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Abstract

The concern about energy consumption in current technology node is becoming

more serious. As we are already in deep sub-micron era, the relentless process

scaling makes existing energy reduction techniques less efficient. It is predicted

that we might soon face the situation where most of the silicon area is forced to

be dark and can not be powered on simultaneously.

As alternative solutions, a number of emerging memory technologies are

being actively studied. They allow us to design more energy efficient architectures

and potentially solve the dark silicon problem from the ground. However, they

also incur certain weaknesses such as high write energy and limited endurance.

Previous studies showed that an effective way to mitigate these negative impacts

is by optimizing the memory architecture.

Therefore, this thesis will focus on architecture designs for deploying emerg-

ing memories at various levels in the memory hierarchy. First of all, we exploit

both the storage and computing capabilities of a particular emerging memory:

the memristor, in the design of a neural branch predictor. Experiments showed

that our design not only increases the accuracy, but also consumes less energy

than traditional schemes. Secondly, we present a L1 cache architecture that

utilizes both the conventional SRAM and the emerging STT-RAM technology.



Table of contents

Our scheme mitigated the performance impacts from the expensive write op-

erations of STT-RAM and achieved energy savings with enhanced reliability.

Thirdly, we propose a dynamic block reconfiguration mechanism in the design

of multi level cell (MLC) STT-RAM last-level caches. Our design leveraged the

latency/capacity trade-off in MLC STT-RAM to accelerate some portions of the

cache with less energy consumption. Lastly, the use of STT-RAM in GPGPU has

also been investigated. A hybrid L2 architecture employing a large STT-RAM

part and a small SRAM augment is demonstrated. Our design monitors the

read/write behavior of cache blocks in STT-RAM part and attempts to offload

writes to SRAM augment, reducing the write penalties. Simulation shows our

design achieved minor performance improvement over both pure SRAM and

STT-RAM with significant energy reduction.
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Chapter 1

Introduction

1.1 Challenges of CMOS Scaling

The semiconductor industry has been fundamentally driven by Moore’s law thus

far, which states the number of transistors in integrated circuits will double every

18 months [61]. As shown in Figure 1.1, the number of transistors in modern

microprocessors grows exponentially from few thousands (Intel 8080) during

the last 70s to over 2 billion in 2011 (Intel Xeon E5). In the mean time, the

size of transistors has been reduced over two dozen of generations from few

micrometers to merely tens of nanometers.

One of the important rule to maintain the speed of transistor shrinking is Den-

nard’s scaling [24]. It states that the supply and threshold voltages should scale

proportionally with the technology node, and hence the power density will remain

as a constant from one generation to another. While the CMOS process continues

to scale, Dennard’s scaling is no longer held due to the process variability under

nanometer scale. At the same time, a number of challenges have emerged such

1
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Fig. 1.1 Transistor counts in modern microprocessors.

as the RC delay problem [6], power dissipation [56], and the memory bandwidth

wall [71]. In particular, the power consumption per chip area is trending upwards

and circuit-level techniques can hardly mitigate such a trend without impacting

performance. This is already happening in the current technology node, and

is expected to get worse as further scaling will pack more transistors onto the

silicon die, leading to unrealistic power consumption and heat density that cannot

be handled by a conventional cooling system.

1.1.1 Thermal Design Power and Dark Silicon

Thermal design power (TDP) is the maximum amount of power that can be

supplied to the chip so that the amount of heat generated during normal operation

can be dissipated by the cooling system. While the density of MOSFETs contin-

ues to scale, the fixed chip-level TDP seriously constrain the active portion of the

chip that can be powered on simultaneously at full frequency. Such a portion of

the chip area that must be powered off or under-clocked so as not to exceed the

given energy budget and cooling capability is called the dark silicon. Figure 1.2

2
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displays the fractions of dark silicon on-chip projected for future process gener-

ations based on previous studies [29, 74]. Theoretical data from International

Technology Roadmap for Semiconductors (ITRS) shows that merely after two

generations, half amount of the transistors on-chip can not be activated fully for

performance due to the TDP constrain. Eventually, we will reach the point where

most of the chip area is forced to go dark and deemed under-utilized.

1.1.2 Issues of On-chip Memory/Cache

One of the main battlefields where researchers are actively seeking solutions

to turn the dark silicons back to performance is the on-chip memory/cache.

Traditionally, on-chip memory is constructed with static random access memory

(SRAM) because of its low latency, high endurance and scalability. However,

a typical single bit SRAM cell is made of 6 - 10 transistors and leaves a large

silicon footprint (20 - 50%) to the chip area [71]. Figure 1.3 shows the die of

a nehalem-based processor from Intel where the SRAM cache area is roughly

equal to the area of three cores. Furthermore, since SRAM uses bistable flip-flops

to store data bits, it needs a constant supply of power to reinforce the cell for

keeping the data intact which consumes a high amount of static/leakage energy.

3
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Fig. 1.3 The die of a Nehalem-based quad-core processor from Intel [3].

As the current design trend shifts to multi-core and many-core [20] system,

the demands of larger and yet faster on-chip memory such as cache are grow-

ing. In order to mitigate the high static power of SRAM caches, a number of

architectural designs have been proposed including drowsy cache [31], cache

decay [47], and filter cache [48]. These schemes are good in their own ways, but

they does not solve the fundamental problem and are becoming less efficient as

the relentless process scaling continues. The static energy consumed by SRAM

memories are seriously challenging the future design of high-performance and

yet energy-efficient processor architectures.

1.2 Emerging Memory Technologies

To address the fundamental issue of SRAM’s static/leakage power dissipation,

some researchers are exploring a number of emerging memory technologies

as potential augments/replacements. Examples include magneto-resistive RAM

(MRAM) [27], resistive RAM (ReRAM) [95], Domain wall memory (DWM) [7]

and embedded DRAM (eDRAM) [22]. These memories have several promising

4
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features, such as high density (small feature size), non-volatility and CMOS-

compatibility. When used in designing on-chip caches, they can be made in much

larger capacities on the same chip area as SRAM, to satisfy the requirements

of many-core systems and data-intensive applications. More importantly, their

non-volatilities means a near-zero static/leakage energy consumption, which

eliminate the weakness of standard SRAM.

As these emerging memory technologies are maturing from lab to manufac-

turing [4], system-level designers have started to design new memory architec-

tures [59]. Since these new memory technologies differ from the conventional

ones in a range of aspects including performance, energy and reliability, the

existing architectures have to be optimized for them. Overall, they provides us a

path towards a more energy-efficient computing environment.

1.3 Motivation and Goal

As these emerging memory technologies are becoming more and more attractive

for future memory hierarchies, it is important to understand both the benefits

they can bring and the limitations/downsides involved. In this dissertation, we

would like to explore the possibilities in architecting these emerging memories at

various levels of the memory hierarchy. Specifically, several architecture designs

will be proposed for those technologies, in order to maximize their benefits while

mitigate the penalties. Here we summarize the scope and attempts of this thesis

in a comprehensive way -

• For different levels of the memory hierarchy, we shall choose an appro-

priate type of emerging memory that shares similar characteristics to the

5
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existing technology deployed at the same level. In addition, such a choice

shall consider the pros and cons of the technology together with the data

access behavior at that level of the memory hierarchy.

• Secondly, the deployment of emerging memories is not a one-for-one re-

placement for most of the cases. They exhibit certain drawbacks that would

incur performance and energy overheads. Therefore, existing memory ar-

chitectures have to be modified in order to reduce the potential penalties

while enjoying the benefits they bring.

• Lastly, the new architectures shall be properly evaluated. The experiments

shall cover both the positive and negative aspects of the technology and

the overall system performance including any overheads involved within

the designs.

Overall, we attempt to answer the following question -

How to optimize architecture-level designs for the emerging memories in

order to maximize their performance and energy benefits while alleviating

their drawbacks?

1.3.1 Leveraging Emerging Memories in Architecture Design

Traditional memory hierarchy design usually consists of a number of levels: on-

chip registers/buffers/caches implemented in SRAM, off-chip primary memory

implemented in DRAM and persistent storage implemented in magnetic hard

disks (HDD) or NAND-flash-based solid state drives (SSD). As the memory

goes closer to the processor, performance becomes more critical so the require-

ments of latency/bandwidth are more strict. At the same time, it comes with

6
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capacity penalty and shall be compensated by some larger-but-slower lower level

memories.

However, as technology continues to scale down, the increasing power con-

sumption and heat density have seriously constrained the future memory hier-

archy designs. These challenges are posed by fundamental technology limits,

making the existing device and architecture techniques less effective. On the other

hand, as emerging memory technologies mature, integrating them into the current

memory hierarchy has become an attractive choice. One way of doing this is to

create a hybrid memory system where more than one kind of technologies are de-

ployed at a level of the memory hierarchy. Such a design methodology combines

the advantages from different technologies while mitigating their drawbacks.

In this thesis, we follow such an idea in designing new memory architectures

with focus on energy efficiency. At the same time, we try to tackle the possibility

of using emerging memory as both a computation and a storage component.

1.4 Overview and Contribution of the Thesis

Figure 1.4 illustrates the scope of this thesis and how it influences the pipeline de-

sign. A typical out-of-order pipeline includes instruction fetch/decode, registers

renaming, scheduling, execution/memory operations and result write back/com-

mit stages. To better unitize the resources, branch predicator has been introduced

to enable speculative execution and the instruction/data caches are usually backed

by a larger last-level cache.

First of all, as a key pipeline component, branch predictor can seriously affect

single-thread performance. Recently, people introduced neural-based methods

7
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Fig. 1.4 Overview of the scope of the thesis (CPU).

into branch prediction [41]. These predictors are more resource-efficient and

more accurate than the traditional method such as gshare [55]. However, they

inhibit a relatively long prediction latency which prevent a wider adoption in

commercial processors. Interestingly, because of their neural nature, the long

prediction latency can be easily mitigated by using analog circuit techniques.

Therefore, we propose an analog neural predictor based on the newly discovered

memristor device. Memristor is a fundamental electrical component that can be

used in analog computing. Both circuit and architecture design will be proposed

and evaluated. The target is to construct a more practical neural predictor using

emerging memory with high accuracy and less energy consumption. Chapter 3

will elaborate more on this work.

Secondly, we propose to deploy another promising emerging memory tech-

nology, STT-RAM in L1 cache. Since L1 cache is at the highest level of memory

hierarchy, performance and reliability requirements are more critical than the

lower level memory. Therefore, the issue of long write latency and relatively low

8



1.4 Overview and Contribution of the Thesis

endurance of STT-RAM must be carefully managed. Observed that the read and

write operations are usually distributed unbalanced across different cache blocks

in L1, using a small SRAM partition to filter out the writes could enhance the

overall performance and reduce lifetime failures of STT-RAM. Thus, the idea

of hybrid cache is presented with the help of the cache coherent protocol. We

leverage the built-in coherence information to predict which partition a block

should stay in order to minimize performance penalty and energy consumption.

In addition, block migration is introduced and two transfer policies are discussed

and evaluated. This work is presented in Chapter 4.

Then, chapter 5 describes a scheme of using STT-RAM in last-level cache

(LLC). While the hybrid L1 cache used the more mature single-level cell (SLC)

design of STT-RAM , this work tries to architect multi-level cell (MLC) STT-

RAM in LLC design. The main challenge of MLC comes from the two-step

read/write scheme [9]. In order to differentiate the two data bits stored in a

MLC, a two-stage data sensing is required. Similarly, write operation demands

for two-step programming. Although using MLC STT-RAM can theoretically

achieve 2× data density, such a prolong access/programming latency incurs

additional overheads and degrade overall performance. However, by nature such

an enlarged capacity is not always necessary. Certain applications are more

latency-sensitive so thus benefit more from lower access timings. For MLC

STT-RAM, if we discard the hard-bit, the access to the soft-bit can be accelerated

since only single-step sensing/programming is sufficient. Thus, we propose

an optimization scheme for a MLC-based STT-RAM LLC which dynamically

changes the block size to trade capacity for performance or vice-verse during

application’s runtime.

9
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Later in chapter 6, we move the focus to GPGPU architecture. Figure 1.5

shows a typical GPGPU pipeline that include fetch/decode, instruction issue,

operand collection, ALU and memory stages. As GPGPU architectures are

improving rapidly, the trend of larger L2 caches leads to increased energy con-

sumption. While emerging STT-RAM has shown lots of desired properties in

replacing CPU caches, its deployment in GPGPU cache is also promising. Be-

cause of the differences in architecture and application behaviors between CPU

and GPU, new design methodology is required for STT-RAM to be deployed

in GPU. Thus, we propose a hybrid L2 cache composed of a large STT-RAM

part and a small SRAM augment. Together with differential block allocation and

block migration scheme, the design managed to offload large portion of writes

to SRAM. Both performance and energy evaluations will be presented in the

chapter.

Finally in last chapter, we summarize the works have been done so far and

point out future research direction after this thesis.
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Chapter 2

Background

This chapter serves as an overview of both mainstream and emerging computer

memory technologies. Traditionally, we classify electrically addressed memories

into two categories: volatile and non-volatile. Volatile memories refer to those

storage devices that require a continuous power supply for maintaining the data,

while non-volatile memories can retain the contents without power supply. In the

conventional domain, static random-addressable memory (SRAM) and dynamic

random-addressable memory (DRAM) are two representatives in the volatile

category while read-only memory (ROM) and flash memory are considered to be

non-volatile.

Most of the emerging memories belong to the non-volatile group, including

ferroelectric RAM (FeRAM), phase-change memory RAM (PCM), resistive

RAM (ReRAM), magneto-resistive (MRAM) and domain-wall memory (DWM).

Embedded DRAM (eDRAM) is an emerging volatile memory that works sim-

ilarly to DRAM. The following sections will first describe the basic working

principles of four conventional memories followed by six emerging memories.
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Fig. 2.1 The cell structures of SRAM and DRAM.

In particular, memristor and STT-RAM will be described in great details since

this thesis is mainly based on them.

2.1 Conventional Memories

2.1.1 Static RAM

Static RAM (SRAM) is a basic type of semiconductor memory that stores

data bit in bistable latching circuitry. There are several types of SRAM with

different number of transistors, but the most widely used one is 6-transistor

(6T) type. A typical 6T SRAM design is shown in Figure 2.1a. Here two

cross-coupled inverters are constructed with four metal-oxide-semiconductor

field-effect transistor (MOSFETs) (M1 to M4) and two access transistors M5

and M6. When the word-line (WL) is turned on, depending on the value of Q,

only one pair of MOSFETs (M1/M4 and M2/M3) will be activated. To perform

a read operation, the bit-lines (BL and BL’) will be pre-charged first and then be

pulled down by Q and Q’. For write operation, BL and BL’ are driven to some

voltages so that they can overpower the values of Q and Q’.

12
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When WL is not asserted, M5 and M6 are both turned off and the cell stays in

standby state. A continuous power supply is required for holding the state of Q

and Q’ as the two cross-coupled inverters are enforcing each others. Otherwise,

the data content would eventually lose. The primary advantage of SRAM over

other memories is performance. Compared to DRAM, the read/write operation

on flip-flops is significantly faster. However, because of the complexity, SRAM

takes lot more space of the chip. Furthermore, reinforcement of the two cross-

coupled inverters requires a constant current flow in M1 to M4, consuming energy

when the cell in standby state.

2.1.2 Dynamic RAM

Dynamic RAM (DRAM) stores information using a fundamental electrical ele-

ment: the capacitor. Capacitors can store energy in the form of electric charges.

A typical 1-transistor 1-capacitor (1T-1C) DRAM cell is shown in Figure 2.1b.

Transistor M1 controls the access to capacitor C1. The cell discharges during a

read operation and is charged to an appropriate value in a write operation. While

reading the content will also destroy the charge inside the capacitor, rewritten is

necessary after a read operation.

The design of DRAM is optimized for density. Its cost per bit is much lower

than SRAM’s which allows it to reach a much higher capacity under the same

chip area. Although it does not require continuous power supply to maintain

its content, periodical refresh operation is necessary as the charge stored in the

capacitor will gradually fade out. DRAM refresh not only consumes extra energy,
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Fig. 2.2 A N-channel floating gate transistor (FGMOS).

but also affect performance since the normal operation must be blocked when

the cell being refreshed.

2.1.3 Read-only Memory and Flash Memory

Read-only memory (ROM) is a class of non-volatile memory (NVM) that can

store data permanently without power supply. Under most of the circumstances,

the only operation to ROM is read. Thus ROM is optimized for read operation,

and typically requires a very different procedure of reprogramming its contents.

