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Abstract

Computer architects rely heavily on software simulation to evaluate, refine, and validate
new designs before they are implemented. However, simulation time continues to increase as
computers become more complex and multicore designs become more common. This thesis in-
vestigates software structures and algorithms for quickly simulating modern cache-coherent
multiprocessors by amortizing the time spent to simulate the memory system and branch
predictors.

The Memory Timestamp Record (MTR) summarizes the directory and cache state of a
multiprocessor system in a compact data structure. A single MTR snapshot is versatile
enough to reconstruct the microarchitectural state resulting from various coherence proto-
cols and cache organizations. The MTR may be quickly updated by each simulated processor
during a fast-forwarding phase and optionally stored off-line for reuse.

To fill large branch prediction tables, we introduce Branch Predictor-based Compression
(BPC) which compactly stores a branch trace so that it may be used to fill in any branch
predictor structure. An entire BPC trace requires less space than single discrete predictor
snapshots, and it may be decompressed 3–6× faster than performing functional simulation.

Thesis Supervisor: Krste Asanović
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Chapter 1

Introduction

Imagine trying to quickly guess the race-day finish time of a marathon runner on a course

he has never run. The most straightforward way would be to time him during a practice

run of the entire 26.2 mile course. This practice time would likely be an accurate preview of

race-day performance, but would require several hours to obtain. Perhaps there is a shortcut

to estimating a runner’s speed. One could spend a few minutes to drive the runner from the

starting line to a tough hill at mile #17, time him as he ran 100 yards, and multiply that

time by a scaling factor. Instead of waiting hours to measure a practice race, this technique

provides an estimate with just a few minutes of driving and about 10 seconds of running.

However, it is unlikely to be an accurate guess of the time it would take to run the full

course. Such extrapolation fails for a number of reasons. First, the runner’s performance is

not only based on what lies ahead, but also on his current physical state. If he were really

running the marathon, he would be quite tired at mile #17 and unlikely to run the 100 yards

as fast as he did when he was not fatigued. Second, this particular 100 yards at mile #17

may be a steep hill on what otherwise was a flat course; the extra effort needed to climb the

hill would not be needed the majority of the time, and one could end up overestimating the

total course time. One could just as easily underestimate the time if the 100 yard segment

was an easy downhill.

A program running on a computer can be thought of as a marathon. Segments of the race

course correspond to phases of a program — steep climbs represent periods of low parallelism,

while coasting down a hill is like executing a tight, carefully scheduled loop from the cache.

The CPU, with its caches and branch predictors, corresponds to the runner and must be

warmed-up before producing representative results. At the risk of belaboring the analogy,

the multiple processors in a parallel computer could be thought of as a group of runners.

Producing an accurate estimation of finish time by choosing which runners to measure at

which points of the course seems as difficult as estimating the performance of a multicore

computer running just a portion of a parallel workload.

Despite the flaws and obvious difficulties observed while trying to take a shortcut to

measuring a runner’s speed, this form of extrapolation was practiced by computer architects
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Figure 1-1. Using a detailed simulator to choose between several configurations.

not too long ago in an effort to reduce simulation time. Better simulation techniques have

emerged for both uniprocessors and multiprocessors to strike a balance between accuracy and

speed, but several obstacles remain. This thesis focuses on removing one of the obstacles: the

inability to reuse simulation state over multiple experiments.

1.1 How computer architects use simulation

Computer architects rely heavily on simulators to evaluate, refine, and validate new designs

before implementation. We use the term host to refer to the actual hardware running the

simulation, and we use the term target to refer to the machine being simulated. Sometimes,

especially in the context of virtual machines, the terms host and guest are used to denote the

real and simulated computers respectively.

Typically, we seek to optimize a computer’s performance on a workload (often called a

benchmark) by adding features, updating the microarchitecture to incorporate research ad-

vances, or repairing performance bugs discovered in the field. Alternatively, we could be

designing a radically different computer and wish to explore a large design space. To com-

pare multiple configurations, we can perform several simulations as shown in Figure 1-1. A

detailed simulator is configured to model a particular machine. For instance, Configuration

1 could specify a multiprocessor with small direct mapped caches in a 2D mesh, Configu-

ration 2 could specify a multiprocessor with large associative caches in a ring, and so forth

through Configuration n. The same workload is used with each configuration in separate

experiments. The first experiment produces performance results for Configuration 1, and ex-

periment n produces results for Configuration n. The results consist of statistics of interest

to the architect such as cycles-per-instruction, power estimates, etc. The architect compares

the results and determines which configuration is most desirable. Often the workload is a

set of m applications rather than a single benchmark. In this case, a minimum of mn ex-

periments are required: all n configurations are applied to each of the m applications. Other

simulation methodologies may require additional experiments to capture the variation that

can arise within a particular workload as we will later discuss in Chapter 5.
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1.2 Motivation

Ideally, one would simulate every relevant benchmark from beginning to end. But, due to

the slowdown incurred by simulation (caused by bookkeeping, lack of host parallelism, soft-

ware overhead, etc.), running complete benchmarks is prohibitive. For example, the most

recent SPEC CINT2000 benchmark suite [106] contains 5.9 trillion instructions when run

with reference inputs [55]. On modern hardware (a 3.06GHz Pentium 4), it requires about

31 minutes to complete the benchmark. However, on that same hardware, one of the fastest

detailed, single-processor, out-of-order, superscalar models (SimpleScalar [14]) can only sim-

ulate about million instructions per second. At that rate, it would require over 72 days to

complete one invocation of the SPEC CINT2000 suite. When additional detailed is added,

such as cache-coherent memories and enough detail to boot the Linux kernel, simulation

time becomes even more problematic. The full-system, multiprocessor, cache-coherent simu-

lator we use in this thesis runs only 300,000 instructions per second, which translates to 228

days for the SPEC CINT2000 suite. Given this slowdown, it is no wonder that much work

goes into finding accurate ways to speed up the simulation process.

To reduce simulation time, overall behavior can be estimated using short samples taken

from a complete application run as seen in Figure 1-2. Many published architecture stud-

ies have chosen a single sample, either taken from the beginning (Figure 1-2(a)) or (when

the program is known to begin with one-time initialization code) after some fixed number of

instructions (Figure 1-2(b)). Such “fast-forwarding” is often performed with a functional sim-

ulator that simulates the instruction set architecture (ISA) only, updating only programmer-

visible state such as the general purpose register file, control registers, and memory. The

performance of modern microprocessors is greatly dependent on large quantities of microar-

chitectural state that is not visible to the programmer. Microarchitectural state, such as

branch predictors and caches, must be initialized correctly at each sample point to avoid

large systematic errors. To avoid cold-start effects due to fast-forwarding, microarchitec-

tural structures can be warmed-up by a detailed simulator before detailed measurements

are taken — a process called “detailed warming” (Figure 1-2(c)). Detailed warming greatly

improves accuracy at the cost of increased simulation time.

Applications generally contain multiple phases of execution with varying properties and

much better characterization is possible by using multiple sample points spread throughout

a run [26, 58]. Figure 1-2(d) depicts a metric, such as instructions-per-cycle, varying over the

course of a benchmark. Three distinct phases are evident in the figure. Detailed measure-

ments are performed in each phase, and the weighted combination of these measurements

can be an accurate estimation of the overall performance. Various methods exist to iden-

tify program phases [57, 98, 100, 105] or to generate samples that are representative of a

complete benchmark [33, 48].
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surround portion of sample that is measured.

14



Alternatively, many short samples can be gathered over the entire benchmark run. If

these samples are independent, their average can be used to estimate the true mean of a

performance metric, and the sample variance can be used to bound the estimation with a

confidence interval (Figure 1-2(e)). This technique can be extended by performing functional

warming during fast-forwarding [127]. With functional warming, large structures (caches

and branch predictors) are kept warm with functionally correct models but without more

costly timing simulation (Figure 1-2(f)). This reduces the amount of detailed warming re-

quired to get accurate results, as one need only to warm smaller short-lived structures. A

downside of functional warming is that it warms only a particular cache and branch predic-

tor. Other microarchitecture configurations require their own periods of functional warming.

Functional warming can be replaced with a period of fast updating of a microarchitecture-

independent structure which can be used to reconstruct a variety of microarchitectures as

shown in (Figure 1-2(g)). This Microarchitecture-INdependent Snapshot, which we call a

MINSnap, stores the state of large structures; shorter structures may be warmed-up using a

brief period of detailed warming. Chapter 3 shows that our MINSnap approach for memory

system initialization can provide the same versatility as a detailed-warming approach in less

time than a functional warming approach. Chapter 4 proposes and evaluates a technique

to create a MINSnap for branch predictors. The application of MINSnaps to sample-based

execution-driven simulation — and the construction of MINSnaps suitable for multiprocessor

caches and branch predictors — is one of the main contributions of this thesis.

In all methodologies that require warming, the effort of fast-forwarding may be amor-

tized by storing a checkpoint to disk that contains the state of the target prior to each sample

point. The checkpoints can then be used to initialize a target microarchitecture configura-

tion without repeating the fast-forwarding. MINSnaps provide additional time savings, as a

single MINSnap may be used to initialize many target microarchitecture configurations.

1.3 Contributions of the thesis

Continued demands for faster simulation gave rise to the sampling techniques shown in Fig-

ure 1-2(a) through 1-2(f). The shortfalls of these techniques motivated the work of this thesis:

the MINSnap approach shown in Figure 1-2(g). This thesis contributes new techniques for

accelerating the software simulation of multiprocessors: initializing large on-chip structures

using appropriate microarchitectural-independent snapshots (MINSnaps) and aggregating

meaningful samples of execution. It introduces:

• The Memory Timestamp Record (MTR): a compact representation of cache and di-

rectory state from which various cache-coherent memory systems may be reconstructed.

• Branch-Predictor based Compression (BPC): a specialization of state-of-the art

trace compressors that can be used to produce a microarchitecture-independent trace

requiring less storage space than a collection of individual predictor checkpoints.
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By combining these techniques, computer architects can quickly evaluate many design points

in the multiprocessor design space without exorbitant storage requirements.

1.4 Thesis outline

Chapter 2 begins with an overview of modern computer architecture simulation. We describe

the context of our simulation approach and explain the difference between prevailing styles of

simulation. Next, we discuss sampling, focusing on how to advance to sample points, reduce

cold-start effects, create checkpoints, and choose samples. We also discuss techniques for

accelerating simulation that are complementary to our MINSnap approach.

Chapter 3 introduces and evaluates the MTR, and Chapter 4 presents the BPC. These two

mechanisms can be combined with previous work in sampling to accelerate the simulation

process. We evaluate the effectiveness of MTR and BPC using metrics of versatility, size, and

speed.

Chapter 5 describes some challenges that remain in the field of simulating parallel tar-

gets. Specifically, it can be inaccurate to compare the outcome of two experiments unless one

can be sure that the work being performed by the target is the same in both experiments. An-

other problem is the presence of variability that arises from simulating a complete computer

system. Multiple experiments, each observing a different timing outcome, increase the time

and/or number of hosts required by the architect. The cost of capturing variation further

motivates the desire for faster simulation.

