latent group factors alleviate the cold-start problems, which are pervasive in

event recommendation because events published in EBSNs are always in the future and many

of them have little or no trace of historical attendance. The proposed model is flexible, and it

can incorporate additional contextual information such as event venue, event popularity, tem-

poral influence and geographical distance. A comprehensive set of experiments are conducted

on four datasets from Meetup in both regular and cold-start settings. The results demonstrate

that the proposed approach yields substantial improvement over the state-of-the-art baselines

by utilizing the dual latent factors of groups. The proposed model utilizes pairwise ranking by

taking unobserved RSVPs into account. In addition to the typical user and item latent factors,

two novel latent factors are used to model a group: one for its user-oriented characteristics

and another for its event-oriented characteristics. The influences of the groups on the user is

then modeled as the linear combination of the latent factors for the user-oriented character-

istics of its groups. The results also indicate that the performance can be further improved

when incorporating factors associated with event venue, event popularity, temporal influence
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and geographical distance. It is worth noting that while adding more features helps, the group

influence drives the most performance gain and it is the focus of this work.

Moreover, optimal use of group information can largely alleviate the cold-start problems, which

are pervasive in the setting of event recommendation. New events and new users are constantly

emerging in EBSNs. Many events published in EBSNs have little or no trace of prior attendance

because the events are always in the future and they are often short-lived. Also, as EBSNs

grow rapidly, there are many new users joining without record of historical attendance. By

knowing the group that organizes the new event, one can expect the organizing style of the

event based on the event-oriented perspective of groups. Similarly, by looking at the groups

that the new user is associated with, one can infer the interests of the user based on the user-

oriented perspective of groups. Therefore, this dual perspective of groups can help address both

new item and new user cold-start problems.

In EBSNs, a user may RSVP for an event in the affirmative by a positive response (“yes”), or

the user may provide a negative response to an event with a RSVP as (“no”). The numbers of

positive responses and negative responses are largely disproportional. Many users just ignore

RSVPs if they are not interested in attending the events. Therefore, it is more desirable to

treat event recommendation as the top-N ranking task [KKB16] than a binary rating prediction

problem. On the other hand, the absence of a response does not necessarily mean that the user

is not interested in the event. It may be that the user is not aware of the event, or that the

user is unable to attend this event due to other conflicts. Thus, the event recommendation

model needs to take into account not only the positive and negative RSVPs, but also the

missing/unobserved RSVPs. Event recommendation is much less studied in the literature than

traditional recommendation tasks, such as movie and book recommendations. The proposed

dual-perspective group-aware latent factor model addresses the unique characteristics of event

recommendation.
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Figure 3.1: User-Group and User-Venue Relation

3.2 Data Analysis

This section analyzes the real-world datasets collected from Meetup for four cities in U.S.: New

York, San Francisco, Washington DC and Chicago, which are among the most active cities for

the Meetup community3. The detailed statistics and information of the datasets are presented

in Section 3.4.1.

Figure 3.1 shows the cumulative percentage of users who join a given number of groups, i.e.,

number of groups (n) vs. the percentage of users joining less or equal than n groups. This

information is depicted for all four cities and a consistent pattern emerges from the data. In

all four cities, approximately 80% of the users have joined at least one group. Around 5% of

the users join one group, and a significant majority join between 1 and 30 groups. There are

certain users who have joined more than 30 groups, but the percentage of such users is very

small. The group membership in the user-base is an important indication that group is an

essential feature for event recommendation. Table 3.1 provides the average number of groups

per user in the four cities. It is also observed from the dataset that in all four cities, there were

a couple of users who had joined 200 groups, which is the maximum allowed by Meetup. There

3http://priceonomics.com/what-meetups-tell-us-about-america/
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Table 3.1: GLFM - Average Number of Groups Per User in the Four Cities
New York San Francisco Washington DC Chicago

9.54 9.88 8.63 7.78

is also a remarkable consistency in the average number of groups per user in the four cities,

which is in the range of 7 - 10. It is also important to note that all events in the dataset are

organized by a group, i.e. the group information is always present in the RSVP. Therefore, a

group is a critical contextual parameter that is associated with the majority of users and all

events.

The data collected for the four cities is also analyzed with respect to relationship between

users and venues. As indicated in Figure 3.1, most users usually attend events at a limited

number of venues, which means that there is an implicit relationship between the user and

venue. Further insight into the user-venue relationship can be obtained by looking at a random

user in the New York dataset. The user has three RSVPs that are for three different venues.

The venues associated with the user’s RSVPs are: 230 Fifth (bar and lounge), Madison Square

Tavern (restaurant and event center with a full-scale bar) and Croton Reservoir Tavern (up-

scale restaurant and bar that hosts private parties). The three venues associated with the user

are similar based on the fact that all of them are upscale restaurants with bars, and two of them

host private events. This observation indicates that the characteristics of the venue may affect

the user’s RSVP for the event, which is the motivatation behind including the event venue as

one of the parameters into the proposed model in Section 3.3.3.

3.3 Event Recommendation Models

As discussed earlier, the task of event recommendation is treated as top-N item recommenda-

tion by providing a user with a ranked list of events. The proposed approach is based on the

latent factor model with pairwise ranking. In the following subsections, the proposed model

is presented by considering the dual role of group influence. Then additional contextual infor-

mation is incorporated into the model, such as venue, event popularity, temporal influence and
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geographical distance. Table 3.2 lists the notations used in this paper.

Table 3.2: GLFM - Notations
m,n, f Total number of users, events, and latent factors, respectively
Gu The set of groups that user u belongs to

(u, i, j) A preference triplet indicating user u prefers event i over event j
Ds The set that contains all the preference triplets
K The set of (u, i) pairs with known ratings
su,i Ranking score of event i for user u
xu,i,j Difference of ranking scores between event i and j for user u

pu Latent factors for user u
qi Latent factors for event i
rg User-oriented latent factor for group g
tg Event-oriented latent factor for group g that organizes event
vi Latent factor for venue that host event i
yi Event-oriented latent factor related to the day of the week for event i
zi Event-oriented latent factor related to the period of the day for event i

ci Popularity for event i
du,i Normalized geo-distance between user u and event i
βc, βd Event popularity bias and Geo-distance bias
λ, γ Regularization parameters for latent factors and bias respectively

3.3.1 Pairwise Ranking

In EBSNs, most users only respond to a small portion of events since they may only be aware of

a few events. In addition, there exist many more positive examples than negative ones. Many

users just ignore RSVPs if they are not interested in attending the events. Consequently, there

are many unobserved user-event pairs, which are a mixture of real negative feedback (the user

is not interested in attending) and missing values (the user might attend if she is aware of the

event). Therefore, instead of performing a point-wise RSVP prediction, the proposed model

utilizes a pairwise ranking approach to learn the preferences of users on events.

Formally, given a user u, if item i is preferred over item j, then the preference instance (u, i, j) ∈

DS, where DS is the whole set of preference instances. In EBSNs, the preference instances can

be derived from three types of relations between items given user u: 1) RSVP “Yes” is preferred

over RSVP “No”; 2) RSVP “Yes” is preferred over unobserved RSVP; 3) unobserved RSVP of

an event organized by the user’s group is preferred over RSVP “No”. Let s(u, i) represent the
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ranking score of item i for user u and denote:

x(u, i, j) = s(u, i)− s(u, j)

The pairwise ranking optimization criterion is the log likelihood of the observed preferences,

which can then be defined as

max
Θ

L(Θ) =
∑

(u,i,j)∈DS

log σ
(
x(u, i, j)

)
−Reg(Θ) (3.1)

where σ(x) defines the probability of pairwise preference, i.e., the probability of item i being

preferred over j given their ranking score difference x(u, i, j). σ(x) is a monotonically increasing

function with respective to the argument x(u, i, j). The intuitive explanation of Eqn.(3.1)

is that if item i is preferred over j for user u, the difference between their ranking scores

s(u, i) and s(u, j) is maximized since log σ(x) is a monotonically increasing function. As a

result, item i is more preferable than item j. In the above equation, Θ is the set of all model

parameters and Reg(Θ) is a regularization term to prevent overfitting. The proposed model

uses L2 regularization, since the L2-regularization terms are differentiable, allowing us to apply

gradient-based optimization methods.

Since σ(x) is a probability function while being monotonically increasing, the Logistic function

defined as follows is a natural choice:

σ(x) =
1

1 + exp(−x)

In fact, the choice of the Logistic function in Eqn.(3.1) would lead to the widely used Bayesian

Personalized Ranking (BPR) optimization criterion [RFGST09] in recommender systems. The

objective function of BPR is shown as Eqn.(3.3) in Table 3.3. Theoretically, optimizing for

the above BPR is a smoothed version of optimizing for the well-known ranking measure Area

under the ROC Curve (AUC) by approximating the non-differentiable Heaviside function by

the differentiable Logistic function σ(x). See [RFGST09] for a more detailed explanation. On

the other hand, the use of logistic function to model pairwise preference probability is a type
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of Bradley-Terry models [AK14], where exponential score functions are used.

Alternatively, the pairwise preference probability σ(x) can be modeled by the Probit function,

which is a popular specification for an ordinal or a binary response model in Statistics [MN89].

The Logistic and Probit are both sigmoid functions with a domain between 0 and 1, which

makes them both quantile functions - i.e., inverses of the cumulative distribution function

(CDF) of a probability distribution. In fact, the Logistic is the quantile function of the Logistic

distribution, while the Probit is the quantile function of the Gaussian distribution defined as

follows:

σ(x) = Φ(x) =

∫ x

−∞
N (x) dx =

∫ x

−∞

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
dx (3.2)

where Φ(x) is the cumulative distribution function of Gaussian distribution. N (x) is the prob-

ability density function of the Gaussian distribution. For the purpose of this study, the param-

eters are set as: µ = 0 and σ2 = 1, yielding the standard Gaussian distribution. Both Logistic

and Probit functions have a similar ‘S’ shape. The Logistic has a slightly flatter tail, while the

Probit curve approaches the axes more quickly. Increasing the variance in the probit function

results in the curve becoming flatter and elongated. The experiments in Section 4.3 compare

the performance of the two variants of the proposed model.

3.3.2 Group-Aware Latent Factor Model

The latent factor model is one of the most successful collaborative filtering models, which

jointly maps the users and items into a shared latent space of a much lower dimensionality.

