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ABSTRACT

Cache memory is a bridging component which covers the increasing gap between the speed of

a processor and main memory. An excellent performance of the cache is crucial to improve system

performance. Conflict misses are one of the critical reasons that limit the cache performance by

mapping blocks to the same set which results in the eviction of many blocks. However, many

blocks in the cache sets are not mapped, and thus the available space is not efficiently utilized. A

direct way to reduce conflict misses is to increase associativity, but this comes with the cost of an

increase in the hit time. Another way to reduce conflict misses is to change the cache-indexing

scheme and distribute the accesses across all sets.

This thesis focuses on the second way mentioned above and aims to evaluate the impact of the

matrix-based indexing scheme on cache performance against the traditional modulus-based index-

ing scheme. A correlation between the proposed indexing scheme and different cache replacement

policies is also observed.

The matrix-based indexing scheme yields a geometric mean speedup of 1.2% for SPEC CPU

2017 benchmarks for single core simulations when applied for direct-mapped last level cache. In

this case, an improvement of 1.5% and 4% is observed for at least eighteen and seven of SPEC

CPU2017 applications respectively. Also, it yields 2% of performance improvement over sixteen

SPEC CPU2006 benchmarks. The new indexing scheme correlates well with multiperspective

reuse prediction. It is observed that LRU benefits machine learning benchmark by a performance

of 5.1%. For multicore simulations, the new indexing scheme does not improve performance

significantly. However, this scheme also does not impact the application’s performance negatively.
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NOMENCLATURE

CPU central processing unit

GPU graphics processing unit

RAM random access memory

DRAM dynamic RAM

SRAM static RAM

RRIP re-reference interval prediction

DRRIP dynamic RRIP

SRRIP static RRIP

BRRIP bimodal RRIP

RRPV re-reference interval prediction

LRU least recently used

PC program counter

SDBP sampling-based dead block prediction

SHIP signature-based hit predictor

LLC last level cache

KPC kill the program counter

KPC-P KPC prefetching algorithm

KPC-R KPC replacement algorithm

EAF evicted address filter

MRP multiperspective reuse prediction

AMI arbitrary modulus indexing

FUP full permutation
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PCM phase change based main memory

RIB random invertible binary matrix

KB kilobytes

AMAT average memory access time

DGH demand global hysteresis

PGH prefetch global hysteresis

DA-AMPM DRAM-aware access map pattern matching

SPEC standard performance evaluation corporation

TACO Texas Architecture and Compiler Optimization

IPC instructions per cycle

MPKI misses per kiloinstruction

PACMan prefetch aware mechanism

UMO unified memory architecture
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1. INTRODUCTION

The number of transistors in a circuit doubles every eighteen months, as observed in Moore’s

Law [2, 3], which leads to improvement in the performance at the cost of the complex circuitry.

Before 2004, processor performance was improving at the rate of 60%. Since 2004, the perfor-

mance improvement was 20%. A considerable performance gap was observed between CPU and

main memory because main memory performance was improving at the rate of 9% [4]. One of

the main reasons for this performance gap was large latency to access off-chip memory for CPU

requests. Hence, cache memory was introduced to bridge the gap between processor and memory.

Cache memory keeps a copy of frequently accessed data needed by the processor.

The average memory access time (AMAT) for cache, which can be seen in Equation 1.1, is

the function of hit time, miss penalty and miss rate. These factors have a significant impact on

performance. However, there is a tradeoff among these three parameters.

AMAT = hit time + ( miss penalty ∗ miss rate ) (1.1)

An increase in associativity results in miss rate reduction, but it increases hit time due to complexity

of the tag matching logic. Direct mapped caches reduce hit latency but have a higher miss-rate in

contrast with associative caches. The difference in miss rate is due to the modulus based indexing

scheme, that leads to an imbalance in the mapping of block references to the cache sets causing

conflict misses. In some applications, the utilization of sets is not balanced since some sets are

excessively accessed. Distributing the accesses across the cache can reduce the miss rate.

One of the most researched areas in caches has been on reducing conflict misses [4]. There

have been many publications on cache indexing to eliminate conflict misses [5, 6, 7, 8]. The

traditional cache indexing method uses a modulo-based scheme as explained in Section 2.3.1.

However, in this thesis, the random invertible binary matrices are used as a part of a hash function

which generates a new address to index the cache. It evaluates whether this scheme proves to be
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efficient in spreading out the accesses in a better way than the modulus-based indexing scheme.

The concept of invertible matrices was first used to enhance the lifetime and security of phase-

change main memory [1](PCM).

The contributions of this thesis are following:

1. To quantify the effect of our proposed indexing scheme on a set associative and direct-

mapped cache.

2. Discuss the results to understand the impact of the new indexing scheme on system perfor-

mance.

3. To comprehensively evaluate different cache replacement policies with the new indexing

scheme over multiple binary invertible matrices.

4. Evaluate the impact of the proposed cache-indexing scheme when it is applied only on last

level cache (LLC) and on both second and LLC.

1.1 Document Structure

Chapter 2 explains the basics of cache hierarchy and the motivation behind Proposed indexing

scheme. Chapter 3 describes state of the art on cache replacement policies and indexing schemes.

The proposed technique and its implementation are discussed in Chapter 4. Chapter 5 describes our

simulation methodology and our choice of benchmarks for study. Finally, the results are discussed

in Chapter 6, followed by conclusions and future work in Chapter 7.
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2. BACKGROUND & MOTIVATION

A cache is a high speed memory that reduces the latency to access the main memory by keeping

the data that could be referenced soon and, thus, exploiting temporal and spatial locality present in

the application. Figure 2.1 shows how the cache memory is organized as an array of sets; each set

holds one or more blocks, where each line holds the data. For each cache access, the target address

splits into three components: tag, set index, and offset as shown in Figure 2.4.

For each cache access, the following essential steps on the requested address have been per-

formed:

1. The address maps to a location in the cache: the set index bits determine the set.

2. Check valid bits on the lines of the accessed set.

3. Compare the requested tag with all the valid tags in the accessed set.

• If there is a tag match, then it is considered as a cache hit and the data is supplied to the

CPU. The offset is used to refer to the exact word information requested.

• If there is no tag match, it is a cache miss. In this case, the data is requested to the next

memory level. A replacement policy algorithm is used to decide where to place the

data into that cache level.

2.1 Cache organization and Miss Types

The organization of a cache can be direct mapped, set associative or fully associative, depend-

ing on how the block maps in the cache. Figure 2.2 shows the organization of a cache. The address

constitutes three parts, i.e. tag, set and offset, as shown in Figure 2.4. Direct mapped caches have

one single block per set, so each index maps to a single location in the cache. For a set associative

cache, a block can be placed anywhere within a set, the associativity specifies the number of possi-

ble locations in a set. For instance, two blocks can be placed per set in a two way set associative as
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shown in Figure 2.2. In a fully associative cache, there is only one set, and a block can be placed

anywhere in that set, so anywhere in the cache. For different cache organizations, the mapping is

different as detailed in section 2.2.