Such a procedure can be either physical as in erasable programmable read-

only memory (EPROM) or electrical as in electrically-erasable programmable

read-only memory (EEPROM).

Flash memory originated from EEPROM. It is based on floating-gate MOS-

FET (FGMOS) which resembles as a capacitor. In FGMOS, there is a secondary

gate (FG) deposited under the control gate (Figure 2.2). FG is completely

electrically-isolated, hence the charge (data) trapped inside can be kept un-

changed without power supply. An electric field is applied to remove the charges

and place electrons into the FG.
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There are two types of flash memory: NOR-type and NAND-type. They

differ in the way of connecting the cells in forming a data array. NAND-type

flash is denser than NOR-type and cost less, so it dominated most of the large-

capacity storage systems. Note that NAND flash is not a random-addressable

memory. Its operating mechanism is similar to a block device where reading and

programming is performed on a page basis while erasing on a block basis. In

addition, reprogramming of a dirty block requires erasing of the existing contents

first. Therefore, flash memory operates at a much slower speed than other volatile

memories such as SRAM and DRAM, and it is typically deployed at the bottom

of the memory hierarchy where the access frequency is relatively low.

2.2 Emerging Memories

Due to their desired features, a number of emerging memory technologies are

currently being investigated as promising candidates on mitigating the issues

posted by conventional memories, especially SRAM and DRAM.

2.2.1 Ferroelectric RAM

Ferroelectric RAM (FeRAM) is a random-access memory that has similar struc-

ture as DRAM but uses ferroelectric layer instead of dielectric layer to achieve

non-volatility [46]. It adopts a ferroelectric capacitor in a 1T-1C structure as

shown in Figure 2.3a. The ferroelectric material has the effect of semi-permanent

electric dipoles formed in the crystal structure. The content stored is recognized

by the polarization state of the dipoles. Programming of the cell is done through

applying an external electric field across a dielectric. Note that although the
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dipoles can retain their polarization state after programming, the read operation

is still a destructive process and re-written of the data is necessary.

2.2.2 Phase-change Memory

Phase-change memory (PCM) is a type of NVM that exploits the unique behavior

of chalcogenide glass [7]. Shown in Figure 2.3b, the cell is built with active

material including Ge, Sb and Te (GST) that are sandwiched between two elec-

trodes. GST exhibits two meta-stable phases (states) with different resistances: a

poly-crystalline and an amorphous phase. The phase change (programming) is

done through a thermally-induced transition (temperate change) by heating up

the bottom resistive electrode.

2.2.3 Memristor

Memristor is the fourth fundamental passive circuit element which is firstly

demonstrated by Hewlett-Packard in 2008 [80]. It was predicted to exist in nature

during last 70s [21], but was only found 30 years later. Memristor is a bipolar
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Fig. 2.4 The TiO2-based memristor.

device that consists of a semiconductor thin film of thickness D sandwiched

between two metal contacts (Figure 2.4). A movable boundary (domain wall)

separates the mental oxide layer into two regions: a highly conductive doped

region (width w), and a high resistive undoped region (width D−w). In HP’s

implementation, the undoped region contains oxygen-rich TiO2 while the doped

region is injected with auxiliary oxygen vacancies, and is thus positively charged.

By applying a positive voltage to the electrode on the doped (undoped) side, the

oxygen vacancies move towards the undoped (doped) region. As a consequence,

the boundary front shifts, and the overall resistance of the device is reduced

(increased). When the metal oxide layer becomes completely doped (undoped),

the device enters a hysteresis state with lowest (highest) resistance. The process

is reversible. By applying negative voltage to the doped side, the oxygen defects

can be pushed back to the doped region and the overall device resistance would

increase accordingly.

Formally, given the width w of the doped region, and a device thickness of D,

the resistance of a current-controlled memristor can be expressed by

R(w) = Ron
w(t)

D
+Ro f f (1−

w(t)
D

) (2.1)
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where Ron and Ro f f are the minimum and maximum resistance as the metal oxide

region becomes completely doped and undoped, respectively. Moreover, the

changing rate of w is represented by

dw(t)
dt

= µv
Ron

D
i(t) (2.2)

where µv is the average ion mobility, and i(t) is the current flow across the device

at time t.

Memristors can be used as single-level cell memory through mapping their

resistance states into binary bits, say with the high-resistance state corresponds to

logical 0 while low-resistance state corresponds to logical 1. More interestingly,

the device’s resistance can be programed into any intermediate value by a careful-

controlled voltage and timing. In another words, it has the potential to function

both as single- or multi-level cells.

Other than HP’s TiO2-based implementation, several types of materials have

been shown to exhibit a similar characteristics [43, 57], and hence can be used

in the fabrication of memristor. In our study, we choose HP’s implementation

model since it has received more attentions than the others with several practical

simulation models widely available [11, 68, 49, 58].

2.2.4 Spin-transfer-torque RAM

Spin-transfer torque RAM (STT-RAM) belongs to the family of magneto-resistive

RAM (MRAM) which stores data as magnetic resistances. The name of STT-

RAM comes from a physical technique called spin transfer switching [25] and

it has been proved to be more superior than other types of MRAM. The basic
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Fig. 2.5 Typical structure of a 1T-1MTJ STT-RAM cell.

data storage unit inside a STT-RAM cell is the magnetic tunnel junction (MTJ).

Figure 2.5 shows a typical one transistor, one MTJ (1T-1MTJ) STT-RAM cell

structure. The MTJ has two ferromagnetic layers that are separated by an oxide

tunnel barrier. The ferromagnetic layer at the bottom (the reference layer) comes

with a fixed magnetization direction while that for the top layer (the free layer)

can be changed though a spin-polarized current. This configuration is known as

a spin valve.

When the magnetization direction of the free layer is in parallel (P) or anti-

parallel (AP) to the reference layer, the device is in low- or high-resistance state,

representing logical ’1’ or ’0’. As such, the data is encoded by the resistance

of the MTJ. For read operation, the cell is first selected through the word-line

(WL) to the gate of the nMOS transistor, a small sensing current is injected into

the MTJ from the source-line (SL). The resistance state of the device is then

determined by comparing the voltage output in bit-line (BL) to a reference value.

To program (write) the device, a current larger than critical switching current

(IC) is applied from BL to SL. The polarization of the injected current determines

how the magnetization direction of the free layer would be switched (P or AP to

the reference layer).
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Volatility-relaxed STT-RAM

When compared to volatile SRAM, a typical storage-class STT-RAM which can

sustain data at least 10 years at room temperature incurs a up to 20× program-

ming latency [98]. Theoretically, the data retention time Tret of a MTJ can be

formulated as

Tret =
1
f0

e∆ (2.3)

where ∆ is the magnetization stability height and f0 is the thermal attempt

frequency. For storage purpose, f0 is taken from the order of GHz. The value of

∆ is determined by

∆ =
KuV
kBT

(2.4)

where Ku is MTJ characteristic constant and kB is Boltzmann constant [25]. T is

the device working temperature and V is the effective activation volume. Hence,

the retention time of a MTJ decreases exponentially to the cell surface area, and

as the working temperature rises. Previous study proposed that by reducing

V , the MTJ switching current density can be decreased so as the write latency

and energy required [75]. As a consequence, retention time Tret is inevitably be

reduced and a refresh scheme is necessary to maintain data integrity. Such kind

of volatility-reduced STT-RAM trades the write performance/energy for extra

refresh penalties.

Multi-level cell STT-RAM

To further improve the storage density, multi-level cell (MLC) STT-RAM has

been investigated. It is implemented by placing more than one MTJs in a cell. One
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Fig. 2.6 MLC STT-RAM cell structure and operations.

of the conventional MLC STT-RAM structure stacks two MTJs vertically [36],

and is more robust against process variation [98]. Figure 2.6 demonstrates the

cell structure and read/write procedures.

The two MTJ must be of different sizes in order to differentiate two logic

bits in one cell. We name the data stored in the small and large MTJs as soft-bit

and hard-bit, respectively, as shown in Figure 2.6a. In a given magnetic process,

both the resistance-area product (RA) and the critical switching current density

(JC) remain constant, therefore the soft-bit has a larger resistance but requires a

smaller switching current IC than the hard-bit.

Programming an MLC requires a two-stage operation as shown in Figure 2.6b.

First, a strong current IWH > IC,Hard is applied which switches both the hard-

bit and the soft-bit. Then in the second stage, a smaller current satisfying

IC,Hard > IWS > IC,Soft is used to switch only the soft-bit. Similarly, reading out

the data from a MLC STT-RAM requires two steps. A reference voltage ref–S

is first used to detect the soft-bit. According to the result, a second reference

voltage ref–H or ref–H′ is used to sense the hard-bit, as shown in Figure 2.6c.

Therefore, reading and writing the MLC takes more time than a SLC. Note that
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Fig. 2.7 The horizontal structure of a domain-wall memory [83].

if the hard-bit is fixed at a value, reading and writing the soft-bit requires only a

single step with smaller current densities. Thus, MLC STT-RAM can operate as

SLC to accelerate the access speed by reducing half of the capacity.

2.2.5 Domain-wall Memory

Domain-wall memory (DWM), or racetrack memory, stores multiple data bits

in the domains on a single ferromagnetic nanowire [83]. Figure 2.7 shows a

DWM macro-cell that has a similar structure to a tape device. These domains

are separated by ultra-thin domain walls and each of them has its own magnetic

direction that can be individually accessed/programed. Under such an organi-

zation, a read/write operation requires three step. First, the particular domain

to be accessed is shifted to the access port. Then the required operation (R/W)

is performed by applying an appropriate current to the MTJ built at the access

port. Upon the desired operation is completed, the domain must be shifted back

to its original location in order to maintain a proper addressing. Such a memory

can be easily made in very high capacity by arranging multiple racetracks (tapes)

together either horizontally or vertically. The main drawback is that the access

time depends on the relative location of the data bit and the access port.
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2.2.6 Embedded DRAM

Embedded DRAM (eDRAM) shares similar structure with DRAM but can be

integrated into the same die with processor cores as on-chip memory. There are

two types of eDRAM: 1T-1C cell (Figure 2.1b) and logic-compatible gain cell

(Figure 2.8). 1T-1C cells are denser but the read operation is destructive while

gain cell has a better read performance and can be built using standard CMOS

technology. However, both types still require periodical refresh which incurs

additional energy and performance overheads.

3D XPoint Memory

Recently, Intel has proposed a new type of memory technology called 3D

XPoint [1]. It is a resistance-based memory that relies on different resistance

levels to differentiate logical ’0’ and ’1’. While not much details of the tech-

nology has been disclosed, Intel claimed it is more reliable than NAND flash

with a comparable access speed to DRAM. Further investigation showed that this

technology is using PCM and targeting on big data applications. Thus it shall

replace neither NAND flash nor DRAM.

23



Background

6

SRAM DRAM FeRAM PCM Memristor STT-RAM DWM

Density Low High Medium High High Medium High

R/W speed Fast Fast Medium /
Slow

Fast /
Slow

Medium Fast /
Medium

Fast /
Medium

R/W energy Low/
Low

Low/
Low

Low /
High

Low /
High

Low /
Medium

Low /
Medium

Low /
Medium

Volatile Yes Yes No No No No No

Endurance High High Medium Medium Medium High High

Table 2.1 Comparison of memory technologies.

2.3 Summary

Figure 2.1 summarizes the characteristics of several memory technologies. Each

of them has its own advantages and disadvantages. For instance, SRAM has the

highest performance but is low density; DRAM (eDRAM) can be easily made in

large capacity but requires periodical refresh for maintaining the data; PCM has

similar density as DRAM but the endurance is few orders of magnitude lower.

Figure 2.9 shows the memory hierarchy and the suitable technologies accord-

ing to the existing states. At higher levels in the memory hierarchy, components

such as buffers and caches are more performance critical. They exhibit strong

locality of reference so that capacity is less important here. As we goes down

in the memory hierarchy, performance becomes less important and cost-per-bit

starts to play the main role. Due to such a property, on the conventional side,

SRAM is usually chosen to implement some higher level memory components

while DRAM dominates the area of main memory.

On the emerging memories front, STT-RAM, DWM and eDRAM has been

widely proposed as replacements of SRAM-based on-chip caches [82, 75, 45, 37,

83, 14] while PCM is often treated as a replacement of DRAM in constructing
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Fig. 2.9 Memory hierarchy and memory technologies.

off-chip memories [60, 23]. More interestingly, memristive devices has been used

in the realization of large-scale neuromorphic system [43, 76]. These previous

studies indicate that emerging memories shall play an important role in the design

of future energy-efficient memory hierarchies.
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Chapter 3

Architecting Memristor as

Low-Power Analog Neural Branch

Predictor

In this chapter, we examines the use of emerging memories at the highest level

in the memory hierarchy. Example memory components at this level includes

register files (RF), translation lookaside buffer (TLB), return-address stack

(RAS) and dynamic branch predictor. At this level, most of the components are

optimized for latency since the operations on them are very likely to be on the

critical path. For example, register read, address translation and branch prediction.

Figure 3.1 shows the scope of this chapter and the memory technologies involved.

This chapter will demonstrate a low-power neural branch predictor design

constructed with memristors. By the help of analog computing techniques, as

well as exploiting the accuracy tolerance inside branch prediction, our predictor
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Fig. 3.1 Scope and memory technologies used in this chapter.

is able to efficiently realize a neural prediction algorithm with a better accuracy

and a lower energy consumption than digital-based predictors.

3.1 Branch Prediction

Modern processors are usually deep-pipelined with the capability of speculative

execution. Thus it makes branch prediction a crucial factor in single-thread per-

formance. For instance, a x86 uop branch mis-prediction incurs at least 15 clock

cycle penalty measured in the pipeline of Sandy Bridge microarchitecture [32].

Compared to a typical arithmetic operations that usually takes only a few cycles

to complete, each branch mis-prediction creates a large bubble in the instruction

flow and reduce effective performance. Figure 3.2 shows how the pipeline oper-

ates when: a) no branch predictor; b) branch mis-predicted; c) branch correctly

predicted. Here we assume each branch instruction takes 10 clock cycles to
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Fig. 3.2 The importance of branch predictor.

resolve. In Figure 3.2a, no prediction mechanism is presented so the pipeline has

to stall for 10 cycles until the branch gets resolved. In Figure 3.2b, the branch

is mis-predicted. It takes roughly same amounts of time to flush the incorrect

instructions from the pipeline. In Figure 3.2c, the branch is correctly predicted.

Hence, the speculative execution path can be finalized, saving the 10-cycle stall.

29



Architecting Memristor as Low-Power Analog Neural Branch Predictor

Types of branch predictor

In general, branch predictors can be categorized into either static or dynamic.

Static predictor makes predictions based entirely on static information such as

branch target and type of the branch. Dynamic predictor takes additional runtime

information into account including branch pattern history so thus resulted in much

better prediction accuracy. In the past twenty years, numerous dynamic branch

prediction schemes have been introduced. Among them, two-level adaptive

branch predictor [96, 97, 55] is the most widely used approach offering high

prediction accuracy with moderate implementation cost. However, the resource

requirement for two-level predictor grows exponentially when the history length

increases. Hence, the effectiveness of all two-level-based schemes are limited by

how many branch history patterns they can recognize.

Neural branch prediction

It’s worth noting that branch prediction is essentially a machine learning problem.

The predictor gathers information from the retired branches and learns the branch

behaviors (patterns) based on some statistics models. Then it makes predictions

(inferences) for the future branches using its existing knowledge and trains

the model when necessary. Therefore, some researchers have proposed neural

methods in the design of branch predictors [78]. In particular, the perceptron

predictor claimed to be the first neural branch predictor that is deemed feasible

for actual deployment [41] and it forms the base of subsequent neural-inspired

predictors [38–40]. Nonetheless, it incurs a much longer prediction latency when
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Fig. 3.3 The perceptron predictor diagram.

compared to other two-level-based predictors. The following section describes

the implementation of a perceptron predictor in details.

3.1.1 Perceptron Predictor

The design diagram of a perception predictor is shown in Figure 3.3. Its algorithm

requires a two-dimension weight table with an extra column of bias weight to

be stored in some fast SRAMs. Each row of the table consists of h n-bit signed

integer weights, where h is the global history length to be considered.