This study utilizes the latent factor model to characterize the ranking scores s(u, i) and s(u, j)

in Eqn.(3.1). Formally, users and events are projected into a shared f -dimensional latent space,

where f � min(m,n): m is the number of users and n is the number of events. In the most

basic form, user u is mapped to a latent factor vector pu ∈ Rf , and event i is mapped to a

latent factor vector qi ∈ Rf . The inner product of pu and qi is used to compute the predicted

ranking score of user u on event i such as su,i = pTuqi. Similarly, we have su,j = pTuqj for event

j where qj is the latent factor for j.
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Table 3.3: GLFM- Objective functions L(Θ) for BPR, GLFM, GLFM-V, GLFM-VPD, and
GLFM-VPDT, respectively

max
P,Q

∑
(u,i,j)∈DS

log σ
(
x(u, i, j)

)
− λ

(∑
u

‖pu‖22 +
∑
i

‖qi‖22

)
(3.3)

max
P,Q,R,T

∑
(u,i,j)∈DS

log σ
(
x(u, i, j)

)
− λ

(∑
u

‖pu‖22 +
∑
i

‖qi‖22 +
∑
g

‖rg‖22 +
∑
i

‖tg‖22

)
(3.4)

max
P,Q,R,T

∑
(u,i,j)∈DS

log σ
(
x(u, i, j)

)
− λ

(∑
u

‖pu‖22 +
∑
i

‖qi‖22 +
∑
g

‖rg‖22 +
∑
i

‖tg‖22 +
∑
i

‖vi‖22

)
(3.5)

max
P,Q,R,T

∑
(u,i,j)∈DS

log σ
(
x(u, i, j)

)
−λ

(∑
u

‖pu‖22 +
∑
i

‖qi‖22 +
∑
g

‖rg‖22 +
∑
i

‖tg‖22 +
∑
i

‖vi‖22

)
−γ
(
βc

2 + βd
2
)

(3.6)

max
P,Q,R,T,Y,Z

∑
(u,i,j)∈DS

log σ
(
x(u, i, j)

)
− λ
(∑

u

‖pu‖22 +
∑
i

‖qi‖22 +
∑
g

‖rg‖22 +
∑
i

‖tg‖22 +
∑
i

‖vi‖22

+
∑
i

‖yi‖22 +
∑
i

‖zi‖22
)
− γ

(
βc

2 + βd
2
) (3.7)

Based on the data analysis in Section 3, a large majority of users are associated with at least one

group and each event is organized by one group. These observations suggest that considering

the group influence may improve the accuracy of event recommendation. The group influence

can be viewed from a dual perspective: user-oriented and event-oriented. The user-oriented

perspective regards a group as a topic of interest, so that users associated with a group are

interested in the same topic with the group. On the other hand, the event-oriented perspective

views a group as an organizing entity. The events organized by the same group have the same

organizing style such as logistics, event planning, structure, quality of talks, etc. These two

perspectives complement each other and together they form a complete view of a group.

This study proposes a group-aware latent factor model (GLFM) to model user preference by

encoding the dual perspective of group influence. Mathematically, for group g, rg is used to

model its user-oriented characteristics, and tg is used to model its event-oriented characteristics.

Since a user could be a member of multiple groups, an average all the user-oriented latent vectors
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rg of these groups is used to influence the user latent factor. Similarly, the event-oriented latent

factor tg of the group that organizes the event is used to influence the event latent factor. Let

Gu be the set of groups that user u belongs to. Let g ∈ Gu be a specific group that includes

user u. Let tg denote the latent factor of the group that organizes event i. Incorporated with

influence from groups, the predicted ranking score for event i given user u is now computed

with both rg and tg, shown as follows.

su,i =
(
pu +

1

|Gu|
∑
g∈Gu

rg

)T(
qi + tg

)
(3.8)

The ranking score su,j for event j given user u can be similarly calculated. The objective

function is shown as Eqn.(3.4) in Table 3.3.

It is worth noting that by considering the group information, GLFM addresses the cold-start

problems for both new events and new users that do not appear in training data. When a

new event i is just released in an EBSN, there is no information about qi, but the event-

oriented group latent factor tg is not empty since the group that organized the event is known.

Intuitively, if the group has an excellent track record of organizing events like having great talks

and good event planning, users may prefer the events organized by this group. Similarly, when

a new user u has not responded to any RSVPs, the latent factor pu is not present, but we may

know what groups she is associated with and thus can use 1
|Gu|

∑
g∈Gu

rg for prediction/ranking.

These latent factors capture the user-oriented characteristics of the groups such as topics of

interest. It is important to view pu + 1
|Gu|

∑
g∈Gu

rg as a kind of smoothed version of user latent

factor smoothed by the groups that the user belongs to. The group influence serves as the

background model and is crucial when pu is empty. Similarly, qi + tg can be viewed as the

smoothed version of event latent factor. With these latent group factors, we can tackle new

users and new items.
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3.3.3 Event Venue

Each event is held at a venue. Some groups often organize events at the same or a similar

venue, indicating a correlation between the event group and the event venue. The event venue

may affect the attendance of the event. For example, some venues have a great facility, or

they are at a convenient location, which can attract more people in general. Some venues can

accommodate special needs of certain users such as being pets or kids friendly. Some venues

are specialized for certain types of events such as ballroom dance or tennis games.

This study introduces the venue latent factor to exploit event venues for more accurate event

recommendation. The venue is treated as an attribute of the event, and the model is augmented

with a latent factor vi for the venue that hosts event i. The model that includes the influence

of venue is GLFM-V. By incorporating the venue influence, the predicted ranking score of event

i given user u is now defined as

su,i =
(
pu +

1

|Gu|
∑
g∈Gu

rg

)T(
qi + tg + vi

)
(3.9)

The objective function is shown as Eqn.(3.5) in Table 3.3.

3.3.4 Event Popularity and Geographical Distance

In EBSNs, some events have general themes such as entrepreneurship, while others have niche

topics such as Minecraft. A hypothesis is users may be more likely to RSVP on popu-

lar/mainstream events than on unpopular/niche events. The event popularity may be mea-

sured by the number of people who RSVP for the event. An event that has a higher number

of RSVPs is considered to be more popular. The model includes event popularity as a ranking

bias and perform feature scaling while considering this in conjunction with the other features.

By incorporating the popularity bias, the predicted ranking score of event i given user u is as

follows:

su,i =
(
pu +

1

|Gu|
∑
g∈Gu

rg

)T(
qi + tg + vi

)
+ βcci (3.10)
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where ci is the popularity bias for event i and βc is the weight of the bias, which is learned from

the training data.

Geographical distance is another important consideration while recommending products and

services that require the user to travel to the location. The geographical distance is incorporated

into the model by computing the Haversine distance4 from the user latitude-longitude and venue

latitude-longitude data. The logarithm of this distance is computed, and it is modeled as a

ranking bias.

su,i =
(
pu +

1

|Gu|
∑
g∈Gu

rg

)T(
qi + tg + vi

)
+ βcci + βudui (3.11)

where du,i is the normalized logarithm geo-distance between user u and venue that hosts event

i, and βu is the geo-distance bias parameter associated with the user that is learned from the

training data. The objective function is provided in Eqn.(3.6) in Table 3.3. In the equation, γ

is the regularization parameter used to prevent overfitting. The model that augments the group

and venue latent factors with the event popularity and geo-distance bias is called GLFM-VPD.

3.3.5 Temporal Influence

Events are organized during certain days of the week and at certain times of the day. Some

events are organized in the day between 9 am and 5 pm, whereas others are organized in the

evening after 5 pm, so people can attend after work. Events that are targeted towards working

individuals are generally organized on the weekends. The temporal influence is added into the

model using two types of latent time factors: one for the day of the week, yi, which is associated

with the event i, and another for the period of the day, zi, for event i. The day of the week is

derived from weekday that the event is scheduled on, whereas the period of the day is mapped

to one of two time-slots: ”Day” if the event time is between 9 am and 5 pm, and ”Evening” is

the event is scheduled after 5 pm.

With the inclusion of the temporal influence parameters, the predicted ranking score of event

4https://en.wikipedia.org/wiki/Haversine_formula
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i given user u is now defined as

su,i =
(
pu +

1

|Gu|
∑
g∈Gu

rg

)T(
qi + tg + vi + yi + zi

)
+ βcci + βudui (3.12)

where the yi parameter that models the influence of the day of the week, and the zi models the

influence of the period of the day. The objective function is provided in Eqn.(3.7) in Table 3.3

with the model denoted by GLFM-VPDT.

3.3.6 Parameter Estimation

The parameters of the proposed models are estimated using stochastic gradient descent (SGD)

algorithm [Bot10]. In this case, an update is performed for each preference instance (u, i, j) ∈

Ds. Since this is a maximization problem, the parameters are learned by moving in the direction

of the gradient with a learning rate α in an iterative manner as follows.

Θ← Θ− α∂L
∂Θ

(3.13)

By plugging our pairwise ranking optimization criterion in Eqn.(3.1) into Eqn.(3.13), we obtain

Θ← Θ− α
(

1

σ
(
x(u, i, j)

) ∂σ
(
x(u, i, j)

)
∂Θ

− ∂Reg(Θ)

∂Θ

)
(3.14)

The algorithm repeatedly iterates over the training data and updates the model parameters in

each iteration until convergence. Based on Eqn.(3.14), the derived SGD updates for GLFM-

VPDT are shown in Table 3.4. The updates for other proposed latent factor models (e.g.,

GLFM, GLFM-V, GLFM-VPD) are similar. In the table, ωu,i,j is defined in order to simplify

the notation. For the model based on the Logistic function,

ωu,i,j =
e−x(u,i,j)

1 + e−x(u,i,j)
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Table 3.4: GLFM - Stochastic gradient descent updates for GLFM-VPDT

pu ← pu + α ·
(
ωu,i,j ·

(
(qi + tg(i) + vi + yi + zi)− (qj + tg(j) + vj + yj + zj)

)
− λ · pu

)
∀g ∈ Gu : rg ← rg + α ·

(
ωu,i,j ·

(
(qi + tg(i) + vi + yi + zi)− (qj + tg(j) + vj + yj + zj)

)
− λ · rg

)
qi ← qi + α ·

(
ωu,i,j · (pu +

∑
ug

rg)− λ · qi

)

qj ← qj + α ·

(
ωu,i,j · (−pu −

∑
ug

rg)− λ · qj

)

tg(i) ← tg(i) + α ·

(
ωu,i,j · (pu +

∑
ug

rg)− λ · tg(i)

)

tg(j) ← tg(j) + α ·

(
ωu,i,j · (−pu −

∑
ug

rg)− λ · tg(j)

)

vi ← vi + α ·

(
ωu,i,j · (pu +

∑
ug

rg)− λ · vi

)

vj ← vj + α ·

(
ωu,i,j · (−pu −

∑
ug

rg)− λ · vj

)

yi ← yi + α ·

(
ωu,i,j · (pu +

∑
ug

rg)− λ · yi

)

yj ← yj + α ·

(
ωu,i,j · (−pu −

∑
ug

rg)− λ · yj

)

zi ← zi + α ·

(
ωu,i,j · (pu +

∑
ug

rg)− λ · zi

)

zj ← zj + α ·

(
ωu,i,j · (−pu −

∑
ug

rg)− λ · zj

)
for i, βc ← βc + α · (ωu,i,j · (ci + cj)− γ · βc)
βd ← βd + α · (ωu,i,j · (dui + duj)− γ · βd)
for j, βc ← βc + α · (ωu,i,j · (−ci − cj)− γ · βc)
βd ← βd + α · (ωu,i,j · (−dui − duj)− γ · βd)

For the model based on the Probit function:

ωu,i,j =
N
(
x(u, i, j)

)
Φ
(
x(u, i, j)

)
where N (·) and Φ(·) are defined in Eqn.(3.2).
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As introduced in Section 3.3.1, the preference instances can be derived from three types of

relations between items given a user based on RSVP “Yes”, RSVP “No”, and missing RSVP.

Thus, the preference instances (u, i, j) is generated from the training data based on the following

strategy:

• If the user has positive RSVPs, then a “Yes” RSVP is randomly sampled along with a

randomly sampled “No” RSVP from the same user to form the preference pair.

• If there is no negative RSVP for the user, then a missing RSVP from the user is randomly

sampled. This pairing is based on the assumption that a RSVP with unknown preference

is negative when paired with a true positive example.

• If the user has no positive RSVP, then a random unknown RSVP of an event organized

by one of the user’s groups is paired with a random negative RSVP from the same user.