There are four types of cache misses depending on its cause: compulsory, capacity, conflict and

coherence misses. Compulsory misses occur when the very first access of a block is not present

in the cache, also known as cold misses. The cache memory has limited size and thus cannot

accommodate all the blocks, which results in capacity misses. Conflict misses are also known as

collision misses and occur due to the limited number of positions available to map a block within a

set. It results in conflicts among the blocks, which are mapped to the same set. A fully associative

cache does not have conflict misses. Coherence miss occurs due to data sharing among multiple

processors.
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5

Figure 2.1: Cache memory with size SxAssociativityxB Bytes, where S is number of sets and B is block size (in bytes)
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Figure 2.2: (i) Direct mapped cache, (ii) Set associative cache with associativity 2, (iii) Fully associative cache



Figure 2.3: (i) Blocks mapped to set whose all lines are already utilized, i.e. conflict misses, (ii)
Blocks mapped to unutilized sets, i.e. effect of efficient indexing scheme.

2.2 Conflict Miss Handling

The performance of cache memory can be improved by reducing cache misses. This thesis

focuses on increasing the efficiency of the cache by reducing the conflict misses. Conflict misses

can be reduced by increasing associativity since there will be more positions available to map

a block to a set. However, it will introduce extra hardware logic due to the need to perform

more tag comparisons. It will increase the hit time and therefore increase overall access time (see

Equation 1.1). Another possible way is to utilize the cache capacity efficiently. The cache accesses

are limited to specific sets, and lots of cache area remains unused. This problem can be resolved

using a better indexing scheme which helps to scatter the accesses within the cache.

Refer to Figure 2.3 to find that with a conventional indexing scheme the blocks Blk1, Blk2,

Blk3 maps to Set1 and Blk20, Blk22 maps to Set3. Both Set1 and Set3 are full which results in

conflict misses and the space in Set0, Set2 and Set4 is unutilized. Hence, it reflects that it is better

to use the indexing scheme such that the new blocks maps with the sets with unutilized space to
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Figure 2.4: Modulus based indexing scheme

reduce conflict misses and therefore to increase system performance.

2.3 Indexing schemes

This section discusses briefly on the conventional modulus based indexing scheme and moti-

vation behind this proposed scheme.

2.3.1 Modulus based indexing scheme

The modulus-based indexing scheme is commonly used to index the cache. Figure 2.4 shows

how the address is used to index the cache, where B is the block size and S is the number of sets.

For example, we have requested an address A, i.e. 0XF0123456 for a two way associative and 8

KB cache (8192 bytes) and each line size is 16 bytes. Since the line size is 16 bytes, then offset

will be the last 4 bits of the address, i.e. 0X6. The number of sets is 256. It can be calculated using

Equation 2.1.Thus the number of bits required to represent a set is 8, and hence the indexed set is

0X45. The remaining bits indicate the tag, i.e. 0XF0123.

Number of sets = cachesize / ( associativity ∗ blocksize ) (2.1)

2.3.2 Matrix based indexing scheme

Qureshi et al [1] proposed a wear leveling scheme to enhance the lifetime of phase-change

main memory. Simple schemes like random invertible binary matrix (RIB) and Feistel Network

are used to reduce the probability of lines being frequently written spatially. In RIB based scheme,

the block address is treated as a binary vector and multiplied by a random invertible binary matrix
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to produce a transformed block address, thus allowing a more even distribution of accesses to the

memory. Similar behavior was seen in the cache memory.

Most of the cache space is unused [5, 6, 9, 10] since the lines are mapped densely to some sets.

Hence, it motivates the application of the idea of RIB matrix in this thesis, and further evaluate

whether it helps in spreading the accesses evenly in the cache memory.
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3. RELATED WORK

This chapter gives an overview of the various replacement policies, and different indexing

schemes for handling conflict misses, some of which are used for the evaluation of proposed in-

dexing scheme for set-associative and direct-mapped cache. Table 3.1 shows a list of indexing

schemes that are briefly explained in this chapter.

3.1 Re-Reference Interval Prediction

Applications show different access patterns which leads to different cache behavior. Least

Recently Used (LRU) policy performs poorly when the working set of the application is more

than the cache size (i.e. thrashing patterns) [11]. LRU relates recency with re-reference of the

cache block and treats that recently accessed block will have near immediate future. There are

applications, which have frequent bursts of non-temporal data (i.e. scan patterns) and also do not

perform well with LRU.

Jaleel et al. proposed the Static Re-reference interval prediction (SRRIP) technique which

performs well on scan patterns and Dynamic Re-reference interval prediction technique (DRRIP)

which performs well on the scan as well as on thresh patterns [11]. Each block in the cache has

a Re-reference prediction value (RRPV). When RRPV is 2 bit, then it could have four possible

values, i.e. 0 for near immediate re-reference, 1 is near re-reference, 2 is long, and 3 is distant

re-reference. The RRPV value is set to 2, 0 and 3 in case of block insertion, hit and miss respec-

tively. DRRIP performs set duelling between SRRIP and thrash resistant BRRIP (Bimodal RRIP)

technique. BRRIP prevents thrashing by inserting blocks with RRPV value 3 for most of the times

and inserts blocks with RRPV value as 2 with less probability.

SRRIP and DRRIP improve performance on an average of 4% and 10% respectively over LRU

for single-core configuration. For multi-programmed configuration, SRRIP and DRRIP improve

average performance by 7% and 9% over LRU.
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3.2 Sampling-Based Dead Block Prediction

A cache bridges the processing speed gap between memory and CPU by keeping frequently

accessed blocks. Therefore it is preferred to keep only the valuable blocks in it. However, some

blocks are never accessed from the time they enter the cache. These blocks are called as dead

blocks and should be evicted soon to utilize the cache space efficiently.

Khan et al. proposed sampling dead block prediction (SDBP), a technique to manage LLC

efficiently by predicting the dead blocks and preventing their placement in the cache [12]. The

authors have used a sampler that generalizes the entire cache by keeping a few sets, and reducing

the overhead of metadata. This policy uses a predictor, which constitutes three tables of 2 bit

saturating counter. Each table is indexed in a skewed fashion [10] by using different hashing

functions over the instruction program counter(PC), which is accessing memory. During a block

placement in the cache, we check the predictor and bypass the cache when it predicts that a block

is dead. On hit, the counter values in the tables will be decremented corresponding to the accessed

block, and these values will be incremented in case of eviction.

This policy keeps less metadata than other dead block predictors. SDBP outperforms LRU with

a geometric mean speedup of 5.9% and 12.5% for single thread and multi-programmed workloads.

3.3 Signature-Based Hit Predictor

Wu et al. proposed a signature-based hit predictor (SHiP) that improves the cache performance

by correlating the re-reference behavior of a cache line with a unique signature [13]. This approach

is similar to the dead block prediction, SDBP focuses on predicting the dead blocks while SHiP

focuses on predicting live blocks. Each cache reference has an outcome bit and a signature. A

signature could be an instruction PC, the most significant bits of the data address, or instruction

sequence history.

Similar to SDBP, this policy has used a predictor, which is a table of 2 bits saturating counters

and indexed by hashed signature. The baseline policy used for cache is RRIP. In case of a hit,

the counter values in the predictor table are increased, and the outcome bit associated with the
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block is made valid. In case of a miss, if the block is not accessed even once, i.e. its outcome

bit is false, then the counter values are decreased corresponding to the signature of an evicted

block. The outcome bit is reset when the evicted block is accessed once, and signature value is

updated with the value of incoming block signature. During the eviction, the predictor is accessed

using incoming block signature, and if the counter value is 0, the block is predicted as a distant

re-reference, i.e. RRPV value is 3 else it has an intermediate reference, i.e. RRPV value is 2.

This technique improves the application performance by 10% and 12% over LRU replacement

for single thread and multi-programmed workloads respectively.