When a branch is encountered, its address is used to index into one of the

rows, and a dot-product is performed between the global branch history vector

(with ‘1’ being taken to mean ‘taken’, and ‘−1‘ for ‘not-taken’) and the selected

row (excluding the bias weight). The prediction is generated by examining the

sign bit of the sum of the dot-product with the bias weight. Mathematically, this
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weighted sum S on a selected row i is calculated by

S =Wi0 +
h

∑
k=1

(Wik×Hk) (3.1)

where Wi0 denotes the bias weight of row i, (Wi1, . . . ,Wih) is the selected weight

vector and H = (H1, . . . ,Hh) is the h-bit history register.

Training of the weight table occurs when the prediction is wrong or the

absolute value of S is less than a pre-defined threshold θ (meaning that the

prediction is weak). The detailed algorithm is described in Algorithm 1. Note

that all arithmetics here are saturated. The rationality behind the training is that

when the outcome of the current branch is strongly correlated with a historical

branch, the magnitude of the weight should be large enough to have a notifiable

impact on the weighted sum. Otherwise, the weight will be close to zero which

contribute very less to the calculation of S. Since it requires only one column

in the weight table for each historical branch, perceptron predictor can consider

much longer history than other types of predictor such as two-level predictor

within the same storage budget.

3.1.2 From Digital to Analog

Despite of the high prediction accuracy and a more efficient use of memory

storage, perceptron predictor (and other neural-based schemes) comes with a

serious drawback: the time to perform a dot-product limits how fast a prediction

can be made. By using an adder tree, adding h integer numbers still requires

logh operations, not to mention the complexity of the extra circuitry supporting

parallel addition. Although there are proposals to speed up the computation [38],
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3.1 Branch Prediction

if prediction != outcome OR S < θ then
if outcome == taken then

Wi0←Wi0 +1
else

Wi0←Wi0−1
end

end
forall the j in parallel do

if H j == outcome then
Wi j←Wi j +1

else
Wi j←Wi j−1

end
end

Algorithm 1: Training the perceptron predictor for branch i

they come at the expense of accuracy. Due to these issues, most neural-based

schemes to date have been deemed impractical for actual implementation.

Analog Current Summation. While adding a long list of weights is slow

and expensive in the digital domain, there is a fast and efficient analog circuit

technique which can achieve similar effect. Kirchoff’s Current Law (KCL) states

that at any junction in an analog circuit, the sum of currents flow in equals to

the sum of currents flowing out. Mathematically, given a junction that have i

currents passing through, we have

k

∑
i=1

Ii = 0 (3.2)

Note that current I is a signed quantity where a positive value represents the

current that flows into the junction while a negative value represents the current

that flows out.
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By the property of KCL, connecting a list of analog currents with the same

direction would produce a current sum with an magnitude that equals to the sum

of all the currents. In theory, such an operation is equivalent to the addition of

weights which are now represented by analog currents.

Analog Neural Predictor. Since neural-based computations in nature are

essentially analogue, researchers have introduced analog methods into neural

predictors [77]. The main purpose here is to shorten the critical path by replacing

the high-latency and energy-consuming digital addition with a fast and efficient

analog current summation. While storing analog signal is difficult, the present of

digital-analog-converter (DAC) is necessary to convert between digital weights

and analog currents. Hence, the requirement of SRAM storage is not eliminated.

Integrating Storage and Computation. With the discovery of memristor, it

has prompted us that the functions of memory and computation can be combined

in a single device within a neural system [43]. Hence, we took the benefits from

the memristor and have worked out a new design of neural branch predictor.

3.2 Memristor-based Branch Predictor

This section describes our memristor-based neural predictor design. We shall

present the high-level architecture followed by the internal circuit design of the

memristor cell.

3.2.1 Architecture Design

Figure 3.4 shows the architecture-level design of our memristor predictor. Our

design is based on the perceptron predictor described in previous section. How-
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Fig. 3.4 Architecture design diagram of the memristor-based neural predictor

ever, instead of using conventional SRAM storage, each weight is now stored in

a two-dimensional table of multi-level memristor cell (MLMC). The MLMC at

position (i, j) has two analog outputs: Pi j and Ni j. The weight Wi j stored in this

MLMC is effectively the relative difference between them, i.e., Wi j = Pi j−Ni j.

By simply exchanging the roles of Pi j and Ni j inside a MLMC the weight can

be negated. This is controlled by the history bit, H j. Such a design allows us to

perform multiplication by 1 and−1 in a faster manner than the digital counterpart

in which a complement operation is needed.

Similar to the perceptron predictor, the program counter (branch address)

is used for indexing a row of weights: Wi1, . . . ,Wih during the prediction phase.

Each MLMC will output one of its analog current signal on a positive line and

a negative line in accordance to the global history register (H1, . . . ,Hh) in the
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following way. If Hk = 1, Pik will be put onto the positive line and Nik will be

output onto the negative line. If Hk = 0, the roles of Nik and Pik are reversed.

All the current signals on the shared positive (negative) line will be summed

up naturally by Kirchoff’s Current Law. The final prediction is made based on

the relative current difference between the two lines, which is detected by an

latched comparator [30]. If the total current on the positive line is equal or larger

than that on the negative line, the branch is predicted to be ‘taken’. Otherwise,

it is predicted to be ‘not-taken’. Note that the analog summation process is

accomplished almost instantly once all the cell outputs stabilize. This provides a

significant speed advantage over the digital adder tree method.

The training signal is generated at the branch resolving stage of the pipeline.

To avoid a second read of the perceptron table, we shall perform a threshold

comparison at the prediction stage and propagate its result to the later stage where

branches are resolved. The comparison is done by first computing the difference

between the analog signal on the positive and negative lines, followed by a

latched comparison. This is done in parallel with the prediction. While training

is required, all MLMCs in the selected row would be updated simultaneously

given the branch result and history bits.

3.2.2 Circuit Design

Figure 3.5 gives the detailed design of a MLMC. We can divide the whole cell

into two sub-branches: a memristor branch, and a resistor branch. The value

of R is chosen to be in the middle of the resistance range of M. When the

prediction signal is activated, the upper CMOS gates saturate, and the currents
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Fig. 3.5 Circuit design inside a MLMC

going through M and R would be directed to output terminals P and N based on

the history bit. The history input controls the two pairs of MOSFET below M

and R. When the history is ‘1’ (taken), M is connected to P and R is connected

to N. If the history is ‘0’ (not-taken), the roles of P and N are reversed which is

equivalent to multiplying the weight by −1.

For the training part, auxiliary CMOS gates are added to control the program-

ming current/voltage’s direction into M1. When the branch history and outcome

are positively correlated, the middle pair of MOSFETs are activated so that the

current will push the domain wall towards the undoped side, and so decreases

the resistance of M1. On the other hand, if the branch history and outcome are

different (negatively correlated), the right pair of MOSFETs are activated to

enable a reverse current for pushing the domain wall to the doped region, thereby

increasing the device resistance.

Notice that the magnitude of the prediction (read) and training (write) voltages

are different. To perform predictions, a small VDD is chosen so that it brings only
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a negligible disturbance to the memristor state while a larger VDD is required for

proper programming of the cell.

In theory, the memristor can be configured with arbitrary resistance levels to

imitate a n-bit number. However, using more levels would result in lower noise

margins, which may make the output difference undetectable. For practical rea-

sons, we configure the memristor to have only 16 levels of resistances, equivalent

to a digital design using 4-bit weights.

3.2.3 Discussion

Analog noise and thermal fluctuation

Unlike digital circuits, analog systems, especially for those on-chip components,

are more susceptible to signal noises. The current signals on the two shared

lines can be disturbed by voltage bounces generated from MOSFET switchings

which may affect the results of the analog computations. However, this can be

mitigated through some mixed-signal IC design techniques such as the guard

rings [81]. On the other hand, instead of using conventional SRAM storage as

in SNAP [77], our design stores the perceptron weights in a purely analog form

(resistance). The elimination of current-steering DACs potentially reduces the

amount of noises coming from signal conversion, and thus enhances the overall

robustness.

While the ion mobility inside a memristive material like TiO2 may be affected

by thermal fluctuations, there is no evidence currently to show that this issue is

significant enough to have major impact on our design. As more and more mate-

rials are found to exhibit memristive property, it is likely that a commercialized
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memristor device will be as temperature-insensitive as the other on-chip CMOS

components.

Memristor latency and state-drift

Since the memristor is essentially a variable-resistor, the read latency of a MLMC

is dominated by the switching speed of the MOSFETs, and hence has very limited

impact on the prediction latency. On the other hand, the original TiO2-based

memristor [94] has an unfeasibly long programming latency under a typical VDD.

Such a limitation should eventually be addressed by technological advances such

as the use of recent discovered TaO-based materials [57], which has already

demonstrated sub-nanosecond switching speed.

Another issue related to any memristor-based design is the state-drift problem.

Since the existing ion-drift models do not impose a programming threshold, even

a tiny electric charge may disturb the memristor’s state and such an effect can be

accumulated. Fortunately, recent research has shown that the internal switching

dynamics requires a fairly strong electric field for programming in practice [66].

This means that as long as the sensing current is kept under a threshold, the

state-drift issue shall not occur.

Process variation

As the fabricating process continues to scale, process variation becomes criti-

cal, and can affect some key design parameters of nanoscale devices. For the

memristor, fluctuations in the resistance range directly impacts the accuracy of

the analog computation. Although a neural-based predictor is more tolerant to

minor weight variations, these manufacturing fluctuations could conceivably lead
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to performance degradation in some cases. Rajendran et al. [69] have analyzed

the effect of process variation on a memristor-based threshold gate design, and

proposed two algorithms to correct these variations. Their solutions can be

essentially applied to our design and are out of the discussion of this work.

3.3 Evaluation

This section evaluates the effectiveness of our predictor design and compare it

with the existing neural and non-neural schemes.

3.3.1 Experiment Setup

To evaluate our design, 20 benchmarks from the SPEC2006 suite are simulated

using the cycle-accurate simulator MARSSx86 [64]. Cycle-accurate simulation

evaluates not only the prediction accuracy, but also the performance impact

under a modern processor setting. The detailed parameters for the base machine

are shown in Table 3.1. The accuracy of the branch predictor is measured in

mis-predictions per kilo-instruction (MPKI), which is a common metric for

evaluating branch predictors. As for comparison, we have chosen two other

neural predictors and one non-neural predictor in our experiments:

• GShare. This is a variant of the original two-level predictor that can be

found in many commercialized processors [5]. It features a relatively high

prediction accuracy and a low implementation complexity. As our baseline

predictor, we have chosen a storage budget of (128K + 16)bits configured

as 64K × 2-bit pattern history table with 16-bit global history.
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• Perceptron. This is the neural predictor described in section 3.1.1. We

choose 4-bit digital weight width in order to provide a fair comparison

with the memristor-based predictor. Under the same storage budget as

gshare, various global history lengths are tested and the best-performed

one is chosen (48-bit).

• SNAP. This is a neural-inspired predictor that features an analog imple-

mentation [77]. The scaling factors are calculated using the original fitting

formula. While the original scheme features several weight tables of differ-

ent dimensions, we simplified the design with a single weight table. The

global history register is fixed at 48-bit as well.

• Memristor. This is our proposed design. The memristor model used is a

simple linear ion drift model [11] that has been configured with 16 distinct

resistance levels. The double-memristor predictor scheme proposed in [34]

was also evaluated. The weigh table dimension and history length are

chosen to be the same as perceptron and SNAP, although memristor-based

storage is considered in higher density.

Despite that the accuracy of a linear ion drift model is usually considered

to be insufficient in modeling fabricated memristor device, it satisfies the basic

memristive system equation and has the advantage of being computational ef-

ficient [11]. On the other hand, while the TaO2-based memristor has already

demonstrated sub-nanosecond switching performance, the lack of a practical

model makes the simulation difficult [57]. Therefore, some parameters in the

linear ion drift model are tuned manually so that the device can work according to

a GHz-level clock frequency, assuming these physical properties of memristor are
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Parameters Value
Processor Core Single, out-of-order
Pipeline Width 4

Pipeline/Frontend Stages 14 / 4
Fetch/Issue Queue Size 48 / 64
ROB/Register File Size 128 / 256
Load/Store Queue Size 48 / 32

I-TLB/D-TLB Size 64 / 64
In-flight Branches 24

BTB Size 4K, 4-way associative
RAS Size 24

Functional Units 4 ALU, 2 FPU, 2 LU, 1 SU
Memory/Cache System Perfect cache, 3-cycle latency

Table 3.1 Simulation platform.

scalable. Although modern fetch units may withstand the penalty of multi-cycle

prediction in certain situations, for the simplicity of discussion, we assume all

predictors generate a prediction within one CPU cycle.

3.3.2 Energy Consumption

We measured the energy consumption by calculating both the static energy

(leakage) and the dynamic energy consumed while performing branch predictions

and predictor updates (training).

Leakage energy

The leakage energy consumed by storing the weight table was estimated through

the modeling of a tagless table. CACTI simulation shows that a 128kbits SRAM

table consumes 7.9mW of leakage power (data cells only). Such an amount of

leakage power shall be similar for all kinds of SRAM-based predictors.
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On the analog side, we used LTSpice with 45nm PTM to monitor the current

passes through each MLMC for measurement of the power consumption. Sim-

ulation showed that each MLMC (single-memristor) drains 5.5nW of standby

power, and thus the same-sized weight table consumes 67.6µW of leakage power

in total. For comparison, the double-memristor design [34] consumes a little

bit more than 92µW due to the extra MOSFETs required for programming two

memristors. Hence, our approach achieves a two orders of magnitude savings in

leakage power compared to those SRAM-based predictors. Note that due to the

significance of leakage power, the static energy has already dominated overall

energy consumption in the case of perceptron and SNAP.

Dynamic energy

The dynamic energy consumed by a prediction includes the table lookups and the

analog/digital computation. Given the same table dimensions, the lookup step

consumes a similar amount of energy for both analog and digital storage. For a

SRAM-based table, the energy required to read out a 24-byte block (48 history

counters of 4-bit weight) was measured at 18.9pJ. At a 1 GHz clock with a 1V

VDD, our analog predictor requires only 0.3pJ to obtain stable outputs on both the

positive and negative lines. The alternative double-memristor scheme consumed

a slightly lower 0.27pJ of read energy. For comparison, SNAP required a larger

0.4pJ energy just for its analog computation.

For training (i.e., updates), our single-memristor design consumes around

0.82pJ while the double-memristor scheme consumes more than 1.87pJ. Note

that the SRAM-based perceptron/SNAP consumes similar energy for both reads

and updates. Figure 3.6 shows the total average energy breakdown for the two
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Fig. 3.6 Energy breakdown for the two memristor predictors.

memristor-based schemes, averaged from all the benchmarks tested. Our single-

memristor design outperforms the double-memristor approach in both leakage

and dynamic energy (prediction + training). The data also shows that the double-

memristor design results in a slightly better prediction energy, but requires more

energy for training. In total, our design reduces energy consumption by 27.3%.

3.3.3 Prediction Accuracy

Figure 3.7 shows the prediction accuracy of gshare, perceptron, SNAP, and our

memristor-based predictor. In certain cases like 410.bwaves, 444.namd and

470.lbm, more independent looping-behavior branches are present. Thus gshare

performs better than perceptron in separating those interferences from unrelated

histories. However, on average, gshare is not as accurate as the neural-based

predictors. The perceptron predictor generally improves the low accuracy of

gshare. In particular, for integer benchmarks like 401.bzip2, 456.hmmer and

471.omnetpp that usually contain lots of complex dependent branches, larger

reductions in MPKI were recorded because the perceptron algorithm can capture

longer historical branch relationship than gshare.
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When compared to digital perceptron, the analog counterparts turns out

to be slightly more accurate. SNAP improves on the perceptron’s weakness

in predicting simple uncorrelated looping behavior branches by reducing the

interference from unrelated historical branches. Our memristor-based scheme,

on the other hand, behaves more nonlinearly than either digital perceptron or

SNAP, due to memristor’s characteristic and its analog computation. This allows

it to resolve certain irregular dependent branches. For example, compared to

gshare, our predictor reduces by 35% the MPKI for 473.astar which is the

most difficult benchmark to predict. Another case with many irregular branches

is 403.gcc, where the memristor predictor reduces the MPKI by 24%.