This pairing is based on the assumption that an unknown preference for a RSVP of an

event organized by a group that the user belongs to, is preferred over a true negative

example.

Section 3.4.3 investigates an alternative preference generation strategy without assuming that

the unobserved RSVPs are preferred over the observed RSVP “No”. Once a sufficient number

of preference instances are sampled, the data is randomly shuffled to avoid bias for certain

users. The model is then trained on these permuted instances by SGD. The learned model

parameters are then applied to the test users for the top-N event recommendation based on

descending order of the ranking score su,i.

3.4 Experiments

The proposed dual perspective group-aware model and its variants are evaluated on real-world

datasets collected from Meetup. The results of the proposed models are compared against the

state-of-the-art recommendation techniques. In addition to performing a comparison in regular
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settings, a comparison is also made with the baseline methods in cold-start scenarios. The

results are presented in this section, and the findings are discussed in detail.

3.4.1 Data Collection

As introduced in Section 3.2, the RSVP data is collected from Meetup for events organized in

four cities in the U.S.: New York, San Francisco, Washington DC and Chicago. The RSVP

data was collected by using the Meetup API5 between the time periods January 2016 and May

2016. The dataset was filtered for each city to retain only RSVPs associated with users having

greater than 5 RSVPs. The statistics of the data are given in Table 4.1. These four cities

represent different geographic regions of the U.S. and they have varied statistics as shown in

the table.

Table 3.5: GLFM - Data Statistics
City RSVPs Sparsity Positive Negative Users Events Groups Venues
New York 50,150 0.9989 49,163 987 1,397 35,179 1,326 1,696
San Francisco 24,923 0.9984 23,848 1,075 1,147 13,938 748 1,075
DC 23,688 0.9968 23,205 483 635 11,906 503 845
Chicago 12,598 0.9976 11,782 816 599 8,819 433 853

Table 4.1 also provides statistics of the RSVPs, including the breakup of the RSVPs into the

positive and negative ones. It can be observed that for all four cities, the positive RSVPs far

exceed the negative ones. This indicates that users generally respond when they are interested

in attending an event. Users who intend to respond with a negative or no RSVP for an event

generally ignore the event and do not provide a response. This observation justifies the pairwise

learning approach, which utilizes both negative and unobserved RSVPs by forming preference

pairs instead of performing pointwise prediction. Section 3.4.3 includes the comparison of the

experimental results of different methods.

5http://www.meetup.com/meetup_api/
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3.4.2 Experimental Setup

The data is sorted in chronological order of event time so that the model is trained on past

events, and it recommends future ones. The sorted datasets are then split to use 80% as

the training set and 20% as the test set for each city. The sampling strategy introduced

in Section 3.3.6 is applied to generate preference instances for model training. The learned

model parameters are applied to the test users to generate a ranking score for the events for

each user based on su,i. The evaluation metrics include P@5, P@10, R@5, R@10, NDCG@5,

NDCG@10, and MAP@10 [MRS+08]. These are common metrics for top-N recommendations.

The proposed models are compared with the following baseline methods. Librec6, a widely used

recommender library, is used to obtain results for the baseline methods. The regularization

parameters λ and γ are set to 0.025, and the learning rate in SGD is α = 0.05. The same

parameter values are used with both the existing and proposed methods (to the extent possible).

• Item Mean: The ranking score of an event is predicted on the basis of the mean of the

event RSVPs in the training set.

• User KNN [BHK98] : User-based K-Nearest Neighborhood collaborative filtering method

that predicts the user preference based on the similarity with the K nearest users calcu-

lated using Pearson’s correlation.

• Item KNN [SKKR01] : Item-basedK-Nearest Neighborhood collaborative filtering method

that predicts the user preference based on the similarity with the K nearest items calcu-

lated using Pearson’s correlation.

• Group-Membership: This is a naive method that utilizes the user group membership data

to recommend events organized by the groups that the users belong to. If the user does

not belong to any group, then this model recommends the most popular events (based

on the RSVP count) to the user. The user group membership data is obtained using the

Meetup API.

6http://www.librec.net
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• Biased-MF [KBV09] : Basic matrix factorization that includes global mean, user bias and

event bias.

• BPR-MF [RFGST09] : Bayesian Personalized Ranking method that utilizes pairwise loss

to provide top-N item recommendation using matrix factorization (MF).

• SVD++ [Kor08] : A state-of-the-art matrix factorization method that incorporates im-

plicit feedback from the user for a superior accuracy.

• SVDFeature7: State-of-the-art model that incorporates domain-specific features to SVD++.

The toolkit is configured to utilize the group and venue information from the dataset.

The group is indicated as both a user and event feature, and the venue as only an event

feature.

The following proposed models are evaluated by integrating influences from multiple factors:

group-aware (G), venue influence (V), popularity influence (P), distance influence (D) and

temporal influence (T). The models are also varied with the choice of the pairwise probability

functions: Logistic (Logit) or Probit.

• LFM-V-Logit : This model incorporates the influence of only the event venue (V) into the

BPR with matrix factorization (BPR-MF). The logistic function is used for the pairwise

ranking.

• LFM-T-Logit : This model incorporates the temporal influence into the BPR with matrix

factorization (BPR-MF), which utilizes the logistic function.

• LFM-P-Logit : This model incorporates the influence of the event popularity (P) into the

BPR with matrix factorization (BPR-MF), which utilizes the logistic function.

• LFM-D-Logit : This model incorporates the influence of the geographical distance (D)

into the BPR with matrix factorization (BPR-MF), which utilizes the logistic function.

7http://svdfeature.apexlab.org/
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• GLFM-Logit : This model considers the influence of the dual perspective of groups (G)

and uses the logistic function for the pairwise ranking.

• GLFM-V-Logit : This model considers the dual-perspective groups (G) and the influence

of event venue (V) with the logistic function.

• GLFM-VPD-Logit : This model includes the dual perspective of groups (G), event venue

(V), event popularity (P) and geographical distance (D) with the logistic pairwise func-

tion.

• GLFM-VPDT-Logit : This model includes all the information–dual perspective of groups

(G), event venue (V), event popularity (P), geographical distance (D), and temporal

influence (T)–with the logistic pairwise function.

• LFM-V-Probit : This model is similar to LFM-V-Logit, but with the Probit pairwise

probability function.

• LFM-T-Probit : This model is similar to LFM-T-Logit, but with the Probit pairwise

probability function.

• LFM-P-Probit : This model is similar to LFM-P-Logit, but with the Probit pairwise

probability function.

• LFM-D-Probit : This model is similar to LFM-D-Logit, but with the Probit pairwise

probability function.

• GLFM-Probit : This model is similar to GLFM-Logit, but with the Probit pairwise prob-

ability function.

• GLFM-V-Probit : This model is similar to GLFM-V-Logit, but with the Probit pairwise

probability function.

• GLFM-VPD-Probit : This model is similar to GLFM-VPD-Logit, but with the Probit

pairwise probability function.



34 Chapter 3. Group-Aware Latent Factor Model (GLFM)

• GLFM-VPDT-Probit : This model is similar to GLFM-VPDT-Logit, but with the Probit

pairwise probability function.

• GLFM-VPDT-Pointwise: This model includes the dual perspective of group (G), event

venue (V), event popularity (P), geographical distance (D), and temporal influence (T),

utilizing a point-wise loss function. The ranking score for the user u on the event i is as

follows. The objective function considers the actual RSVP of the user au,i, with the value

1 if the user provided an affirmative RSVP, and 0 for a negative or missing RSVP.

su,i =
(
pu +

1

|Gu|
∑
g∈Gu

rg

)T(
qi + tg + vi + yi + zi

)
+ βcci + βudui (3.15)

min
P,Q,R,T,Y,Z

∑
(u,i)∈K(su,i − au,i)2 + λ

(∑
u ‖pu‖2

2 +
∑

i ‖qi‖2
2 +

∑
g ‖rg‖

2
2 +

∑
i ‖tg‖

2
2

+
∑

i ‖vi‖2
2 +

∑
i ‖yi‖2

2 +
∑

i ‖zi‖2
2

)
+ γ
(
βc

2 + βd
2
)

(3.16)

3.4.3 Results

The following subsections first compare the proposed models with the baseline methods, and

then investigate the effect of dimensionality of the latent factor space. Finally, the proposed

models are evaluated in cold-start settings.

Baseline Comparisons

The results of baseline comparisons are presented in Table 4.2, Table 4.3, Table 4.4 and Table

4.5 for the four cities, respectively. The best results in each evaluation metric are highlighted

in boldface. The following observations can be made from the results.

• The proposed dual-perspective group-aware models (i.e., GLFM-Logit, GLFM-Probit,

GLFM-V-Logit, GLFM-V-Probit, GLFM-VPD-Logit, GLFM-VPD-Probit, GLFM-VPDT-
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Table 3.6: GLFM - Experimental Results of Baseline Comparisons for New York
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10
Item Mean 0.0062 0.0033 0.0158 0.0164 0.0142 0.0163 0.0138
UserKNN 0.0187 0.0102 0.0403 0.0428 0.0372 0.0419 0.0336
ItemKNN 0.0445 0.0257 0.0731 0.0785 0.0679 0.0728 0.0558
Biased-MF 0.0002 0.0002 0.0009 0.0017 0.0007 0.0008 0.0004
BPR-MF 0.2340 0.1743 0.2559 0.3242 0.2819 0.3004 0.2594
SVD++ 0.0003 0.0003 0.0015 0.0024 0.0011 0.0012 0.0008
SVDFeature 0.1606 0.1597 0.1877 0.2030 0.2223 0.2478 0.1505
Group-Membership 0.4063 0.3806 0.2155 0.3581 0.3791 0.4247 0.4029
GLFM-VPDT-Pointwise 0.0036 0.0030 0.0022 0.0050 0.0011 0.0013 0.0023
LFM-V-Logit 0.4491 0.4456 0.16641 0.3170 0.2580 0.2849 0.4481
LFM-T-Logit 0.2540 0.2177 0.1805 0.2130 0.2565 0.2682 0.2253
LFM-P-Logit 0.2020 0.1865 0.1437 0.1943 0.2005 0.2116 0.1919
LFM-D-Logit 0.1870 0.1634 0.1582 0.1698 0.1905 0.2145 0.1554
GLFM-Logit 0.7153 0.6623 0.3463 0.5615 0.4284 0.4731 0.7107
GLFM-V-Logit 0.7180 0.6760 0.3327 0.5628 0.4272 0.4717 0.7143
GLFM-VPD-Logit 0.7193 0.6707 0.3242 0.5413 0.4277 0.4724 0.7135
GLFM-VPDT-Logit 0.7177 0.6777 0.3292 0.5631 0.4218 0.4658 0.7124
LFM-V-Probit 0.4284 0.4202 0.1687 0.3070 0.2478 0.2736 0.4271
LFM-T-Probit 0.2446 0.2357 0.1881 0.1917 0.1938 0.2133 0.2349
LFM-P-Probit 0.2166 0.2070 0.1549 0.1706 0.1725 0.1816 0.2054
LFM-D-Probit 0.1871 0.1760 0.1410 0.1476 0.1522 0.1643 0.1606
GLFM-Probit 0.6886 0.6555 0.3074 0.5282 0.4045 0.4467 0.6854
GLFM-V-Probit 0.7217 0.6794 0.3364 0.5749 0.4248 0.4691 0.7172
GLFM-VPD-Probit 0.7257 0.6856 0.3287 0.5767 0.4268 0.4713 0.7207
GLFM-VPDT-Probit 0.7397 0.6908 0.3353 0.5589 0.4418 0.4879 0.7353

Logit, GLFM-VPDT-Probit) substantially outperform the methods that do not consider

group information. The best results in all the four cities are achieved by the proposed

latent factor models with a large margin of improvement.