3.4 Evicted Address Filter

Earlier works on cache memory have addressed the problem of pollution and thrashing sep-

arately. Vivek et al. proposed a technique to handle both issues together by keeping track of

reusability of accessed cache blocks [14].

A structure called as evicted address filter (EAF) is introduced to keep the addresses of a

recently evicted blocks. On a cache miss, when a block is found in EAF, then it will be placed

at most recently used position in the cache. When a block is not present in EAF, it means that

it has low reuse and thus it will be placed in LRU position. EAF suffers from the problem of

significant storage overhead and high associative lookups. Thus authors proposed to implement

EAF as Bloom filter. When an address is inserted in bloom filter, then the value at the bit position

corresponding to the hash of address value is set to 1. Also, the presence of a block in EAF is

checked by taking the hash value of the address and then it is compared to 1. All the addresses

from the bloom filter are cleared when all the bits are set to 1.

This technique shows the speedup of 7% over LRU for single-threaded workloads, and the

weighted speedup is 15% over LRU and 8% over SHIP for multi-programmed workloads.

3.5 Kill the Program Counter

Prefetching and cache replacement schemes are among the dominant research topics for effi-

cient cache management. However, there is limited work done on studying the interaction between
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both the schemes [15, 16, 17]. These studies show that prefetching can affect replacement policies

positively as well as negatively.

Kim et al. proposed an efficient approach which uses prefetching and a replacement policy

together to manage all levels of cache [18]. Traditional prefetching schemes do not use the PC

and do not help in learning of PC-based replacement policies. In addition to that, passing the PC

to microarchitecture subsystems needs extra logic and wires. Thus, the authors have proposed the

replacement policy component called KPC-R and a prefetcher component called KPC-P, which

learns from each other. These approaches improve the system performance as well as reduces the

hardware overhead by not using the PC.

In KPC-P, a pattern table is used to store the compressed history of L1 misses, and it is indexed

using the history to predict the next block. During the initial training phase, the counter values

are increased which gives the confidence that prefetchers are useful. After the training phase,

prefetchers are used only if the confidence on prediction is high.

The KPC-R replacement policy uses global hysteresis to predict dead blocks by tracking global

reuse behavior [18]. The hysteresis value is maintained for cache demands and prefetches. This

scheme uses a sampler, which is managed using true LRU. The cache uses SRRIP replacement

policy. The value for Demand Global Hysteresis (DGH) or Prefetch Global Hysteresis (PGH)

(based on its allocation type) is decremented on a cache hit in one of the sampler sets. The value is

incremented on a sampler miss when the victim was never used. When the value for DGH or PGH

is saturated, then the accessed blocks are predicted to be dead.

KPC outperforms baseline DA-AMPM+LRU [17], SHIP, PACMan [15], UMO [17] with a ge-

ometric speedup of 9.2%, 5%, 5.8%, 8.1% for single core simulations respectively. KPC achieves

the weighted speedup of 14.1% over baseline DA-AMPM+LRU and 8.1% over SHIP respectively

for multi-programmed configuration.

3.6 Multiperspective Reuse Prediction

Jiménez et al. proposed multiperspective reuse prediction (MRP) [19], which uses a machine

learning based perceptron [20] technique to predict the importance of cache blocks. Different
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features which track the reuse of memory and program behavior are fed as inputs to the predictor.

A genetic algorithm is used for design space exploration to get the best features, so that a better

predictor accuracy is yield over the set of input traces. Authors have used features that correlate

well with block reuse, i.e. PC, memory address, bias, burst, insert, last miss and offset. The

predictor is a set of tables, one per feature and its index is obtained using feature value exored

with PC. Each table works as a perceptron predictor. The authors have also used a sampler that is

used to train the predictor on every access. On sampler access, when a block gets demoted beyond

the recency position for a feature, then the predictor table for that feature is trained that the block

is dead. The predictor table for a feature is not trained that the access is reuse when the block is

accessed beyond the recency position. On each cache access, the predictor is accessed to decide if

the block should be bypassed, placed or promoted in the cache.

This technique yields a geometric mean speedup of 9.0%, 5.1%, 6.3% over LRU, Hawk-

eye [21], and Perceptron [22] respectively for single-thread benchmarks. It yields a weighted

speedup of 8.3%, 5.2%, 5.8% over LRU, Hawkeye, and Perceptron respectively for multipro-

grammed configuration.

3.7 Indexing schemes

Randomizing the mapping of references in memory modules is one of the prominent areas of

research in microarchitecture. The objective of randomization is to reduce the conflict misses and

allow uniform distribution of accesses with an efficient utilization of the available space. These

randomizing schemes also help in eliminating the interleaving bottleneck for an efficient banking

scheme.

Some of the earliest works was to use a victim buffer [23], virtual victim cache [24] that

gave an illusion of more associativity and helped in reducing the conflict misses in direct mapped

cache at the expense of extra hit latency. After that, researchers proposed various mathematics

based schemes such as use of Prime modulus functions [7, 25, 26], XOR-based hashing [27, 28],

Skewing [10, 29, 30] and Pseudo-random functions [31, 32, 33].

Rau proposed pseudo-random based interleaved memory architecture which ensures a robust
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interleaving scheme to get high bandwidth [32]. In this scheme, the randomization is achieved by

XORing the physical address with a bit pattern that changes using polynomial arithmetic.

González et al. analyzed the XOR-based hashing function and have shown that it elimi-

nates the conflict misses for different cache organizations [6], similar to direct-mapped [34], set-

associative [34], column-associative [35], and hash-rehash cache [9]. Authors also proposed a

bitwise XOR mapping scheme that forms the index by taking XOR of some bits from the tag and

set index.

Seznec used the XOR-based hash function followed by circular shift and proposed an idea of

Skewed Associative cache [10]. A line maps to the same set in all banks in an X way set associative

cache using conventional modulus based indexing scheme, where each way works like a bank.

However, in this organization, the mapping of a line is different for different banks. Different

hash functions are used to generate the different index values, and this ensures the scattering of

data in the cache. An X way cache with skewed mapping results in performance equivalent to

2X way cache and with same hardware overhead as X way cache. However, this scheme leads

to pathological behavior because XOR-ing with different values for each set access affects the

locality.

Kharbutli et al. proposed two new prime number based hashing functions [7], i.e. prime mod-

ulo and prime displacement, which outperforms the widely used XOR based hashing functions.

These new schemes spread the cache accesses in a better way by keeping the locality. The prime

modulo scheme generates cache index by performing address modulo number of sets. However,

the number of sets is not a power of two, and it is a prime number. The prime displacement scheme

generates the index by adding an extra term to address modulo number of sets. Here, the number

of sets is a power of two, and the additional term is a prime number multiplied by tag bits.

Balanced cache is another technique to reduce the miss rate of direct-mapped cache by in-

creasing the decoder length [5]. The two most significant set index bits are used as an input to

programmable decoders, and the least two significant bits are used as input to non-programmable

decoders. Previously proposed schemes restrict the modulus to either power of 2 or a prime num-
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Prime number based [7, 10, 25, 26]
Xor based hashing [6, 10, 26, 32, 37]

Polynomial based scheme [31, 32, 33, 36]
Programmable decoders [5]

Table 3.1: Indexing schemes

ber.

