27 research outputs found

    Improving the O-GEHL branch prediction accuracy using analytical results

    Get PDF
    The O-GEHL branch predictor has outperformed other prediction schemes using the same set of benchmarks in an international branch prediction contest, CBP-1. In this paper, we present the analysis results on each of the OGEHL branch predictor tables and also on the optimal number of predictor tables. Two methods are subsequently proposed to help increase the O-GEHL prediction accuracy. The first one aims to increase the space utilization of the first predictor table by dynamically adjusting the lengths of branch history regarding to the type of a benchmark currently in execution. The second one adds an extra table into the O-GEHL predictor using the space saved from the sharing of hysteresis bits. Experimental results have confirmed that both schemes improve the accuracy of two different predictor configurations, leading to two promising research directions for future explorations.Facultad de Informátic

    Exploiting Host Availability in Distributed Systems.

    Full text link
    As distributed systems become more decentralized, fluctuating host availability is an increasingly disruptive phenomenon. Older systems such as AFS used a small number of well-maintained, highly available machines to coordinate access to shared client state; server uptime (and thus service availability) were expected to be high. Newer services scale to larger number of clients by increasing the number of servers. In these systems, the responsibility for maintaining the service abstraction is spread amongst thousands of machines. In the extreme, each client is also a server who must respond to requests from its peers, and each host can opt in or out of the system at any time. In these operating environments, a non-trivial fraction of servers will be unavailable at any give time. This diffusion of responsibility from a few dedicated hosts to many unreliable ones has a dramatic impact on distributed system design, since it is difficult to build robust applications atop a partially available, potentially untrusted substrate. This dissertation explores one aspect of this challenge: how can a distributed system measure the fluctuating availability of its constituent hosts, and how can it use an understanding of this churn to improve performance and security? This dissertation extends the previous literature in three ways. First, it introduces new analytical techniques for characterizing availability data, applying these techniques to several real networks and explaining the distinct uptime patterns found within. Second, this dissertation introduces new methods for predicting future availability, both at the granularity of individual hosts and clusters of hosts. Third, my dissertation describes how to use these new techniques to improve the performance and security of distributed systems.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58445/1/jmickens_1.pd

    Summarizing multiprocessor program execution with versatile, microarchitecture-independent snapshots

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 131-137).Computer architects rely heavily on software simulation to evaluate, refine, and validate new designs before they are implemented. However, simulation time continues to increase as computers become more complex and multicore designs become more common. This thesis investigates software structures and algorithms for quickly simulating modern cache-coherent multiprocessors by amortizing the time spent to simulate the memory system and branch predictors. The Memory Timestamp Record (MTR) summarizes the directory and cache state of a multiprocessor system in a compact data structure. A single MTR snapshot is versatile enough to reconstruct the microarchitectural state resulting from various coherence protocols and cache organizations. The MTR may be quickly updated by each simulated processor during a fast-forwarding phase and optionally stored off-line for reuse. To fill large branch prediction tables, we introduce Branch Predictor-based Compression (BPC) which compactly stores a branch trace so that it may be used to fill in any branch predictor structure. An entire BPC trace requires less space than single discrete predictor snapshots, and it may be decompressed 3-6x faster than performing functional simulation.by Kenneth C. Barr.Ph.D

    ARCHITECTING EMERGING MEMORY TECHNOLOGIES FOR ENERGY-EFFICIENT COMPUTING IN MODERN PROCESSORS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Exploring Alternate Cache Indexing Techniques