The thesis concludes in Chapter 6 with a discussion of remaining research questions and

a summary of the work.
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Chapter 2

Simulator Background

The popularity of various performance modeling techniques ebbs and flows as techniques are

proposed, frameworks are distributed, architectures evolve, and a researcher’s own hardware

resources change. This chapter describes the recent history and state of the art in software

performance modeling. Trace-driven simulation was popular through the 1990s. However,

the intricate timing-dependent behavior of modern architectures cannot be accurately cap-

tured with simple trace-driven simulation, thus more time-intensive execution-driven simu-

lation is typically used. Simulation time continues to increase as microarchitectures become

more complex and multicore designs become more common. Though host machines grow

faster, benchmarks grow longer and the complexity of execution-driven simulation prevents

corresponding speedup. Today, researchers have rediscovered the sampling techniques once

used to reduce the size of traces, and research in program phase identification aides in the

selection of samples. The MTR and BPC, described in later chapters, are inspired by ear-

lier related work. The MTR and BPC extend current sampling approaches to simulation,

allowing fast simulation of multiple target configurations from a single stored snapshot or

compressed trace.

2.1 Levels of detail

Simulation of computer architectures occurs along a wide spectrum of detail as shown in

Table 2.1. At the lowest levels, one can model the physical behavior of transistors with circuit

level simulation. This provides information such as the voltage and current at circuit nodes

at a given time. Gate level simulation uses more abstract models of devices. Rather than

individual transistors, it can model logic gates (NAND, OR, XOR, etc.) connected by wires.

A gate level simulation tracks the state (0 or 1) of every wire in the system at every unit of

time. A simulation written in a Register Transfer Level (RTL) language uses abstractions

for most combinational logic such as comparators and adders, and it introduces registers to

store state. RTL tracks every state bit at every clock cycle. For instance, we can express

the incrementing of a program counter by writing an expression like PC=PC+4, rather than
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Level of Detail

Analytical
Functional
High-level language, cycle-accurate
Register Transfer Level (RTL)
Gate
Circuit

Table 2.1. Levels of simulation detail.

modeling every gate of the register and adder. When RTL is too restrictive, architects can

use high-level language, cycle-accurate models. Written in a language like C++, they allow

for behavior to be described more abstractly than RTL models, reducing the effort needed

to construct the model and increasing the ability to parameterize the model. The timing

behavior of the system can be approximated without knowing the RTL implementation. A

functional model must correctly simulate the functionality of the computer, but it makes no

attempt to model its performance. At the highest levels, one can use an analytical model

that, for instance, describes the computer as a queuing system so that it can be analyzed in

terms of service times and queuing delay. In general, the precise models at the lowest levels

provide the most detail at the expense of time. The higher the level, the more abstract and

approximate the model becomes and the quicker it runs. In this thesis, we focus on functional

and high-level, cycle-accurate models, and we discuss both in more detail below.

2.1.1 Functional simulation

Functional simulation is used in cases where it is sufficient to simulate only the programmer-

visible state of the computer. A functional simulator simply decodes and executes every in-

struction in a program. At a minimum, it knows how these instructions manipulate the

target’s program counter, general-purpose registers, and memory. Such a simulator can ex-

ecute a target program provided that it does not attempt to perform privileged instructions

such as input/output routines. However, by simulating the functionality of system devices

(e.g., disks, timers, and interrupt controllers), a functional simulator can run an operating

system to handle I/O and other system calls. To reduce the effort required to build a simula-

tor, it is common to trap system call instructions and use the host’s facilities to perform I/O

tasks such as reading and writing files. The tradeoff of using the host to perform system calls

is that target activity is not measured during these operations.

Functional simulators are useful in many situations. In educational settings they may

model a MIPS target on a ubiquitous x86 host to teach students about assembly programming

using a relatively simple RISC ISA. Another common usage is to enable software bring-up

on systems before they are released. Hardware manufacturers will often provide ISA sim-

ulators to independent software vendors before an actual computer is available. Programs
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that run successfully in the simulated environment should run successfully when the real

system is delivered. Functional simulators can help characterize some dynamic and/or input-

dependent characteristics of a program including its instruction count, instruction mix, basic

block distribution, branch characteristics, etc. The output of a functional simulator can be

used as the input to a more detailed model to provide estimates of timing or power.

2.1.2 High-level, cycle-accurate simulation (Detailed Simulation)

We use the term detailed simulation as shorthand to describe cycle-accurate simulation im-

plemented in a high-level language like C or C++. Detailed simulation is the process of using

simulators to model the performance of a computer — not merely its functionality. The defi-

nition of “performance” is vague. Among other definitions, it can refer to the time required to

run a given application program; a certain balance between speed, power, and silicon area;

or the ability to meet power density constraints. Thus, even a detailed simulation can be di-

vided into various sublevels of detail, and the term can best be defined as a simulation which

informs the operator of those performance characteristics in which he is interested.

Performance, however it is defined, depends on microarchitectural structures that are

hidden from the view of the programmer. For instance, to reduce the average time required

to transfer a block of memory from a DRAM to a register, a cache hierarchy is created. Fre-

quently accessed memory is stored in a small, fast cache. When the program reads or writes

data that is found in the cache, it need not suffer the long latency of a DRAM access. Detailed

simulators account for the varying memory access times caused by caching. They may also

model the performance impact of features such as parallel functional units, out-of-order exe-

cution, shared buses, and predictors. A detailed simulator not only models the functionality

of the computer, but also provides the architect with performance information such as timing

estimates, power estimates, or more fine-grain statistics such as cache miss rates, activity

counts, and contention information.

2.2 Detailed simulation styles

Putting aside functional simulation for a moment, we consider two styles of detailed simu-

lation: trace-driven simulation processes a trace captured from real or simulated hardware,

and execution-driven simulation allows the machine timing model to affect the workload’s

instructions and their order.

2.2.1 Trace-driven simulation

Trace-driven simulation is a technique in which a trace, or list of events, is recorded and

analyzed. The events in a trace may include details of every instruction, memory access,

and system event (e.g., interrupts) or merely the events of interest for a given experiment.

The trace may be stored off-line for future analysis or consumed online by the simulator. One
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Figure 2-1. Trace-driven simulation

collects a trace by connecting a physical probe to a bus in a hardware implementation [22, 39],

by modifying microcode [4], by adding instrumentation routines to an existing program [67,

104], or by simulating the program and capturing interesting events. Depending on the

contents of a trace, it may be generic and useful across many platforms or tied to a particular

ISA. Figure 2-1 shows the two stages of trace-driven simulation. First, a workload is fed into

a trace generator. Once the trace has been generated, it may be reused over the course of n

experiments, one for each configuration of the detailed simulator.

Traces have many useful properties including ease of collection, ease of use, portability,

and determinism. Analysis of a stored trace may take place at a later time. While a trace

can amortize the work of decoding and executing instructions across many experiments, a

trace-driven methodology is subject to the speeds of the detailed simulator that processes the

trace [118]. Trace-driven simulation enjoyed popularity through the mid-1990s. However, the

rise of multiprocessors and speculative execution has limited the effectiveness of traditional

trace-driven techniques. The difficulty with a trace is that it represents a particular set of

instructions in a particular order. Modern computer systems can correctly execute a single

program in many ways. The program may be interrupted by an operating system scheduler

and interleaved with instructions from another process. Synchronization constructs may

even alter a single process’s instruction stream. A classic example is “busy waiting.” While

a process waits for a memory location to change, it performs a variable amount of loads and

branches in a tight loop until it is allowed to proceed. The precise number of instructions can

depend on microarchitectural parameters.

Elements of the microarchitecture may also cause events to occur that are difficult to

record in a trace. These events and their timing relative to a program’s instruction stream

can vary as one refines the microarchitecture. For example, consider a classic five-stage

pipeline that resolves branches during the third stage. If it predicts every branch to be

not-taken, and resolves the branch to be taken, then the two instructions in the first two

stages must be killed. Frequent mispredicts will significantly decrease the throughput of the

pipeline. An architect may propose branch prediction to solve this problem, but it is difficult
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to study the effects of branch prediction using a simple trace: when the predictor incorrectly

guesses that a branch is taken to a certain address, one would like to fetch instructions

from that address (which effects performance via the instruction cache). However, the trace

contains only the correct fall-through instruction. Obviously, one could try to augment the

trace with both the taken and not-taken sides of a branch or try to account for the wrong-path

effects via approximations, but this introduces complexity.

2.2.2 Execution-driven simulation

Because speculative execution (and any other situation in which the target’s execution tim-

ing can affect the events seen by the simulator) can complicate trace-based simulation, it is

often easier to study these effects when a processor model is able to direct the delivery of in-

structions rather than passively receive them from a trace. Furthermore, a trace consisting

of all microarchitectural events in a modern out-of-order superscalar system would require

storing vast amounts of state. While it may suffice to capture only events of interest or apply

an existing trace compression technique, execution-driven simulation can avoid the problem

altogether and trade off speed to reduce storage requirements and increase accuracy.1

Rather than capturing significant events with a trace generator for later use, each in-

struction of a program is simulated as it is encountered, and a performance model provides

timing information for that instruction. The next instruction to be simulated is determined

by the simulation of the previous instruction. For example, a branch target address is de-

termined by computation in the simulator (perhaps adding an offset to the current program

counter); the address is not simply provided as input to the simulator. This allows the simu-

lator to execute speculatively and out-of-order as long as it can commit in order and roll back

from incorrect speculation. Execution-driven simulation differs from trace-driven simulation

in that the former directly allows performance models to affect the arrival of the workload’s

instructions. With fast host computers and the distribution of an easy to use, parameterized

simulator [14], execution-driven simulation surged in popularity beginning in the late 1990’s

and became the dominant approach in academic studies. However, the detail provided by

execution-driven simulations comes at the cost of speed and development effort. Not only

do we preclude the ability to reuse the work of fetching and decoding instructions, but we

must also provide more accurate models of every structure in the processor. Usage of finite

resources must be correctly controlled, and instructions stalled until their required resource

becomes free. Data in caches and buffers can cause instructions to experience variable la-

tency and should be modeled faithfully. This increased fidelity requires more host cycles and

slows down simulation.
1What we now refer to as execution-driven simulation was originally termed instruction-driven

simulation [28].
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2.3 Sampling

This thesis is motivated by the fact that architects are rarely satisfied by the speed of their

simulators. One way to increase speed is to perform less work by sampling, i.e., simulating

only a portion of a benchmark. This section will discuss issues related to sampling. First,

we describe two ways to advance a benchmark to sample points: 1) online sampling that

alternates between two levels of detail until the experiment is complete and 2) a checkpoint-

ing implementation that warms-up state using a checkpoint generated from a previous run.

The concept of checkpoints is discussed in detail. Next, we discuss the problem of cold-start

effects present in both online and checkpoint-based simulation. By starting at a given point,

one risks incorrect measurements unless structures in the computer are warmed-up (as sug-

gested by Chapter 1’s analogy of a marathon runner). Several solutions to the cold-start

problem are reviewed. Finally, we discuss how samples are chosen.

2.3.1 Advancing to a sample

To advance to a sample online requires the construction of two simulators — or one simulator

with two modes: a functional simulator used to quickly advance to sample points and a

detailed simulator used to provide performance results for a sample point. Fast functional

simulation advances the state of target until a sample point is reached. At the sample point,

a detailed simulation begins. Detailed simulation is slower because it must model the system

more accurately and collect useful statistics. The alternation repeats as often as necessary.