3.3.4 Performance Analysis

The normalized IPC rates against the baseline are shown in Figure 3.8. For most

benchmarks, a lower MPKI usually increases the IPC rate. However, all three

predictors suffered larger than 13% IPC drops compared to gshare in the case of

429.mcf. The digital perceptron only increased MPKI by a marginal amount, and

the other two had lower MPKIs. Similar results were observed in 470.lbm where

the IPC for SNAP and memristor predictor decrease by more than 11% even

with better MPKI numbers. Such a phenomenon shows that not all mis-predicted

branches incur the same performance penalty. Different predictors may predict

the same branch differently, even if they produce similar MPKI numbers. In

certain cases, while neural-based predictors predict more branches correctly, they

also mis-predicted more critical branches than gshare. Fortunately, the impact on

performance from those critical branches is not significant. On average, digital
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perceptron, SNAP, and our memristor predictor boost the baseline IPC rate by

7.1%, 8.1% and 8.6%, respectively.

Compared with the double-memristor proposal [34], our predictor reduces the

MPKI by more than 10% with a 3% increase in IPC, under the same weight table

dimension. Therefore, combined with the improvement in energy consumption,

our single-memristor approach is superior.
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3.3.5 Prediction Confidence

Recall that the perceptron training process is invoked either after a misprediction

has occurred, or the absolute value of the weighted sum is less than a threshold,

indicating that the prediction is weak and the predictor need more trainings.

However, MPKI does not provide information such as the confidence level of the

predictor. In order to measure that, we shall analysis the training frequency of

the neural predictors.

The data showed in Table 3.2 are the number of Extra trainings per kilo-

instruction (ETKI) excluding those incurred by mispredictions. It demonstrates

that how many predictions are indeed correct but are considered weak because

of an under-trained predictor. As expected, the number of ETKI is a little

more than MPKI since a neural-based predictor requires some amount of tuning

efforts to switch to another branch behavior after a misprediction is encountered.

However, for the digital perceptron predictor, the number of weak-but-correct

predictions is much larger than the mispredictions in certain cases like 444.namd

and 471.omnetpp.

Compared to perceptron, our memristor-based analog predictor significantly

reduces the number of extra trainings while preserving a similar or even improv-

ing MPKI and IPC. Such an increased prediction confidence can be attributed

to the inherent neural properties of memristors. Notice that the dynamics of

memristor on its resistance change is a continuous, and highly nonlinear process

rather than the simple discrete +1 or −1 arithmetic. In addition, the analog

summation not only involves the memristor and resistor, but is also affected by

other CMOS transistors. Even under a simplified model, the MLMCs together
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Perceptron Memristor Normalized
Difference

401.bzip2 15.3 11.7 23.5%
403.gcc 76.2 31.8 58.3%
410.bwaves 8.9 6.5 26.4%
416.gamess 10.2 7.9 22.7%
429.mcf 52.5 34.4 34.6%
433.milc 2.4 1.4 44.2%
434.zeusmp 2.4 4.1 -72.4%
437.leslie3d 1.4 1.5 -2.9%
444.namd 73.8 12.5 83.1%
450.soplex 35.5 22.5 36.6%
453.povray 33.5 21.6 35.6%
454.calculix 16.1 16.2 -1.0%
456.hmmer 14.5 24.2 -67.1%
462.libquantum 12.1 14.3 -17.4%
464.h264ref 20.9 10.9 47.9%
465.tonto 11.4 4.5 60.7%
471.omnetpp 92.6 25.8 72.1%
473.astar 54.6 51.5 5.7%
483.xalanbmk 34.9 11.7 66.4%
Average 30.0 16.6 24.1%

Table 3.2 Extra trainings per kilo-instruction (ETKI).

form a much more complicated system with the analog output than a simple

summation of weights in the digital domain, thereby behaving more closely to a

real-life neural network.

3.4 Related Work

The scaled neural analog predictor (SNAP) [77] is the first neural-based branch

predictor that aims to be both accurate and feasible. It uses analog computation

techniques that are commonly found in the modeling of neural network to cal-
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culate the compute-intensive dot-product. Such a mixed-signal design not only

yields a manageable prediction timing, but also has a better energy-efficiency

than the digital counterpart. However, SNAP still assumes the weight table to be

stored in fast SRAMs which consume static energy.

A competitive memristor-based neural branch predictor was proposed in [34].

In that design, two memristors were used in both the left and right branches

shown in Figure.3.5. Such a scheme aims at better sensing margins. However,

in the case of neural branch predictor, reading out the exact value stored in the

MLMCs is not necessary and only the aggregated output is concerned. A smaller

sensing margin poses limited impact on the accuracy but consumes more energy.

Furthermore, the author did not evaluate such a design at architecture level and

failed to compare it with other analog schemes such as SNAP.

3.5 Summary

Neural branch predictors have been proven to perform very well in terms of

accuracy. However, they face significant implementation challenges especially

under the stringent demands of today’s microprocessors. In this work we have

proposed a more practical and energy-efficient neural predictor design based on a

promising device, namely the memristor. It mitigates the compute-intensive parts

of the neural prediction algorithm by utilizing analog computation techniques.

The use of the memristor as both a storage component as well as a compute

element achieved significant leakage energy savings while maintaining the same

level of prediction accuracy and system performance. In addition, the inherent
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property of the memristor increases prediction confidence with less predictor

trainings, further reducing the dynamic energy consumed.

Our scheme can conceivably be applied in other neural-inspired predictors

with additional modifications. Overcoming the latency issue involved during

the prediction step by going analog enhances the feasibility of most neural

predictors. More aggressive neural prediction algorithms such as [40] might now

be practical. As the technologies continue to evolve, there seems to be a role

for analog computing in processor architectures. The memristor, being CMOS

compatible, opens up a number of applications [28, 44, 65] that are expensive to

be implemented in a purely digital environment. This offers a promising direction

in answering the energy challenge that comes with CMOS process scaling.
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Chapter 4

Architecting STT-RAM as

Energy-Efficient L1 Cache

In this chapter, we move down to the next level in the memory hierarchy: first-

level cache (L1). At this level, performance is still important because most

memory operations are read which stay on the critical path. In addition, it comes

with an increasing requirement on capacity which is limited by the silicon area

and power budget. Therefore, with the help of an emerging memory technology,

namely the STT-RAM, we tried to build a more energy-efficient L1 cache in a

larger capacity. Note that here we only deal with data cache, thus the term ’L1

cache’ is referred to the first-level data cache in the subsequent sections unless

stated individually. Figure 4.1 shows the scope of this chapter and the memory

technologies involved.
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Fig. 4.1 Scope and memory technologies used in this chapter.

4.1 Motivation

Though the use of STT-RAM as on-chip caches has been widely studied [100,

93, 82, 98, 45, 37, 89], most of the works focus on lower-level caches because

of 1) they occupy larger portions of the processor die; 2) the expensive write

operation of STT-RAM contradicts to the high access frequency of first-level

caches. However, these reasons do not necessary prohibit the use of STT-RAM

in L1 cache. Figure 4.2 presents the runtime energy consumption breakdown for

two benchmarks from the PARSEC suite. As we will discuss in later section, flu-

idanimate and raytrace represent a read-intensive and a write-intensive scenario

respectively. In particular, the load/store unit consumes about 1/5 to 1/4 of the

total energy and more than 80% of them are consumed by L1 data cache. The

energy consumption per data block in L1 is indeed much higher than in lower

level caches.
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Fig. 4.2 Energy consumption for each core component.

In addition, the high frequency of write in L1 does not make STT-RAM

to be totally infeasible. There are several aspects of this issue. First of all,

L1 cache is private, meaning that the number of conflict misses induced from

different contexts are much less than those in lower-level shared caches. Thus,

L1 cache typically has a higher hit rate with less block fills (considered as writes).

Secondly, HPC applications in general contain more reads than writes (section

4.3.1) and with the help of write buffering, the actual number of writes to L1

cache are much less than reads. Thirdly, by relaxing the non-volatility of STT-

RAM cell [75], we can reduce both the write latency and energy to some extent.

Last but not the least, the cache coherence protocol provides some insights on the

block behavior and we may further reduce the writes to STT-RAM by relocating

some write-intensive blocks.

Based on these observations, the idea of hybrid cache has been proposed. It

is an analogy to ARM’s big.LITTLE architecture. The purpose is to put most

of the data in a large STT-RAM partition in order to benefit from the low static

power, and to use an additional SRAM partition to filter out the expensive writes.
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As mentioned, because of the R/W asymmetry, the size of the SRAM partition

can be much smaller than STT-RAM with manageable energy and performance

overhead. Section 4.1 will describe our proposal in more details.

4.1.1 Cache Coherence

Issues of private cache

In a shared-memory multiprocessor system, each processor node is typically

designed to have its own write-back private (local) caches for performance reason.

Thus, any data block may end up stored in multiple private caches and subjected

to local changes without notification. Figure 4.3 illustrates a scenarios where

data block A is presented in the local cache of processor P0 and P1, and data

block B is shared between P0 and P2. The lower-level memory (shared cache)

contains both blocks and other data that may not presented in upper level caches.

A sequence of operations issued by each processor is given in the right side.

We assume each private cache fetches data from lower-level shared cache and

returns an updated version when the block is evicted. Without a communication

mechanism, P1 will be unaware of the changes to A by P0 and end up reading the

expired data from its local copy. Furthermore, as both P0 and P2 have modified

block B, three different versions of B are existed together in the system (local

copies of P0 and P2, and the old copy in lower-level cache). Depending on when

the read operations arrive in lower-level cache, the value of B which P0 reads

may not be consistent with the value that P1 reads, given these two reads happen

at the exact moment.
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Fig. 4.3 A scenario of private-shared caches.

Coherence protocol

In order to resolve such conflicts and maintain the consistency between the shared

data copies, cache coherence protocol has been developed. It defines how the

memory operations are propagated through the system so as everyone sees the

same order of changes. Two most common approaches ensuring cache coherence

are directory-based protocol and snooping-based protocol. In directory-based

protocol, the shared data are placed in a central directory. It maintains the sharers’

information and keeps track of the most recent data copy. Any modification to

shared data needs the permission from the central directory. The directory will

informs other sharers about the changes and depending on the implementation,

other caches may either invalidates its old copy or simply update it.

As an alternative, snooping-based protocol does not rely on a central directory.

Instead, each cache maintains the state information (for example, shared or

exclusive) for each data block. The local caches monitors each other’s activities

through a common data bus and responses when necessary. One of the widely

used snooping-based protocol is MESI [63]. MESI models each data block as a

finite-state machine. Based on a block’s MESI state, certain memory requests are
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required to snoop the bus first and broadcast themselves. Any other cache holding

the same copy must response to such requests by changing its own copy’s state

or writing back its copy to lower-level memory. Any further snooping request

needs to wait until the bus is released.

In additional to the original version developed by the University of Illinois,

several MESI variants have then be introduced with different design focuses.

In particular, MOESI extended the original MESI with the capability of dirty-

sharing by adding an auxiliary state and has been used in AMD’s processor

family [5].

In MOESI, each cache block can be in one of the five following states:

• Modified (M) - The cache block is an exclusive copy that only presents

in the current cache. In addition, it is dirty and must be written back to

lower-level memory before eviction.

• Owned (O) - The cache block must be written back to lower-level memory

before eviction. It may or may not present in other caches as a shared

block. Therefore, any modification to it must be broadcast.

• Exclusive (E) - The cache block is an exclusive copy that only presents in

the current cache. However, it is a clean copy and can be silently evicted

without writing back to memory.

• Shared (S) - The cache block is a clean copy but might present in other

caches at the same time. It shall update the data when receive a broadcast

from the owned cache. Silent eviction is allowed.

• Invalid (I) - The cache block is not in use.
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Table 4.1 Permitted co-exist state relation in MOESI.

For each data block, its coherent state changes based on two types of events:

remote (bus) operations issued by other nodes and local (processor) issued by

own processor. The state transition diagram with major trigger events is shown in

Figure 4.4. The relation of permitted co-exist state is shown in Table 4.1 where

’Y’ and ’N’ denotes possible and impossible respectively.
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Fig. 4.5 The hybrid cache hierarchy.

4.2 A Hybrid L1 Cache Architecture

Figure 4.5 shows the overview of our proposed hybrid L1 cache architecture for

a modern multi-core processor. Each of the processor core has a dedicated L1

cache comprising of a SRAM and a STT-RAM partition while all the cores are

sharing a unified last-level cache (L2). The L1 cache controller is responsible

for handling cache access requests (either from its owned processor core or the

common bus), and migrating cache blocks between the two partitions based on

the information provided by the coherence protocol.

4.2.1 Cache Block Management (Naïve Solution)

The main purpose of a block management policy is to relieve the write pressure

on STT-RAM partition. However, the difficulty lies in predicting a cache block’s

accessing behavior. A naïve policy would be allocating all read-miss blocks

to STT-RAM partition and the rest to SRAM partition during cache fills. This

method assumes for every cache block, the first operation to it would be the
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dominant one until it gets evicted. However, there is no reason that this is so. For

example, during an application’s warming up phase, cache behavior is generally

unstable, and such an assumption is most likely invalid.

In order to implement the naïve management policy, additional circuitries are

added to the conventional cache architecture. Figure 4.6 illustrates how a read

operation is performed. Since the sizes of the STT-RAM and SRAM partition

are different, the memory address is firstly decomposed into two pairs of tag

and index (Step 1). Then both partitions are accessed simultaneously, and at

most one partition would produce a cache hit (Step 2). Upon the cache hit,

the corresponding data is sent via a 2-to-1 multiplexer (MUX) selected by the

STT-RAM (or SRAM) hit signal to the processor core (Step 3). In any case, the

extra delay caused by the MUX is negligible since the accesses to the tag arrays

in step 2 are done in parallel.

The type of memory operation determines which partition would handle the

cache miss. Figure 4.7 illustrates this procedure. A demultiplexer (DEMUX)

is added at the top to direct the input data from lower level memory to the

corresponding cache partition. Note that dealing with a cache miss potentially

involves evicting an existing least-recently-used (LRU) cache block. Since STT-

RAM has a longer write latency than SRAM, read-misses require more time to

handle than write-misses under write-allocation policy.

4.2.2 Cache Block Management (Immediate Migration)

The naïve block management policy assumes static or fixed allocation where

each cache blocks stay in only one partition during its lifetime. Such a simple
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policy fails to consider a cache block’s dynamic access behaviors and so thus a

more intelligent policy shall reallocate the cache blocks based on their periodical

behaviors. Figure 4.8 shows a block’s transition state and movement under a

proposed dynamic policy.

While the naïve solution is based entirely on temporal locality, immediate

migration policy (IMP) takes things a step further. In the MOESI protocol, if

a cache block is in MODIFIED (M) or OWNED (O) state, it must has been written

to before and more importantly, it probably will be written to again in the near

future. Therefore, such blocks most likely would receive larger amount of writes

compared to those in other states and hence would benefit from staying in the

SRAM partition of the cache. On the other side, EXCLUSIVE (E) or SHARED (S)

states indicate that the block is a read-only copy for now, and is likely to stay as

it is. Hence, they better to reside in the STT-RAM partition.

While a remote (snooping) memory write operation that hits on an O state

block in the SRAM partition, an ownership transfer is required. As such, it

changes the local block state to S and cause the corresponding block to be

migrated to STT-RAM partition. On the other side, a local write hit on the

STT-RAM partition makes the block dirty, and necessitate its transfer to the

SRAM partition of the cache under its new M or O state. This process requires

no extra information since all migrations are determined by the transition of

coherent states. Besides, the way of handling cache misses remain as the same

as the naïve solution.

Note that the order of handling the actual memory request and migrating

the affected cache blocks can potentially lead to differences in performance and

energy saving, but we found that such variations are generally small, and can be
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Fig. 4.8 Immediate migration transition diagram.

safely ignored. Throughout this work, we assume the block migration completes

before serving the memory request.

4.2.3 Cache Block Management (Delayed Migration)

Under certain circumstances, IMP could be too aggressive since a cache block is

migrated immediately after a coherent state change. For example, some of the M

state blocks are essentially read-intensive and would benefit more from staying in

STT-RAM; while some S state blocks receive more broadcast updates from the

owner cache than local reads, making the migration to STT-RAM unnecessary.

As an alternative, the delayed migration policy (DMP) offers a way to postpone

the migration until a possible better timing. Figure 4.9 illustrates the migrating

decision making process.

In DMP, only when two consecutive operations satisfying the migrating

condition are encountered will the block migration be initiated. In particular, two

consecutive local writes must have been encountered for a block to be migrated

from STT-RAM to SRAM partition, regardless of the coherent state changes.
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Fig. 4.9 Delayed migration state transition diagram.