    Get PDF
    Cache memory is a bridging component which covers the increasing gap between the speed of a processor and main memory. An excellent performance of the cache is crucial to improve system performance. Conflict misses are one of the critical reasons that limit the cache performance by mapping blocks to the same set which results in the eviction of many blocks. However, many blocks in the cache sets are not mapped, and thus the available space is not efficiently utilized. A direct way to reduce conflict misses is to increase associativity, but this comes with the cost of an increase in the hit time. Another way to reduce conflict misses is to change the cache-indexing scheme and distribute the accesses across all sets. This thesis focuses on the second way mentioned above and aims to evaluate the impact of the matrix-based indexing scheme on cache performance against the traditional modulus-based indexing scheme. A correlation between the proposed indexing scheme and different cache replacement policies is also observed. The matrix-based indexing scheme yields a geometric mean speedup of 1.2% for SPEC CPU 2017 benchmarks for single core simulations when applied for direct-mapped last level cache. In this case, an improvement of 1.5% and 4% is observed for at least eighteen and seven of SPEC CPU2017 applications respectively. Also, it yields 2% of performance improvement over sixteen SPEC CPU2006 benchmarks. The new indexing scheme correlates well with multiperspective reuse prediction. It is observed that LRU benefits machine learning benchmark by a performance of 5.1%. For multicore simulations, the new indexing scheme does not improve performance significantly. However, this scheme also does not impact the application’s performance negatively

    Exploring Alternate Cache Indexing Techniques

    Get PDF
    Cache memory is a bridging component which covers the increasing gap between the speed of a processor and main memory. An excellent performance of the cache is crucial to improve system performance. Conflict misses are one of the critical reasons that limit the cache performance by mapping blocks to the same set which results in the eviction of many blocks. However, many blocks in the cache sets are not mapped, and thus the available space is not efficiently utilized. A direct way to reduce conflict misses is to increase associativity, but this comes with the cost of an increase in the hit time. Another way to reduce conflict misses is to change the cache-indexing scheme and distribute the accesses across all sets. This thesis focuses on the second way mentioned above and aims to evaluate the impact of the matrix-based indexing scheme on cache performance against the traditional modulus-based indexing scheme. A correlation between the proposed indexing scheme and different cache replacement policies is also observed. The matrix-based indexing scheme yields a geometric mean speedup of 1.2% for SPEC CPU 2017 benchmarks for single core simulations when applied for direct-mapped last level cache. In this case, an improvement of 1.5% and 4% is observed for at least eighteen and seven of SPEC CPU2017 applications respectively. Also, it yields 2% of performance improvement over sixteen SPEC CPU2006 benchmarks. The new indexing scheme correlates well with multiperspective reuse prediction. It is observed that LRU benefits machine learning benchmark by a performance of 5.1%. For multicore simulations, the new indexing scheme does not improve performance significantly. However, this scheme also does not impact the application’s performance negatively

    Exploring Alternate Cache Indexing Techniques

    Get PDF
    Cache memory is a bridging component which covers the increasing gap between the speed of a processor and main memory. An excellent performance of the cache is crucial to improve system performance. Conflict misses are one of the critical reasons that limit the cache performance by mapping blocks to the same set which results in the eviction of many blocks. However, many blocks in the cache sets are not mapped, and thus the available space is not efficiently utilized. A direct way to reduce conflict misses is to increase associativity, but this comes with the cost of an increase in the hit time. Another way to reduce conflict misses is to change the cache-indexing scheme and distribute the accesses across all sets. This thesis focuses on the second way mentioned above and aims to evaluate the impact of the matrix-based indexing scheme on cache performance against the traditional modulus-based indexing scheme. A correlation between the proposed indexing scheme and different cache replacement policies is also observed. The matrix-based indexing scheme yields a geometric mean speedup of 1.2% for SPEC CPU 2017 benchmarks for single core simulations when applied for direct-mapped last level cache. In this case, an improvement of 1.5% and 4% is observed for at least eighteen and seven of SPEC CPU2017 applications respectively. Also, it yields 2% of performance improvement over sixteen SPEC CPU2006 benchmarks. The new indexing scheme correlates well with multiperspective reuse prediction. It is observed that LRU benefits machine learning benchmark by a performance of 5.1%. For multicore simulations, the new indexing scheme does not improve performance significantly. However, this scheme also does not impact the application’s performance negatively