• Excluding the proposed group-aware models, the venue-aware latent factor models (LFM-

V ) perform the best. These results validate the observation in Section 3.2 that there may

exist a correlation between the user and venue. Event venue is an important consideration

while deciding to attend an event, as groups generally host events at the same or similar

venues.

• The latent factor models that only consider the temporal influence, event popularity and

geographical distance (LFM-T, LFM-P, LFM-D) yield mediocre results for all the four

cities. Out of the three models, the model with the temporal influence yields the best

results, followed by the model that considered the event popularity and geographical dis-

tance. The geographical distance has the least impact due to the fact that the RSVPs

were considered local to a city, so the distance is not a major consideration while deciding
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Table 3.7: GLFM - Experimental Results of Baseline Comparisons for San Francisco
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10
Item Mean 0.0055 0.0031 0.0108 0.0118 0.0097 0.0036 0.0021
UserKNN 0.0321 0.0253 0.0732 0.1165 0.0592 0.0704 0.0486
ItemKNN 0.0548 0.0370 0.1267 0.1776 0.1219 0.1310 0.0950
Biased-MF 0.0004 0.0003 0.0010 0.0024 0.0004 0.0011 0.0006
BPR-MF 0.2124 0.1700 0.2552 0.3661 0.2991 0.3097 0.2588
SVD++ 0.0003 0.0003 0.0013 0.0027 0.0007 0.0008 0.0004
SVDFeature 0.1499 0.1343 0.1926 0.2180 0.1903 0.1979 0.1366
Group-Membership 0.3019 0.2746 0.2068 0.3317 0.4063 0.4513 0.2987
GLFM-VPDT-Pointwise 0.0043 0.0034 0.0151 0.0236 0.0019 0.0021 0.0041
LFM-V-Logit 0.3295 0.2143 0.1848 0.2591 0.2208 0.2412 0.4364
LFM-T-Logit 0.2277 0.2001 0.2385 0.2405 0.2164 0.2182 0.2266
LFM-P-Logit 0.1973 0.1821 0.1547 0.1714 0.2412 0.2589 0.1902
LFM-D-Logit 0.1888 0.1709 0.1787 0.2088 0.1612 0.1842 0.1793
GLFM-Logit 0.5843 0.5110 0.3657 0.5573 0.3529 0.3897 0.5745
GLFM-V-Logit 0.6355 0.5542 0.3721 0.5506 0.3861 0.4264 0.6248
GLFM-VPD-Logit 0.6403 0.5629 0.3697 0.5545 0.3890 0.4296 0.6317
GLFM-VPDT-Logit 0.6186 0.5457 0.3402 0.5085 0.3774 0.4168 0.6108
LFM-V-Probit 0.3757 0.3372 0.1914 0.3549 0.2137 0.2361 0.3764
LFM-T-Probit 0.2390 0.2280 0.2090 0.2254 0.2272 0.2490 0.2307
LFM-P-Probit 0.2134 0.1933 0.1689 0.1815 0.2017 0.2288 0.2033
LFM-D-Probit 0.1799 0.1633 0.1500 0.1645 0.1911 0.1939 0.1771
GLFM-Probit 0.6112 0.5392 0.3666 0.5539 0.3651 0.4032 0.5985
GLFM-V-Probit 0.6026 0.5353 0.3573 0.5444 0.3637 0.4017 0.5948
GLFM-VPD-Probit 0.6026 0.5284 0.3612 0.5414 0.3646 0.4026 0.5935
GLFM-VPDT-Probit 0.5826 0.5366 0.2989 0.4848 0.3449 0.3808 0.5772

to attend an event. In conjunction with group and venue information, the event popular-

ity, temporal influence and geographical distance may slightly improve the performance,

as shown on the New York and San Francisco datasets.

• The Logistic and Probit pairwise probability functions yield very competitive results,

while the Logistic function generates slightly better performance than the Probit function

does. All the best results on San Francisco and Washington DC are attained by the

Logistic function. For New York and Chicago, the results are mixed.

• Among the baselines, the Group-Membership method obtains the best performance on all

the four cities, which further validates the assumption that group is an important factor

for event recommendation. On the other hand, there still exists a large gap between the

results of Group-Membership and the proposed group-aware models, which demonstrates

the effectiveness of the dual perspective of group information.

• Both User-KNN and Item-KNN performed better than Item Mean, Biased-MF and
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Table 3.8: GLFM - Experimental Results of Baseline Comparisons for Washington DC
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10
Item Mean 0.0029 0.0021 0.0053 0.0112 0.0058 0.0061 0.0034
UserKNN 0.0043 0.0027 0.0078 0.0132 0.0068 0.0074 0.0050
ItemKNN 0.0312 0.0161 0.0731 0.0773 0.0661 0.0698 0.0566
Biased-MF 0.0013 0.0012 0.0039 0.0072 0.0021 0.0023 0.0009
BPR-MF 0.3322 0.2633 0.3692 0.4843 0.3915 0.4270 0.3664
SVD++ 0.0014 0.0019 0.0043 0.0086 0.0030 0.0031 0.0016
SVDFeature 0.2281 0.2104 0.2332 0.2556 0.2789 0.2831 0.2175
Group-Membership 0.3120 0.2690 0.2482 0.3656 0.3878 0.4321 0.3110
GLFM-VPDT-Pointwise 0.0043 0.0040 0.0052 0.0069 0.0020 0.0023 0.0047
LFM-V-Logit 0.2880 0.2538 0.1425 0.2099 0.1929 0.2131 0.2959
LFM-T-Logit 0.2243 0.2112 0.1629 0.1641 0.2458 0.2506 0.2146
LFM-P-Logit 0.1861 0.1854 0.1336 0.1572 0.1974 0.2114 0.1860
LFM-D-Logit 0.1402 0.1356 0.1222 0.1279 0.1833 0.1914 0.1390
GLFM-Logit 0.6909 0.5825 0.4766 0.6605 0.4414 0.4875 0.6820
GLFM-V-Logit 0.7410 0.6167 0.5111 0.7003 0.4753 0.5249 0.7315
GLFM-VPD-Logit 0.7301 0.6123 0.5026 0.6873 0.4631 0.5031 0.7100
GLFM-VPDT-Logit 0.7032 0.6153 0.4603 0.6748 0.4373 0.4829 0.6950
LFM-V-Probit 0.3469 0.3134 0.1741 0.2632 0.2214 0.2445 0.3514
LFM-T-Probit 0.2061 0.2043 0.1956 0.2183 0.2611 0.2675 0.2060
LFM-P-Probit 0.1750 0.1646 0.1342 0.1491 0.2361 0.2399 0.1677
LFM-D-Probit 0.1651 0.1642 0.1342 0.1507 0.2112 0.2349 0.1640
GLFM-Probit 0.6756 0.5832 0.4540 0.6580 0.4262 0.4707 0.6690
GLFM-V-Probit 0.6865 0.6080 0.4407 0.6469 0.4357 0.4811 0.6848
GLFM-VPD-Probit 0.6516 0.5720 0.4213 0.6026 0.4274 0.4719 0.6587
GLFM-VPDT-Probit 0.6843 0.6043 0.4367 0.6634 0.4181 0.4617 0.6744

SVD++ models. These results are consistent with [MMS15] which found that state-

of-the-art matrix factorization algorithms did not perform better than neighborhood-

based methods in event recommendation. In fact, the pointwise variation of the proposed

model, GLFM-VPDT-Pointwise, also yields poor results that are similar to Biased-MF

and SVD++. The BPR-MF model, on the other hand, yields the best results among

the matrix factorization based baselines, validating the decision to utilize the pairwise

ranking approach for event recommendation. SVDFeature also generates good results,

which are second only to the BPR-MF model.

In sum, the experimental results consistently demonstrate the effectiveness of the proposed la-

tent factor models by exploiting the dual-perceptive of group information with pairwise learning.
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Table 3.9: GLFM - Experimental Results of Baseline Comparisons for Chicago
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10
Item Mean 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001
UserKNN 0.0252 0.0171 0.0583 0.0757 0.0592 0.0623 0.0476
ItemKNN 0.0516 0.0306 0.1166 0.1348 0.1025 0.1150 0.0870
Biased-MF 0.0012 0.0010 0.0036 0.0066 0.0034 0.0033 0.0019
BPR-MF 0.1653 0.1178 0.3011 0.3867 0.2917 0.3167 0.2672
SVD++ 0.0015 0.0014 0.0047 0.0087 0.0038 0.0043 0.0023
SVDFeature 0.1441 0.1402 0.2754 0.2819 0.3043 0.3109 0.1414
Group-Membership 0.4189 0.3536 0.3322 0.4930 0.3907 0.4360 0.4070
GLFM-VPDT-Pointwise 0.0073 0.0036 0.0124 0.0124 0.0041 0.0046 0.0064
LFM-V-Logit 0.4842 0.4105 0.2585 0.4163 0.2830 0.3126 0.4565
LFM-T-Logit 0.2684 0.2621 0.2274 0.2965 0.2375 0.2415 0.2599
LFM-P-Logit 0.1977 0.1805 0.2030 0.2161 0.2018 0.2086 0.1931
LFM-D-Logit 0.1505 0.1499 0.1906 0.2044 0.2110 0.2286 0.1470
GLFM-Logit 0.7073 0.5673 0.5200 0.6797 0.4290 0.4738 0.6801
GLFM-V-Logit 0.7431 0.6026 0.5242 0.6828 0.4550 0.5026 0.7176
GLFM-VPD-Logit 0.7200 0.5894 0.5081 0.6763 0.4388 0.4847 0.6963
GLFM-VPDT-Logit 0.6463 0.5742 0.3882 0.5870 0.3849 0.4251 0.6344
LFM-V-Probit 0.4313 0.3708 0.2287 0.3391 0.2531 0.2824 0.4011
LFM-T-Probit 0.2836 0.2773 0.2289 0.2315 0.2410 0.2454 0.2745
LFM-P-Probit 0.2018 0.1991 0.1742 0.1855 0.1752 0.1863 0.1984
LFM-D-Probit 0.1712 0.1616 0.1542 0.1747 0.2015 0.2044 0.1675
GLFM-Probit 0.7136 0.5678 0.5328 0.6748 0.4378 0.4835 0.6879
GLFM-V-Probit 0.7221 0.6047 0.4978 0.6801 0.4396 0.4855 0.7021
GLFM-VPD-Probit 0.7294 0.6042 0.4968 0.6685 0.4464 0.4930 0.7082
GLFM-VPDT-Probit 0.6842 0.5842 0.4368 0.6083 0.4146 0.4578 0.6683

Effect of Dimensionality of Latent Factor Space

This section investigates the effect of the number of latent factors f (i.e., dimensionality of the

latent factor space) on the proposed models (GLFM-VPD-Logit and GLFM-VPD-Probit) and

other state-of-the-art latent factor models (BPR-MF and SVD++) in event recommendation.