Jeffery et al. proposed Arbitrary modulus indexing (AMI) scheme which gives the flexibility

to use any number for modulus operation [8]. It provides the division and modulus result simulta-

neously and makes the scheme efficient. These indexing schemes are also used by researchers to

eliminate the intra-warp conflicts in GPU.

Khairy et al. have proposed a pseudo-random interleaved scheme which is based on polynomial

based modulus mapping [36]. In this scheme, a memory location is expressed as a polynomial with

random coefficients.

Wang et al. proposed a full permutation (FUP) cache indexing scheme to minimize warp

conflicts by using a combination of prime modulo and XOR-based hashing scheme [37].
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4. APPROACH

Cache memory speeds up the working mechanism of CPU by storing the frequently accessed

data and reducing the performance gap between CPU and main memory. Conflict misses are one

of the significant problems that hamper the cache performance and impact system performance.

Conflict misses occur due to the mapping of blocks to the same position in the cache and thereby

evicting the useful information. These collisions can be prevented by modifying the indexing

scheme, such that the address used for indexing could be more random. This chapter discusses the

idea of the matrix-based indexing scheme and its algorithm.

4.1 Matrix based Indexing scheme

In conventional modulus-based indexing scheme, first, the requested address by CPU is split

into three parts, i.e. tag, set and offset as seen in Section 2.3.1. The set index bits are used to find

the mapping position in the cache, where the requested tag is matched with the tag values present

in the indexed set. The offset indicates the requested byte or word. However, it leads to conflict

misses.

This thesis proposes a matrix-based indexing scheme and evaluates if it is useful in reducing

the conflict misses. This scheme uses an invertible binary matrix for the computation of the new

randomized address as seen in Figure 4.3.

4.1.1 Invertible Matrices

This technique uses an invertible binary matrix to spread cache accesses. This scheme must

map each physical address to exactly one randomized new address to ensure correctness. Thus, the

matrices used must be invertible [38].

A matrix is invertible if and only if it holds the following conditions:

1. It should be a square matrix.

2. The inverse for the matrix should exist, i.e. the determinant of the matrix should be non zero.
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Figure 4.1: reprinted from: Binary arithmetic in Matrix based indexing scheme [1]

A RIB constitutes 0 and 1. It has the same size as the block address, i.e. equal to the total

sum of the number of bits in the tag and set. Out of the generated matrices, ten different invertible

matrices for our experiments were randomly picked (see Appendix A).

4.1.2 Algorithm

Algorithm 1 shows the primary steps taken in this scheme. Line 4 shows that the matrix-based

indexing scheme is only applied for LLC and conventional indexing scheme is used in other cache

levels. The RIB matA is read from a text file and used as an input in function apply_matrix to gen-

erate a new randomized address, as seen in Algorithm 2, line 1. The matB and matC are temporary

matrices used to perform binary arithmetic as shown in Figure 4.1. This new randomized address

is further used to index the cache memory, instead of an actual physical address, also shown in Fig-

ure 4.3. Each bit in the new address is obtained by multiplying one row of the RIB matrix with the

physical address. The multiplication and addition are the AND and XOR operations respectively,

as shown in Figure 4.1 and Figure 4.2.

For instance, the requested cache address is 0xabcde for a four-way set associative cache with

a 16-bytes block size. The offset part is 0xe, and the block address is 0xabcd (see Section 2.3.1 for

the calculations). The address is a physical address since this scheme is either applied to LLC or
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Figure 4.2: New Randomized address after Binary arithmetic

both second level cache and LLC. To get a new randomized block address, we will perform binary

arithmetic of the physical address with RIB matrix as shown in Figure 4.1 and Figure 4.2. For

example, the first bit of new address 0XABCD is obtained using Equation 4.1. The new set index

is computed from the new address, and the old tag value is stored at the cache line.

A = ( a and 0 ) xor ( b and 1 ) xor ( c and 1 ) xor ( d and 1 ) (4.1)

The storage and latency overhead for this algorithm is miniscule for RIB matrix N x N, where

N is taken as 32 for matrix based indexing scheme. The storage used is N2 bits and the latency is

the delay of log2(N) logic gates [1].
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Algorithm 1 Matrix based indexing scheme: set calculation.

1: matA[size][size]← read from file

2: function GET_SET(address)
3: set← 0
4: if cache_type == LLC then
5: new_address← apply_matrix(matA,address)
6: set← new_address & (2numset − 1)
7: else
8: set← address & (2numset − 1)

return set

Algorithm 2 Matrix based indexing scheme: calculation of the new randomized address.
1: function APPLY_MATRIX(mat[size][size],address)

2: matB[size][1]← initialized to 0

3: matC[size][1]← initialized to 0

4: new_address← 0

5: for i = 0 to size do

6: matB[i][0]← address & 2i

7: mult((matA,matB,matC)

8: for i = 0 to size do

9: if matC[i][0] then

10: new_address← new_address | 2i

return new_address

11: function MULT(matA[size][size],matB[size][1],matC[size][1])

12: for i = 0 to size do

13: temp_var← 0

14: for j = 0 to size do

15: temp_var← temp_var xor (matA[i][j] &matB[j][0])

16: matC[i][0]← temp_var
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5. METHODOLOGY

This chapter discusses the methodology used to evaluate the proposed indexing technique. It

also discusses the simulator, its configuration detail and performance metrics used for the results

evaluation.

5.1 Host machine

This section discusses the experimental setup used for evaluating the new indexing technique.

The Private cluster of Texas Architecture and Compiler Optimizations research group (TACO) is

used for the experiments. The cluster has many different machines with Intel, AMD and ARM ma-

chines with different amounts of DRAM. Terra supercomputer, part of the Texas A&M University

supercomputing facilities is used for the multi-programmed configurations. This supercomputer

uses Slurm as a workload manager [39].

5.2 Benchmarks

The experiments for single and multicore configurations are performed using single threaded

applications. 27 SPEC CPU2006 [40] applications as listed in Table 5.1, 20 SPEC CPU2017 [41]

applications as listed in Table 5.2, 3 CloudSuite [42] and 1 machine learning application [43] as

listed in Table 5.3 are used.

The traces for SPEC CPU2006 and SPEC CPU2017 were collected with SimPoint [44, 45].

The CloudSuite and ml_pack traces were collected after fast-forwarding at least 30 billion in-

structions. The execution of traces constitutes 2 phases: warm-up and timing phase. During the

warm-up phase, the state of microarchitecture subsystems will get initialized, and after that, the

point timing simulation starts. For single core simulations, 200 million and 1 billion instructions

are used for warm-up and timing simulation phase respectively.

For multicore simulations, the warm-up phase is 200 million instructions, and the timing sim-

ulation phase is 1 billion instructions, such that each trace runs until all the traces have finished at

least one billion instructions. The experiments used four cores, i.e. a mix used for multicore con-
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astar libquantum bwaves
bzip2 cactusADM calculix

gamess milc gobmk
mcf omnetpp h264ref
gcc soplex hmmer

GemsFDTD sphinx3 namd
gromacs wrf perlbench

lbm xalancbmk povray
leslie3d zeusmp sjeng

Table 5.1: SPEC CPU2006 benchmarks.

perlbench_s gcc_s
bwaves_s mcf_s

cactuBSSN_s lbm_s
omnetpp_s wrf_s

xalancbmk_s x264_s
cam4_s pop2_s

deepsjeng_s imagick_s
leela_s nab_s

exchange2_s fotonik3d_s
rom_s xz_s

Table 5.2: SPEC CPU2017 benchmarks.

data_caching
graph_analytics

sat_solver
mlpack_cf

Table 5.3: CloudSuite & Machine learning benchmarks.
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Mix 1 mlpack_cf mlpack_cf mlpack_cf mlpack_cf
Mix 2 graph_analytics sat_solver data_caching graph_analytics
Mix 3 graph_analytics sat_solver data_caching sat_solver
Mix 4 graph_analytics sat_solver data_caching data_caching

Table 5.4: Multiprogrammed CloudSuite and machine learning mixes for simulating 4 cores.