Even though functional simulation may be orders of magnitude faster than detailed sim-

ulation, online sampling methodologies usually require that the simulator spend the bulk

of its time performing functional simulation. Alternatively, one may perform a preliminary

functional simulation to generate checkpoints. Checkpoints store the state of the target prior

to every sample point, amortizing the work of functional simulation. The detailed simula-

tor is loaded from the checkpoint to measure the performance of target as it executes the

sample. While checkpoint-based sampling can be fast once checkpoints have been created,

one should not discount the utility of online techniques as they can be desirable for one-off

studies or when the collection of checkpoints is difficult [85]. Nevertheless, we continue with

an overview of checkpoints because, when applicable, they offer substantial speed benefits.

2.3.2 Checkpoints

One way to amortize the time needed to warm-up large structures is to draw from research

in the area of application checkpointing. When one is running important programs that can

take multiple days to complete, the ability to save to — and restart from — a checkpoint

is essential. This protects the user from hardware failures, power outages, or unexplained

crashes. Checkpoints are also useful for process migration, as in cases where a batch sched-

uler can more optimally allocate resources by moving a process from one machine to another.
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Using a typical taxonomy, there are two methods for checkpoint and restart [13]. A

System-Level Checkpoint (SLC) resembles a core-dump: a record of all programmer-visible

state belonging to a process. With such a checkpoint, the program can be resumed at the

moment the checkpoint was saved. SLC creation can be performed periodically and automat-

ically by the batch queuing system, assuming the operating system provides support. The

SLC is bound to the particular machine that created the checkpoint as it contains data struc-

tures specific to the architecture and operating system. Such checkpoints can be difficult

to generate when a program has many open files, sockets, communicating processes, and/or

threads. Projects such as Condor and CHPOX provide SLCs on existing operating systems

with certain restrictions on which system-level facilities are supported [24, 109]. The SPRITE

network operating system was designed from the ground up to support complete SLCs [83].

SPRITE used an SLC to migrate a process from a busy workstation to another networked

workstation that was idle.

An Application-Level Checkpoint (ALC) requires that the programmer modify his appli-

cation, saving the state of key structures and providing hooks that allow these structures

to be filled from an ALC on disk. For highly-structured scientific studies, the ALC can be

easy to produce: the checkpoint contains the state of the simulated system at a given point

in simulated time. For example, it could contain the position and mass of all particles in an

n-body problem, or it may store the current contents of a matrix in an FFT application. When

global barriers are present, they can be used to force a checkpoint. To improve performance

and limit the size of checkpoints, the programmer may provide hints which indicate poten-

tial checkpoint sites. Restoring multithreaded applications is especially difficult and requires

care to avoid deadlock prior to checkpointing and at restart time [13]. The number of ALCs

may be reduced by monitoring system-level performance. For instance, if the system is expe-

riencing an unusually high level of disk or network traffic, the time to create the checkpoint

may outweigh the time it would save if used for recovery. Alternatively, if an impending

failure can be predicted at the system level, the value of the checkpoint is increased [80].

Checkpointing has a different purpose in the context of computer architecture simulators,

where it can be used to reduce the runtime of a simulation rather than to provide fault

tolerance. By capturing the state of a program at an interesting phase, we can avoid spending

time simulating an uninteresting, unrepresentative, or well-understood phase. Alternatively,

with many checkpoints saved throughout a program’s execution, we can employ statistical

sampling techniques or weighting of results to estimate a total.

The SimSnap project introduces a compiler which inserts checkpoint generation routines

into application code [112]. SimSnap annotates code with hints to the compiler (pragmas)

that either suggest or mandate a checkpoint. The compiler replaces the pragmas with check-

pointing code. In addition, certain system calls, such as malloc(), must be replaced by

checkpoint-aware versions so that the simulated application can easily restore its memory

and continue execution. The checkpoints, which contain all programmer-visible state, can be
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gathered on native hardware for use with a detailed simulator. Some perturbation of results

is noted due to the injected code. In addition, the detailed simulator must still warm-up

microarchitectural structures.

Binary-rewriting has been suggested as a way to create checkpoints without modifying

benchmark source code [91]. In this system, the program binary is augmented with a pro-

logue that contains the necessary stores to memory to create the memory checkpoint and

load-immediates to fill the register file so that the program may be resumed at the check-

point site. The system also reconstructs the effects of system calls that affect the system

environment. For SPEC CPU2000 benchmarks, the amount of instruction overhead aver-

aged less than 3% and required an average of 17 MB for data. The technique eliminates the

need to fast-forward to a sample point, reducing runtime by a factor of 60 compared to ISA-

only fast-forwarding. Such a system accounts for architectural state changes only, potentially

requiring long warming of microarchitectural structures.

2.3.3 Avoiding cold-start effects

A crucial aspect to accurate sampling is to reduce cold-start effects. Figure 2-2 shows several

options for avoiding cold-start effects beginning with 2-2(a), the infeasible option of running

the entire benchmark in a detailed simulator. When we fast-forward to a sample point in an

ISA-only mode, caches, branch predictors, and other microarchitectural structures are empty

or invalid (Figure 2-2(b)). When detailed sampling begins, an empty cache will yield a large

number of misses compared to one that is warmed-up with recently-accessed data. Likewise,

all predictors will be untrained and unlikely to offer correct predictions.

Several techniques have been proposed to repair or warm-up cache state prior to mea-

surement in order to obtain more accurate simulation results. Trace stitching uses the cache

state from the end of a previous detailed sample period to approximate the initial cache state

[2]. An alternative is to begin each sample with an empty cache and simulate memory refer-

ences until a set is completely full, or primed. Once the set is primed, references to the set

are allowed to contribute to cache statistics [58]. Or, one may merely use the first portion of a

sample to warm the cache and collect statistics for accesses occurring during the second por-

tion. For direct mapped caches, executing the first half of a sample with a detailed simulator

and collecting statistics during the second half can be simpler and more accurate than the

set priming technique [54]. Figure 2-2(c) shows the straightforward use of detailed warming

applied after fast-forwarding to a sample point.

Memory Reference Reuse Latency (MRRL) can be used to bound the amount of detailed

warming prior to a sample to achieve a desired accuracy [44]. By limiting warming to a “pre-

cluster” region immediately preceding a sample point, it is likely that the data relevant to the

upcoming sample will be brought into the cache, and older, irrelevant memory accesses can

be ignored. MRRL refers to the number of instructions between a memory access to address

A and the previous access to A. Applying MRRL to warm-up and sampling requires a pro-
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(a) Complete benchmark.

detailed ignoredISA only

(b) Functional fast-forward + detailed sample.

ISA only d e t a i l e d ignored

(c) Functional fast-forward + detailed warm-up + detailed sample.

ISA w/ µarch
warming detailed ignored

(d) Functional warm-up + detailed warm-up + detailed sample.

warming

Reconstruct

ISA w/ µarch-
independent detailed ignored

(e) Microarchitecture-independent warm-up + reconstruction + detailed warm-
up + detailed sample.

Figure 2-2. Techniques to avoid cold-start effects. Brackets indicate region where
measurements are taken.
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filing phase in which MRRLs are determined. With an instruction-based notion of latency, it

is possible to run an application and gather a profile that applies to any cache configuration.

A threshold, N, is chosen and a corresponding warm-up period, wN , is calculated such that

N% of the memory addresses accessed within a sample are previously referenced within the

past wN instructions. In a uniprocessor model without operating system effects, MRRL can

remove 90% of the warm-up costs with less than 1% error in reported IPC. As structures

grow larger and are duplicated in a multiprocessor, the remaining warm-up time may still be

significant. Also, the reference patterns in a full-system multiprocessor simulation change

non-deterministically with changes in the microarchitecture, which may make it more dif-

ficult to apply MRRL. For branch predictors with long histories, it is not obvious that an

MRRL-based technique would suffice to capture relevant branches.

Detailed warming increases the time a simulator spends in its slowest, most-detailed

mode. To reduce this time and address the cold-start problem, the SMARTS framework

recently proposed functional warming, which simulates large structures (such as caches

and branch predictors) during the fast-forwarding mode [127]. While performing functional

warming, the function of the structures is simulated — not the structures’ timing. As a

consequence, the large components of the microarchitecture are already warmed-up at each

detailed sample point, drastically reducing the amount of slow detailed warming prior to a

sample. A small amount of detailed warming is used to fill smaller structures such as pipeline

registers, buffers, and queues.

For a uniprocessor cache model, functional warming involves indexing into the cache,

performing a tag lookup, implementing the cache replacement policy, and maintaining the

state of each cache block (dirty, clean, or invalid). For branch predictors, history shift regis-

ters and tables of prediction counters are kept up-to-date on every branch. By introducing a

slight overhead during fast-forwarding, functional warming shortens the detailed warming

phase while providing accurate measurements. Figure 2-2(d) illustrates functional warming.

SMARTS selects samples uniformly over an entire benchmark run. For uniprocessor models,

as little as 0.1% of a benchmark must be run in a slow detailed simulator to produce accu-

rate results. After verifying that samples from different stages of execution are independent

(that is, they do not coincide with periodicity of the program), SMARTS applies well-known

statistical results to estimate the true mean of a metric from the samples’ mean. Sampling

theory allows the estimate to be bounded by confidence intervals.

The MTR and BPC described in this thesis were created specifically to address the prob-

lem of avoiding cold-starts regardless of the microarchitecture under investigation. The MTR

adds multiprocessor cache and directory support to prior work in uniprocessor warming,

while BPC handles branch predictor tables. For comparison to other techniques, the use

of MINSnaps is shown in Figure 2-2(e). A MINSnap is created during a period of warm-

ing that includes both ISA simulation and the updating of a microarchitecture-independent

structure. This structure can be saved in a checkpoint or used immediately. A reconstruction
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Figure 2-3. Checkpoint generation.

phase interprets the data in the MINSnap and fills in the concrete microarchitectural state

of an experiment’s target configuration prior to a detailed sample.

2.3.4 Contents of checkpoints

Checkpoints must contain all the information necessary to initialize a particular detailed

sample. Figure 2-3 depicts the logical contents of each checkpoint, i.e., what portion of the

program is represented by each checkpoint. Checkpoint 1 contains the state of the target

after running a benchmark from its beginning until the first sample point. Checkpoint 2 con-

tains the target’s state as a result of running the program up to the second sample. Check-

point creation continues through Checkpoint N. A naïve implementation would cause the size

of the collection of checkpoints to grow quadratically, but it is possible to represent the collec-

tion in linear space. The nth checkpoint includes only the information that differs between

itself and the checkpoint for sample n−1.

The specific contents of a checkpoint can include three types of state: architectural, mi-

croarchitectural, or microarchitecture-independent.

Architectural state. Checkpoints of architectural state can be created using simulation or

by interrupting execution of the application on a real machine. Such a checkpoint contains

only state defined by the target’s ISA. This includes such data as the contents of logical reg-

isters (but not physical registers) and memory (but not cache). The checkpoints can then be

used to initialize different machine configurations without repeating fast-forwarding. To re-

duce cold-start effects, microarchitectural state can be reconstructed using a detailed warm-

ing phase before results are gathered at each sample point, as shown in Figure 2-4. If the

microarchitectural state is large, such as for caches and branch predictors, the time required

for detailed warming can be prohibitive.
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Figure 2-4. Checkpoints containing only architectural state require lengthy de-
tailed warming.