The number of latent factors is varied from 10 to 100 in increments of 10. Figure 3.2 plots the

results in P@10 for the four cities, respectively. The following observations can be derived from

the figure:

• The proposed group-aware latent factor models (GLFM-VPD-Logit and GLFM-VPD-

Probit) perform significantly better than the other latent factor methods at most values

of f for all the cities. These results demonstrate consistent improvement of the proposed

models over the baselines across different numbers of latent factors.

• The results of the group-aware latent factor models gradually improve until f = 40 and

plateau after that with no significant improvement. This pattern is observed for all four
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Figure 3.2: Effect of Dimensionality of Latent Factor Space for P@10

cities. On the other hand, the results of GLFM-VPD-Logit and GLFM-VPD-Probit are

quite similar at different f while GLFM-VPD-Logit yields slightly better performance

than GLFM-VPD-Probit in the majority of the cases of f .

• The results of the BPR-MF method are significantly better than SVD++ across all values

of f , while there is not much variation in the results of the two methods as the value of f

increases from 10 to 100. The same pattern is observed for all four cities. These results

validate the advantage of using the pairwise ranking approach. A noticeable observation

is that the recall results of BPR-MF for all four cities are almost similar to the results

for the proposed group-aware latent factor model (GLFM-VPD-Logit and GLFM-VPD-

Probit) for f = 10 to 20, but the group-aware latent factor models perform significantly

better on recall for values of f > 30.

As observed, the relative performances of all the latent-factor based methods seem quite stable.

These results indicate the dimensionality of the latent factor space may not be very sensitive.

Therefore, f = 40 is set as the default value in other experiments.
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Preference Instance Generation

Section 3.3.6 introduces how preference instances are derived based on three relations. In this

section, two strategies for generating the preference instances are compared. The first strategy

is the default one shown in Section 3.3.6, which is denoted as WUP (With Unknown RSVPs). It

forms a preference pair with an unknown RSVP as the positive instance and a random negative

RSVP as the negative instance. The second strategy, which is denoted as WOUP (WithOut

Unknown RSVPs), does not assume that the unknown RSVPs are preferred over the observed

RSVP “No”. The results of both the strategies are provided in Table 3.10 (only the GLFM-

VPD-Logit model for Chicago is shown to avoid clutter since GLFM-VPD-Logit usually gives

the best results across different cities as shown in the previous sections). As the results show,

the default strategy WUP yields much superior performance than WOUP does, which validates

the advantage of utilizing the unobserved RSVPs.

Table 3.10: GLFM - Comparison between the default preference instance generation strategy
WUP and the alternative strategy WOUP with the GLFM-VPD-Logit model for Chicago

Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10
GLFM-VPD-Logit (WOUP) 0.1989 0.1947 0.1260 0.2086 0.1093 0.1208 0.1965
GLFM-VPD-Logit (WUP) 0.7200 0.5894 0.5081 0.6763 0.4388 0.4847 0.6963

Cold-Start Event Recommendation

Table 3.11: GLFM - Experimental Results in the Cold-Start Setting on New York
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10

New Users
Item Mean 0.0031 0.0021 0.0139 0.0194 0.0088 0.0096 0.0029
Group-Membership 0.0003 0.0003 0.0018 0.0036 0.0033 0.0036 0.0003
Biased-MF 0.0001 0.0001 0.0005 0.0011 0.0004 0.0005 0.0003
BPR-MF 0.0163 0.0124 0.0769 0.1178 0.0219 0.0266 0.0202
SVD++ 0.0001 0.0001 0.0005 0.0010 0.0005 0.0005 0.0003
SVDFeature 0.0124 0.0118 0.0547 0.0919 0.0183 0.0191 0.0116
GLFM-VPD-Logit 0.0477 0.0293 0.2107 0.2618 0.0424 0.0468 0.0579
GLFM-VPD-Probit 0.0486 0.0280 0.2163 0.2507 0.0407 0.0450 0.0562

New Events
Group-Membership 0.0025 0.0025 0.0027 0.0053 0.0039 0.0044 0.0025
Biased-MF 0.0001 0.0001 0.0002 0.0009 0.0003 0.0003 0.0002
BPR-MF 0.0156 0.0121 0.0721 0.1118 0.0317 0.0331 0.0275
SVD++ 0.0001 0.0001 0.0005 0.0011 0.0005 0.0005 0.0003
SVDFeature 0.0108 0.0100 0.0523 0.0667 0.0204 0.0202 0.0102
GLFM-VPD-Logit 0.0509 0.0292 0.2263 0.2619 0.0432 0.0477 0.0592
GLFM-VPD-Probit 0.0463 0.0291 0.2053 0.2619 0.0394 0.0435 0.0551
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Table 3.12: GLFM - Experimental Results in the Cold-Start Setting on San Francisco
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10

New Users
Item Mean 0.0072 0.0074 0.0320 0.0688 0.0091 0.0108 0.0084
Group-Membership 0.0003 0.0003 0.0016 0.0033 0.0029 0.0030 0.0003
Biased-MF 0.0001 0.0001 0.0002 0.0005 0.0002 0.0002 0.0001
BPR-MF 0.0270 0.0180 0.1291 0.1526 0.0177 0.0189 0.0238
SVD++ 0.0001 0.0001 0.0003 0.0011 0.0003 0.0004 0.0002
SVDFeature 0.0194 0.0187 0.1011 0.1276 0.0163 0.0171 0.0190
GLFM-VPD-Logit 0.0201 0.0122 0.0765 0.0947 0.0180 0.0199 0.0235
GLFM-VPD-Probit 0.0308 0.0186 0.1299 0.1590 0.0242 0.0267 0.0335

New Events
Group-Membership 0.0075 0.0071 0.0031 0.0059 0.0042 0.0049 0.0075
Biased-MF 0.0001 0.0001 0.0003 0.0009 0.0002 0.0003 0.0001
BPR-MF 0.0270 0.0181 0.1096 0.1171 0.0093 0.0105 0.0826
SVD++ 0.0001 0.0001 0.0003 0.0010 0.0003 0.0004 0.0002
SVDFeature 0.0186 0.0173 0.1144 0.1261 0.0179 0.0185 0.0164
GLFM-VPD-Logit 0.0171 0.0114 0.0647 0.0887 0.0145 0.0160 0.0191
GLFM-VPD-Probit 0.0281 0.0185 0.1183 0.1549 0.0200 0.0221 0.0297

Table 3.13: GLFM - Experimental Results in the Cold-Start Setting on Washington DC
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10

New Users
Item Mean 0.0013 0.0012 0.0068 0.0101 0.0084 0.0097 0.0011
Group-Membership 0.0004 0.0004 0.0019 0.0037 0.0024 0.0026 0.0004
Biased-MF 0.0001 0.0001 0.0006 0.0012 0.0005 0.0006 0.0004
BPR-MF 0.0150 0.0094 0.0143 0.0186 0.0107 0.0119 0.0147
SVD++ 0.0001 0.0001 0.0008 0.0020 0.0007 0.0009 0.0005
SVDFeature 0.0124 0.0119 0.0167 0.0186 0.0144 0.0151 0.0111
GLFM-VPD-Logit 0.0165 0.0108 0.0671 0.0870 0.0127 0.0129 0.0184
GLFM-VPD-Probit 0.0174 0.0126 0.0733 0.1054 0.0133 0.0147 0.0197

New Events
Group-Membership 0.0004 0.0004 0.0015 0.0032 0.0026 0.0029 0.0004
Biased-MF 0.0002 0.0001 0.0009 0.0015 0.0006 0.0008 0.0005
BPR-MF 0.0144 0.0101 0.0207 0.0261 0.0094 0.0107 0.0188
SVD++ 0.0002 0.0001 0.0009 0.0017 0.0009 0.0009 0.0006
SVDFeature 0.0131 0.0118 0.0219 0.0221 0.0171 0.0188 0.0126
GLFM-VPD-Logit 0.0180 0.0109 0.0784 0.0935 0.0122 0.0134 0.0194
GLFM-VPD-Probit 0.0173 0.0111 0.0688 0.0903 0.0096 0.0106 0.0161

Cold-start is a challenging problem in any recommendation system when there is no information

about users or items. Cold-start is especially prevalent in event recommendation, because events

are always in the future and short-lived. In this section, the performance of the proposed

models is tested in the cold-start settings, and compared with the relevant baseline methods.

The models are evaluated under two scenarios: new users and new items.

For the new users scenario, the dataset is split to ensure the same user is not present in both

the training and test sets. The time order is reserved so that the events in the test data always
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Table 3.14: GLFM - Experimental Results in the Cold-Start Setting on Chicago
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@10

New Users
Item Mean 0.0011 0.0019 0.0045 0.0164 0.0041 0.0057 0.0014
Group-Membership 0.0005 0.0005 0.0019 0.0032 0.0037 0.0039 0.0005
Biased-MF 0.0002 0.0002 0.0010 0.0023 0.0008 0.0010 0.0006
BPR-MF 0.0234 0.0181 0.1073 0.1662 0.0120 0.0153 0.0296
SVD++ 0.0003 0.0003 0.0015 0.0036 0.0016 0.0017 0.0008
SVDFeature 0.0194 0.0182 0.0997 0.1055 0.0193 0.0217 0.0187
GLFM-VPD-Logit 0.0276 0.0203 0.1105 0.1730 0.0204 0.0225 0.0318
GLFM-VPD-Probit 0.0190 0.0146 0.0779 0.1200 0.0158 0.0175 0.0234

New Events
Group-Membership 0.0005 0.0005 0.0017 0.0034 0.0042 0.0061 0.0005
Biased-MF 0.0003 0.0003 0.0015 0.0034 0.0012 0.0015 0.0009
BPR-MF 0.0176 0.0158 0.0822 0.1492 0.0132 0.0146 0.0199
SVD++ 0.0005 0.0003 0.0022 0.0034 0.0011 0.0016 0.0007
SVDFeature 0.0167 0.0158 0.0822 0.0945 0.0171 0.0183 0.0159
GLFM-VPD-Logit 0.0311 0.0199 0.1308 0.1703 0.0199 0.0220 0.0312
GLFM-VPD-Probit 0.0186 0.0173 e 0.07403 0.1470 0.0132 0.0146 0.0220

occur after those in the training data. Similar to the experiments in the regular setting, a

training-test data split of 80% vs 20% is performed. The dataset is split similarly for the new

events scenario with a 80% vs 20% ratio for training and testing sets, making sure that the

same event is not present in both sets.

The experiments are performed on the group-aware models that consider the group, venue,

popularity and distance factors (GLFM-VPD-Logit and GLFM-VPD-Probit), as they provide

the best results for a majority of the regular experiments. The performance of the group-aware

latent factor models is compared with the baseline methods: Item Mean, Group-Membership,

Biased-MF, BPR-MF, SVD++, and SVDFeature. Item Mean is not applicable to the new

events scenario due to no historical information available for the new events. UserKNN and

ItemKNN cannot handle the cold-start settings, and hence they are omitted from this exper-

iment. Since a user in the test set is not present in the training set, the proposed models are

unable to learn the user-specific parameters. In other words, the user latent factor pu is not

present, however, the dual-perspective group factors rg and tg enable the calculation of the

ranking score for the new users scenario. The prediction of the proposed models is made by

removing pu from Eqn.(3.11). Similarly, for the new items scenario, the event latent factor

qi and the popularity count ci are not present, but the event-oriented factor tg exists. The

prediction is made by removing qi and ci from Eqn.(3.11).
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Table 3.11, Table 3.12, Table 3.13 and Table 3.14 contain the results for the cold-start exper-

iments. As observed, the best results in both new-user and new-event scenarios are achieved

by the proposed methods, GLFM-VPD-Logit or GLFM-VPD-Probit. This pattern holds true

across different cities and different evaluation metrics. The improvement is especially sub-

stantial on New York and Washington DC. Furthermore, GLFM-VPD-Logit and GLFM-VPD-

Probit yield competitive results. GLFM-VPD-Probit achieves the best results on San Francisco,

while GLFM-VPD-Logit obtains the best on Chicago for both scenarios. On the other two cities,

the results are mixed. Among the baseline methods, BPR-MF generates the best results across

four cities in all the metrics for both cold-start scenarios. These results validate the advan-

tage of pairwise training for the event recommendation task. In sum, the experimental results

demonstrate the advantage of the proposed models in dealing with the cold-start problems for

event recommendation. In the cold-start experiments, we considered only new users and events,

which is atypical of a real-world scenario.