As a necessary condition, such a block should already be in either M or O state.

Similarly, two remote reads with no intervening writes will migrate the block in

either S or O from SRAM to STT-RAM partition. Under such a migration policy,

E state block can only exist in STT-RAM partition because the transition is only

caused by read-misses and any write to it will lead to a state change.

In order to track the migration state, an extra transfer determine bit (TD-bit)

is appended to each cache block. The set/reset policy are stated as follows. All

newly-allocated blocks will have their TD-bit reset, regardless of the partition.

For a O or S state block resided in the SRAM partition, a remote read sets the

TD-bit while any write (including those broadcast updates from the owner) will

have it reset. Similarly, on the STT-RAM side, only local writes set the TD-bit

and any other reads will reset it. Such a scheme also reduce the thrashing effect

where a block keep migrating between the two partitions due to frequent state

changes. It is often observed during synchronization between different threads.
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Processor
Core frequency 3GHz, 8 out-of-order cores

Dispatch width/window 4 / 128
Outstanding loads/stores 32

Branch predictor gshare, 16 history bits
ITLB/DTLB 64 / 64

Private L1 Cache
Instruction (SRAM) 32KB, 4-way, 32-byte

Data (SRAM) 4-64KB, 4-way, 64-byte
Data (STT-RAM) 64-192KB, 4-way, 64-byte
Coherent Protocol MOESI

Shared L2 Cache (LLC) and Main Memory
L2 (SRAM) 4MB, 8-way, 64-byte, 15-cycle R/W

Memory (DRAM) 64 banks, 150-cycle latency
Table 4.2 Simulation platform.

4.3 Evaluation

4.3.1 Experiment Setup

Simulation platform

To evaluate our design, we modified the sniper multi-core simulator [12] to

model a conventional x86 processor with a two-level cache hierarchy as shown

in Figure 4.5. Sniper is a high-speed and yet accurate x86 multi-core simulator

built on the pin tool [70]. It adopts analytical core models to trade off simulation

speed for internal core structure details [13]. The list of simulation parameters is

given in Table 4.2.

Benchmark characteristics

Twelve diverse multi-threaded workloads from PARSEC [10] benchmark suite

were simulated. We divided them into three categories: read-intensive, whose
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Workloads Application Domain Reads (%) Writes (%) R/W Behavior
blackscholes Financial Analysis 65.65 34.35 write-intensive

bodytrack Computer Vision 80.30 19.70 read-intensive
canneal Engineering 66.67 33.33 write-intensive
dedup Enterprise Storage 72.32 27.68 balanced

facesim Animation 70.08 29.92 balanced
ferret Similarity Search 79.36 20.64 read-intensive

fluidanimate Animation 80.65 19.35 read-intensive
raytrace Rendering 54.40 45.60 write-intensive

streamcluster Data Mining 86.73 13.27 read-intensive
swaptions Financial Analysis 76.7 23.3 balanced

vips Media Processing 80.51 19.49 read-intensive
x264 Media Processing 76.21 23.79 balanced

Table 4.3 Memory operation breakdowns in PARSEC workloads.

read-to-write ratio is much larger than 3; balanced, whose read-to-write ratio is

around 2 to 3; and write-intensive, whose read-to-write ratio is smaller than 2.

The detailed description of each benchmark along with the breakdowns of their

memory operations are shown in Table 4.3.

Hybrid cache configuration

Both of the SRAM and STT-RAM cache energy and latency numbers were

generated using NVSim [26] with a 32nm technology node assumed. The

baseline case is set to a 64KB pure SRAM cache. While exploring other possible

cache size configurations, we take care not to exceed the silicon area of the

baseline. The feasible configurations are given in Table 4.4 and the energy and

latency numbers are in Table 4.5.

Note that STT-RAM is a storage-class memory that can retain data for more

than 10 years at room temperature. However, to achieve this requires a program-

ming time that is 10× that of SRAM [82]. One can shorten this significantly by
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Hybrid SRAM STT-RAM
No 64KB N.A.
No N.A. 192KB
Yes 4KB 128KB
Yes 8KB 64KB

Table 4.4 Feasible configurations.

SRAM (KB) STT-RAM (KB)
4 8 64 64 128 192

Read / Write Latency (cycle) 3 / 3 3 / 3 4 / 4 3 / 9 4 / 10 4 / 11
Dynamic Read Energy (nJ) 0.055 0.063 0.095 0.055 0.064 0.085
Dynamic Write Energy (nJ) 0.053 0.061 0.093 0.279 0.3 0.35

Leakage Power (mW) 15 28.7 150 8.7 12.1 25
Table 4.5 Performance and energy parameters.

relaxing the non-volatility requirement of STT-RAM [75]. As such, we added a

conventional DRAM-style refresh mechanism to maintain the data integrity.

Energy modeling

The total energy consumption for L1 cache is modeled by the sum of three

components: leakage energy, refresh energy and dynamic energy. Besides the

usual runtime read/write energy, dynamic energy in our context also includes

the energy for probing both cache partition (regardless of hit status), and the

migration energy when one of the block migration policies is applied. The

broadcast write energy generated from the updates of O-state blocks to other

corresponding S-state blocks have been included as well.
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Fig. 4.10 Normalized system performance for pure STT-RAM and hybrid cache
without block migration.

4.3.2 Static Block Management

We begin by first considering the impact of directly using a pure STT-RAM

setting to replace a SRAM-based L1 cache. NVSim simulation shows that 3×

of the capacity can be achieved for STT-RAM within the silicon area of 64KB

SRAM. Therefore, we simulated two pure STT-RAM L1 caches, one with a

64KB STT-RAM for a same-capacity comparison, and another with a 192KB

STT-RAM for a same-area comparison with the baseline. Figure 4.10 shows

the normalized system performance of these two scenarios, which is measured

through instructions-per-cycle (IPC).

As expected, all the benchmarks running under a same capacity STT-RAM

cache suffered performance degradation due to the longer write latency. On

average, system performance deteriorated by about 6%. When the cache capacity

is enlarged to 192KB, performance generally improved, but the gain is not

significant. Overall, the system performance only improved by 1% even with a

cache that is three times larger. Interestingly, canneal performed slightly worse
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No Migration Immediate Delayed Queue-based

Reads (%) 
STT-RAM

Writes (%)
SRAM

Reads (%) 
STT-RAM

Writes (%)
SRAM

Reads (%) 
STT-RAM

Writes (%)
SRAM

Reads (%) 
STT-RAM

Writes (%)
SRAM

blackscholes 65.3 100.0 65.8 100.0 65.3 100.0 63.5 100.0
bodytrack 72.8 88.1 69.9 99.6 70.0 98.9 76.7 87.9
canneal 91.2 54.2 80.5 99.2 84.1 94.4 84.3 94.0
dedup 84.9 21.6 38.0 95.7 53.0 79.8 78.0 46.6
facesim 68.9 50.5 47.9 98.6 51.5 92.5 62.6 66.4
ferret 73.7 57.9 45.7 96.9 52.8 82.1 72.0 69.5
fluidanimate 88.2 40.8 75.2 98.9 76.5 91.2 84.0 72.2
raytrace 31.9 94.8 27.1 99.8 26.5 99.7 38.9 90.1
streamcluster 73.5 76.1 62.2 98.8 71.1 83.7 83.1 8.7
swaptions 91.1 31.0 62.1 97.7 65.1 84.8 84.6 50.4
vips 84.5 92.2 69.2 99.9 69.2 99.7 93.8 93.3
x264 65.8 74.4 51.5 99.0 51.8 95.2 65.1 86.4
Average 74.3 65.1 57.9 98.7 61.4 91.8 73.9 72.1

Fig. 4.11 R/W distribution for a 4KB SRAM + 128KB STT-RAM hybrid cache.

in a larger cache setting. This is because the marginal performance benefited

from a lower miss rate is unable to compensate the latency increased from a

larger capacity. In summary, a direct replacement of SRAM by STT-RAM is not

very attractive due to the degradation of system performance.

Most of the benchmarks received performance increase after adding a fast

SRAM partition for the handling of write-misses. Some of them can even

match the performance of the baseline. The difference between the two cache

configurations is merely 0.2%, indicating that the additional misses caused by

varying size of both partitions are not performance critical under the naïve policy.

On average, the hybrid cache without block migration still suffers about 3.4%

performance loss in the best case.
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4.3.3 Dynamic Block Management

To evaluate the effectiveness of our migration proposals, we first calculate the

read-write distribution for each cache partition. Three dynamic block manage-

ment policies have been considered: immediate migration, delayed migration

and queue-based migration proposed in [82]. Table 4.11 shows the percentages

of reads in STT-RAM partition and writes in SRAM partition in a 4KB SRAM +

128KB STT-RAM hybrid cache setting. Under the naïve policy where no block

migration is taking place, the additional SRAM partition can filter out 2/3 of

the total writes only, leaving 1/3 writes to the STT-RAM partition. When the

immediate migration policy is adopted, most of the writes are forced to operate

on the SRAM partition, except for those broadcast updates from O-state blocks

to S-state blocks. At the same time, it also reduced the reads to STT-RAM par-

tition by 16.4%. For the delayed migration policy, though the number of block

migrations is reduced, it still prevented a high amount of writes (more than 90%)

to the STT-RAM partition with an increased number of reads. For comparison,

queue-based migration resulted in a higher amount of reads to STT-RAM, but it

also suffered from a larger number of writes to STT-RAM partition as well.

Figure 4.12 shows the normalized system performance. We have tested two

hybrid cache configurations: one with 8KB SRAM and 64KB STT-RAM and the

other with 4KB SRAM and 128KB STT-RAM. It turns out that most benchmarks

are not sensitive to the size of SRAM partition and are more favorable to a

larger STT-RAM partition when any of the migration policy is adopted. On the

other hand, except for dedup and facesim, the performance difference between

immediate and delayed migration policies in a larger hybrid cache setting is not
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significant. On average, all dynamic block migration policies performed better

than the static naïve policy and the queue-based migration policy.

On the energy side, Figure 4.13 shows the normalized energy consumption.

Regardless of the migration policies, all hybrid caches achieved substantial

energy savings. In particular, more than 40% of energy saving has been recorded

in canneal. On average, the naïve block management scheme reduced the energy

consumption by around 20% while our migration schemes saved additional 15%

compared to the baseline. Although the queue-based migration did maintain

a comparable performance, its energy consumption is on a par with the naïve

policy only.

72



4.3 Evaluation

94959697989910
0

10
1

N
or

m
al

iz
ed

 S
ys

te
m

 P
er

fo
rm

an
ce

 (%
)

8K
B

 S
R

A
M

+ 
64

K
B

 S
T

T
-R

A
M

 (i
m

m
ed

ia
te

)
4K

B
 S

R
A

M
 +

 1
28

K
B

 S
T

T
-R

A
M

 (i
m

m
ed

ia
te

)
8K

B
 S

R
A

M
+ 

64
K

B
 S

T
T

-R
A

M
 (d

el
ay

ed
)

4K
B

 S
R

A
M

 +
 1

28
K

B
 S

T
T

-R
A

M
 (d

el
ay

ed
)

8K
B

 S
R

A
M

+ 
64

K
B

 S
T

T
-R

A
M

 (q
ue

ue
-b

as
ed

)
4K

B
 S

R
A

M
 +

 1
28

K
B

 S
T

T
-R

A
M

 (q
ue

ue
-b

as
ed

)

Fi
g.

4.
12

N
or

m
al

iz
ed

sy
st

em
pe

rf
or

m
an

ce
fo

rh
yb

ri
d

ca
ch

e
w

ith
di

ff
er

en
tm

ig
ra

tio
n

po
lic

ie
s.

73



Architecting STT-RAM as Energy-Efficient L1 Cache

506070809010
0

11
0

12
0

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n 
(%

)

8K
B

 S
R

A
M

 +
 6

4K
B

 S
T

T
-R

A
M

 (n
ai

ve
)

4K
B

 S
R

A
M

 +
 1

28
K

B
 S

T
T

-R
A

M
 (n

ai
ve

)
8K

B
 S

R
A

M
 +

 6
4K

B
 S

T
T

-R
A

M
 (i

m
m

ed
ia

te
)

4K
B

 S
R

A
M

 +
 1

28
K

B
 S

T
T

-R
A

M
 (i

m
m

ed
ia

te
)

8K
B

 S
R

A
M

 +
 6

4K
B

 S
T

T
-R

A
M

 (d
el

ay
ed

)
4K

B
 S

R
A

M
 +

 1
28

K
B

 S
T

T
-R

A
M

 (d
el

ay
ed

)
8K

B
 S

R
A

M
 +

 6
4K

B
 S

T
T

-R
A

M
 (q

ue
ue

-b
as

ed
)

4K
B

 S
R

A
M

 +
 1

28
K

B
 S

T
T

-R
A

M
 (q

ue
ue

-b
as

ed
)

Fi
g.

4.
13

N
or

m
al

iz
ed

to
ta

le
ne

rg
y

co
ns

um
pt

io
n

fo
rh

yb
ri

d
ca

ch
e

w
ith

di
ff

er
en

tm
ig

ra
tio

n
po

lic
ie

s.

74



4.3 Evaluation

100

105

110

115

120

125

90

92

94

96

98

100

102

4µs 8µs 16µs 32µs 64µs inf

IPC EnergyIPC (%) Energy (%)

Retention Time

Fig. 4.14 System performance and energy consumption for various STT-RAM
retention times.

4.3.4 Impact of Retention Time

The retention time of STT-RAM cells is related to the thermal barrier ∆ of an

MTJ, which can be expressed as t =C× ek∆ where t is the retention time, and

C and k are the fitting constants [82]. Any variations in the planar area and the

thickness of the MTJ affect the thermal barrier, and thus impact the retention

time. However, given a particular set of read/write latency and the cache size, the

lowest possible retention time under a DRAM-style refresh scheme is bounded

by #cacheblocks× (read latency+write latency)× cycletime.

Figure 4.14 shows the IPC and energy consumption under various retention

time values for a 8KB SRAM + 64KB STT-RAM hybrid cache with immediate

migration policy. The data are normalized to the perfect case when the refresh

is completely eliminated (in f ). In general, a lower retention time causes more

refresh conflicts and thus increases the latency for memory requests. It also

consumes more energy due to a more frequent refresh schedule, but the impact

become marginal while the refresh period is larger than 32µs. We demonstrate

these results is because STT-RAM are not yet in commercial deployment and the
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manufacturing parameters are not fully known. An extreme short retention period

can seriously downgrade performance and lead to a higher energy consumption.

4.4 STT-RAM Endurance Study

Although the write endurance issue for STT-RAM can be mitigated by using

compiler techniques [51], architecture solutions have the advantage of being

application-transparent and thus are more flexible in actual deployment. Prior

work only considered the write endurance of STT-RAM in the context of last

level caches [18]. However, the issue is even more pressing when STT-RAM

technology is deployed in L1 caches as they have much more write activities than

the last level caches. Although a prediction of 1015 programming cycles [84]

is often cited as the write endurance for STT-RAM, real experiments thus far

have showed that the number is less than 1013 write cycles [25]. This would be

a severe constraint on any pure STT-RAM L1 solution [82], and is another key

motivation for our hybrid design.

Figure 4.15 shows the average number of writes per cycle (WPC) to the STT-

RAM partition. Among all the benchmarks, facesim has the highest average

writes per cycle. Consider the case when the writes are perfectly distributed to all

cache blocks in facesim for a pure STT-RAM design, each block would need to

stand 2.4×105 writes per second. Under a conservative estimate, a cache block

will last about 1.3 years on a 3 GHz processor.

However, further analysis shows that writes are not at all evenly distributed.

This is true within a single cache as well as across different private caches. We

observed that some blocks are seldom used while several other blocks suffer from
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Fig. 4.15 Average number of STT-RAM writes occurs in each CPU cycle.

a huge amount of writes. For example, about 15% writes target at a particular

block in facesim, while the corresponding cache partition receives nearly 50%

writes among the four private caches. In another words, assuming a 3 GHz clock

and a write endurance of 1013 write cycles, that STT-RAM block may fail within

half an hour if no proper measure is taken. Due to the low-latency requirement

and high access frequency of L1 caches, existing wear-leveling methods for last

level caches [18] are not feasible.

Table 4.6 lists the average and worst case lifespan of the STT-RAM cache

for facesim under the write endurance assumption of 1013 programming cycles.