Figure 2-5. Checkpoints containing microarchitectural state require less detailed
warming but limit versatility.

Microarchitectural state. Microarchitecture refers to the elements of a computer’s design

that are not exposed to the programmer. In other words, a single architecture can be realized

with many different microarchitectural implementations.

If the checkpoint stores information about microarchitectural structures (e.g., contents of

caches, predictors, and queues), it avoids a time-consuming warm-up phase as shown in Fig-

ure 2-5, but the checkpoint becomes less versatile: it can only reconstruct structures similar

to those that have been saved. This can be undesirable as it is often the microarchitecture

that is varied across experiments and checkpoint regeneration is required every time a mi-

croarchitectural feature is modified. Checkpoint regeneration can be costly: some industry

development groups report detailed warming runs require weeks when starting from stored

architectural checkpoints [37].

If one knows in advance the parameters of the microarchitectural structures of interest,

multiple simulations can be used prior to generating a checkpoint for every interesting struc-

ture. This library of checkpoints can be used repeatedly to drive various detailed simulations.

However, storing checkpoints for many structures at many sample points can require large

amounts of storage.

Microarchitecture-independent state. Modern directory-based, cache-coherent multipro-

cessors have an ever growing quantity of microarchitectural state, including the directory

and multiple large caches. The long histories of these structures make detailed warming

from an architectural checkpoint impractical, and their size can make multiple microar-

chitectural checkpoints infeasible due to storage costs. Ideally, the checkpoints would be
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microarchitecture-independent, yet allow fast reconstruction of any desired microarchitec-

tural configuration.

A checkpoint, or snapshot, containing microarchitecture-independent state can be a use-

ful compromise between the techniques described above. While it cannot match the speed of

directly restoring a microarchitecture-dependent snapshot, a microarchitecture-independent

snapshot (MINSnap) provides the versatility of a snapshot that contains only architectural

state. Instead of lengthy detailed warming, a MINSnap uses a reconstruction period to fill in

the contents of microarchitectural structures (Figure 2-6). MINSnaps support microarchitec-

tural exploration with a single set of stored checkpoints.

Figure 2-6. Microarchitecture-independent snapshots (MINSnaps) allow long peri-
ods of detailed warming to be replaced by a short reconstruction period.

2.3.5 Choosing sample points

Apart from addressing the issue of cold starts, the architect has several options for choosing

which segments of the program comprise the sample. Figure 2-7 shows several of these

options; the color of the figure differs from that of Figure 2-2 to reinforce the distinction

between the cold-start problem and the sample location problem. We rarely have time to run

an entire program as in Figure 2-7(a). A simple shortcut is to take a single short sample at the

beginning of the program (Figure 2-7(b)). Unless the rest of the program behaves in a similar

fashion, this single sample approach is likely to give inaccurate results. For programs that

begin with a distinct initialization phase, we can try executing a portion of the program that

occurs after the initialization phase, as shown in Figure 2-7(c). This only provides accurate

results when the program has just two distinct phases. More complex programs require more

sophisticated sample selection.

Runtime of some multithreaded programs may be estimated by taking detailed samples

from only those processors comprising the critical path [43]. Other portions of the program

do not contribute to the runtime and need not be sampled. When parallel programs have no

clear critical path or when more fine-grained, overall statistics are required, other techniques

may be required.

The rest of this section presents prior work in two areas: simple random sampling and

phase-based sampling.
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(a) Complete benchmark.

(b) Single sample.

(c) Skip + single sample.

(d) Simple random sampling.

(e) Phase-based sampling.

Figure 2-7. Choosing sample point(s).
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Simple random sampling. Statistical sampling of traces can be used in the same fashion

as drug trials or election exit polls [26, 58]. A random subset of the population is polled; the

larger the subset, the more accurate the prediction. In practice, the subset may be quite small

and still yield accurate results. Statisticians can bound their prediction within a confidence

interval that denotes that the true outcome lies between two values with a specified measure

of confidence. In other words, results can reliably be reported as “±x with y% confidence.”

Confidence intervals tighten as the number of samples is increased and/or the variance be-

tween samples shrinks. This methodology can identify cases in which more samples need to

be gathered in order to reach a certain confidence in the reported range. Alternatively, more

samples can tighten the estimated range for a given confidence.

Figure 2-7(d) shows samples taken randomly over the course of a benchmark’s execution.

Typically, less than 1% of instructions need to be simulated in detail to obtain accurate re-

sults. With online sampling using SimpleScalar tools, this leads to speedups of 35–60× for the

SPECCPU benchmarks, depending on the target configuration [127]. Simulating each sam-

ple in parallel can further reduce the amount of time required to achieve a result [61, 125].

When it is not feasible to gather random independent samples, the results of sampling must

be validated with non-sampled experiments to ensure no bias is present in the sample selec-

tion.

Usually, tightening a confidence interval requires additional samples. However, for some

applications, the presence of multithreading is sufficient to reduce the number of required

samples [35]. When multiple processors are working on different portions of the same code,

the effect of any single processor is muffled by its companions. This reduces variance of

the samples resulting in fewer samples required for a given confidence interval. When the

processors are coordinated, as is likely for barrier-based scientific applications, a performance

metric for any single processor looks similar to its peers, and the variance is not lowered.

Phase-based sampling. An alternative to simple random sampling is to choose samples

that are known to best represent program behavior. For example, a scientific benchmark

may begin with an initialization phase during which a dataset is read. It may continue

with processors performing a computational kernel in parallel followed by a reduction or

sharing of information. This work-reduce pair of phases may be repeated many times before

a concluding phase that prints the results. To measure the entire program, it is important to

observe each of its phases, but it may not be necessary to repeatedly measure a phase that

has similar characteristics during each of the 1000 times it occurs.

SimPoint is the name of a popular approach to phase detection and sampling [98]. With

SimPoint, a program is first run in a fast, functional simulator to gather basic block exe-

cution histograms. One histogram, or basic block vector (BBV), is gathered for each fixed-

length interval of instructions. SimPoint seeks out portions of the program whose basic block

distribution mirrors the BBVs found in the program as a whole. Rather than compare ev-

ery interval’s BBV to every other interval’s, SimPoint uses several optimizations including
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a projection to reduce the dimension of the BBV and a clustering algorithm to find similar

intervals. SimPoint can produce a single sample that is most representative of the entire

benchmark, but it is more effective when several phases are identified and samples from

each phase are weighted according to each phase’s frequency. Figure 2-7(e) shows a bench-

mark with three distinct phases. Each phase is sampled. The second phase is longer, so more

weight will be given to its sample.

Phase-based sampling is faster than simple random sampling because the amount of

detailed simulation is limited to a fixed number of samples, each of which is taken from

a representative phase. However, it lacks formal confidence intervals and phases must be

rediscovered when programs are recompiled. There is a possibility that different occurrences

of the same BBV will have different performance characteristics due to microarchitecture,

but one cannot determine this difference with BBV-based phase detection. Though phases

usually persist across microarchitectural changes [105, 85], it could be difficult to use BBVs

to detect phases accurately in programs with code signatures that are susceptible to change

in the face of microarchitectural changes. Spinlocks in multithreaded code are a construct

that can change a BBV depending on system timing.

Another way to detect phases is to look for similarity in a metric such as IPC [105]. Sim-

ilarity of distributions was proposed to identify phases more accurately than a comparison

of mean values. While the absolute value of the metric may change due to microarchitecture

changes, phase boundaries tend to persist despite changes to the microarchitecture.

When a program is run on an SMT processor, a mix of SimPoint and instruction through-

put during a detailed sample interval can be used to guide fast-forwarding to the next in-

terval or even to perform a purely analytical simulation using a Co-Phase Matrix [121]. The

Co-Phase Matrix contains per-thread performance information for every combination of over-

lapping phases. For example, it could contain an entry that indicates “while thread 0 is in

region a and thread 1 is in region x, thread 0 completes 2 instructions per cycle and thread 1

completes just 1 instruction per cycle.” Phases for each thread are identified with SimPoint

and the combinations simulated together to generate the Co-Phase Matrix. Once an entry

for a co-phase exists, it can be used to guide fast forwarding. The number of instruction in

a thread’s phase combined with the IPC from the matrix can tell us the number of cycles

that will elapse until the next co-phase. No actual simulation takes place once the matrix

is populated. For workloads with a large number of threads and/or many phases, the num-

ber of combinations may be prohibitively large. A dynamic approach to filling the Co-Phase

Matrix is proposed in which starting points are chosen and the matrix is populated with

performance observed during simulation. Checkpoints are recorded at the beginning of each

thread’s SimPoint. A checkpoint from each thread may be combined to produce per-thread

performance metrics subject to the resource constraints of an SMT. The proposed checkpoint

format includes Memory Hierarchy State that is independent of cache configuration, but does

not include a MINSnap for branch predictors [119, 120].
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2.4 Simulation acceleration

There are several techniques for speeding up simulation that are orthogonal to the sampling

approaches discussed above. This section reviews some of these techniques, which may be

used in concert with sampling.

2.4.1 Accelerated instruction emulation

As computers became more complex, and simulation became relatively slower, researchers

proposed direct execution to increase simulation speed [28, 126]. In direct execution, instruc-

tions from the simulated program are executed using the host system’s native instructions

rather than emulating the operation of each instruction. It is only necessary to enter the

simulator to update performance statistics on branches or at communication points.

The Wisconsin Wind Tunnel project appropriated error correction bits in the host sys-

tem’s hardware, and generated an “error” whenever the host accessed memory (on behalf of

the target) that was not in the target system’s cache [90]. The simulator provided a custom

error handler on the host that could react to and model target memory references. A second

generation of the Wind Tunnel project took a more portable, but slower, approach: statically

modifying code, replacing loads and stores with calls into the simulator to handle simulation

of memory events [76]. Since switching between the target and host is kept to a minimum

for performance reasons, it can be difficult to accurately model timing of advanced targets.

When one is not concerned with the precise timing of instructions, direct execution can lead

to speedups of up to 3.6× over similar execution-driven simulators with less than 3.9% er-

ror [34]. In a multiprocessor simulation, direct execution must be interrupted whenever the

simulated processes interact [29]. The Time Warp mechanism, while not a direct execution

simulator, strives to speculatively continue through synchronization points. It rolls back to

correct errors if synchronization violations are detected [49].

More recently, the PTLsim project has advocated using direct execution for fast-forwarding

prior to detailed sample points [128]. A target application runs natively until a breakpoint

triggers the detailed model. Even during detailed modeling, the simulator can reap speed

benefits because its target and host use the same ISA. Target instructions can be emulated

with hand-coded assembly fragments and target system calls can be executed directly on the

host OS. The newest version of the simulator, PTLsim/X, has leveraged the popular Xen hy-

pervisor [129]. This allows the simulator to run at the highest privilege level, providing a

virtual processor to the target OS. At this level, both the target’s operating system and user-

level instructions are modeled by the simulator, and it can communicate with Xen to provide

I/O when needed by the target OS.