3.5 Summary

This chapter systematically investigates the effect of group information on event recommen-

dation. A latent factor model is proposed based on the dual-perspective of groups. Logistic

and Probit functions are used to model the probability of pairwise preferences that consist

of observed and unobserved user feedback. Additional contextual information such as event

venue, popularity, temporal influence, and geographical distance can be readily incorporated

into the model. The experiments on the Meetup data of four cities demonstrate the importance

of group information, and show much improved performance over the state-of-the-art baselines.

Moreover, the proposed approach demonstrates advantages of tackling the cold-start problems

by utilizing the dual role of groups.



Chapter 4

Attentive Contextual Denoising

Autoencoder (ACDA)

4.1 Background

Machine learning model-based techniques have been effective for recommender systems in the

past, and they have offered a reasonable level of performance. However, these methods lack the

ability to model complex nonlinear relationships that usually accompany the user-item inter-

action. With the recent success in the adoption of deep learning in computer vision and speech

recognition [GBC16], there has been a surge of interest in applying deep learning methods to

recommendation tasks [ZYS17]. The existing work in this domain is still quite limited, and fur-

thermore, it does not utilize contextual information, which is largely present in the real-world

scenarios. Context provides additional information to the user-item interaction, which in turn

improves the quality of the recommendation [DYM+14]. The attention mechanism [BCB14]

provides an intuitive way to incorporate context into the user-item interaction. Motivated by

these factors, this study proposes a novel model for personalized recommendation based on the

denoising autoencoder augmented with a context-driven attention mechanism. The proposed

model is called the Attentive Contextual Denoising Autoencoder (ACDA).

Autoencoders [GBC16] are unsupervised feed-forward neural networks capable of learning a

44
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representation of the input data, also known as codings. The codings typically learnt by an

autoencoder are of much lower dimensionality than the original input. Denoising autoencoders

[GBC16] are a variant of the basic autoencoder that add noise to the input and train the net-

work to recover the original uncorrupted input at the output layer. This forces the network

to discover robust features in the data representation, and prevents the model from learning

the trivial identity function. The autoencoder architecture makes it suitable for use in recom-

mender systems as the hidden layer captures the latent representation of the data, allowing

the model to learn the latent factors associated with the user-item interaction. It has been

shown [WDZE16] that the denoising autoencoder architecture is a nonlinear generalization of

latent factor models [KBV09, MS07], which have been widely used in recommender systems.

Therefore, the denoising autoencoder is utilized as the main building block for the proposed

ACDA model.

Context provides an added dimension to real-world applications. Recommender systems for

movies, products, point-of-interests and services utilize context to provide a meaningful per-

sonalized recommendation [DYM+14]. For example, genre such as horror, drama, thriller, com-

edy etc., is an important context for movie recommendation as people generally like the same

type of movies. Location and time-of-day are useful context to consider while recommending

point-of-interests. There is existing work in the literature that provides contextual recommen-

dations [ZWF13, PN13, KT13]. The ACDA model incorporates contextual information via the

attention mechanism for personalized recommendation. The contextual information may be

related to the user or the item. The ACDA model is applied to two real-world problems of

event recommendation and movie recommendation. For the event recommendation task, the

model utilizes the user group and event venue as the contextual attributes, whereas the movie

genre is used as the contextual attribute for the movie recommendation task.

The attention mechanism has been instrumental while dealing with structured problems, such

as machine translation and caption generation [VTBE15, BCB14, HKG+15]. The objective

of the mechanism is to highlight, or focus attention on, a certain subset of the data. The

attention mechanism accepts a certain input and a context that accompanies that input. The

output of the attention mechanism is considered as a summary of the input focusing on the
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information linked to the provided context. The attention mechanism is generally applied for

two reasons–first, to provide for efficient processing of a high-dimensional input by processing

only subsets of the input, and second, to focus on specific parts of the input in terms of its

relevance. A classical example of the use of the attention mechanism is image captioning, where

the mechanism focuses on certain subsets of the image to generate the suitable caption. The

ACDA model utilizes the attention mechanism to apply the contextual attributes to the hidden

representation of the user’s preference. This helps the model to associate personalized context

with each user’s preference to provide recommendation targeted to that specific user.

The ADCA model accepts the user’s preference on existing items as input, which includes both

positive and negative instances. The input is partially corrupted to learn a robust representation

of the data. The input is mapped to an internal representation of lower dimensionality by the

hidden layer, where the contextual parameters are applied via the attention mechanism to

focus on the user-specific relevant context. The output of the model is the reconstructed user

input, which is the predicted preference of the user. The model is trained to minimize the

loss between the original corrupted input and the reconstructed input generated at the output

layer. Real-world datasets are used to conduct comprehensive experiments for the proposed

ACDA model. The datasets for the event recommendation task is obtained from Meetup1, a

popular Event-Based Social Network (EBSN). The publicly available Movielens 100K dataset

is used for the movie recommendation task. The experimental results show that the proposed

model performs better than the state-of-the-art baselines.

4.2 Attentive Contextual Denoising Autoencoder

The architecture of the Attentive Contextual Denoising Autoencoder (ACDA) model is ex-

plained first, which is followed by an explanation of how this model is applied for the event

recommendation and movie recommendation tasks.

1http://www.meetup.com
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Figure 4.1: Attentive Contextual Denoising Autoencoder

4.2.1 The Architecture

The proposed model, as illustrated in Figure 4.1, is based on the denoising autoencoder neural

network architecture. The model takes as input a vector indicating the preference of a user u

on all the items i in the dataset. Assuming that there are m users and n items, the autoencoder

takes as input a vector x ∈ Rn, which is the known preference of the user u on the n items. The

input vector x is corrupted using mask-out/drop-out corruption to obtain x̃. The corruption

method randomly overwrites some of the dimensions of x with 0 using the probability ρ. To

offset the effect of the corruption on certain dimensions, the remaining dimensions are scaled

by applying a factor δ to the original value. This corruption method is similar to the one used

in [WDZE16].

P (x̃θ = 0) = ρ

P (x̃θ̄ = δx̃) = 1− ρ
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where δ = 1/(1−ρ). The symbol θ denotes the dimensions that are set to 0, whereas θ̄ denotes

the dimensions that are scaled.

The corrupted vector x̃ is fed into the model to generate the latent hidden representation

h ∈ Rk using the encoding function e(·). The dimensionality of the hidden representation is

represented by k � n, which is the number of hidden units in the model. The input user

preference is corrupted only while training the model, and not during cross-validation and test.

h(x̃) = e
(
W · x̃ + b

)
(4.1)

where W ∈ Rk×n is the weight matrix and b ∈ Rk is a bias vector.

The encoding function e(·) is set to the ReLU function [NH10] as it performs well due to its

suitability for sparse data.

ReLU(x) = max(0, x)

The hidden representation h(x̃) is input into the attention mechanism layer, where the con-

textual attributes are applied. The objective of the attention mechanism is to summarize the

input representation based on the provided context. The context may be associated with the

user or item. The model is flexible enough to accommodate as many contextual attributes

as desired. However, two contextual attributes (p and q) are specified in our model for ease

of presentation. The attention mechanism applies a weighted user-context cp and item-based

context cq for any given contextual parameters p and q to the output of the hidden layer with

a nonlinear activation function f(·). Mathematically, this is denoted as:

t(x̃) = f
(
Wh · h(x̃) + Wp · cp + Wq · cq

)
(4.2)

where Wh is a Rk×k weight matrix, with k being the number of units in the attention layer,

which is the same as the number of units in the hidden layer. Wp and Wq are weight matrices

of dimensions Rk×|p| and Rk×|q| respectively, with |p| and |q| being the number of contextual

parameters. h(x̃) is the output of the hidden layer.
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The tanh function was selected as the attention mechanism activation function (f(·)) as it gave

us the best results.

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)

The output of the attention activation function, t(x̃), is then fed into a softmax layer. Finally,

the softmax output is combined with the hidden layer output via element-wise multiplication

(⊗) to generate the final output of the attention mechanism, which is denoted as a(x̃).

a(x̃) = softmax
(
t(x̃)

)
⊗ h(x̃) (4.3)

where t(x̃) is the output of the attention activation function, and h(˜̃x) is the hidden layer

output. The softmax function is defined as:

softmax(x1, x2, ..., xn) =
exp(xi)∑n
j=1 exp(xj)

Essentially, the attention mechanism serves to apply a weighted arithmetic mean to the hidden

layer representation, with the weight representing the relevance based on the provided context.

The internal latent representation of the input with the applied context is reconstructed back

to the original form using a decoding function d(·).

x̂ = d
(
W′ · a(x̃) + b′

)
(4.4)

where the dimension of W′ and b′ is the same as W and b. The reconstruction of the original

input, or the reverse mapping, may be constrained by sharing parameters W′ = WT . How-

ever, this study did not do so, as better results were obtained by having different W′ and b′

parameters at the decoding step.

The sigmoid function was selected as the decoding function d(·) as it constraints an input to the

0− 1 output range. This gives the probability associated with each item at the output, which

is used for ranking in personalized recommendation. However, the ADCA model is generic and



50 Chapter 4. Attentive Contextual Denoising Autoencoder (ACDA)

it can be applied to a rating prediction task by simply selecting any other nonlinear function

as the decoding function d(·).

σ(x) =
1

1 + exp(−x)

The parameters of the model are trained by minimizing the mean squared error between the

original corrupted input vector x̃ and the reconstructed vector x̂.

min
W,W′,Wh,Wp,Wq ,b,b′

1

m

∑
u∈U

‖x̃u − x̂u‖2 (4.5)

The parameters are updated using the stochastic gradient descent variant ADAM optimizer

[KB15]. Dropout [GBC16] was used for regularization to prevent overfitting and improve gen-

eralization capacity. The dropout rate was set to 0.2, which means that 20% of the hidden units

are dropped at random at each training step to prevent co-adaptation.

4.2.2 Top-N Recommendation

The proposed ACDA model can be applied to both rating prediction and top-N recommenda-

tion by simply changing the decoding function d(·). The decoding function d(·) is set to the

sigmoid function for top-N recommendation. This study focuses on top-N recommendation,

and the generic ACDA model is applied to the event recommendation and movie recommenda-

tion tasks.