    Systematic Design Methods for Efficient Off-Chip DRAM Access

    No full text
    Typical design flows for digital hardware take, as their input, an abstract description of computation and data transfer between logical memories. No existing commercial high-level synthesis tool demonstrates the ability to map logical memory inferred from a high level language to external memory resources. This thesis develops techniques for doing this, specifically targeting off-chip dynamic memory (DRAM) devices. These are a commodity technology in widespread use with standardised interfaces. In use, the bandwidth of an external memory interface and the latency of memory requests asserted on it may become the bottleneck limiting the performance of a hardware design. Careful consideration of this is especially important when designing with DRAMs, whose latency and bandwidth characteristics depend upon the sequence of memory requests issued by a controller. Throughout the work presented here, we pursue exact compile-time methods for designing application-specific memory systems with a focus on guaranteeing predictable performance through static analysis. This contrasts with much of the surveyed existing work, which considers general purpose memory controllers and optimized policies which improve performance in experiments run using simulation of suites of benchmark codes. The work targets loop-nests within imperative source code, extracting a mathematical representation of the loop-nest statements and their associated memory accesses, referred to as the ‘Polytope Model’. We extend this mathematical representation to represent the physical DRAM ‘row’ and ‘column’ structures accessed when performing memory transfers. From this augmented representation, we can automatically derive DRAM controllers which buffer data in on-chip memory and transfer data in an efficient order. Buffering data and exploiting ‘reuse’ of data is shown to enable up to 50× reduction in the quantity of data transferred to external memory. The reordering of memory transactions exploiting knowledge of the physical layout of the DRAM device allowing to 4× improvement in the efficiency of those data transfers