An alternative to direct execution is used by Simics [68], a full system simulator which

runs unmodified binaries with operating system support. Originally, Simics used an auto-

matic, profile-driven code generator to produce optimized C code for emulating target instruc-
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tions [59]. The emulation was statically defined but by separating decoding and execution,

specialized service routines could be installed to optimize speed after the initial decoding of

an instruction. For example, if a general-purpose add instruction was decoded and found

to have matching source and destination registers and “1” as an immediate operand, its ser-

vice routine need only increment the register. There is no need to include an instruction

to extract the constant “1.” Furthermore, the simpler increment code may allow the com-

piler to perform constant propagation or common subexpression elimination. New versions

of Simics [38] as well as QEMU [10], use binary rewriting. Binary rewriting is the process

of dynamically translating sequences of instructions into functionally equivalent, but opti-

mized or managed, sequences of instructions. Examples of optimizations include: removing

the computation of condition codes when they are unneeded; simplifying address generation

when the segment base is zero; and chaining basic blocks together [10].

2.4.2 Statistical/synthetic simulation

Another approach to reduce runtime is by creating a synthetic instruction stream that is

statistically similar to an actual program [79, 82]. This methodology requires an initial func-

tional simulation to capture the program’s inherent characteristics, such as opcode mix, de-

pendencies, locality, and predictability. Performance can be extrapolated through statistical

simulation by generating small, statistically similar traces to drive a slower detailed simu-

lator. In this context, statistics are not used for sampling (as in Section 2.3.5), but to ensure

that the synthetic program is statistically similar to the original. With respect to multipro-

cessors, a 10–15% error in instruction throughput was observed depending on workload [79],

though trends observed with the synthetic workload follow those seen in a detailed baseline

model.

2.4.3 Parallel hosting

A common way to explore a design space is to select a few choices for each of several design

parameters and run an experiment for each combination in the cross-product of these pa-

rameter settings. When multiple simulation hosts are available, each host can be delegated

a small number of experiments and the independent computation can occur in parallel. This

technique increases simulation bandwidth but does not address latency. Unfortunately, the

growing complexity of computer architectures means that the latency, or end-to-end runtime

of each experiment, is just as important. Every day spent waiting for a batch of simulations

to complete is one less day available for running a new suite based on feedback from the pre-

vious simulation. The need for feedback and inspiration from a current experiment makes

it difficult to maintain a full pipeline of experiments and motivates techniques to reduce

simulation latency.

One may also exploit parallel host processors to speed up the simulation through par-

allelization of an individual experiment. For example, the Wisconsin Wind Tunnel takes
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advantage of a parallel host to simulate a parallel machine, using portable message passing

and synchronization directives rather than machine-specific ones [76]. Mermaid distributes

target processor simulation across several machines in a cluster and forces communication

to proceed through a sequential model [88]. A Blue Gene simulator utilizing a parallel ex-

ecution model was devised to simulate the IBM Blue Gene/L supercomputer, and others of

its genre, using existing parallel hardware [132]. This simulator relies on language and run-

time support to limit the overhead of correcting causality violations. BGLsim, another Blue

Gene simulator, overlays Blue Gene models on a Linux cluster, relying on message passing

to handle coherence [18].

Experience with the Wisconsin Wind Tunnel II was reflected in the design of Intel’s ASIM

simulator, allowing it to be parallelized over a summer several years after it was intro-

duced [8]. ASIM is a modular performance model framework in which parts of a computer

system are represented by reusable modules connected by ports [36]. By insisting that inter-

module communication occur only through modified ports and allowing modules to be invoked

in distinct threads, the new parallel framework allows each simulated CPU to execute on a

distinct host processor.

2.4.4 Hardware simulators

Software simulators are popular because they offer flexibility and the ability to observe every

aspect of a computer’s operation. Many have the additional benefit of running on inexpensive

desktop computers and servers. These simulators tend to run at 10s of thousands to 10s of

millions of instructions per second depending on level of detail and speed of host hardware.

Hardware runs much faster (billions of operations per second), so it can be useful to use

reconfigurable hardware to prototype new designs. When a design is too complicated to fit

on a single field-programmable gate array (FPGA), it may be prototyped by ganging together

many FPGAs [41, 42, 123]. As high-gate-count FPGAs with fast I/O become more affordable,

researchers have ramped up work in hardware-assisted simulators to allow simulation speed

of 10s-100s of millions of instructions per second [6, 20, 21, 47, 81]. Many flexibility and

observability issues must be addressed before such systems become popular. While it is hard

to compete with the low cost of software simulation, it is not hard to imagine useful hardware

simulation platforms whose expense is justified by the speed benefit over current software-

based tools.

These are exciting prospects but are still in early stages of development, so I believe

software simulation will still remain popular. While the techniques presented in this the-

sis should be applicable to hardware-assisted simulators, the thesis focuses on current and

future software frameworks.
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2.5 Summary

Though it is impossible to include and explain every publication related to a topic as broad

as computer architecture simulation, at this point the reader should possess sufficient back-

ground to place the remainder of the thesis in context. We have reviewed both trace-driven

and execution-driven simulation and seen efforts to increase their speed. The most-recently

published research in this area seeks to apply and refine older sampling techniques to accel-

erate a current generation of execution-driven simulators.

We have also presented several techniques for accelerating simulation that are compli-

mentary to sampling. Accelerated instruction emulation can be especially helpful for ad-

vancing to samples and/or creating snapshots for initializing samples. However, accelerated

instruction emulation is only one aspect of minimizing overall simulation time. In a multi-

processor simulation, the memory operations, not the instruction emulation, constitute the

largest obstacle to high speed simulation of a parallel processor [68]. Therefore, techniques

such as direct execution and binary rewriting are not a panacea.

We have reviewed prior work in the area of parallel hosted simulation. In Section 3.2, we

will outline how the MTR is well-suited for such parallel simulation. Branch prediction does

not have the synchronization needs of shared memory, so the BPC may be used on a parallel

host as well.

Statistical techniques are related to our work in that they seek to provide quick answers

to computer architecture questions, but they represent a significantly different strategy —

usually employed prior to the full-system studies that are the setting for the MTR and BPC.

Our work makes sampling simulations more versatile, easing the investigation of mul-

tiple microarchitectural targets from a single summary of execution. In Chapter 3, we in-

troduce a method for storing the state of a cache-coherent multiprocessor memory system in

a microarchitecture-independent fashion. Chapter 4 uses a lossless trace compression tech-

nique to represent branch predictor state. With these MINSnaps, one can save space and

amortize the lengthy work of snapshot generation across many microarchitectural experi-

ments, shortening the time required to design and evaluate computers of the future.
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Chapter 3

Memory Timestamp Record

In this chapter, we present a fast and accurate technique for initializing the directory and

cache state of a multiprocessor system based on a novel software structure called the mem-

ory timestamp record (MTR).1 The MTR is a versatile, compressed snapshot of memory ref-

erence patterns which can be rapidly updated during fast-forwarding, or stored as part of

a checkpoint. When advancing to sample points online, the MTR simply records the time

of every processor’s last access to every memory block instead of maintaining the directory

and cache state (as with functional warming). This bookkeeping adds little overhead to func-

tional simulation, yet the MTR can quickly and accurately reconstruct cache and directory

state largely independent of size, organization, or protocol. Once the memory system has

been reconstructed, detailed performance simulation observes the microarchitecture’s effect

on timing. We show that, with our implementations, the MTR achieves an average speedup of

1.19–1.45 over conventional fast functional warming (FFW) for a single cache configuration.

Additional speedup is possible when multiple different cache organizations are reconstructed

at each sample point. We show we can simulate several different MTR-initialized configu-

rations in the same time as one run with FFW. In addition, both MTR updates and MTR

cache reconstruction are highly parallelizable, thus easily supporting parallel-hosted simu-

lation. When used as a checkpoint, the MTR offers the same microarchitecture-independence

as prior work based on stack algorithms, but it requires less space and has no upper bounds

on target cache sizes.

3.1 MTR Design

Memory reference traces are a microarchitecture-independent summary of one possible thread

interleaving of a multithreaded program. Replaying a trace can serve as a straightforward

way to update the directory and caches, avoiding cold-start effects during sampling. With in-

1The material in this chapter is based on the joint work of Kenneth Barr, Heidi Pan, Michael Zhang,
and Krste Asanović. This work originally appeared in the International Symposium on Performance
Analysis of Systems and Software held in March of 2005 [9].
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finite disk space and simulation time, all the memory accesses observed prior to every sample

point could be stored. This trace of accesses could then be replayed to warm-up any target

memory system prior to a detailed sample, but this has extensive storage requirements and

would be quite slow. The MTR instead exploits properties of time-based replacement poli-

cies and cache coherence to form a small, self-compressing structure which sacrifices some

accuracy for low storage requirements and high speed. This section describes the concep-

tual structure of the MTR and how it accomplishes the goals of high speed, low space, and

significant versatility.

Directory

Memory
Cache 1

Cache 2

Cache n

Processor 1

Processor 2

Processor n

Figure 3-1. A simple symmetric multiprocessor (SMP) target system.

To illustrate the operation of MTR, we use the simple symmetric multiprocessor (SMP)

model shown in Figure 3-1 as our simulation target. Every processor has a local cache, each

having the same cache parameters (e.g. size, associativity) and using an LRU replacement

policy. The memory uses a centralized full-map bit-vector directory and the MSI write-back

invalidation protocol to support sequential consistency. The directory is always notified when

dirty blocks are written back, whereas clean blocks may be silently evicted without informing

the directory. The same block size is used by both caches and memory. Alternative cache

organizations, coherence policies, and replacement policies are explored in Section 3.2.

3.1.1 MTR structure

Rather than functionally simulating a cache to keep it warm, the MTR performs a simple

and fast table update on every memory access. This reduces the amount of work per memory

access; we defer cache state reconstruction until it is time to prepare for a detailed sample.

The key observation is that directory and cache state can be reconstructed if, for each mem-

ory block, we know about each processor’s latest accesses to that block and the relative order

of these accesses across processors. During MTR creation, each simulated processor reads

and writes a shared “magic memory” for instant resolution of loads and stores. The MTR

also captures the most recent memory accesses using the structure shown in Figure 3-2.

The MTR has an entry for every memory block. Each block’s entry contains an array of

read timestamps, one per processor, indicating the last time each processor read the block.

Additional fields record the identity of the last processor to modify the block and the time-

stamp of the write. Note that the array of read timestamps constrains the microarchitecture-

independence of the MTR; it can only represent microarchitectures with a predetermined

number of CPUs.
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Figure 3-2. A Memory Timestamp Record.

3.1.2 MTR creation

Whenever any processor issues a read or write request prior to a sample point, the Update

algorithm shown in Figure 3-3 is used to update the MTR.2 A read request for a block of

memory will place a timestamp in the read timestamp field corresponding to the block’s

address and reader. A subsequent read of the same block by the same processor will overwrite

the previous read’s timestamp. A write request updates the MTR entry’s writer ID and

timestamp. When advancing to samples online, we can also execute Update during detailed

simulation to keep the MTR consistent with directory and cache state at all times. The

lightweight MTR update has little effect on detailed simulation speed.

Update(address, isStore, cpu) {
time++
MTR[address].readers[cpu] = time
if(isStore) {

MTR[address].writer = cpu
MTR[address].writetime = time

}
}

Figure 3-3. MTR updates during fast-forwarding.