The event recommendation task utilizes the RSVP 2 data from Meetup. Users indicate their

preference to an event by providing an RSVP, which is used to recommend future events to

the user. For the event recommendation task, the user group and event venue are used as

the contextual attributes. Users typically organize themselves into groups in an Event Based

Social Network (EBSN) such as Meetup, and each event is hosted at a physical venue. The

user’s preference on existing events in the training set is input into the model as a binary

2RSVP is a French expression, which means “please respond”
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k-hot encoded vector with a true value for the positive event preferences and false for the

negative or unknown event preferences. The input preference is corrupted as discussed earlier

in section 4.2.1. In addition to corrupting the input, a fixed number of negative samples are also

included by encoding them as positive in the input vector. The negative samples are selected

randomly from the training set, and negative sample inclusion is only performed during training,

not during evaluation on the cross-validation and test sets. The output of the model is the

personalized top-N event recommendation for the user.

For the event recommendation task, the contextual attributes of the model are set as: cp = ug

and cq = iv, where ug ∈ R|p| denotes the groups that the user belongs to. The parameter iv

∈ R|q| denotes the venues associated with the events. The parameters |p| and |q| are the number

of groups and venues respectively.

The ACDA model is also applied to movie recommendation, which is also treated as a top-N

recommendation task. The Movielens dataset contains the movie ratings on a scale of 1 − 5,

which is converted to a binary scale. The movie binary scale indicates a user’s preference

on existing movies that is used to recommend other movies to the user. The movie genre is

selected as a contextual attribute for our model. The genre is associated with each movie, and

certain movies have multiple genres associated with them. Similar to the event recommendation

task, the user’s preference is partially corrupted and input into the model as a binary k-hot

encoded vector. Negative samples are also used during training. The output of the model is

the personalized top-N movie recommendation for the user.

Since there is only one item-related contextual attribute for the movie recommendation task,

the model is updated as: cq = ir, where ir ∈ R|q| denotes the genres associated with the movies

preferred by the user. The parameter |q| is the number of genres.
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4.3 Experiments

4.3.1 Datasets

The proposed Attentive Contextual Denoising Autoencoder (ACDA) model is evaluated on real-

world datasets from Meetup and Movielens. The Meetup dataset is for events from the cities

of New York City, San Francisco, Washington DC and Chicago. These cities were selected as

they are the major metropolitan areas in the United States, and they have a vibrant Meetup

community. The event data was collected by using the Meetup API3 between the time periods

January 2016 and May 2016. The proposed model is also analyzed against the publicly available

Movielens (100K) dataset. The Movielens dataset consists of movie ratings provided by the

user on the 1 − 5 scale. The numeric score is converted to a binary rating for the purpose of

top-N recommendation. A score of 5 is converted to a binary rating of 1, and anything less

than a 5 is converted to 0. The statistics of the datasets used for the experiments are given in

Table 4.1.

Table 4.1: ACDA - Data Statistics
Dataset Observations Sparsity Positive Negative Users Items
Meetup-NYC 73,816 0.9998 70,170 3,646 19,122 36,054
Meetup-SFO 48,972 0.9998 43,637 5,335 18,957 14,445
Meetup-DC 36,451 0.9998 33,541 2,901 10,384 12,359
Meetup-Chicago 22,915 0.9996 20,826 2,089 8,118 9,133
Movielens-100K 100,004 0.9835 15,095 84,909 671 9,066

4.3.2 Experimental Setup

The datasets are split to use 60% as the training set, 20% as the cross-validation set, and 20% as

the test set. The evaluation metrics include P@5, P@10, R@5, R@10, NDCG@5, NDCG@10,

MAP@5 and MAP@10 [MRS+08]. These are common metrics for top-N recommendations.

Baselines methods from each of the following categories are considered for comparison against

the proposed ACDA model with respect to the event and movie recommendation task. The

3http://www.meetup.com/meetup_api/
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Figure 4.2: Hidden Unit Count Selection

Figure 4.3: Corruption Ratio Selection

results of the proposed models are compared against these baselines methods. The results are

presented in this section and the findings are discussed in detail.

• Neighborhood-based Methods (UserKNN, ItemKNN )

• Model-based Methods (BiasedMF, BPR-MF, SVD++)

• Deep Learning Methods (CDAE, U-AutoRec)

A popular recommender library, Librec4, is used to obtain results for the neighborhood and

model-based methods. A custom implementation is utilized for the deep learning baseline

models. The parameter values for the existing methods are similar to the proposed method (to

the extent possible).

• User-KNN : User k-nearest neighborhood collaborative filtering method that predicts the

user preference based on the similarity with the k nearest users. The number of neighbors

is set as k = 10, as it gave the best results.

4http://www.librec.net



54 Chapter 4. Attentive Contextual Denoising Autoencoder (ACDA)

Table 4.2: ACDA - Experimental Results: New York
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.0069 0.0034 0.0220 0.0237 0.0223 0.0232 0.0186 0.0181
ItemKNN 0.0076 0.0038 0.0241 0.0254 0.0213 0.0222 0.0194 0.0191

Biased-MF 0.0003 0.0002 0.0001 0.0002 0.0002 0.0003 0.0008 0.0007
BPR-MF 0.0501 0.0342 0.1266 0.1524 0.0766 0.0825 0.1061 0.1089
SVD++ 0.0005 0.0004 0.0003 0.0006 0.0004 0.0006 0.0001 0.0001

CDAE 0.1035 0.1477 0.1123 0.1657 0.0707 0.0791 0.0788 0.0994
U-AutoRec 0.0527 0.0804 0.0508 0.0790 0.0272 0.0305 0.0334 0.0517

ACDA-V 0.1086 0.1844 0.1066 0.1834 0.0523 0.0541 0.0739 0.1151
ACDA-G 0.1781 0.2320 0.1760 0.2309 0.0860 0.0871 0.1337 0.1738
ACDA-GV 0.2295 0.2905 0.2255 0.2990 0.0987 0.0994 0.1574 0.2116

Table 4.3: ACDA - Experimental results: San Francisco
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.0166 0.0127 0.0401 0.0615 0.0317 0.0390 0.0232 0.0255
ItemKNN 0.0155 0.0131 0.0394 0.0591 0.0303 0.0381 0.0229 0.0245

Biased-MF 0.0004 0.0004 0.0001 0.0003 0.0005 0.0004 0.0002 0.0001
BPR-MF 0.0552 0.0376 0.1486 0.1809 0.0860 0.0977 0.1217 0.1254
SVD++ 0.0014 0.0009 0.0011 0.0017 0.0017 0.0016 0.0009 0.0007

CDAE 0.1109 0.1877 0.1098 0.1909 0.0519 0.0564 0.0804 0.1129
U-AutoRec 0.1045 0.1525 0.1020 0.1513 0.0634 0.0686 0.0730 0.1084

ACDA-V 0.1793 0.2623 0.1773 0.2616 0.0765 0.0789 0.1226 0.1770
ACDA-G 0.1879 3061.0 0.1649 0.3049 0.0602 0.0622 0.1004 0.1825
ACDA-GV 0.2864 0.3708 0.2830 0.3692 0.1211 0.1266 0.2065 0.2743

• Item-KNN : Item k-nearest neighborhood collaborative filtering method that predicts the

user preference based on the similarity with the k nearest items. The value is set as

k = 10 to be consistent with User-KNN.

• BPR-MF : Bayesian personalized ranking method that utilizes pairwise loss to provide

top-N item recommendation using matrix factorization (MF). The latent factor count is

set to l = 50 as it offered the best performance.

• Biased-MF : Basic matrix factorization that includes global mean, user bias and item bias.

The latent factor count is set as l = 50 to be consistent with the BPR-MF method.

• SVD++: State-of-the-art matrix factorization method that incorporates implicit feedback

from the user into the baseline SVD model for better accuracy. The latent factor count

is set as l = 50 to be consistent with the BPR-MF method.

• CDAE : Collaborative filtering technique based on denoising autoencoders that incorpo-
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Table 4.4: ACDA - Experimental results: Washington DC
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.0013 0.0006 0.0039 0.0045 0.0023 0.0025 0.0016 0.0017
ItemKNN 0.0011 0.0005 0.0042 0.0042 0.0027 0.0027 0.0018 0.0019

Biased-MF 0.0003 0.0001 0.0003 0.0022 0.0002 0.0010 0.0007 0.0003
BPR-MF 0.0588 0.0466 0.1188 0.1509 0.0688 0.0753 0.1068 0.1098
SVD++ 0.0007 0.0007 0.0001 0.0006 0.0012 0.0011 0.0007 0.0004

CDAE 0.0983 0.1860 0.0914 0.1812 0.0459 0.0515 0.0663 0.1089
U-AutoRec 0.0905 0.1136 0.0847 0.1083 0.0560 0.0606 0.0731 0.0885

ACDA-V 0.1737 0.2498 0.1676 0.2455 0.0836 0.0863 0.1177 0.1713
ACDA-G 0.1956 0.2833 0.1886 0.2792 0.0777 0.0794 0.1198 0.1886
ACDA-GV 0.2600 0.3472 0.2536 0.3430 0.1049 0.1092 0.1816 0.2476

rates the user latent factor as additional input [WDZE16].

• U-AutoRec: Collaborative filtering technique based on denoising autoencoders [SMSX15]

that has two variants: I-AutoRec, which accepts the k-hot encoded item preference vector

consisting of users as input, and U-AutoRec that accepts the k-hot encoded user preference

vector of items. A comparison is made against the U-AutoRec variant as it is similar to

the proposed ACDA model in terms of the user preference on items being provided as

input.

The proposed models are evaluated by incorporating the influence of the different contextual

attributes for the event and movie recommendation tasks.

• ACDA-V : This is the variant of the proposed generic ACDA model that incorporates

only the event venue as a contextual attribute for the event recommendation task.

• ACDA-G : A variant of the proposed generic ACDA model that just incorporates the user

group as a contextual attribute for the event recommendation task.

• ACDA-GV : This model includes both the user group and event venue as contextual

attributes of the ACDA model for the event recommendation task.

• ACDA-R: This model includes the movie genre as a contextual attribute of the ACDA

model for the movie recommendation task.
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Table 4.5: ACDA - Experimental results: Chicago
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.0065 0.0041 0.0204 0.0213 0.0160 0.0170 0.0122 0.0125
ItemKNN 0.0062 0.0037 0.0193 0.0202 0.0157 0.0166 0.0118 0.0120

Biased-MF 0.0004 0.0003 0.0002 0.0006 0.0002 0.0005 0.0008 0.0001
BPR-MF 0.0498 0.0311 0.1640 0.1925 0.0952 0.1059 0.1277 0.1322
SVD++ 0.0020 0.0014 0.0005 0.0012 0.0020 0.0020 0.0010 0.0008

CDAE 0.1271 0.2097 0.1260 0.2095 0.0428 0.0438 0.0724 0.1297
U-AutoRec 0.0879 0.1209 0.0878 0.1209 0.0476 0.0479 0.0621 0.0855

ACDA-V 0.2354 0.3356 0.2339 0.3353 0.0805 0.0796 0.1493 0.2261
ACDA-G 0.2866 0.3994 0.2849 0.3988 0.1375 0.1395 0.2052 0.2835
ACDA-GV 0.2771 0.3856 0.2752 0.3849 0.0821 0.0847 0.1819 0.2655

Table 4.6: ACDA - Experimental results: Movielens 100K
Method P@5 P@10 R@5 R@10 NDCG@5 NDCG@10 MAP@5 MAP@10

UserKNN 0.0200 0.0185 0.0052 0.0082 0.0200 0.0204 0.0109 0.0089
ItemKNN 0.0195 0.0164 0.0055 0.0079 0.0205 0.0194 0.0097 0.0081

Biased-MF 0.0008 0.0008 0.0002 0.0004 0.0007 0.0008 0.0002 0.0002
BPR-MF 0.0761 0.0603 0.1022 0.1477 0.0907 0.0997 0.0611 0.0691
SVD++ 0.0017 0.0011 0.0001 0.0001 0.0016 0.0013 0.0010 0.0006

CDAE 0.0595 0.0887 0.0533 0.0869 0.0664 0.0782 0.0428 0.0613
U-AutoRec 0.0691 0.0986 0.0609 0.0962 0.0932 0.1017 0.0631 0.0718

ACDA-R 0.0827 0.1106 0.0723 0.1070 0.1094 0.1189 0.0694 0.0835

The basic ACDA model (without the contextual attributes) was not included into the com-

parison as that is basically the U-AutoRec model, which has been considered as a baseline

method. The proposed ACDA models are trained on training set, and then evaluated on the

cross-validation set for selecting the appropriate values for the hyper-parameters. Finally, the

model is evaluated on the test set, the results of which are published for comparison with the

baselines. The proposed models are developed and trained using Google’s tensorflow library5.