The “average partition" column assumes that the writes are perfectly distributed

to all of the private caches while the “worst partition" only assumes the writes

are evenly distributed within each private cache partition. In the “worst block"

case, the actual number of writes per cache block is computed. Compared to a

pure 64KB STT-RAM solution, the lifespan of the most write-intensive cache

block in a hybrid configuration with the DT policy is increased by up to 150×,

while the worst cache partition lifespan is increased by 2333%. Although DMP
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Average partition Worst partition Worst block
Pure STT-RAM 1.3 years 0.3 years < 22 mins

Hybrid Naïve 3.5 years 1.0 year 0.9 hr
Hybrid IMP 41.2 years 6.9 years 51.6 hrs
Hybrid DMP 32.9 years 7.0 years 54.3 hrs

Table 4.6 STT-RAM cache lifespan estimation for facesim.

performed slightly better than IMP in the worst case endurance, it suffered from

a lower average lifespan because the blocks in STT-RAM received more writes

due to a delayed migration policy. Note that the naïve solution for hybrid cache

is still insufficient for actual deployment.

In practice, caches would come with redundancy or error correction code

to improve reliability. Also, it is very unlikely to see such a sustained high

write frequency on a particular block especially for personal workload. Thus

the worst case block lifespan should be much longer. Nonetheless, the risk

exists, especially for the current state-of-the-art in STT-RAM technology. As a

by-product, our proposed hybrid architecture can significantly reduce this risk.

4.5 Related Work

Choosing STT-RAM as a replacement to SRAM in on-chip cache design is not

brand-new idea. In the past, most of the works avoid deploying STT-RAM in L1

cache due to the prolong write operations. For example, Jog et al. [45] deployed

pure STT-RAM in L2 cache with an application-driven retention time study.

Smullen et al. [75] proposed a hybrid cache design with entirely SRAM-based

L1, and STT-RAM-based shared L2/L3 cache at a level of relaxed non-volatility

to accelerate write operation. Jiang et al. [37] used STT-RAM as the last level
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cache under embedded settings with SRAM-based private L1 caches. In addition,

early write termination has been proposed as a device optimization technique for

STT-RAM write energy reduction [100].

One of the few STT-RAM-based L1 cache architectures was proposed by

Sun et al. [82]. Their design was built using several MTJ designs with various

levels of retention time. Additional SRAM buffers and detection logics were

added to reduce the penalties from STT-RAM writes and refreshes. However,

the overhead involved in the counter-based retention monitor might cause more

performance impact on the L1 cache than using a simpler DRAM-style refresh.

4.6 Summary

In this work, we proposed a hybrid L1 cache architecture uses both conventional

SRAM as well as the new STT-RAM technology. The larger STT-RAM partition

of the cache allows for higher capacity with low energy consumption. The

smaller SRAM partition filters out most of the write operations to the cache by

exploiting the MESI cache coherence protocol. This significantly mitigates the

impact of the STT-RAM’s high write latency on IPC. A scheme to dynamically

transfer cache block between the two portions of the cache was presented. The

proposed hybrid architecture significantly reduces overall energy consumption

while maintains a reasonable level of performance. Experiments showed that our

proposed approach can achieve either more than 40% energy saving with less

than 0.9% decrease in IPC or 0.1% improvement on IPC with nearly 30% energy

saving when compared to a pure SRAM-based design.
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As a new technology, STT-RAM faces certain reliability risks. In particular,

the measured write endurance of STT-RAM cells reported is orders of magnitude

below the L1 cache requirement. In particular, L1 writes are extremely skewed,

and given the critical impact L1 access time has on performance, earlier wear

leveling proposals for STT-RAM last level caches simply will not do. In this

work, we investigated this issue, and showed that our proposed hybrid scheme

can increase the overall write endurance by 150× to a level that is sufficient for

deployment. When compared to an earlier pure STT-RAM design [82] L1 cache

proposal, our hybrid architecture achieved comparable performance and energy

savings. However, we believe that because of the significant improvement in

write endurance, our proposal is more practical, at least in the near term.

As the CMOS technology continues to scale, increasing energy consumption

and design complexity demands for more power-efficient designs. We believe

that our hybrid cache scheme is an attractive architecture for next-generation

non-volatile computing.
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Chapter 5

Architecting Multi-Level Cell

STT-RAM as Last-Level Cache

In this chapter, we continue to move down to the next level in the memory

hierarchy: last-level cache. At this level, data access is much less frequent and

capacity becomes the main design target. Therefore, we shall choose a technology

with the focus on high storage density. Multi-level cell (MLC) STT-RAM is such

a choice that can achieve 2× the capacity as conventional single-level cell (SLC)

STT-RAM under a similar silicon area budget. Figure 5.1 shows the scope of

this chapter and the memory technologies involved.

However, most existing works concentrated on SLC design while the potential

of MLC STT-RAM has not yet been fully explored. The main reason is the two-

step RW operation which inevitably introduces performance and energy overhead,

jeopardizing the gains from a higher capacity. In this work, we proposed an

architectural level design to dynamically reconfigure the cache block size for a

MLC-based STT-RAM last-level cache. Our approach places certain hot data
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RF, Buffers

L1 Caches

Last Level Cache

Main Memory
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MLC STT-RAMSRAM

Conventional Emerging

Fig. 5.1 Scope and memory technologies used in this chapter.

chunks in smaller blocks so as to benefit from the lower latency and energy, while

keeping the rest in larger blocks to maintain an overall hit rate. As such, we

mitigated the penalties of MLC STT-RAM while increased overall performance

with less energy consumption.

5.1 High Capacity LLC using MLC STT-RAM

5.1.1 Block-level Data Mapping

As mentioned in section 2.2.4, each MLC STT-RAM can store 2 bits of data

instead of 1 bit in SLC. Thus, while using MLC STT-RAM for cache, one of

the first design decision is how to organize the layout of the data bits within a

cache block. For example, given a 512-bit (64-byte) data block and 256 2-bit

MLCs, one can store the i-th bit in the i/2-th MLC, as shown in Figure 5.2a. We

shall refer to this organization as direct mapping (DM). DM is a straightforward
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Data bit # 0 1 2 3 … 510 511

MLC # 0 1 255

…

(a) Direct mapping (DM)

Data bit # 0 1 2 3 … 510 511

MLC # 0 1 255

…

Data bit # 0 1 … 255 256 257 … 511

MLC # 0 1 255

…

(b) Interleaved mapping (IM)

Fig. 5.2 Block-level data mappings for a 512-bit (64-byte) MLC cache block.

method without differentiating the accesses to different parts of the block. There-

fore, the latency is always the worst-case since both the soft- and hard-bits need

to be sensed/programmed together regardless which data word is requested.

As an alternative, we can put the lower half (bit 0-255) of the data bits in

the soft-region of the MLCs and the higher half (bit 256-511) in the hard-region.

This method is illustrated in Figure 5.2b as shall be referred to as interleaved

mapping (IM). IM reduces the write latency and energy for the lower half of the

block since only one-step programming is necessary for the soft-bits without

alerting the hard-bits. However, read latency remains the same for both halves.

Furthermore, there is no guarantee that the lower half of the block will endure

83



Architecting Multi-Level Cell STT-RAM as Last-Level Cache

more writes than the higher half. Thus, the benefit of using such an organization

alone is limited.

In addition, one can split the contents in a block and makes each MLC to store

data across different blocks [37, 9]. However, such kinds of organization break

the physical integrity of a data block and increase the complexity of wirings.

Under the circumstance when a single MLC fails, two data blocks are affected.

Throughout this study, we will maintain the physical integrity of data blocks and

map each MLC to only one target due to reliability concerns.

5.1.2 Access Behavior in Last-level Cache

In modern multi-core processors, the access behavior of last-level cache is usually

much more irregular than the upper level caches. For set-associate cache, the

reads and writes are generally distributed non-uniformly across different blocks

and sets in the workloads we have studied including solving PDE, fluid dynamics

simulation, real-time raytracing and video encoding. Figure 5.3 illustrates four

different access patterns found in the PARSEC benchmark suite. We recorded

the number of accesses to each half of the block within a cache set. In (a), the

lower half of block 0 received substantially more accesses compared to other

blocks in the same set. In (b), the lower half of each block has 2× activities

compared to the higher half. In (c), most of the access hit on the first few blocks

of the set, resulted in the ways being underutilized. The last case is a uniform

access pattern where the accesses are spread out across the whole cache set.

Recall that in the use of MLC STT-RAM, we can either utilize the full 2-bit

cell or simply keeping the hard-bit in a fixed resistance and use soft-bit only for
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Fig. 5.3 Various access patterns observed in four benchmarks from PARSEC
under an 8-way, 64-byte block, 4MB last-level cache.

accelerated access. In the above examples, (a) and (c) fail to utilize the whole set

fully. Thus, a better performance could be obtained by reducing the capacity. In

(b), it depends on the difference between the performance gain from a smaller

set and the penalty caused by a higher miss rate. For (d), it is most likely that

performance will be maximized if the set stays in a larger capacity.

Not only does the cache access pattern behave differently from set to set, but

also the behavior of a cache set might change during different program phases.

Figure 5.4 shows the access pattern changes in set #129 of ferret during the first

400 million CPU cycles. In the first and second phases (0-200M cycles), although

block 0,2 and 3 together are much more active than the others, the overall access

pattern tends to spread out and a larger capacity should be maintained. In the third

phase (200-300M cycles), the accesses are concentrated in only three half blocks

so thus the capacity is underutilized. Finally, in the last phase (300-400M cycles),
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Fig. 5.4 Access pattern changes in set #129 of ferret for the first 400M cycles.

the accesses are spread out again. Hence, when facing such non-uniformities,

system performance could be optimized if each cache set adapts its configuration

dynamically responded to the access pattern.

5.2 Designing MLC-based STT-RAM Cache

In order to trade capacity for speed, previous work suggested splitting the block-

level data mapping for the MLCs and turning off half of the ways to enable faster

access [9]. However, this method reduced associativity and resulted in a waste

of half of the tag array. Considering the accesses to a large data block are often

distributed unevenly between the two halves, as shown in last section, it would be

more resource-efficient to dynamically reconfigure the block size while keeping

the same associativity.

5.2.1 Address Decomposition

With the help of interleaved mapping (Figure 5.2b), each cache set can operate

in exactly one of the two modes: a large block mode (LBM) and a small block

mode (SBM). LBM utilizes all the physical data bits (bit 0-511) in a MLC STT-

86



5.2 Designing MLC-based STT-RAM Cache

(a) Data bits

LBM RC0 RC1 0 … 255 256 … 511

Way #0 Tag

Way #1 Tag

…
Way #7 Tag

X Soft-region

Hard-region

X Disabled

(b) Data bits

SBM RC0 0 … 255

Way #0 X Tag X

Way #1 X Tag X

…
Way #7 X Tag X

Fig. 5.5 Two operating modes for an 8-way cache set with different block sizes:
(a) Large block mode (LBM); (b) Small block mode (SBM).

RAM data block and suffers the maximum access latency. SBM uses only the

soft-bits (bit 0-255) and so is much faster and consumes less energy. Figure 5.5

demonstrates these two operating modes for an 8-way associative cache.

While both LBM and SBM can co-exist in a single cache, it is necessary

to guarantee that no data chunk is mapped to more than one set. Figure 5.6

describes such a decomposition scheme supporting mixed block modes access

given a n-bit physical address. Assuming the cache is composed of 8k sets, the

set index is fixed at address bit 6-18 so that each memory location maps to only

one cache set regardless of the block size. An additional control bit called mode

selection (MS-bit) is used to indicate the block mode. When MS = 0, the set

operates in LBM (Figure 5.6a) with a large 64-byte block size. A zero-bit is

appended at the end of the tag and the offset is set to the lowest 6 bits of the

physical address in order to select any byte within the block.

When in SBM (MS = 1) (Figure 5.6b) all blocks are halved at 32-byte.

Additional information (bit 5 of the physical address) is added to the end of the

tag to differentiate the lower and higher halves of a large block. Note that only a
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(a) Large block mode
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Fig. 5.6 Physical address decomposition designed for two set operating modes.

5-bit offset is now sufficient, so the highest bit is zeroed out. Figure 5.7 illustrates

an example of address decomposition for a 32-bit physical address 0xc7a97eeb

which is mapped to the same set 0x5fb with different tag and offset values under

the two block modes.

1011 0001 1110 101 0101 1111 1 011

Set: 0x5f (LBM & SBM)

0

SBM Offset: 0x3

LBM Offset: 0xb

15 8 3

1011 0001 1110 101 0

LBM Tag: 0xb1ea

1011 0001 1110 101 1

SBM Tag: 0xb1eb,

011

1 011

Fig. 5.7 Decomposition of address 0xc7a97eeb.
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5.2.2 Reconfiguration Strategy

Ideally, to determine which mode a cache set should stay during a period of time

for maximum performance, we calculate the advantage of LBM versus SBM

characterized as:

δLS = (#Extra-Misses-SBM)× (Miss-Penaltyavg)

− (#Hits-SBM)× (Latency-Reductionavg) (5.1)

Here Extra-Misses-SBM is the number of cache misses caused by reducing

the block size. If δLS is larger than zero, staying in LBM is more beneficial,

otherwise switching to SBM should yield a better performance. A prediction

algorithm for δLS is as follows. Each cache block is equipped with two 2-bit

saturating reference counters, namely RC0 and RC1 as shown in Figure 5.5.

Under LBM, RC1 is responsible for the higher half of the block and RC0 is for

the lower half while only RC0 will be used in SBM. When a block is initially

loaded, its RCs are set to the maximum value (3). When an memory access

hits on a block, it decreases the RC. Upon the RC saturates at zero, additional

accesses to the same block shall increase all the other RCs within the same set,

promoting itself to be a hot (half) block.

When a cache miss occurs, all of the RCs within the set are examined. For a

cache set to be switched from LBM to SBM, the number of zeros among all the

counters must be less than a predefined threshold θLS. For switching from SBM
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to LBM, the number of zeros shall be larger than another threshold θSL. This

process is shown in algorithm 2.

if Cache hit then
if RC > 0 then

Decrease it by 1;
else

Increase other RCs by 1;
end

else
if In LBM and 0 < #Zeros in RCs < θLS then

Reconfigure to SBM;
end
if In SBM and #Zeros in RCs > θSL then

Reconfigure to LBM;
end

end
Algorithm 2: Block size reconfiguration policy.

A cache miss in a LBM set with very few zeros indicates the access to this

set are concentrated only on certain hot (half) blocks. Therefore, reconfiguring

the set to a smaller block size will not introduce significant misses and can

possibly obtain performance/energy benefits. On the other hand, if there are too

many zeros in a SBM set, each block could have been competing for accesses

(Figure 5.3d). Thus, the miss penalty is predicted to be higher than the latency

reduction and reconfiguring to LBM might be more profitable.

Housekeeping

During reconfiguration, dirty data blocks shall be first written back to memory,

followed by a series of housekeeping operations. If the block size is reduced

(LBM to SBM), a simple read-and-write scheme can be adopted to preserve the

contents in the lower half block without changing the tag array. When going
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the other way (SBM to LBM), re-fetching the other half for every data block is

expensive. Since both the lower and higher halves of a large block may be in

the set at the same time, it is necessary to spend extra efforts in tag checking to

discover those relationships. Hence, we shall only re-fetch those blocks with

0 in the last bit of the tag and discard all the others. Furthermore, since a new

data block will be brought in and might result in eviction of an old block, simply

by discarding all the data is another choice to reduce the miss penalty incurred

during reconfiguration.

Reconfiguration Timing

Reconfiguring the block size during cache misses results in a lower overhead. For

LLC, a miss must be serviced via the main memory. Hence the existing penalty

is already few orders of magnitude larger than checking the RCs. However,

if the checking is performed during cache hits as well, this additional latency

can no longer be ignored, and might have significant impact on performance.

Furthermore, frequent checking might incur more noises in the prediction. It

is therefore more profitable to perform the checking and reconfiguration only

during cache miss servicing even though some beneficial reconfigurations might

be delayed.

5.2.3 Other Design Consideration

In order to protect the cache set from harmful reconfigurations, an additional

bit (PB) is added to each set. When a cache miss occurs, based on the current

operating mode and the access counters, PB will be set to 1 if a reconfigurable

91



Architecting Multi-Level Cell STT-RAM as Last-Level Cache

access pattern is detected. Only upon the next miss if the same pattern continue

to exist will the set be reconfigured. Otherwise, PB is reset when the access

pattern changed during the subsequent miss.