Mix 1 astar leslie3d soplex zeusmp
Mix 2 mcf milc omnetpp h264ref
Mix 3 astar cactusADM leslie3d zeusmp
Mix 4 cactusADM gromacs sphinx3 mcf
Mix 5 cactusADM gromacs lbm milc
Mix 6 cactusADM GemsFDTD lbm leslie3d
Mix 7 gromacs libquantum mcf sphinx3
Mix 8 astar bzip2 sphinx3 gamess
Mix 9 bzip2 omnetpp calculix sjeng
Mix 10 wrf perlbench sphinx3 xalancbmk

Table 5.5: Multiprogrammed SPEC CPU2006 mixes for simulating 4 cores.

figuration has four traces such that each trace runs on a core. The experiment also used 20 mixes

from SPEC CPU2017, 10 mixes from SPEC CPU 2006 and 3 mixes from CloudSuite and 1 mix

for machine learning application for multicore simulations. The mixes are generated randomly and

are listed in Table 5.6, 5.5, and 5.4.

5.3 Simulator

The extended version of ChampSim simulator [46], used in the 2nd data prefetching cham-

pionship and also in the 2nd cache replacement championship is used for the experiments. It is

used for modeling different cache configurations and for studying the impact of the proposed in-

dexing scheme on system performance. We have used Cacti [47] to compute the hit latency for

set-associative cache and direct-mapped LLC (see Section 5.4).The simulator configuration is de-

scribed in Table 5.7. The baseline consists of a three-level non-inclusive cache hierarchy, where

all three levels have traditional modulus-based indexing scheme. The KPC-P prefetcher is enabled
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Mix1 bwaves_s lbm_s xalancbmk_s exchange2_s
Mix2 nab_s cactuBSSN_s omnetpp_s lbm_s
Mix3 deepsjeng_s omnetpp_s lbm_s bwaves_s
Mix4 fotonik3d_s omnetpp_s xz_s exchange2_s
Mix5 fotonik3d_s pop2_s omnetpp_s x264_s
Mix6 lbm_s leela_s fotonik3d_s pop2_s
Mix7 omnetpp_s roms_s lbm_s roms_s
Mix8 xalancbmk_s l perlbench_s roms_s exchange2_s
Mix9 roms_s nab_s xalancbmk_s roms_s
Mix10 roms_s x264_s xalancbmk_s wrf_s
Mix11 lbm_s bwaves_s fotonik3d_s nab_s
Mix12 xalancbmk_s leela_s lbm_s cactuBSSN_s
Mix13 omnetpp_s lbm_s omnetpp_s bwaves_s
Mix14 xalancbmk_s lbm_s xalancbmk_s cactuBSSN_s
Mix15 x264_s lbm_s lbm_s omnetpp_s
Mix16 roms_s mcf_s x264_s mcf_s
Mix17 mcf_s xalancbmk_s mcf_s lbm_s
Mix18 mcf_s mcf_s cactuBSSN_s lbm_s
Mix19 xz_s roms_s mcf_s mcf_s
Mix20 lbm_s mcf_s omnetpp_s mcf_s

Table 5.6: Multiprogrammed SPEC CPU2017 mixes for simulating 4 cores.

only for the second level of Cache.

Parameter Configuration

L1 I-Cache 32KB, 64B blocks, 8-way,

(private) 8 MSHRs, 1 cycle latency,

64 read/write/prefetch queue size

L1 D-Cache 32KB, 64B blocks, 8-way,

(private) 8 MSHRs, 4 cycles latency,

64 read/write/prefetch queue size

L2 unified Cache 256KB, 64B blocks, 8-way

Table 5.7: Simulator configuration
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Parameter Configuration

(private) 16 MSHRs, 8 cycles latency,

32 read/write/prefetch queue size

non-inclusive

L3 unified Cache 2MB per core, 64B blocks, 1/16-way

(shared) 32 MSHRs, 12/20 cycles latency

(Direct Mapped/Set Associative

configuration),

16 per core read/write/prefetch queue size

non-inclusive

Frequency 4GHz

Page size 4KB

Fetch, decode and retire 4 wide

Execution 6 wide

Load Queue 2 wide

Store Queue 1 wide

DRAM row precharge latency 11 cycles

DRAM row address to column

address latency 11 cycles

DRAM column address

strobe latency 11 cycles

DRAM 2 channels (1 DIMM per channel),

8 banks (64MB per bank),

8 ranks (512MB per rank),

4GB per DIMM

Table 5.7: Simulator configuration
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Parameter Configuration

DRAM channel width 8

DRAM I/O frequency 800MHz

Branch Predictor Perceptron

Reorder Buffer size 256

Pipeline depth 5

Table 5.7: Continued.

5.4 Experimental Configuration

This section describes the cache configurations simulated for evaluating the proposed scheme.

The parameters that are changed: replacement policy, indexing scheme, cache associativity, the

number of cores, and RIB matrices. The conventional indexing scheme (as seen in Section 2.3.1)

is used for all cache levels in baseline experiments. KPC-P prefetching scheme is enabled for the

second level of cache for all the configurations.

We performed four experiments to evaluate the new scheme for single-threaded and multi-

programmed workloads. The experiments performed are:

1. Evaluation and comparison of the traditional and new scheme for direct mapped LLC. Other

levels of cache are set associative.

2. Evaluation of the new indexing scheme for direct mapped LLC with baseline as traditional

indexing scheme applied for set associative LLC. Other levels of cache are set associative.

3. Evaluation of the traditional and proposed indexing scheme for six replacement policies (as

seen in Section 3) in LLC: LRU, DRRIP, EAF, MRP, SHIP, KPC-R. Other levels of cache

have used LRU, and the matrix based indexing scheme is enabled only in LLC.
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4. The results are compared when the new indexing scheme is enabled only for LLC, and when

it is allowed for both second level cache and LLC. LRU is used as a replacement policy for

all cache levels.

The motivation behind the direct mapped LLC related experiments is to explore the possibility

of using LLC as direct mapped cache and thus taking advantage of hit latency. For single core

simulations, the second experiment is performed for RIB matrix 3 and 4 (see Appendix A) and

another set of experiments are performed for ten RIB matrices. All the simulations for multicore

configurations are performed for RIB matrix 3 and 4. In the first experiment, the LLC is a direct

mapped cache. In the last two set of experiments, all cache levels are set-associative.

5.5 Performance Evaluation

Geometric mean speedup [4] is used as the performance metric. For the single core configu-

ration, the speedup for an application is computed by extracting the instructions per cycle (IPC)

from the results, and dividing IPC of configuration i with IPC of baseline, as seen in Equation 5.1.

Speedupi = IPCi/IPCbaseline (5.1)

For the multi-core simulations, the computation of speedup for a configuration i over the base-

line running a particular mix is obtained by computing the average IPC across all threads, and

dividing it by the average IPC across all thread in the baseline, as seen in Equation 5.2.