Note that we update both the read and write timestamp of a block when a write occurs.

Figure 3-4 illustrates the reason. Assume the caches in the figure are four-way associative

with LRU replacement, and assume that all of the depicted memory accesses map to the same

set. Processor 1’s write to block b5 causes b1 to be evicted, but the write request is overwritten

in the MTR by Processor 2’s write to the same block. Information is lost that would be helpful

for establishing b1’s eviction. This information is retained by updating the read vector along

with the write timestamp. In this specific example, the read vector update allows the MTR to

have knowledge of P1’s access to b5 for reconstructing the eviction. Marking writes as read-

modify-writes preserves the correctness of the MTR reconstruction algorithms because the

2To show the MTR algorithms, we use a C++-like pseudocode, using dot notation to indicate both
attributes and method calls on objects.
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final directory and cache state for read-modify-writes is indistinguishable from the final state

for writes. If no other processor accesses the same block afterwards, the write timestamp

indicates that the block is modified; the simultaneous read is ignored. If another processor

writes to the same block, the previous owner’s copy becomes invalid, regardless of whether

it was last read or last written. Similarly, if another processor reads the block, the previous

owner’s copy becomes clean-shared under the MSI protocol.

Processor 1

read 

Processor 2

read read read write

write

time

b5

b5b4b3b1 b2

Figure 3-4. Scenario illustrating why write accesses are recorded in the MTR as
read-modify-write. Assume a four-way associative cache with LRU replacement.
Blocks b1-b5 map to the same set. We need to retain the time of P1’s write to b5 to
reconstruct the eviction of b1.

3.1.3 Cache reconstruction

At each detailed sample point, the cache and directory state must be quickly reconstructed.

After choosing the size and associativity of the target cache(s), cache reconstruction is split

into two phases. First, we filter the latest memory accesses recorded in the MTR to determine

the subset that may be in the cache based on cache size and associativity. Second, we examine

inter-cache relationships to determine the validity of each cache block and whether it is dirty.

To determine the cached subset, we observe that for k-way set-associative caches, an LRU

policy dictates that only the last k accessed blocks remain cached in each set. To compare

memory accesses that map to the same cache set, we reorganize the information in the MTR

into a separate structure called the cache set record (CSR), shown in Figure 3-5. The CSR

contains an entry for each set in every cache, holding a timestamp-sorted list of the k most

recent memory accesses to that set. Figure 3-6 describes how to fill the CSR by sorting all

the memory accesses mapping to the same cache set. The Insert function (not shown) kicks

out the oldest entry if the array would overflow, leaving the k most recent accesses. To avoid

inserting both a read and write timestamp for the same block into the CSR entry, the routine

checks if a processor was the last writer. Note that in CoalesceCacheblocks, we insert all

memory accesses into the CSR, whether they are valid or not. Although some of these cached

blocks may be invalidated later by the cache protocol, they were valid when brought into the

cache and potentially caused evictions. The MTR only contains entries for memory blocks

that have been accessed, so the runtime of this procedure is O(touched lines×NUMCPUS×k).
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Figure 3-5. A cache set record (CSR).

CoalesceCacheblocks(CSR, MTR) {
for each entry, i, in MTR {

set = i.address >> SETSHIFT
for(p = 1 to NUMCPUS) {

if(i.readtime[p] is valid and p != i.writer) {
Insert(CSR[set][p], i.tag, i.readtime[p])

}
}
if(i.writetime is valid) {

Insert(CSR[set][i.writer], i.tag,
MAX(i.readtime[i.writer], i.writetime))

}
}

}

Figure 3-6. Building the CSR from the MTR: First pass to dump data from the MTR
to the CPUs’ cache set record (CSR). In each CSR entry, we keep an array of size ≤
k (cache associativity) that is sorted by timestamps. The Insert function kicks out
the oldest entry if the array would overflow, leaving the k most recent accesses.
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FixupCaches(CSR, MTR) {
for each cached block b in CSR {

lastwriter = MTR[b.address].writer
lastwritetime = MTR[b.address].writetime
if(b.timestamp < lastwritetime) {

b.valid = false /* invalidated by later write */
b.dirty = false

}
else {

b.valid = true
if(IsCleanShared(MTR[b.address]) {

b.dirty = false /* downgraded write or cached read */
}
else {

b.dirty = true /* cached write */
}

}
}

}

Figure 3-7. FixupCaches reconstructs cache valid and dirty bits by examining
inter-cache relationships. A block is valid if it was accessed during or after the
last write.

In the second phase, we step through the CSR to determine the valid and dirty bits of

these cached blocks using the algorithm FixupCaches shown in Figure 3-7. The state of

a cached block is dependent on other processors’ accesses to the same block, so we need to

refer back to the corresponding MTR entry to determine when it was last read and written. A

cached block can only be valid if it was cached upon or after the last write to the block; cache

blocks present before the last write would have been invalidated to preserve consistency. A

modified cached block only remains dirty if no other processors have read the data since the

modification, otherwise it would have been downgraded to shared status by the subsequent

read request. To check for such downgrades, we use the simple IsCleanShared test shown

in Figure 3-8. Due to memoization, IsCleanShared runs in constant time for all but the

first call per block (for which it is O(NUMCPUS)). FixupCaches invokes the linear-time

IsCleanShared one time at the most. The remaining calls — as many as NUMCPUS−1

— are serviced in constant time. This results in a worst case runtime for FixupCaches of

O(blocks-per-cache×NUMCPUS).

3.1.4 Directory reconstruction

MTR directory reconstruction is similar to cache reconstruction, as shown in Figure 3-9. If a

block is read but never written, or read by another processor after the last write, the block is

shared. The sharers consist of the last writer (if any) and all subsequent readers. Although

some of these sharers may have already evicted their clean copy of the block, they remain

in the sharing vector under the silent drop policy, whereas the directory is always notified of
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IsCleanShared(MTRentry i) {
if(!i.clean_shared_memo) {

i.clean_shared_memo = true;
if(i.writetime is valid) {

for(p = 1 to NUMCPUS) {
if(i.writer != p and readtime[p] > i.writetime) {

i.clean_shared = true; /* read after write */
return i.clean_shared

}
}
i.clean_shared = false; /* not shared, still dirty */

}
else {

i.clean_shared = true; /* never written */
}

}
return i.clean_shared

}

Figure 3-8. The IsCleanShared procedure returns true for blocks at which a read
has occurred since the last write. It also returns true for blocks that have not been
written. Otherwise, it returns false.

CreateDirectoryFromMTR(directory, MTR) {
for each entry, i, in MTR {

if(IsCleanShared(i)) {
directory[i.address].state = Shared
for(p = 1 to NUMCPUS) {

if(i.readtime[p] >= i.writetime) {
directory[i.address].addSharer(p)

}
}

}
else if(i.writetime is valid) {

if(IsValidInCSR(i.address, i.writer)) {
directory[i.address].state = Modified
directory[i.address].owner = i.writer
/* but if writer reads again, then this is an ambiguity */

}
else {

directory[i.address].state = Invalid
directory[i.address].clearSharers()

}
}

}
}

Figure 3-9. Reconstruct directory state in a system with silent evictions. Note,
IsValidInCSR returns true if the modified copy is still in the last writer’s cache,
and false if it has been evicted and written back.
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dirty writebacks. Thus, we must verify that a dirty copy is still in the cache before marking

it modified, otherwise it is invalid. All unrequested blocks are uncached and marked invalid

in the directory.

When performing online sampling, the MTR contains only those memory accesses that

have occurred since the last sample point. Thus, when reconstructing the caches and direc-

tory, a block that is not in the MTR is not necessarily uncached. Reconstruction during online

sampling requires merging existing concrete structures with data from the MTR. Consider a

block that becomes shared prior to MTR creation and not accessed during MTR creation. We

must retain the state of the block rather than assuming its absence from the MTR implies

that it is invalid. When sampling with checkpoints, each checkpoint is comprised of all prior

MTRs. By successive reconstruction, no information is missing and the issue of merging is

moot.

The runtime of CreateDirectoryFromMTR is O(touched lines×NUMCPUS) due to the

loop used to create a sharing vector and the invocation of IsCleanShared for each block.

While the MTR algorithms are sensitive to the number of CPUs, until we begin simulating

very large multiprocessors, we are most sensitive to the number of uniquely touched lines

prior to each sample. In contrast, a functional warming simulation performs an O(1) lookup

on each hit and a O(N) invalidate in the worst case when it must invalidate all sharers.

The observed speed for our problem size depends on the constants hidden by Big-O notation;

as we will see in Figure 3-17, the amount of work-per-access done by functional warming

outweighs that done by the MTR. When the number of references represented by the MTR

exceeds the number of uniquely touched lines, as it should in the presence of locality, the

MTR should outperform FFW.

The reconstruction time would be extremely high if we had to examine each block of

memory to reconstruct the entire directory and cache state for every detailed sample. Luckily,

only a small subset of the memory locations and cache entries are accessed in each fast-

forwarding period, so we only have to apply the reconstruction algorithms to this subset.

We add two levels of valid bits to the MTR, which are updated during its creation, to track

which memory regions and which blocks within these regions have been touched. The MTR

is divided into “pages” of records. The page size, which is independent of the virtual memory

system’s page size, is chosen to keep the first-level table small and cacheable. For instance,

if a four-CPU target uses 32 B blocks and a main memory of 64 MB, a 4096-entry page would

result in 512 flags in the first-level table. If an entry in the first-level table is marked valid,

then at least one of the memory blocks on its page has been accessed; if the page is marked

invalid, then none of its members have been modified. With this organization, we can quickly

skip large contiguous areas of untouched MTR entries during reconstruction.

The CSR is cleared before reconstruction. After reconstruction, it contains only those

memory accesses that have occurred between samples, and it reflects the portion of the cache

state that has been changed since the last sample. The CSR must be merged with the cache
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state from the end of the last detailed sample (which has become stale by the time the next

sample is reached). During the merge, we must also update the directory to reflect involun-

tary eviction of stale cache entries. This merging process is described in Section 3.4.

The MTR is well suited to parallel-hosted simulation in which each simulated CPU runs

in its own thread. A slightly modified MTR in which each processor has its own write time-

stamp field would permit fast simulation without synchronization for every memory oper-

ation. While the speed of the host processors will dictate the relative order of memory re-

quests, the only concurrency constraint is that application-level atomic instructions must be

implemented with atomic accesses to the simulated shared memory to ensure legal execution

orderings. To create the MTR, each processor would make fast updates as before, but the last

writer would be determined at reconstruction time by comparing all CPUs’ write timestamps.

During parallel reconstruction, the shared MTR is read-only and may be accessed simulta-

neously by many threads. The writeable CSR is divided into per-CPU sections that can be

written without the need for locks. A barrier is needed between the coalesce and fixup stages

as FixupCaches assumes the contents of each cache have been completely determined.

3.1.5 Handling ambiguous cases

There are scenarios where the MTR timestamp information is insufficient to distinguish be-

tween multiple different directory and cache states. For example, consider Figure 3-10(a),

where a processor writes then reads a block without other processors’ interference. Given

the write and read timestamps, one can infer either of the following scenarios: (1) the read

request results in a cache hit and the data remains modified, or (2) the data is evicted and

written back in between, so the read request brings the data back in a clean shared state.

