1,910 research outputs found

    PersoNER: Persian named-entity recognition

    Full text link
    Ā© 1963-2018 ACL. Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network

    Finding answers to questions, in text collections or web, in open domain or specialty domains

    Get PDF
    International audienceThis chapter is dedicated to factual question answering, i.e. extracting precise and exact answers to question given in natural language from texts. A question in natural language gives more information than a bag of word query (i.e. a query made of a list of words), and provides clues for finding precise answers. We will first focus on the presentation of the underlying problems mainly due to the existence of linguistic variations between questions and their answerable pieces of texts for selecting relevant passages and extracting reliable answers. We will first present how to answer factual question in open domain. We will also present answering questions in specialty domain as it requires dealing with semi-structured knowledge and specialized terminologies, and can lead to different applications, as information management in corporations for example. Searching answers on the Web constitutes another application frame and introduces specificities linked to Web redundancy or collaborative usage. Besides, the Web is also multilingual, and a challenging problem consists in searching answers in target language documents other than the source language of the question. For all these topics, we present main approaches and the remaining problems

    Cross-language Information Retrieval

    Full text link
    Two key assumptions shape the usual view of ranked retrieval: (1) that the searcher can choose words for their query that might appear in the documents that they wish to see, and (2) that ranking retrieved documents will suffice because the searcher will be able to recognize those which they wished to find. When the documents to be searched are in a language not known by the searcher, neither assumption is true. In such cases, Cross-Language Information Retrieval (CLIR) is needed. This chapter reviews the state of the art for CLIR and outlines some open research questions.Comment: 49 pages, 0 figure

    Natural language processing

    Get PDF
    Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems

    Web 2.0, language resources and standards to automatically build a multilingual named entity lexicon

    Get PDF
    This paper proposes to advance in the current state-of-the-art of automatic Language Resource (LR) building by taking into consideration three elements: (i) the knowledge available in existing LRs, (ii) the vast amount of information available from the collaborative paradigm that has emerged from the Web 2.0 and (iii) the use of standards to improve interoperability. We present a case study in which a set of LRs for diļ¬€erent languages (WordNet for English and Spanish and Parole-Simple-Clips for Italian) are extended with Named Entities (NE) by exploiting Wikipedia and the aforementioned LRs. The practical result is a multilingual NE lexicon connected to these LRs and to two ontologies: SUMO and SIMPLE. Furthermore, the paper addresses an important problem which aļ¬€ects the Computational Linguistics area in the present, interoperability, by making use of the ISO LMF standard to encode this lexicon. The diļ¬€erent steps of the procedure (mapping, disambiguation, extraction, NE identiļ¬cation and postprocessing) are comprehensively explained and evaluated. The resulting resource contains 974,567, 137,583 and 125,806 NEs for English, Spanish and Italian respectively. Finally, in order to check the usefulness of the constructed resource, we apply it into a state-of-the-art Question Answering system and evaluate its impact; the NE lexicon improves the systemā€™s accuracy by 28.1%. Compared to previous approaches to build NE repositories, the current proposal represents a step forward in terms of automation, language independence, amount of NEs acquired and richness of the information represented

    A Continuously Growing Dataset of Sentential Paraphrases

    Full text link
    A major challenge in paraphrase research is the lack of parallel corpora. In this paper, we present a new method to collect large-scale sentential paraphrases from Twitter by linking tweets through shared URLs. The main advantage of our method is its simplicity, as it gets rid of the classifier or human in the loop needed to select data before annotation and subsequent application of paraphrase identification algorithms in the previous work. We present the largest human-labeled paraphrase corpus to date of 51,524 sentence pairs and the first cross-domain benchmarking for automatic paraphrase identification. In addition, we show that more than 30,000 new sentential paraphrases can be easily and continuously captured every month at ~70% precision, and demonstrate their utility for downstream NLP tasks through phrasal paraphrase extraction. We make our code and data freely available.Comment: 11 pages, accepted to EMNLP 201

    Inferring multilingual domain-specific word embeddings from large document corpora

    Get PDF
    The use of distributed vector representations of words in Natural Language Processing has become established. To tailor general-purpose vector spaces to the context under analysis, several domain adaptation techniques have been proposed. They all require sufficiently large document corpora tailored to the target domains. However, in several cross-lingual NLP domains both large enough domain-specific document corpora and pre-trained domain-specific word vectors are hard to find for languages other than English. This paper aims at tackling the aforesaid issue. It proposes a new methodology to automatically infer aligned domain-specific word embeddings for a target language on the basis of the general-purpose and domain-specific models available for a source language (typically, English). The proposed inference method relies on a two-step process, which first automatically identifies domain-specific words and then opportunistically reuses the non-linear space transformations applied to the word vectors of the source language in order to learn how to tailor the vector space of the target language to the domain of interest. The performance of the proposed method was validated via extrinsic evaluation by addressing the established word retrieval task. To this aim, a new benchmark multilingual dataset, derived from Wikipedia, has been released. The results confirmed the effectiveness and usability of the proposed approach
    • ā€¦
    corecore