    Broadcast-oriented wireless network-on-chip : fundamentals and feasibility

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit Enginyeria de les TICRecent years have seen the emergence and ubiquitous adoption of Chip Multiprocessors (CMPs), which rely on the coordinated operation of multiple execution units or cores. Successive CMP generations integrate a larger number of cores seeking higher performance with a reasonable cost envelope. For this trend to continue, however, important scalability issues need to be solved at different levels of design. Scaling the interconnect fabric is a grand challenge by itself, as new Network-on-Chip (NoC) proposals need to overcome the performance hurdles found when dealing with the increasingly variable and heterogeneous communication demands of manycore processors. Fast and flexible NoC solutions are needed to prevent communication become a performance bottleneck, situation that would severely limit the design space at the architectural level and eventually lead to the use of software frameworks that are slow, inefficient, or less programmable. The emergence of novel interconnect technologies has opened the door to a plethora of new NoCs promising greater scalability and architectural flexibility. In particular, wireless on-chip communication has garnered considerable attention due to its inherent broadcast capabilities, low latency, and system-level simplicity. Most of the resulting Wireless Network-on-Chip (WNoC) proposals have set the focus on leveraging the latency advantage of this paradigm by creating multiple wireless channels to interconnect far-apart cores. This strategy is effective as the complement of wired NoCs at moderate scales, but is likely to be overshadowed at larger scales by technologies such as nanophotonics unless bandwidth is unrealistically improved. This dissertation presents the concept of Broadcast-Oriented Wireless Network-on-Chip (BoWNoC), a new approach that attempts to foster the inherent simplicity, flexibility, and broadcast capabilities of the wireless technology by integrating one on-chip antenna and transceiver per processor core. This paradigm is part of a broader hybrid vision where the BoWNoC serves latency-critical and broadcast traffic, tightly coupled to a wired plane oriented to large flows of data. By virtue of its scalable broadcast support, BoWNoC may become the key enabler of a wealth of unconventional hardware architectures and algorithmic approaches, eventually leading to a significant improvement of the performance, energy efficiency, scalability and programmability of manycore chips. The present work aims not only to lay the fundamentals of the BoWNoC paradigm, but also to demonstrate its viability from the electronic implementation, network design, and multiprocessor architecture perspectives. An exploration at the physical level of design validates the feasibility of the approach at millimeter-wave bands in the short term, and then suggests the use of graphene-based antennas in the terahertz band in the long term. At the link level, this thesis provides an insightful context analysis that is used, afterwards, to drive the design of a lightweight protocol that reliably serves broadcast traffic with substantial latency improvements over state-of-the-art NoCs. At the network level, our hybrid vision is evaluated putting emphasis on the flexibility provided at the network interface level, showing outstanding speedups for a wide set of traffic patterns. At the architecture level, the potential impact of the BoWNoC paradigm on the design of manycore chips is not only qualitatively discussed in general, but also quantitatively assessed in a particular architecture for fast synchronization. Results demonstrate that the impact of BoWNoC can go beyond simply improving the network performance, thereby representing a possible game changer in the manycore era.Avenços en el disseny de multiprocessadors han portat a una àmplia adopció dels Chip Multiprocessors (CMPs), que basen el seu potencial en la operació coordinada de múltiples nuclis de procés. Generacions successives han anat integrant més nuclis en la recerca d'alt rendiment amb un cost raonable. Per a que aquesta tendència continuï, però, cal resoldre importants problemes d'escalabilitat a diferents capes de disseny. Escalar la xarxa d'interconnexió és un gran repte en ell mateix, ja que les noves propostes de Networks-on-Chip (NoC) han de servir un tràfic eminentment variable i heterogeni dels processadors amb molts nuclis. Són necessàries solucions ràpides i flexibles per evitar que les comunicacions dins del xip es converteixin en el pròxim coll d'ampolla de rendiment, situació que limitaria en gran mesura l'espai de disseny a nivell d'arquitectura i portaria a l'ús d'arquitectures i models de programació lents, ineficients o poc programables. L'aparició de noves tecnologies d'interconnexió ha possibilitat la creació de NoCs més flexibles i escalables. En particular, la comunicació intra-xip sense fils ha despertat un interès considerable en virtut de les seva baixa latència, simplicitat, i bon rendiment amb tràfic broadcast. La majoria de les Wireless NoC (WNoC) proposades fins ara s'han centrat en aprofitar l'avantatge en termes de latència d'aquest nou paradigma creant múltiples canals sense fils per interconnectar nuclis allunyats entre sí. Aquesta estratègia és efectiva per complementar a NoCs clàssiques en escales mitjanes, però és probable que altres tecnologies com la nanofotònica puguin jugar millor aquest paper a escales més grans. Aquesta tesi presenta el concepte de Broadcast-Oriented WNoC (BoWNoC), un nou enfoc que intenta rendibilitzar al màxim la inherent simplicitat, flexibilitat, i capacitats broadcast de la tecnologia sense fils integrant una antena i transmissor/receptor per cada nucli del processador. Aquest paradigma forma part d'una visió més àmplia on un BoWNoC serviria tràfic broadcast i urgent, mentre que una xarxa convencional serviria fluxos de dades més pesats. En virtut de la escalabilitat i del seu suport broadcast, BoWNoC podria convertir-se en un element clau en una gran varietat d'arquitectures i algoritmes poc convencionals que milloressin considerablement el rendiment, l'eficiència, l'escalabilitat i la programabilitat de processadors amb molts nuclis. El present treball té com a objectius no només estudiar els aspectes fonamentals del paradigma BoWNoC, sinó també demostrar la seva viabilitat des dels punts de vista de la implementació, i del disseny de xarxa i arquitectura. Una exploració a la capa física valida la viabilitat de l'enfoc usant tecnologies longituds d'ona milimètriques en un futur proper, i suggereix l'ús d'antenes de grafè a la banda dels terahertz ja a més llarg termini. A capa d'enllaç, la tesi aporta una anàlisi del context de l'aplicació que és, més tard, utilitzada per al disseny d'un protocol d'accés al medi que permet servir tràfic broadcast a baixa latència i de forma fiable. A capa de xarxa, la nostra visió híbrida és avaluada posant èmfasi en la flexibilitat que aporta el fet de prendre les decisions a nivell de la interfície de xarxa, mostrant grans millores de rendiment per una àmplia selecció de patrons de tràfic. A nivell d'arquitectura, l'impacte que el concepte de BoWNoC pot tenir sobre el disseny de processadors amb molts nuclis no només és debatut de forma qualitativa i genèrica, sinó també avaluat quantitativament per una arquitectura concreta enfocada a la sincronització. Els resultats demostren que l'impacte de BoWNoC pot anar més enllà d'una millora en termes de rendiment de xarxa; representant, possiblement, un canvi radical a l'era dels molts nuclisAward-winningPostprint (published version
    corecore