Another ambiguous example is depicted in Figure 3-10(b). The MTR tells us that the block

is first written by processor p1 then read by processor p2. After filling the CSR, we can de-

termine that the block has been evicted from p1’s cache, but the CSR does not tell us when

the eviction took place. If p1 evicts the block before p2 reads it, p1’s copy would have been

dirty, so p1 would have to write back the data. On the other hand, if p1 evicts after p2’s read,

p1’s block would have already been downgraded to a clean shared status, so it can be silently

dropped. The directory would include p1 in the sharing vector in the second case, but not in

the first.

These ambiguities arise because MTR only sees loads and stores, not evictions, which

depend on microarchitecture configuration. There are two approaches to resolving these

ambiguities. The faster and less accurate approach is to always reconstruct the directory

and cache state to reflect the more probable scenario. In the first example described above

(Figure 3-10(a)), we mark the block as M, assuming good locality and no communication

misses such that the data is not evicted. In the second example (Figure 3-10(b)), we leave

p1 in the sharing vector, assuming that the block remains in p1’s cache long enough to be

downgraded and written back before being evicted.
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Figure 3-10. Ambiguities from evictions. Scenarios a and b show two alternative
sequences of events that result in the MTR holding the same two timestamped
accesses at time1 and time2. These ambiguities require additional effort to resolve,
though a quick heuristic is usually adequate.

The more accurate approach distinguishes the ambiguous timelines by determining if an

owner’s copy, installed at time1, is evicted before a later access, at time2, to the same memory

block. A block b is evicted from a set in a k-way associative cache when the processor accesses

k new blocks mapping to the same set after it last accesses b. If we re-examine the MTR and

find at least k such accesses between time1 and time2, b was definitely evicted in that period.

This is shown in Figure 3-11 as Case 1, where there are n accesses to the same set between

time1 and time2, and n exceeds the associativity, k.

When the MTR entry contains fewer than k accesses within the time frame (Figure 3-11,

Case 2a and 2b), we cannot reach a conclusion about the eviction time — there might have

been more memory accesses within that time frame that are not recorded by the MTR. In the

figure, Case 2b shows this masking situation: a block cached before time2 that causes block

b to be evicted is accessed again after time2, so the previous access is overwritten in the

MTR. The MTR contains the same contents in Case 2a and 2b, but Case 2a does not result

in a masked eviction. Figure 3-12 shows this algorithm in pseudocode. This special case of

irresolvable ambiguity is the tradeoff for being able to maintain so little state in the MTR.

However, as we will show in Section 3.3, the unresolved ambiguities are rare, and have little

effect on overall accuracy.
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Figure 3-11. Different scenarios when reconstructing evictions. The MTR contains
entries marked time1 and time2. The black dots represent accesses recorded in
the MTR; the white dots represent accesses no longer visible in the MTR. In the
first case, we know for sure that the eviction occurred before the memory access,
whereas the second case is ambiguous because of the possibly missing timestamps
from the MTR.

3.2 Extending the MTR

In this section, we describe how MTR can be used to reconstruct many different cache config-

urations and coherence protocols.

3.2.1 Alternative cache configurations

The MTR structure is independent of the simulated cache parameters, with each MTR entry

corresponding to a memory block. The state of any sized cache with any associativity can

be reconstructed by time sorting touched memory blocks into the appropriate cache sets;

cache block sizes that are a multiple of the MTR block size can be easily constructed by

merging timestamps from all constituent MTR blocks. Thus, one can use an MTR with word

or byte granularity to model fine gradations in block size. In addition, the MTR structure can

reconstruct most common forms of time-based replacement policy (e.g., LRU or cache-decay

counters). Random replacement approaches LRU for large (> 64 KB) caches [45], so the time-

based replacement strategy can be used to closely approximate random replacement.

Multi-level cache hierarchies can be supported by reconstructing the largest cache with

MTR and using detailed warming or a further reconstruction for the smaller caches. Inclu-

sive caches may be reconstructed using two independent calls to the cache reconstruction

routines, each using different parameters. To reconstruct a non-inclusive cache hierarchy,

we first reconstruct the inner caches then omit these cached lines while reconstructing the

CSR for the outer caches.
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IsEvictedBetween(block, cpu, set, k, time1, time2, MTR) {
count = 0
ambiguous = 0
for each entry, i, in MTR that maps to set but is not for block {

if ((time1 < i.readtime[cpu] < time2) or
((time1 < i.writetime < time2) and (cpu == i.writer))) {

count++
else if (i.readtime[cpu] > time2) {

ambiguous++
}

}
}
if (count > k)

return true /* evicted: case 1 of Figure 3-11 */
else if ((count + ambiguous) > k)

return false /* ambiguous: case 2 of Figure 3-11 */
else

return false /* not evicted */
}

Figure 3-12. Procedure to determine if block is evicted between time1 and time2.
If at least k other accesses mapping to the same set are found in the time frame,
then block is evicted before time2. If fewer than k other accesses are found after
time1, when block is last accessed, block has not been evicted. Otherwise, it is
unknown when block is evicted, and we heuristically assume that the line has not
been evicted.

3.2.2 Alternative coherence protocols

MTR can support a variety of directory cache coherence protocols, such as MESI, MOESI,

update protocols, and systems with imprecise directory representations. In addition, MTR

works with snoopy protocols. Snoopy protocols, in which each participant observes every

transaction on a shared bus, are simpler to support than their directory-based counterparts

since they only require cache reconstruction.

Explicit clean evictions. An explicit eviction policy notifies the directory about evictions of

clean blocks. To support explicit eviction, the directory reconstruction algorithm is modified

to keep the directory and cache state consistent. Since the directory should reflect the cache

contents exactly, the directory can be built directly from the reconstructed cache state instead

of from the MTR. This would improve the reconstruction speed, since we would only have to

process every cached block, which may be significantly fewer than every touched block in

memory.

MESI invalidation protocol. Here, we illustrate how MTR supports the MESI protocol,

which enhances the MSI protocol with an additional exclusive (E) state [84]. A read request

for an unshared memory block is cached in the exclusive state as an optimization for read-

modify-writes, while a read request for a shared memory block is cached in the shared state
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as in the MSI protocol. Under MESI, MTR reconstruction must determine whether a clean

line is in the exclusive or shared state. A memory block held by multiple caches must be in the

shared state. However, if there is only one cache with a valid and clean copy of a particular

memory block, it can be in either exclusive or shared state. The ambiguity is similar to that

depicted in Figure 3-10(b). If the directory is notified of P1’s dirty writeback, it would grant

P2 an exclusive copy of the data, but if P1’s copy is not evicted until after P2’s read request,

P2 would have received a shared copy instead. This ambiguity can usually be resolved using

the same technique described earlier for determining eviction times under the MSI protocol.

We have considered, but not evaluated, MTR for use in other invalidate and update-based

protocols as described below.

MOESI invalidation protocol. The MOESI protocol adds the owned (O) state to the MESI

protocol, which allows writers to directly provide the latest data to subsequent readers with-

out having to write the modified data back to memory [111]. The new readers cache the data

in the shared state, while the writer downgrades from the modified to the owned state. The

directory records the line as belonging to the writer in the owned state, indicating that the

memory has a stale copy of the data. If a processor in the owned state wants to modify the

data again, the directory invalidates all of the sharers before upgrading the requesting writer

to the modified state. If another processor wants to write the data, all readers are invalidated

and the owner must first write the line back to memory.

The main difference between MOESI and MESI is that the last writer of a memory line

is downgraded to an owned state rather than a shared state if there are subsequent reads.

This translates to the following changes in the reconstruction algorithm:

• The last writer’s cached copy is always marked dirty.

• In reconstructing the directory for systems with silent evictions from the MTR, we need

to distinguish between the modified and the owned state. If any processor reads the line

after the last write, the directory state for that line is owned. Otherwise, the last writer

has the line in the modified state.

• In systems with explicit evictions, we reconstruct the directory from the CSR. If one

cache has a valid and dirty copy, while other cache(s) have a valid and clean copy of

the same memory line, the directory state of the line is owned. If the dirty copy of

a memory line is the only copy cached in the system, we need to refer back to the

MTR to determine the existence of “missing sharers.” In this case, missing sharers

refer to processors that have read the same memory line after the last write, but have

evicted their copy by the time of reconstruction. This involves a simple scan of the read

vector in the corresponding MTR entry to find any timestamps later than the last write

timestamp. If there are missing sharers, the line is cached by the last writer in the

owned state; otherwise, it is cached in the modified state.
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Update protocols. Update protocols, such as the Dragon protocol [71], provide an alterna-

tive to invalidate coherence protocols. A processor wishing to modify a shared line becomes

the owner of the line, updating the other sharers with the latest value rather than invalidat-

ing them. Only one minor change to the MOESI algorithm is needed to support updates: the

valid bit is always set during reconstruction, because cached data is always updated instead

of invalidated.

Imprecise directory representation. As the number of processors in the system increases,

the overhead of maintaining a full bit vector in the directory to represent each sharer becomes

exorbitant. Therefore, many multiprocessor systems use a compressed representation of the

sharers that records a superset of the actual sharers; these imprecise directory representa-

tions increase the invalidation traffic in exchange for reduced directory size. In terms of MTR

reconstruction, only the directory representation is changed; the cache state is unaffected.

An example of a system using imprecise directory representation is the SGI Origin [60].

The Origin dynamically switches between the full bit vector and coarse bit vector, depending

on where the sharers are located. If all the sharers of a line are in the same physical “octant,”

the sharers are identified with a full bit vector and an octant number. Otherwise, a coarse

bit vector is used, in which every bit of the vector represents a group of processors, and the

bit is set if any processor in the group is a sharer. To determine the type of directory entry

to reconstruct, we examine all the processors that have a timestamp greater than or equal

to the last write timestamp. If these processors span more than one octant, the directory

has already switched over to the coarse vector mode; otherwise, the directory uses a full bit

vector.

3.3 Evaluation

To evaluate the MTR, we employ a flexible and detailed cache-coherent distributed shared

memory system model that includes primary caches, main memory with variable latency,

and interconnection networks [130]. We drive the memory system with Bochs, a popular x86

full-system SMP-capable emulator [62]. The full-system nature of Bochs (i.e., it boots 4-way

SMP Linux 2.4.24) allows us to test the MTR with realistic workloads that require operating

system support. Furthermore, the execution-driven nature of the simulator allows our de-

tailed memory system to affect the interleaving of threads, something difficult to achieve in

trace-driven simulation.

Several changes are required to the default Bochs distribution. First, a buffer is added to

each CPU to track in-progress memory requests. While a request has not yet been fulfilled

by the memory system, the CPU’s clock_tick() function performs no action. Certain x86 in-

structions which read and modify a value are inherently atomic (e.g., xchg) or may include a

prefix to force atomic behavior. We patched the simulator to inform the memory system when

such an instruction is underway; in these cases, we perform both the read and the write in
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Figure 3-13. Evaluation infrastructure. The detailed memory model stalls a pro-
cessor’s execution based on timing models.

the functional simulator, but issue only the write to our detailed memory system to preserve

atomicity. To keep all non-determinism under user control, all simulations begin at a fixed

simulated time in the target and Bochs is instructed to disable attempts at resynchronizing

the target’s realtime clock. Other changes are made to allow batch simulation: updates to the

simulated console are logged to a file so we can see output from the simulated application and

confirm that it ran successfully. Bochs provides for guest-to-host communication via writes

to a special I/O port, and we use this facility to start and stop the simulation.