Speedupi = AverageIPCi/AverageIPCbaseline (5.2)

Here the reported speedup for an application is the average speedup (obtained using Equa-

tion 5.1 or Equation 5.2) across all the N RIB matrices used for an experiment as shown in Equa-

tion 5.3.

Speedupapplication =
N∑

n=1

(Speedupapplication for RIBn)

N
(5.3)
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Then the geometric mean speedup is computed over speedup of all the K applications in the

trace suite as shown in Equation 5.4.

Geomeanspeedup = K

√√√√ K∏
i=1

(Speedupapplication_i) (5.4)
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6. RESULTS

This chapter discusses the results obtained during the course of this work. We ran four ex-

periments for single-threaded and multi-programmed workloads: LLC as direct mapped cache,

interaction of indexing scheme applied to set associative and direct mapped LLC cache, and in-

teraction of indexing scheme with different replacement policies (see Section 5.4). We ran these

experiments for multiple sets of RIB matrices (see Appendix A). For each experiment, we used two

sets of benchmarks. The first set contains the SPEC CPU2006, CloudSuite and machine learning

benchmarks. The second set contains the SPEC CPU2017 benchmarks. We used the geometric

mean speedup as the performance metric as described in Section 5.5.

6.1 Single-Core Results

This section describes the results of the single-core simulations. Appendix B contains the

results for each RIB matrix used for the three experiments. The following subsections analyze the

impact of using the proposed indexing scheme with direct-mapped cache organization, different

replacement policies and when it is applied to different levels of cache.

6.1.1 Direct mapped cache

This study compared the conventional scheme with matrix-based indexing for direct-mapped

LLC (see Experiment 1 in Section 5.4). The other cache levels are set associative. The replacement

policy is LRU for all cache levels. The results are reported as the geometric mean speedup of

the benchmarks over the average of ten sets of RIB matrices (see Appendix A), as discussed in

Section 5.5.

Figure 6.1 shows the geometric mean speedup across SPEC CPU2006, CloudSuite and ma-

chine learning benchmarks and confidence intervals showing standard deviation above and below

the mean. The matrix-based indexing scheme yields an improvement of nearly 0.8% which reflects

that, it has a little impact on the performance. However, the new scheme does not significantly slow

down any benchmarks except bzip2. The performance significantly improves nearly 9% for com-
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putation intensive lbm and libquantum traces. Also, it improves performance by at least 2%, 4%

for sixteen and eight of SPEC CPU2006 benchmarks respectively. We can see a considerable

variation in speedup values from mat1 to mat10 for bzip2 and mlpack_cf.

Figure 6.2 shows the geometric mean speedup the across SPEC CPU2017 benchmarks and

confidence intervals over the mean. The matrix-based scheme performs better for SPEC CPU2017

than SPEC CPU2006 benchmarks, it yields a geometric mean speedup of 1.2%. This scheme

improves performance by 1.5% and 4% for at least eighteen and seven of SPEC CPU2017 appli-

cations respectively. A significant improvement of 7% is observed for lbm and cactuBSSN traces,

widely used for physics-based computations. There is a degradation of 2% in average performance

for mcf_s. However there is negligible degradation for some matrices, which can be seen by the

positive error bar over the mean value. Also, there is significant variation in speedup values over

ten RIB matrices for cactuBSSN_s, lbm_s, and xalancbmk_s.

In another study, we have compared the new indexing scheme applied to direct-mapped LLC

with conventional indexing scheme applied to set associative LLC (see Experiment 2 in Sec-

tion 5.4). Figure 6.3 shows the geometric mean speedup across SPEC CPU2006, CloudSuite and

machine learning benchmarks. The overall performance of direct-mapped LLC with matrix-based

indexing scheme is degraded by 1% over the set associative cache. The matrix-based indexing

scheme shows a significant improvement for these traces: bzip2 by 7%; perlbench by 2%; and

data_caching by 2%. There is a big variation in speedup values over mean for bzip2, mlpack_cf,

hmmer and soplex benchmarks. Figure 6.4 shows the geometric mean speedup the across SPEC

CPU2017 benchmarks. The new indexing scheme with direct mapped LLC shows same overall

performance as set associative cache. The new scheme shows significant improvement for these

traces: mcf_s by 10%; xalancbmk_s by 3.9%; pop2_s by 2%. Also, we can see a notable difference

in the values of ten RIB matrices for mcf_s, cactuBSSN_s, lbm_s and xalancbmk_s.

6.1.2 Replacement Policy Impact

This study compares the conventional scheme with matrix-based indexing for LLC with differ-

ent replacement policies (see Experiment 3 in Section 5.4). LRU is used as a replacement policy for
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the other cache levels. The results are reported as the geometric mean speedup of the benchmarks

over an average of the RIB matrices 3 and 4 (refer Appendix A), as discussed in Section 5.5.

Figure 6.5 shows the geometric mean speedup across SPEC CPU2006, CloudSuite and ma-

chine learning benchmarks for different replacement policies. The geometric mean speedup results

over all the traces are 0.3% which shows that the matrix-based scheme does not correlate well with

different replacement policies and has a negligible impact on the cache performance. However,

LRU with the proposed indexing scheme shows a huge benefit of 5.2% for the machine learning

benchmark. Also, all the replacement policies except MRP improve performance by at least 2%

and 3.4% for lbm and libquantum. MRP policy is the most accurate dead block predictor in lit-

erature. It predicts dead blocks efficiently and create more space in cache. The MRP policy with

the matrix-based indexing scheme shows a significant deviation in speedup values from mean for

GemsFDTD, zeusmp, leslie3d, and wrf. Also, it shows a remarkable performance improvement

for memory intensive traces: GemsFDTD by 36%; zeusmp by 5.3%; leslie3d by 6.1% and wrf by

3.8%.

Figure 6.6 shows that the geometric mean speedup and confidence intervals over mean value.

The performance improvement for all the replacement policies (except MRP) is nearly 0.2%, which

shows that the new indexing scheme does not benefit SPEC CPU2017 applications. However, the

new scheme does not cause significant slowdown either. The matrix-based indexing scheme with

the MRP replacement policy improves the performance by 1.2%. All the replacement policies

except KPC-R benefit for lbm, fotonik and cam4 trace by an improvement of nearly 2%. The

combination of MRP and new indexing scheme shows significant variation in speedup values for

RIB matrices and performance improvement: cactuBSSN by 5.6%; lbm by 3.2%; wrf by 3.6%;

pop2 by 2.5%; roms by 13%.

6.1.3 Impact of indexing on different cache levels

This section discusses the results obtained when the matrix-based indexing is enabled for both

the second and the last cache levels compared to when it is enabled only in the LLC (see Experi-

ment 4 in Section 5.4). The replacement policy for all cache levels is LRU. The results are reported
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as the geometric mean speedup of the benchmarks over an average of ten RIB matrices (refer Ap-

pendix A), as discussed in Section 5.5. Also, the results show the standard deviation in speedup

values of RIB matrices over average speedup.

The geometric mean speedup (as seen in Figure 6.7 and Figure 6.8) is nearly 0.1% for SPEC

CPU2006, Cloudsuite, machine learning and SPEC CPU2017 applications. This indicates that

there is nearly no performance gain over the baseline configuration. However, the matrix based

indexing scheme has improved performance significantly for cactuBSSN trace nearly by 13.7%. It

can be seen that there is huge variance in speedup values of ten RIB matrices for SPEC CPU2006:

gromacs, bzip2, soplex, lbm and SPEC CPU2017: cactuBSSN_s.