In general, the granularity of mode prediction is controlled by the width of

the RC. For a m-bit RC, a (half) block requires at least 2m−1 hits to be promoted

as a hot (half) block. A larger value of m increase the confidence of prediction

since it keeps track of more access information. However, it also increases access

latency and delays the timing for the beneficial reconfigurations which make

the design less effective. A 2-bit RC width is proved to be well effective in the

experiments with very little performance impact.

5.3 Evaluation

5.3.1 Experiment Setup

We used the cycle-accurate simulator MARSSx86 [64] to evaluate our pro-

posal. We modeled a conventional quad-core x86-64 processor with a two-level

cache hierarchy. Nine diverse multi-threaded workloads from the PARSEC

multi-threaded benchmark suite [10] were chosen for the experiment. System

performance was measured based on instruction per cycle (IPC). The list of

simulator parameters is given in Table 5.1.

Three MLC STT-RAM based cache designs are compared:

• LBM Only: Baseline MLC STT-RAM cache, the full 2-bit cell is utilized

to enable the maximum capacity.
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Simulation Parameters

Processor 2GHz, 4 out-of-order cores

Pipeline 4-way issue, 14 stages

ROB / LSQ / In-
flight Branches 128 / 80 / 24

Functional Units 2 ALUs, 1 FPU, 2 LUs, 1 SU

Branch Predictor Gshare, 16 history bits,
4K BTB entries

I- / D-TLB 32 / 32

L1 I- / D-Cache 
(SRAM)

32KB / 32KB, 4-way, 32-byte 
block, 2-cycle latency

Coherent Protocol Illinois MESI

Last-Level Cache 
(MLC STT-RAM)

Maximum 4MB, 8K sets, see 
Table II for the details

Main Memory 4GB, 290-cycle latency

Table 5.1 Key simulation settings.

• Mixed Block Sizes (MBS): Our proposed design of mixed block sizes

(LBM + SBM) with dynamic reconfiguration. We set both θLS and θSL to

be half of the associativity. By default, all the cache sets operate in LBM.

• ASM: The alternative design proposed in [9], where some sets will be

dynamically way-reduced to enhance accessing speed. We choose Mth =

512 as suggested in the paper.

The latency and energy numbers for MLC STT-RAM LLC are generated using

NVSim [26] with the MTJ and CMOS technology parameters adopted from [9].

Table 5.2 shows these parameters for different set operating modes.

5.3.2 LLC Miss Rate and System Performance

Figure 5.8 shows the misses per kilo-instruction for the LLC of the baseline and

our design. Six out of nine benchmarks did not incur noticeable increase of cache
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LLC Parameters (8K sets, max 4MB capacity)

Set Operating Mode LBM SBM ASM

Set Configuration 8-way, 64-
byte block

8-way, 32-
byte block

4-way, 64-
byte block

Read Latency (cycle) 10 7

Write Latency (cycle) 44 23 24

Miss Latency (cycle) 4

Read Energy (nJ) 0.543 0.419 0.424

Write Energy (nJ) 1.562 0.756 0.853

Miss Energy (nJ) 0.056 0.033

Table 5.2 LLC latency and energy numbers.
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Fig. 5.8 LLC miss rate comparison.

misses. In particular, bodytrack and streamcluster has a very low miss rate since

their working set did not exploit the full associativity. In the case of facesim,

freqmine and raytrace, the portion of cache sets that were reconfigured to SBM

is less than 10% and therefore most misses come from the LBM sets. On the

contrary, more than 90% of the sets have been reconfigured to SBM in ferret and

vips, resulted in a significant amount of miss increases.

Figure 5.9 shows the normalized IPC for our design and the competitor

(ASM). Our scheme increases the IPC of baseline by 1% to 10% across different
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benchmarks. In particular, facesim has the most number of sets with spread

out access behavior and thus resulted in the least number of reconfigurations.

However, these few number of sets that has been identified to benefit from SBM

contributed a rather large increase in IPC (close to 7%). Furthermore, in the case

of ferret and vips, despite that they suffered much larger miss rates, the IPCs

are actually 4% and 7% higher. It demonstrates that not all cache accesses are

equally performance critical. Our design correctly predicted the δLS value in

determining a more beneficial block mode. On average, we increased baseline

IPC by 4.6%, 27% more than ASM’s improvement over the baseline.

5.3.3 Energy Consumption

Since STT-RAM is non-volatile, the main leakage energy comes from the pe-

ripheral circuits which is shared between the three designs. Thus only dynamic

energy is discussed here. Figure 5.10 shows the normalized dynamic energy

consumption including those spent in cache hit, miss handling and additional
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housekeeping operations during reconfigurations. The default LBM Only design

consumes the most energy because of the extra dynamic energy spent in the

two-step access is more than the additional miss energy incurs from a lower

hit rate (MBS and ASM). The most reduction occurred in ferret, where more

than 30% savings was recorded. The energy saving for our design is 23.5% on

average while ASM consumes 5% more than ours.

5.3.4 Sensitivity of Reconfigure Threshold

Table. 5.3 shows the normalized IPC under different θLS and θSL values. Since our

simulation setting uses an 8-way set-associative LLC, the reasonable maximum

values of θLS and θSL were set to 8 and 4, respectively. Overall, performance

increases as θSL becomes higher under all θLS values. This is because most

of the cache sets exhibit the same consistent access behavior throughout the

application runtime. In particular, when a set is firstly predicted to benefit more

from reconfiguration, it is most likely the best choice for its subsequent life. As
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θLS\ θSL 1 2 4

2 97.7% 98.2% 98.35%

4 97.4% 98.65% 100%

6 98.29% 98.4% 98.5%

8 97.8% 98.23% 99.1%

Table 5.3 IPC for different reconfigure threshold settings, normalized to θLS =
θSL = 4

such, we can reduce the chance of reconfiguring the set back to LBM by setting

a higher value of θSL. Based on the experiments, the optimal values of θLS and

θSL are found at 4 for both.

5.4 Related Work

Device-level optimization for MLC STT-RAM has been proposed before [17, 98].

Architecture study of MLC STT-RAM cache were also demonstrated. Jiang et

al. [37] categorized the MLC cache lines as read-fast and write-slow or read-slow

and write-fast based on the splitting of hard-bits and soft-bits. Depending on the

read/write activities of each cache block, data migration is triggered to optimize

the overall performance. Chen et al. [18] has tackled the write endurance issue of

MLC STT-RAM. Wen et al. [91] has developed a holistic solution set to improve

data integrity and performance of MLC STT-RAM. Bi et al. [9] has proposed

cross-layer solution including MTJ designs as well as architecture schemes for

MLC STT-RAM caches.
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5.5 Summary

The skewness of cache accesses exists in most if not all applications. In this

work, we exploited such a characteristic in designing energy-efficient caches for

emerging memory technology. In particular, we proposed an architecture-level

design for MLC-based STT-RAM on-chip caches. Our scheme dynamically

predicts the access behavior of cache sets and reconfigures them to appropriate

block sizes for better performance and energy conservation. Simulation showed

that compared to a conventional design, our method increased IPC by 4.6% with

23.5% reduction in dynamic energy consumption. As the CMOS technology

continues to scale, energy and design complexity issues call for more power-

efficient designs. We believe that such a reconfigurable cache built with the

emerging STT-RAM technology is an attractive design option for next-generation

computing.
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Chapter 6

Architecting STT-RAM as

Last-level Cache for GPGPU

In recent years, incorporating graphics processor unit (GPU) to support scientific

computation has become the mainstream choice for many high-performance

computing systems. General-purpose GPUs (GPGPUs) can now handle a wide

range of non-graphic computations that were CPU-only in the past. They can

easily outperform general CPUs on workloads that contain massive amounts

of data-parallelism, for example, monte carlo simulation, weather forcasting,

molecular modeling, quantum mechanical physics and computational finance.

To support such a high amount of parallelism, the memory system of GPGPU

requires a different design methodology from CPUs’.

In this chapter, we will focus on the last-level caches of GPGPUs. Having

investigated the memory access behaviors of some GPGPU applications, we

proposed an energy-efficient hybrid last-level cache design with conventional

SRAM and emerging STT-RAM technology. Our scheme assumes each L2
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Fig. 6.1 GPGPU Memory Hierarchy.

partition consists a large STT-RAM part and a small SRAM augment. It includes

three core techniques: differential block allocation, block migration and pre-

migration. Compared to pure L2 cache based entirely on either SRAM or

STT-RAM, our scheme achieved a better energy efficiency.

6.1 GPGPU Memory Hierarchy

The memory hierarchy of modern GPGPUs share some similarities to CPUs

but is different in a number of aspects. A GPGPU is typically consisted of a

number of single-instruction multiple-thread (SIMT) cores. Each SIMT core has

its own register files, a scratch-pad and several first-level caches. These cores

use a shared interconnection network for the communication to last-level cache

and main memory. Since GPGPUs are designed for executing hundreds or even

thousands of threads to achieve a massive amount of thread-level parallelism
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(TLP), memory accesses are usually coalesced to exploit spatial locality and

maximize peak bandwidth. Figure 6.1 shows a typical GPGPU memory hierarchy

that consists of the following segments

• Register File: Unlike CPU where the register file is typically multi-ported,
GPU’s register file is multi-banked to enable simultaneous access for a
collection of threads (warps).

• Scratchpad: This is also called shared memory. It is a software-managed
memory that shared within a thread block. Note that scratchpad is not
backed by L2 cache.

• L1 Caches: First-level caches including instruction cache and data cache.

• Texture Cache: Specialized cache for storing texture data.

• Constant Cache: Specialized cache for storing read-only data.

• L2 Cache: Last-level cache is divided into a number of partitions. The
memory requests from previous-level are routed to them through the inter-
connection network.

• Off-chip Memory: Each L2 cache partition is backed by an individual
DRAM memory channel to achieve high-bandwidth data transfer.

6.1.1 L2 Cache

With process scaling, GPU manufacturers are constantly increasing the number

of execution units in the GPU core. For example, the 65nm NVIDIA Tesla-based

GPU contains merely 128 shader units [53] while the latest 28nm Maxwell-based

GPU has exceeded 3000 shader units within a single processor die. At the same

time, the increasing amount of TLP puts more pressure on the memory system.

In particular, as the capacity of L1 cache is limited and cannot fit in a large
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Workload
L2 Cache

1MB 2MB 4MB 8MB
bfs 1.0 1.43 1.52 1.56
b+tree 1.0 1.03 1.06 1.09
cfd 1.0 1.03 1.13 1.26
dwt2d 1.0 1.13 1.3 1.4
hybridsort 1.0 1.17 1.5 1.5
lud 1.0 1.03 1.03 1.03
pathfinder 1.0 1.05 1.07 1.09
srad 1.0 1.03 1.1 1.12
histo 1.0 1.06 1.52 1.6
stencil 1.0 1.31 1.66 1.66
sad 1.0 1.2 1.39 1.6

(a) Normalized performance

Workload
L2 Cache

1MB 2MB 4MB 8MB
bfs 1.0 0.92 1.15 1.87
b+tree 1.0 1.21 1.68 2.95
cfd 1.0 1.18 1.49 2.34
dwt2d 1.0 1.14 1.45 2.54
hybridsort 1.0 1.09 1.26 2.27
lud 1.0 1.23 1.78 3.32
pathfinder 1.0 1.19 1.64 2.92
srad 1.0 1.23 1.67 3.02
histo 1.0 1.16 1.18 1.94
stencil 1.0 0.97 1.03 1.81
sad 1.0 1.08 1.36 2.2

(b) Normalized enrgy

Fig. 6.2 Normalized performance/energy for various L2 cache sizes.

working set, increasing the size of L2 cache becomes the preferred choice. As an

example, NVIDIA doubled the amount of L2 cache from 768KB in Fermi-based

GPUs to 1.5MB in Kepler-based GPUs [92]. Figure 6.2a shows the normalized

performance for various L2 cache sizes tested on our baseline GPGPU system

(Section 6.4.1).

Due to the high amounts of memory contention in shared caches in GPG-

PUs [19], enlarging the shared L2 cache can significantly speedup a wide range

of applications including searching, sorting, data mining, fluid dynamics, bioinfo-

matics and image processing [16, 79]. Our experiments shows that performance

is increased by 3% - 66% for different workloads when the L2 cache enlarged

from 1MB to 8MB. However, notice that such performance gains comes with

the expense of energy. For SRAM-based cache, a larger capacity means a larger

102



6.2 Memory Access Patterns of GPU Applications

leakage power which is starting to dominate overall every consumption. For ex-

ample, Figure 6.2b shows that 3× more energy is consumed in exchange of 12%

performance in srad. Interestingly, bfs and stencil has less energy consumption

in 2MB than 1MB. This is because the extra dynamic energy consumed in a

2MB cache is less than the static energy saved from a faster time of completion.

Such a sweet spot is not always there in every workload. Overall, as L2 cache

has already consumes 20%-40% of the total energy within the GPU chip [35],

blindly increasing its capacity is not an wise way to improve the overall system

performance.

6.1.2 Emerging Memories in GPGPUs

Incorporating emerging memories such as STT-RAM into the design of GPGPU

memory hierarchy has been studied before with the focus on register files [50,

33, 42]. While the capacity of L2 cache is crucial to performance, our work shall

spend efforts in improving the energy efficiency of L2 with the help of emerging

memories.

6.2 Memory Access Patterns of GPU Applications

As mentioned in previous chapters, STT-RAM has several advantages such as low

leakage power and smaller feature size over SRAM when used in constructing

energy-efficient cache systems. Again, the key is to mitigate the infamous

write penalty. Having examined the memory access traces of some GPGPU

applications running on the simulation platform, the following access patterns

have been observed at the block-level:
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Read-intensive: The read-intensive pattern represents the case that during

a cache block’s lifetime, it is read much more often than is written to or even

without writes (instruction/constant data). This is illustrated in Figure 6.3. The

x-axis is the time elapsed in clock cycles. The first row shows a read-intensive

behavior where the block has been read 8 times with only 1 write from the start

to cycle 7000. Such a pattern is ubiquitous in almost every GPGPU applications

and occurs at various program stages. Since STT-RAM is more efficient in

processing memory read, we should allocate/migrate such type of data block to

STT-RAM.

Burst writes: The burst write pattern means there is a frequent access of

writes during a short period of time. This is observed in cycle 1800-2800, 3900-

4000 and 6000-7000 in the second row of Figure 6.3. Such a pattern occurs

while the application is transiting from one computation stage to another, saving

intermediate results. We should avoid allocating such blocks in STT-RAM.

Periodical read-write: This access pattern is demonstrated in the third row

of Figure 6.3. The access trace can be divided into a number of groups and each

group contains the same sequence of reads followed by writes operations. In

the figure, the same read-write sequence occurs three times and each sequence

contains three consecutive reads followed by one write. Such blocks can be

allocated to STT-RAM only if the energy penalty of write is smaller enough than

the energy savings from read operation.

Transit: In application like cfd and pathfinder, a large portion of the working

set is transit data. These data does not get much reuse after loaded into the

cache, hence they will not benefit from a larger capacity. Obviously, STT-RAM
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Fig. 6.3 Memory access patterns observed in L2 cache.

is not suitable to handle such kind of transit traffic because each cache line fill is

considered as a write operation.

Irregular: All the other access patterns that do not belong to the above

categories.

6.3 Proposed Architecture

In this section, we present a last-level cache architecture for GPGPUs. Our

design employs a large-capacity STT-RAM sub-partition with a small SRAM

augment in each of the L2 partition. The main design purpose is to keep those

frequently used blocks with a high read-to-write ratio in STT-RAM so to benefit

from the lower read energy and to reduce miss-rate, while allocate/migrate the

rest that incur high write activities to SRAM.

Figure 6.4 depicts the internal structure of a L2 cache partition. It consists of a

large STT-RAM sub-partition, a small SRAM augment and a allocation/migration

controller (AMC). Both the STT-RAM and SRAM sub-partitions contain tag,

data and reference counter (RC) arrays with different capacities. The RC array

monitors the read and write activities occur at block-level. Our scheme employs

two independent saturating counters in the RC array for read and write operation
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Fig. 6.4 The proposed L2 cache architecture.

respectively. Each cache access increases/reset the corresponding RC and based

on such information, AMC migrates cache blocks when certain condition is met.