Additional experiments were conducted to determine the optimal value for the hidden unit size

and corruption ratio hyper-parameters. The results of the additional experiments are provided

in Section 4.3.3.

The epoch = 200 was set during training as the model was found to converge at this point.

Different learning rates (0.1, 0.01, 0.05, 0.001, 0.005) were experimented with, and the learning

rate α = 0.001 was found to work best. To prevent the model from just training on positive

samples, the positive samples of a user were paired with a configurable number of negative or

5http://www.tensorflow.org



4.3. Experiments 57

unknown samples for the user.

4.3.3 The Effects of Number of Hidden Units and Corruption Ratio

To investigate the effect of the number of hidden units (k) on the performance, the value of

k was varied from 100 to 1000 in increments of 100. The results are provided in Figure 4.2.

As observed from the plots, the performance of the model plateaus after k = 500, with higher

values offering no significant gain in performance at a cost of increased training time. While

there are certain metrics, such as the NDCG@5, that perform slightly better at higher values,

k = 500 was set as a default choice.

Different values of the corruption ratio were tried, ranging from 0.1 to 0.9 in increments of

0.1. The results, depicted in Figure 4.3, indicate that the performance degrades with higher

values of the corruption ratio. The only exception to this is the Meetup-Chicago dataset, which

does not have a observable degradation in performance at higher values of the corruption ratio.

Therefore, the value of the corruption ratio is defaulted to ρ = 0.2.

4.3.4 Baseline Comparisons

Tables 4.2, 4.3, 4.4, 4.5, 4.6 contains the results of the different methods, with the best results

highlighted in boldface. A general observation is that, other than a few exceptions, the results

on the precision, recall, NDCG and MAP metrics are consistent across all the datasets. The

proposed model performed well on the Meetup and Movielens datasets, which demonstrates its

effectiveness on top-N recommendation tasks.

First, the performance of the baseline methods is discussed. Three different categories of the

baseline methods are considered: neighborhood-based, model-based and deep learning based

methods. Among these categories, the deep learning based baseline methods are found to per-

form better than the others. In general, across the baseline methods, the CDAE deep learning

based method performs better on the precision and recall metrics. The BPR-MF is better on
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the NDCG metric. The CDAE method is based on the denoising autoencoder, and the results

signify its importance to recommender systems. The good performance of the BPR-MF method

may be attributed to the use of the pairwise loss function. The BPR-MF method also performed

well against the Movielens dataset. However, it is observed that the U-AutoRec performs better

than CDAE against the Movielens dataset. This suggests that the user latent factor included

in the CDAE model does not help to improve the performance against the Movielens dataset,

but it does so against the Meetup dataset. When considering the neighborhood methods, both

(UserKNN and ItemKNN ) were found to be similar in performance.

Comparing the baseline methods to the proposed models for the event recommendation task, it

is observed that all three variants of the proposed ACDA model perform better than the base-

lines. While a variant of the ACDA model with some of the contextual attributes may perform

better, in general the model with more contextual attributes offers the better performance. As

it is observed for the Meetup datasets, the ACDA-GV model offers a better performance in

three of the four cities. It is also observed that the significance of the contextual attributes is

not equal. The influence of the user group contextual attribute is higher than the event venue

attribute, and the model ACDA-G performs better than the ACDA-V model. This implies

that additional contextual parameters may improve the performance further in some cases,

however, this may not be always true. With regard to the movie recommendation task, the

movie genre is utilized as a contextual attribute. The model ACDA-R performs better on all

metrics except recall. The BPR-MF method is better on the recall metric, perhaps due to the

fact that it uses a pairwise loss function. Future work will aim to evaluate the performance of

the proposed models using pairwise loss. The results, which are consistent across all datasets,

reinforce the assertion that the proposed ACDA model performs well on recommendation tasks.

4.4 Summary

This study proposes a deep learning architecture for contextual recommendation based on the

denoising autoencoder augmented with a context-driven attention mechanism. The proposed
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ACDA architecture is a generic model that can be used for both rating prediction and top-N

recommendation. It is demonstrated via comprehensive experiments that the proposed ACDA

model performs better than the state-of-the-art baselines on the event recommendation and

movie recommendation tasks.



Chapter 5

Conclusion & Future Work

5.1 Thesis Summary

This study proposes two novel methods for personalized recommendation. The first model,

which is called the Group-Aware Latent Factor Model (GLFM), is a context-aware latent factor

model realized using matrix factorization. The GLFM model applies contextual attributes from

a dual-perspective of both user and item, and the model is extensible to allow for additional

contextual attributes. The proposed GLFM model is utilized for the task of event recommenda-

tion, and evaluated against multiple real-world datasets from Meetup, a popular Event-Based

Social Network (EBSN). Experimental results demonstrate the superior performance of the

GLFM model against the state-of-the-art baseline methods.

Additionally, this study also proposes a second method for personalized recommendation, which

is based on the denoising autoencoder neural network architecture. The proposed model is

referred to as the Attentive Contextual Denoising Autoencoder (ACDA), and it is built on

the denoising autoencoder with a context-driven attention mechanism. The ACDA model

is applied to the task of event recommendation and movie recommendation. For the event

recommendation task, the ACDA model utilizes the user group and event venue as contextual

attributes. Whereas for the movie recommendation task, the movie genre is utilized as a

contextual attribute. The ACDA model is evaluated on multiple real-world datasets from

60
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Meetup and Movielens, and it is found to perform better in comparison to the other state-of-

the-art recommenders.

5.2 Key Observations

This study proposes different methods for providing context-aware personalized recommenda-

tion. The basis of the study are the proposed machine learning models for recommendation.

However, the study also attempts to evaluate the role of context for personalized recommenda-

tion and other considerations such as pairwise loss, attention mechanism, etc. The key findings

of this report are:

• An important takeaway from this study is that context plays a pivotal role in personal-

ized recommendation. This study evaluates variants of the proposed GLFM and ACDA

models without the contextual attributes. It is observed that the model variant without

the contextual attribute does not perform as well the one with contextual attributes.

The experiments conducted against the variants of the proposed models also suggest that

certain contextual attributes are more important than the others. As an example, the

variant of both the GLFM and ACDA models that considers the group contextual at-

tribute performs better than the variants that consider other contextual attributes. This

signifies the importance of the group contextual attribute for event recommendation. It is

also observed that additional contextual attributes help to improve the performance of the

model, as variants of the GLFM and ACDA models that consider all the relevant contex-

tual attributes perform the best against almost all the datasets. These findings validate

our assertion that context attributes are essential for a meaningful recommendation.

• Pair-wise ranking is an important consideration for top-N recommendation. Implicit

feedback datasets lack negative feedback. The user actions captured implicitly provide

only the positive feedback. As an example, the event RSVP provided by the user acts

as a positive preference of the user for that event; however, the user may ignore certain

events or may not be aware of their existence. Pair-wise ranking performs the evaluation
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in positive-negative pairs, where negative or unknown preferences are sampled from the

dataset and paired with known positive preferences. The GLFM model is evaluated using

both pair-wise and point-wise loss, and the performance of the model is much better with

a pair-wise loss.

• The attention mechanism has been effective at incorporating the contextual attributes to

the ACDA model. The attention mechanism is applied to the latent data representation

in the hidden layer, which is effective due to the low dimensionality of the data represen-

tation. Keeping in mind the number of available contextual parameters, it makes sense to

apply it to lower dimensional data representation, instead of the high dimensional input

data.

5.3 Future Work

This report is a preliminary study with an objective of ascertaining the impact of contextual

attributes on personalized recommendation within the scope of two novel machine learning

methods. The work presented here may be extended in the following ways:

• Both the GLFM and ACDA models presented in this study are used for top-N tasks

of event and movie recommendation. The proposed models are generic and extensible,

and it would be a good enhancement to extend and evaluate them on rating prediction

problems.

• It would be beneficial to study the effect of learning to rank, and evaluate the proposed

models by considering other loss functions, such as list-wise loss.

• This study may be extended by applying these novel methods to other recommendation

tasks that provide contextual data.

• Since the ACDA model is based on the neural network architecture, extending it to be a

deep model with additional hidden layers may be considered. This may be performed in
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conjunction with experimenting with different activation functions to study their impact

on the performance of the models.

• Finally, this study may be extended to utilize social ties for providing recommendations

to a group of people. For example, recommending a vacation package to a group of friends

on a social network.
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[KT13] Houda Khrouf and Raphaël Troncy. Hybrid event recommendation using linked

data and user diversity. In RecSys, pages 185–192. ACM, 2013.

[LC16] Shu-hsien Liao and Hsiao-ko Chang. A rough set-based association rule approach

for a recommendation system for online consumers. Information Processing &

Management, in press, 2016.

[LCL+15] Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-

naswamy. Rank-geofm: A ranking based geographical factorization method for

point of interest recommendation. In Proceedings of the 38th International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages

433–442. ACM, 2015.

[LCLS10] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-

bandit approach to personalized news article recommendation. In Proceedings

of the 19th international conference on World wide web, pages 661–670. ACM,

2010.

[LS17] Xiaopeng Li and James She. Collaborative variational autoencoder for recom-

mender systems. In KDD, pages 305–314. ACM, 2017.

[LVT+16] Di Lu, Clare R Voss, Fangbo Tao, Xiang Ren, Rachel Guan, Rostyslav Korolov,

Tongtao Zhang, Dongang Wang, Hongzhi Li, Taylor Cassidy, et al. Cross-media

event extraction and recommendation. In Proceedings of the 2016 Conference of

the North American Chapter of the Association for Computational Linguistics

Human Language Technologies (NAACL-HLT), 2016.



BIBLIOGRAPHY 69

[LY08] Nathan N Liu and Qiang Yang. Eigenrank: a ranking-oriented approach to

collaborative filtering. In Proceedings of the 31st annual international ACM

SIGIR conference on Research and development in information retrieval, pages

83–90. ACM, 2008.

[LZY09] Nathan N Liu, Min Zhao, and Qiang Yang. Probabilistic latent preference anal-

ysis for collaborative filtering. In Proceedings of the 18th ACM conference on

Information and knowledge management, pages 759–766. ACM, 2009.

[MBAG16] Eder F Martins, Fabiano M Belém, Jussara M Almeida, and Marcos A Gonçalves.
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