6.2 Multi-Core Results

This section describes the results of the multi-core simulations. The results are reported as the

geometric mean of average speedup of applications over RIB matrix 3 and 4 (refer Appendix A),

as discussed in Section 5.5. Appendix C contains the results for RIB matrix 3 and matrix 4.

The following subsections analyze the impact of using the proposed indexing scheme with

different sets of experiments (see section 5.4). The baseline and configuration used for all experi-

ments are the same as the single core simulation, except for the large size shared LLC among four

cores.

6.2.1 Direct mapped configuration

Figure 6.9 shows the speedup values for different mixes of SPEC CPU2006, CloudSuite and

machine learning application. Figure 6.10 shows the speedup for different mixes of SPEC CPU2017.

It is seen that the matrix-based indexing scheme does not help these applications in the multicore

configuration for the direct-mapped LLC (see Experiment 1 in Section 5.4). There is a performance

degradation observed for machine learning mix, i.e. Mix11. It has an improvement of 3% for ma-

trix4 and degradation of 8% for matrix3, which cause a significant variation in speedup values.

Similar behavior is seen for SPEC CPU2017 Mix15. However, this scheme improves the perfor-

mance for SPEC CPU2017 mixes: Mix14 and Mix18 nearly by 3.8%. It is due to the improvement
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in lbm and cactuBSSN traces.

In another study, we have compared the new indexing scheme applied to direct-mapped LLC

with conventional indexing scheme applied to set associative LLC (see Experiment 2 in Sec-

tion 5.4). Figure 6.11 shows the geometric mean speedup across mixes of SPEC CPU2006,

CloudSuite and machine learning benchmarks. There is a negligible improvement in performance

of direct-mapped LLC with matrix-based indexing scheme over the set associative cache. This

scheme improves performance by 1.6% for at least eight mixes. Also, there is a significant varia-

tion observed in speedup values over mean for most of the mixes. Figure 6.12 shows the geometric

mean speedup the across mixes of SPEC CPU2017 benchmarks. The new indexing scheme with

direct mapped LLC performs same as baseline configuration and has a small variance over mean

value for all the mixes.

6.2.2 Impact on different cache levels and Replacement Policies

Figures 6.13 and 6.14 shows that matrix-based indexing scheme (see Experiment 3 in Sec-

tion 5.4), when used with the replacement policies (except MRP), does not help in improving

cache performance. However, the new indexing scheme with the MRP replacement policy im-

proves the performance at least by 3.7% for 11 mixes and 1.8% for all mixes of SPEC CPU2017.

Also, there is a variation of 1% to 6% observed for SPEC CPU2006 Mix7, and 12% to 22% for

SPEC CPU2017 Mix19 in speedup values over different RIB matrices, when new indexing scheme

is used with MRP replacement policy. Figure 6.14 shows a significant performance improvement

for some mixes when the new indexing scheme is used with the MRP replacement policy: Mix1

by 4.2%; Mix6 by 3%; Mix14 by 2.2%; Mix18 by 9.5%; and Mix19 by 16.7%.

Figure 6.15 shows that the new indexing scheme does not improve performance over the base-

line configuration (see Experiment 4 in Section 5.4). It means that there is no difference in conflict

misses when the new indexing scheme is used either for second level cache and LLC or LLC only.

There is negligible performance improvement of 0.75% for mixes of SPEC CPU2017 traces, as

shown in Figure 6.16. Also, there is a small variance of -0.6% to 0.5% in speedup values (over

RIB matrices) is observed for machine learning suite Mix11.

34



35

Figure 6.1: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for direct-mapped LLC. X-axis
shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure 6.2: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for direct-mapped LLC. X-axis
shows SPEC CPU2017 benchmarks.
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Figure 6.3: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for set-associative LLC. X-axis
shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure 6.4: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for set-associative LLC. X-axis
shows SPEC CPU2017 benchmarks.
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Figure 6.5: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean,
to compare different replacement policies with proposed indexing scheme enabled only for LLC over the baseline configuration i.e.
different replacement policies with conventional indexing scheme. X-axis shows SPEC CPU2006, Cloudsuite and machine learning
benchmarks.
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Figure 6.6: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean,
to compare different replacement policies with proposed indexing scheme enabled only for LLC over the baseline configuration i.e.
different replacement policies with conventional indexing scheme. X-axis shows SPEC CPU2017 benchmarks.
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Figure 6.7: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable for both second level and LLC over when new scheme is enable only for LLC. X-axis shows SPEC
CPU2006, Cloudsuite and machine learning benchmarks.
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Figure 6.8: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable for both second level and LLC over when new scheme is enable only for LLC. X-axis shows SPEC
CPU2017 benchmarks.
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Figure 6.9: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for direct-mapped LLC. X-axis
shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure 6.10: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for direct-mapped LLC. X-axis
shows different mixes of SPEC CPU2017 benchmarks.
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Figure 6.11: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for set-associative LLC. X-axis
shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure 6.12: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean, when
proposed indexing scheme is enable only for direct-mapped LLC over the conventional indexing scheme for set-associative LLC. X-axis
shows different mixes of SPEC CPU2017 benchmarks.
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Figure 6.13: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean,
to compare different replacement policies with proposed indexing scheme enabled only for LLC over the baseline configuration i.e.
different replacement policies with conventional indexing scheme. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and
machine learning benchmarks.
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Figure 6.14: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean,
to compare different replacement policies with proposed indexing scheme enabled only for LLC over the baseline configuration i.e.
different replacement policies with conventional indexing scheme. X-axis shows different mixes of SPEC CPU2017 benchmarks.
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Figure 6.15: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean,
when proposed indexing scheme is enable for both second level and LLC over when new scheme is enable only for LLC. X-axis shows
different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure 6.16: Y-axis shows the speedup along with confidence intervals showing one standard deviation above and below the mean,
when proposed indexing scheme is enable for both second level and LLC over when new scheme is enable only for LLC. X-axis shows
different mixes of SPEC CPU2017 benchmarks.



7. CONCLUSIONS AND FUTURE WORK

Conflict misses are one of the most challenging issues that impact cache performance. This

issue can be mitigated by spreading the accesses across the cache, which can be achieved by

changing the indexing scheme. The conventional indexing scheme is a modulus-based indexing

scheme. However, it does not spread the accesses across the cache. Therefore, we proposed the

idea of the matrix-based indexing scheme which was also used for enhancing the lifetime of phase-

change memory (PCM).

This scheme shows a significant speedup improvement for a machine learning benchmark when

used with an LRU replacement policy. Also, it is observed that it neither improves nor hurts the

performance of the CloudSuite benchmarks in both single- and multi-core simulations. Most SPEC

CPU2006 and SPEC CPU2017 applications have shown some improvement using this scheme in

all the configurations. We noticed that the performance improvement depends on the random

invertible binary matrix (RIB) used since some matrices show a positive impact while others neg-

ative. We plan to select a good set of matrices using design space exploration and evaluate the

configurations used in this work. We will explore more, to learn about the reasons behind the

different behavior.