Differential Block Allocation. We observed that the miss type of a cache

block can be used to predict its future behaviors. For write-miss, there are two

categories of block encountered in L2: those that also miss first-level cache and

those generated from L1’s write-evict policy. In the former case, the write typi-

cally happens between the end of a thread block and the start of next thread block.

Such a situation often indicates the written block is for storing the (intermediate)

results from a series of computation and does not get reuse frequently. Therefore,

by allocating them in the SRAM augment could avoid some non-profit cache

fills (write) in STT-RAM.

In the latter case, the block has been evicted from L2 but still presents in L1,

meaning the traffic (read) to it has been mainly absorbed by first-level cache and

thus results in very few reuses from L2. Such a write-miss is typically followed

by a read (if reuse) and/or an eviction (end of life) due to the conflict miss with

other blocks. In both scenarios, the block is considered to be infrequent-read and

shall be allocated in SRAM as well.
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For read-miss, the block requested is assumed to be frequently-used with a

high read-to-write ratio. They are allocated in STT-RAM at first but are subjected

to migrations described in the next section.

Block Migration. It often happens that during a cache block’s life time,

its dynamic behavior changes from benefiting STT-RAM to penalizing STT-

RAM. Thus a migration scheme is necessary to reduce such energy/performance

penalties. Since most of the data blocks loaded to L2 cache are from read-miss,

it is more important to identify those blocks in STT-TAM that incurs higher write

penalty in the near future. This process is done by updating and examining the

RC array. The read-RC and write-RC are initialized to zero when the block is

firstly loaded. A read/write operation to the block will increase the corresponding

RC by one. For blocks in STT-RAM, upon write-RC is saturated at a pre-defined

maximum value θrw, the block will be migrated to SRAM with both RCs reset

to zero. If read-RC is saturated first, both RCs are reset. On the SRAM side,

the roles of read-RC and write-RC are revered as the migration to STT-RAM is

triggered by a saturated read-RC value θwr.

Figure 6.5 demonstrated how a sequence of operations updates the RCs and

triggers a migration, given a 2-bit wide read-RC and a single-bit wide write-

RC. Here we set θrw = 1. The block is initially allocated in STT-RAM part

and behaves as read-intensive until event #7. Then it encounters a behavior

changes and is migrated out. Figure 6.6 illustrates the data flows involved during

a migration from STT-RAM to SRAM. Note that as now we have two parallel

structures, probing has to be performed in both STT-RAM and SRAM part with

different set index and address tag.
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Event
Sequence Read-RC Write-RC

1: Read miss 00 0

2: Read hit 01 0

3: Read hit 10 0

4: Write hit 11 1

5: Read hit Read-RC saturated, reset

6: Read hit 01 0

7: Read hit 10 0

8: Write hit 10 1

9: Write hit Write-RC saturated, 
migrate to SRAM

Event
Sequence Read-RC Write-RC

1: Read miss 00 0
2: Read hit 01 0
3: Write hit 01 1
4: Read hit 10 1
5: Write hit

Fig. 6.5 An example event sequence that triggers a migration.

AMC

1) Cache probe

2) Cache hit & 
migration triggered

Tag Data RC

123456 123456789012

STT-RAM

1) Cache probe

2) Cache miss

3) Migration

Tag Data RC

123456 123456789012

SRAM

Fig. 6.6 Data flows involved when a migration is triggered from STT-RAM to
SRAM.

The above scheme monitors the read and write activities occurs in a small

window and uses it to predict the access behavior in a near future. If a cache

block shows a heavy write activity, it is likely the block will hamper energy

efficiency from staying in STT-RAM and vice-versa. However, migration is not

free and incurs performance and energy overhead. If the block does not behave as

write-intensive after being reallocated to SRAM, migration traffic is wasted and

it might obstruct further memory requests to SRAM. In the experiment, we found

that the number of blocks that require such kind of write-induced migration is

generally small compared to the number of memory accesses. The additional
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latencies caused by block migrations did not lead to notifiable performance

degradation as we shall show in the evaluation.

Transit address buffer. Until now we are able to identify most long-term

memory access behaviors and act accordingly, however, transit traffic can still

cause unnecessary cache fills in STT-RAM and severely affects energy consump-

tion. Here we introduce transist address buffer (TAB), a fully associative buffer

for holding transit data address. When a block gets evicted with zero read- and

write-RC from the STT-RAM part, the corresponding set index will be put into

TAB. Any block fill to STT-RAM will first consulate TAB and if the set index

matches an entry in TAB, that block will be allocated to SRAM augment with

the TAB entry be removed.

Pre-Migration. For most GPGPU applications, the memory accesses to

L2 are designed to be uniformly distributed to each partition (roughly) and

these partitions share similar access behaviors. Thus, if a block migration is

triggered in one partition, the corresponding blocks in other partitions are also

likely to be migrated through subsequent memory accesses. In such cases, it

would save more energy if the subsequent migrations in other partitions can be

performed in advance. To implement this, migration signals are issued to all

other partitions with the appropriate triggering memory addresses. Note that

since all L2 partitions adopt the same configuration, only set index and address

tag are needed.
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6.4 Evaluation

In this section, we evaluate our proposed L2 architecture using a modified version

of the cycle-accurate GPGPU simulator GPGPU-Sim [8]. It provides a detailed

architecture model (including the internals of SMs, caches, interconnection net-

works and off-chip DRAM) of modern GPGPU running CUDA workloads [92].

We have chosen two widely used CUDA benchmark suites: rodinia [15] and par-

boil [79] for the experiments. The benchmarks are compiled using CUDA toolkit

4.0 [2] in order to satisfy GPGPU-Sim’s requirement. The latency and energy

numbers of SRAM and STT-RAM cache are generated using DESTINY, a tool

for modeling emerging memories [67].

6.4.1 Configuration

Figure 6.7a shows the base GPGPU system configuration which mimics a Feimi-

based microarchitecture [92]. Although the feature size of a STT-RAM cell is

about 1/4 of SRAM [82], same-capacity comparison was performed for fairness

reason. Note that even after adding the SRAM augment in hybrid cache, the total

area is still smaller than a single 4M SRAM cache. Three L2 configurations were

simulated in the experiment:

• SRAM: A 4-megabyte pure SRAM cache with the maximum area occupa-
tion.

• STT-RAM: A 4-megabyte pure STT-RAM cache with the minimum area
occupation.

• Hybrid: A hybrid cache composed of a 4-megabyte STT-RAM part and
a 512-kilobyte SRAM augment, using differential block allocation and
migration scheme described in previous section.
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Fig. 6.7 GPGPU configuration.

The detailed latency and energy numbers are shown in Figure 6.7b.

6.4.2 Performance

To evaluate the performance impact from the proposed L2 architecture, we

measured the execution time of each benchmark in GPU cycles. Note that

GPGPU-Sim excludes the time spent in CPU-GPU communication so it only

counts the cycle when GPU is busy. Figure 2 shows the normalized execution

time of each benchmark. In a pure STT-RAM setting, the prolonged write latency

did not cause significant performance degradation. The maximum execution

time increase is merely 2%, recorded in b+tree. This is because write operations

usually are not on the critical path and the interconnection and queuing delay of

L2 access are essentially much larger than the programming delay of STT-RAM

cell. The main penalty comes from the prolonged miss handling time which

increases the latency of subsequent memory request along the execution path.
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Fig. 6.8 Normalized GPU execution time.

As our design migrates writes to SRAM augment and reduces some traffic

to STT-RAM part, the execution time of some benchmarks received minor

deductions. In particular, hotspot and sad encountered a clean separation of reads

and writes in STT-RAM part and SRAM augment respectively, shortening the

total execution time by 5% and 8.8% respectively. The largest performance drop

occurred in hybridsort and lud. Unlike other applications that seldom re-use

those heavily-written data blocks, hybridsort and lud re-read great amount of

such data. While they also exhibit a relatively high migration rate, the small

SRAM augment is congested, causing a substantial increase of cache misses.

As such, hybridsort and lud increase the execution time by 11.5% and 8.6%

respectively. Overall, our design still saves slightly more than 1% of the total

busy cycles.

112



6.4 Evaluation

6.4.3 Energy Consumption

The total energy consumption for the L2 cache is calculated by adding three

components:

• Leakage energy: The static energy consumed when the data cell is not in
operation. Note that due to the peripheral circuits, STT-RAM is not totally
leakage-free.

• Read/write energy: Dynamic energy consumed for read and write opera-
tion. Note that every cache miss is considered to have an extra write due to
block fill.

• Probing and migration overhead: In our proposed hybrid scheme, the
AMC probes both STT-RAM part and SRAM augment in parallel when
serving a memory request. The additional energy spent in the double-
probings are considered here together with the energy spent in block
migrations.

Figure 6.9 shows the normalized L2 energy consumption. As expected, the

pure STT-RAM cache (red color) is less energy-efficient than pure SRAM in

general because the high write energy consumed in STT-RAM is often much

larger than the saving of leakage energy from SRAM. In benchmark lud, par-

ticlefilter and cutcp where the writes occurred less frequent (not necessary to

be read-intensive), STT-RAM is more energy-efficient. Note that the write traf-

fic is contributed by both memory writes and cache misses. In applications

like dwt2d, pathfinder and histo, high portion of transit-like traffic were observed,

leading to large amounts of block fills in STT-RAM and pushing up the total

energy consumption. On average, a direct replacement with STT-RAM is not

profitable as it 20% more energy.
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Fig. 6.10 Dynamic energy distribution of hybrid L2.

Our design gradually reduce the write energy consumed in STT-RAM. The

differential block allocation and migration scheme managed to offload portions

of the write traffic to SRAM augment, saving the write energy of STT-RAM. This

is shown in Figure 6.10 which displays the dynamic energy distribution of our

hybrid L2 in bfs and gaussian. Bfs is write-intensive benchmark with medium

portions of read/write mixed blocks. Our hybrid scheme allocated/migrated more

than 80% of the writes to SRAM, while the rest still consumed more than 40% of

the dynamic energy. Gaussian is also considered to be write-intensive, but 90%

of the writes had been offloaded to SRAM augment. Thus, more dynamic energy

was spent by SRAM augment. In both cases, the energy overhead incurred from

double probing and migration is not significant, compared with the savings. In

two special cases: cfd and dwt2d, the read and write data are separated in different

memory region, making nearly all the write requests to be missed. Hence, STT-

RAM part received almost zero write activity because of the differential block

allocation.
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6.5 Related Work

The use of emerging memories in GPGPU has been studied before. Li et al.

proposed a hybrid STT-RAM and SRAM register file architecture leveraging the

warp scheduler [50]. Their design utilized SRAM as a write buffer coupled with

a warp-aware write-back strategy to reduce the high write energy consumed in

STT-RAM. Goswami et al. implemented a STT-RAM-based register file with

coalescing control strategy [33]. They attempted to remove redundancy updates

to the register file by introducing a write-back buffer. Alternatively, Jing et al.

presented another register file architecture design employing eDRAM [42]. They

proposed bank bubble and walk-though technique to reduce the refresh overhead

of eDRAM. Mao et al. demonstrated another power-efficient register file design

using domain-wall memory [54] while Venkatesan et al. utilized DWM in the

design of a hybrid cache hierarchy [85]. Furthermore, the attempt to use STT-

RAM as GDDR5 replacement in graphic memory has also been investigated by

Zhao et al. [99].

A last-level cache design with STT-RAM was given by Samavatian et al. [73].

In their work, both high-retention (HR) and low-retention (LR) STT-RAM cell

were used. As described in chapter 2, relaxing the volatility of STT-RAM can

significantly improve write performance and reduce write energy. Therefore, a

monitoring logic was used to identify the write-intensive blocks and place them

in the LR part. In addition, retention counters were introduced for postponing the

refresh operation to the last cycles in the retention period, mitigating performance

and energy overheads.
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6.6 Summary

As GPU architectures scale to include more and more cores, enlarging on-chip

memory to ensure sufficient data supply seems inevitable. While the emerging

STT-RAM has shown promise as a replacement for SRAM in caches, at the

current stage, an one-for-one replacement is still not profitable due to the cost

of write operations in STT-RAM. A lot of efforts have been spent in mitigating

this issue for CPU caches. However, due to the differences in architecture and

application behaviors between CPU and GPU, these proposals do not translate

automatically to GPGPUs.

In this chapter, we proposed a hybrid L2 architecture employing a large

STT-RAM and a small SRAM section for GPGPUs. We showed that using

our proposed differential block allocation and block migration scheme, we

can alleviate the write pressure on the STT-RAM section significantly. Our

design monitors the read/write behavior of cache blocks in STT-RAM, and

attempts to offload writes to SRAM. Simulation shows our design achieved

a small performance improvement over both pure SRAM and STT-RAM, but

more importantly significantly reduces the energy consumption. We believe

that this will contribute to the energy issue especially in integrating GPUs into

systems-on-a-chip.
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Chapter 7

Conclusion

7.1 Thesis Summary

Concerns about the energy issue are growing for modern processors at deep

sub-micron era. Emerging memory technologies appear to be a promising way

out. While they have many desirable properties, the drawbacks involved could

hinder their future deployments. In this thesis, we have proposed four memory

architecture designs utilizing emerging memories. The motivation is to maximize

the energy and density benefits while mitigating the potential penalties. In

particular, our contributions are

• At the highest level in the memory hierarchy, we have designed an analog

neural branch predictor employing memristors. The characteristics of

memristor allowed us to combine computation and storage all together.

Our proposal utilized analog circuit technique in solving the latency issue

found in most neural prediction algorithms. At the same time, its behavior

is closer to neural systems in nature and thus resulted in a better prediction
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accuracy. The non-volatile and low-power property of memristor also

reduced the overall energy consumption by two orders of magnitude.

• At the next level in the memory hierarchy, we have designed a coherent

hybrid L1 cache architecture employing both SRAM and STT-RAM. Our

proposal made use of the built-in cache coherence protocol in predicting

a cache block’s dynamic behavior. To achieve a better energy-efficiency,

writes are migrated to SRAM while most reads stay in STT-RAM. Two

migration policies together with a null policy are presented and discussed.

Experiment showed that when compared to conventional SRAM caches,

our design saved significant energy while keeping the performance loss at

a reasonable level.

• At the level of LLC, we have designed a MLC STT-RAM cache with

dynamic block reconfiguration. LLC is typically large in capacity but is

not often well-utilized. MLC STT-RAM can be configured into either a

low-latency low-energy mode or a high-capacity mode. Based on that, we

proposed a LLC design where some heavily used blocks are configured to

full-capacity mode for a better hit rate while those under-utilized blocks are

in low-latency mode for accelerated access. Simulation showed that such a

design increased both system performance and overall energy-efficiency

simultaneously.

• In addition, we have also extended the use of emerging memories to the

memory hierarchy of GPGPUs. We proposed a high-capacity L2 cache

for GPGPU using a large STT-RAM part coupled with a small SRAM

augment. The main purpose is to alleviate the write pressure of STT-

120



7.2 Future Direction

RAM with the help of a differential block allocation and a block migration

scheme. Simulation showed that our design achieved minor performance

improvement over both pure SRAM and STT-RAM designs with significant

energy reduction.

7.2 Future Direction

The proposed schemes are mainly focuses at higher levels in the memory hier-

archy. Our main goal is to reduce energy consumption without compromising

performance, while maintaining transparency to existing applications. As these

emerging memories are not fully mature, reliability is an issue we have not

investigated in this thesis. In addition, pure hardware mechanisms might not fully

unleash the potential of emerging memories. A hardware-software co-design

may further improve performance and energy-efficiency.

Reliability. The reliability of emerging technology such as STT-RAM is

an important issue that constrains its commercial deployment. As the manufac-

turing process become more and more mature, hard-errors caused by limited

endurance are expected to be lowered to a level that will work for most applica-

tions. Currently, the main source of errors are the soft-errors which are caused

by process variation and thermal fluctuation. These errors can be categorized

into three types: read failure, write failure and retention failure. Among them,

retention failure has been shown to be the dominating source of error as technol-

ogy scales [62]. At the moment, the lack of an accurate error model has limited

further investigation to this issue. One possible solution is to employ multi-bit

error-correcting codes (ECC) in the designs [90].
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Hardware-software co-design. Being application-transparent, hardware

mechanisms can be applied to any softwares without the source codes. However,

as the hardware is not possible to be fully aware of the application behaviors, any

decision made is not guaranteed to be always optimal. If the underlying hardware

is exposed to upper-level (for example via the compiler) software, by providing

application hints to the hardware we may reduce unnecessary (re)configuration

overheads [52].
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