Also, we aim to perform a size sensitivity study for LLC, since the conflict misses increase

with the reduction of cache size. This experiment could give a better idea about the impact of the

proposed indexing scheme. We also plan to explore the potential of matrix-based indexing scheme

with LRU as replacement policy for LLC for other machine learning benchmarks. Therefore, we

conclude that the thesis results motivate further research on exploring different ideas to handle

conflict misses.
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APPENDIX A

RIB MATRICES

This appendix contains ten RIB matrices that are used for the experiments for evaluating the

matrix-based indexing scheme.

RIBMatrix1 =



0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 0 1 1
0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0
0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1
0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0
0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1
1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1
1 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0
0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1
1 0 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1
1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0
0 0 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1
1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1
0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1
0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0
0 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1
0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 0
1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1
1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1
1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1
0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1
1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0



RIBMatrix2 =



0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 0 0
0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1
0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1
0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0
0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0
0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0
0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0
1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 1
0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1
1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1
1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0
0 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1
0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1
1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0
0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0
1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1
1 0 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1
0 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1
0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0
0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1
1 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1
1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0
1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1
1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0
0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0


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RIBMatrix3 =



1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1
0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0
1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1
1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1
1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 1
1 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 1
1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1
0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0
1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 0 1 0 1
1 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0
0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0
1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0
1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1
0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0
0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0
0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0
1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0
0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1
1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1
0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1
1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1
1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0
0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1
0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1
1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1
0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 0
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0



RIBMatrix4 =



0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 0
0 1 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1
0 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1
0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1
0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1
1 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0
0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0
0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0
0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0
0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0
0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0
0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0
1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1
1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0
0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0
1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 1
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1
1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1
0 1 1 1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 1 1 0
1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 0
1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0
0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1
1 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0
1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0
1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 0 1
1 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0
0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0


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RIBMatrix5 =



1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1
1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1
0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0
1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1
0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1
1 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0
1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0
1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1
1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0
1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0
0 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0
0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0
1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0
0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1
1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0
0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0
0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1
1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1
1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1
1 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1
1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0



RIBMatrix6 =



0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 0
1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1
1 0 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1
1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1
0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1
0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1
0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1 0 1
1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0
1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0
1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 1
0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1
0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1
0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0
1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1
0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1
1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0
1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0
1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1
0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1
1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0
0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 1
0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0
1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0


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RIBMatrix7 =



1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1
0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1
0 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0
1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0
1 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1
1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0
0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1
0 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0
0 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1
1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1
0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1
0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0
0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1
1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0
1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1
0 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 1
1 0 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0
1 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1
1 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0
1 1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1
0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1
0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0
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1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1
1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1
0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 1
1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1
1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0
1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1
1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 1
1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 0 0 1
1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0
1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0
0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1
0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1
0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 1
1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1
0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1
0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0
0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0
1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 0
0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1
0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0
0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0
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RIBMatrix9 =



1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1
1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1
0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1
1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1
0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 0 1
1 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1
0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1
0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0
0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 1
0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0
0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0
0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 1
1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0
0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0
0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0
1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0
1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1
0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 1 1 1 0 1 1
0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1
1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1
1 0 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 0
1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0
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RIBMatrix10 =
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1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1
0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0
1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 0
1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0
1 1 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0
0 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0
1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0
0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1
1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0
1 1 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0
0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1
1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0
0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0
1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1
1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1
0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0
0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1
0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1
0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0
0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0
0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 0 0
1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0
0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0
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APPENDIX B

SINGLE-CORE RESULTS

The plots with the geometric mean speedup computed over the average speedup (calculated

over all the RIB matrices used for the experiment) for all the applications (refer Section 5.5) are

shown in Section 6.1. This appendix provides the single-core plots for each RIB matrix used for

the three set of experiments.

These plots compare different configurations for each RIB matrix as discussed in Section 5.4.

Here the geometric mean speedup is computed over speedup for all the applications for a RIB ma-

trix. The Y-axis shows the speedup over the baseline configuration: either direct-mapped LLC with

conventional indexing scheme, or proposed indexing scheme applied only in LLC, or LLC with

different replacement policies. The X-axis shows different benchmarks used for the simulation.
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Figure B.1: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix1. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.2: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix1. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.3: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix2. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.4: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix2. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.5: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix3. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.6: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix3. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.7: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix4. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.8: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix4. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.9: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix5. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.10: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix5. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.11: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix6. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.12: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix6. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.13: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix7. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.14: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix7. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.15: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix8. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.16: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix8. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.17: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix9. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.



80

Figure B.18: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix9. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.19: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix10. X-axis shows SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.20: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix10. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.21: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix1. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.22: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix1. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.23: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix2. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.24: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix2. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.25: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix3. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.26: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix3. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.27: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix4. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.28: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix4. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.29: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix5. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.30: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix5. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.31: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix6. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.32: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix6. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.33: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix7. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.



96

Figure B.34: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix7. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.35: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix8. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.36: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix8. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.37: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix9. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.38: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix9. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.39: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new
scheme is enable only for LLC for RIB matrix10. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning
benchmarks.
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Figure B.40: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix10. X-axis shows SPEC CPU2017 benchmarks.
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Figure B.41: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix3. X-axis shows
different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.42: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix3. X-axis shows
different mixes of SPEC CPU2017 benchmarks.
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Figure B.43: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix4. X-axis shows
different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure B.44: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix4. X-axis shows
different mixes of SPEC CPU2017 benchmarks.



APPENDIX C

MULTI-CORE RESULTS

The plots with the geometric mean speedup computed over the average speedup (calculated

over all the RIB matrices used for the experiment) for all the applications (refer Section 5.5) are

shown in Section 6.2. This appendix provides the multi-core plots for RIB matrix3 and 4 used for

the three set of experiments.

These plots compare different configurations for each RIB matrix as discussed in Section 5.4.

Here the geometric mean speedup is computed over speedup for all the applications for a RIB

matrix. The Y-axis shows the speedup over the baseline configuration: either direct-mapped LLC

with conventional indexing scheme, or proposed indexing scheme applied only in LLC, or LLC

with different replacement policies. The X-axis shows different benchmark mixes for a trace suite

used for the simulation.
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Figure C.1: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix3. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure C.2: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix3. X-axis shows different mixes of SPEC CPU2017 benchmarks.
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Figure C.3: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix4. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure C.4: Y-axis shows the speedup when proposed indexing scheme is enable only for direct-mapped LLC over the baseline config-
uration for RIB matrix4. X-axis shows different mixes of SPEC CPU2017 benchmarks.
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Figure C.5: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix3. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure C.6: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix3. X-axis shows different mixes of SPEC CPU2017 benchmarks.
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Figure C.7: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix4. X-axis shows different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure C.8: Y-axis shows the speedup when proposed indexing scheme is enable for both second level and LLC over when new scheme
is enable only for LLC for RIB matrix4. X-axis shows different mixes of SPEC CPU2017 benchmarks.
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Figure C.9: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix3. X-axis shows
different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure C.10: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix3. X-axis shows
different mixes of SPEC CPU2017 benchmarks.
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Figure C.11: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix4. X-axis shows
different mixes of SPEC CPU2006, Cloudsuite and machine learning benchmarks.
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Figure C.12: Y-axis shows the speedup to compare different replacement policies with proposed indexing scheme enabled only for LLC
over the baseline configuration i.e. different replacement policies with conventional indexing scheme for RIB matrix4. X-axis shows
different mixes of SPEC CPU2017 benchmarks.
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