The overall simulator structure is shown in Figure 3-13. The main loop of the simulator

moves round-robin between the CPU models and the devices, incrementing a cycle count at

the end of each loop. Those devices which need attention assert an interrupt line and are

handled by the operating system on the simulated machine. When fast-forwarding to create

an MTR snapshot, the Bochs CPUs access a shared “magic memory” for instant resolution of

loads and stores. During detailed simulation, the memory backend performs detailed timing

simulation such as cache miss/refill and network routing operations.

We use a simple timing model for this evaluation to allow a greater number of experi-

ments to be completed. We believe the conclusions regarding the MTR’s versatility are rel-

atively unaffected by the exact timings chosen, although conclusions about the performance

of a particular realistic configuration would obviously require a more detailed system model.

We use an in-order processor model that assumes each non-memory instruction takes one

cycle to decode and execute. We combine this with a cache of L2-like size and organization,

51



Number of Processors 4
Cache hit latency 1
Cache organization 4-way, 256 KB
DRAM access latency 20
Cache miss buffer length 16
Network latency 1-cycle to neighbor
Network Topology 2D-mesh

Table 3.1. Simulation Parameters.

but L1-like timing, to approximate the IPC of a modern out-of-order superscalar processor. A

low DRAM latency is chosen to shorten simulation time while still causing significant timing-

dependent instruction interleaving. Instructions that access the memory system are subject

to the latencies of the model (shown in Table 3.1).

The multithreaded workloads used to evaluate MTR include Fortran/OpenMP NAS Par-

allel Benchmarks [52], server-style benchmarks which spend more time in the OS, and one

dynamically scheduled AI benchmark written in Cilk [63]. The NAS Parallel Benchmarks

(NPB) are representative kernels from the area of computational fluid dynamics. Under-

standing their computation requires very specific mathematical knowledge, so we treat the

applications opaquely: as a self-verifying set of programs that contains data-level parallelism

in do-all loops and exhibits various useful communications patterns. Refer to Table 3.2 for a

description of the benchmarks.3

For simulation automation, benchmarks were invoked in a runlevel without superfluous

processes/daemons to ensure that non-essential processes do not interfere with the bench-

mark. Each benchmark’s inputs were chosen to allow detailed runs to complete within twelve

hours on a 2.2 GHz Pentium 4.

3.3.1 Effect of inherent MTR inaccuracies

When sampling with the MTR, there are several conditions that can make it difficult to

estimate a metric that will be seen in full detailed simulation. Sampling itself provides only

an estimate of performance because not all instructions are simulated in detailed. Additional

error can develop due to lack of information in the MTR forcing the reconstruction algorithms

to use a heuristic to guess the status of a line. Another cause of error is a change in memory

access interleaving brought about by extended periods of functional simulation. This access

order, caused by instant resolution of loads and stores by the functional simulator, is not

representative of a target with latency, and it can allow a benchmark to experience thread

interleavings unlikely to occur in a hardware implementation. This is similar to the concept

of space variability [5].

3The IS (integer sort) component of NPB is not always included due to difficulty verifying its output
when using custom input parameters. When we revert to the “class W” input, IS runs correctly and
appears with the results in Section 3.3.1.
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Benchmark Description

BT NPB: block-tridiagonal CFD application, class S
CG NPB: conjugate gradient kernel, class S
EP NPB: embarrassingly parallel kernel, class W
FT NPB: 3X 1D Fast Fourier Transform, class S (-O0)
LU NPB: lower-upper decomposition with SSOR CFD application, class S
MG NPB: multigrid kernel, class W
SP NPB: scalar pentagonal CFD application, class S
dbench executes Samba-like file-oriented system calls

3 clients, 10000 requests (gcc 2.96)
apache Apache web server benchmark “ab”

worker threading model, 2000 requests, 3 at a time (gcc 2.96)
ck Cilk checkers (parallel alpha-beta search)

4 processors, black plies 6, white plies 5 (Cilk 5.3.2,gcc 2.96)

Table 3.2. Benchmark Description. All benchmarks are compiled with the Intel
Fortran Compiler version 8 using the options “-g -O2 -openmp” unless noted.

Table 3.3 shows the effect of space variability without the error introduced by MTR ambi-

guities. Two detailed simulations, non-blocking and blocking, are run without the MTR. For

the blocking simulation, we changed the scheduling algorithm of our SMP simulator: instead

of allowing un-blocked processors to continue while a different processor waits for memory,

we instituted a blocking schedule in which one processor’s memory request is satisfied be-

fore another processor is allowed to continue. This strategy produces incorrect performance

numbers, but causes the order of memory accesses to match that of functional simulation,

which also satisfies a processor’s request for memory immediately and before another pro-

cessor issues a request. While we use the same suite of benchmarks described earlier, the

results in this section are run on an eight-CPU target with a four-way, 16 KB cache per pro-

cessor. There are three cycles of network latency between processors and a miss penalty of

approximately 112 cycles. The resulting cache miss rates are shown in the center columns.

The third column is the difference relative to the non-blocking schedule. Five of the eleven

benchmarks have a magnitude of difference greater than 10%. The table confirms that space

variability is a challenge, even without the inclusion of the MTR’s inherent errors.

To we examine the MTR error independent from the space variability error, we use the

MTR and the blocking schedule described above during detailed simulation. Table 3.4 shows

the error in the MTR’s miss rate prediction when compared to two baselines. The first base-

line shows each benchmark in its entirety using our default detailed simulator, allowing

non-blocked processors to continue while other processors wait for memory. Because the bulk

of a sampled simulation is spent with an ideal memory model, applications that exhibit space

variability are difficult to estimate with the MTR as we see in the column labeled “MTR Miss

rate prediction difference (%) vs. non-blocking detailed sim.”.

Next, we conduct a blocking detailed simulation in which we force all processors to block

when any processor is waiting for memory. This causes the processors to order memory re-
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Miss rate
Benchmark Non-Blocking Blocking Relative Difference (%)

ap 0.0907 0.0910 0.26
bt 0.0152 0.0166 9.22
cg 0.0510 0.0540 5.97
ck 0.0118 0.0100 -15.63
db 0.0468 0.0435 -7.01
ep 0.0158 0.0160 1.37
ft 0.0607 0.0644 6.05
is 0.0253 0.0337 33.30
lu 0.0067 0.0314 370.77
mg 0.0122 0.0300 146.02
sp 0.0308 0.0137 -55.50

Table 3.3. Difference in miss rate caused by memory access ordering can be sub-
stantial.

MTR miss rate prediction difference (%)
Benchmark MTR miss rate estimate vs. non-blocking detailed sim. vs. blocking detailed sim.

ap 0.0834 -8.1130 -8.3492
bt 0.0161 6.2156 -2.7519
cg 0.0538 5.5250 -0.4226
ck 0.0095 -19.5555 -4.6573
db 0.0410 -12.4149 -5.8153
ep 0.0159 0.6949 -0.6642
ft 0.0610 0.5438 -5.1932
is 0.0327 29.2144 -3.0624
lu 0.0293 339.5416 -6.6335
mg 0.0263 115.7782 -12.2907
sp 0.0115 -62.5971 -15.9399

Table 3.4. The MTR is affected by multiple error sources. Even when space vari-
ability is removed, sampling and MTR-induced ambiguities introduce error.
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benchmark time (sec) difference (sec) slowdown (%)
default (M) resolve (D)

ap 1754 1759 5 0.28
bt 666 657 -10 -1.44
cg 1423 1402 -21 -1.46
ck 14035 14098 63 0.45
db 4293 4262 -31 -0.73
ep 2316 2017 -299 -12.90
ft 1016 996 -20 -1.93
is 479 491 12 2.53
lu 330 321 -9 -2.62
mg 1113 1111 -3 -0.24
sp 302 300 -3 -0.83

Table 3.5. Slowdown incurred by ambiguity resolution.

quests in the same way as a functional simulator. The rightmost column of the table compares

the MTR miss rate prediction to that of the blocking simulator. The MTR’s error compared to

the blocking simulator is generally lower (FT is an exception) because the memory ordering

of the blocking detailed simulation matches that of the MTR-based simulation. The remain-

ing difference between the blocking simulation and the MTR is mostly due to sampling and

ambiguities during MTR reconstruction.

3.3.2 Slowdown due to ambiguity resolution

The IsEvictedBetween procedure provides information that is useful during reconstruc-

tion. We now evaluate the time needed to perform the procedure. Using a sample size of

128 K instructions and a sampling ratio of 1:100, we run each benchmark to completion. To

reduce the effect of other processes, we request exclusive use of batch servers, each with

identical configurations. We measure the runtime using the sum of user and system seconds

reported by the C library’s getrusage() function. Each benchmark is run three times, and

we show the average of the three.

Table 3.5 shows that the cost of ambiguity resolution is less than 3%. Often, the default

policy actually requires more time. It is difficult to determine whether this is the result of

noise on the host causing timing variation, or whether the alternate orderings induced by the

M policy cause the slowdown.

3.3.3 Online sampling performance

In this section we examine the accuracy and speed of online sampling with the MTR. To

perform online sampling, the detailed simulator’s cache and directory are reconstructed from

the MTR at every transition from functional to detailed simulation. When transitioning back

to functional simulation, the processors halt execution until all of the outstanding memory

requests are serviced. To reduce the chance of coinciding with a periodic behavior in the
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1. Generate a pseudorandom integer, 0< k ≤2r

2. Enable fast simulation; disable statistics

3. Run ki instructions

4. Enable detailed timing simulation

5. Run w instructions to warm up network queues and memory system buffers

6. Enable statistics

7. Run i instructions

8. Repeat

Figure 3-14. Online sampling methodology. Parameters: warm-up duration (w),
sample size (i), and sampling ratio (r).

benchmark, we randomly sample the detailed portions rather than rely on periodic sampling

across the duration of the benchmark. We choose a warm-up duration (w), sample size (i),

and a sampling ratio (r), and simulation proceeds according to the steps in Figure 3-14.4

To provide a baseline, we added a fast functional warming (FFW) mode to our simula-

tor, which is a straightforward SMP extension of earlier uniprocessor functional warming

work [127]. FFW fast-forwards the simulation by updating the cache and directory state in

each simulated cycle, but these FFW updates are significantly more expensive than MTR

updates. For each memory request during fast-forwarding, FFW must first calculate a set

index, then search all ways of the local cache to perform a tag check. If the request results

in a hit, FFW must update the local LRU information; otherwise, multiple non-local caches

and the directory must be updated to reflect all of the downgrades or invalidations caused by

the cache refill. Whereas each MTR update runs in constant time, FFW updates scale with

the number of caches and associativity, and can vary due to miss rates and sharing patterns.

FFW is also more difficult to parallelize than MTR, requiring some form of mutual exclusion

to implement parallel cache and directory state updates correctly. On the other hand, FFW

does not require any form of reconstruction during the transition between fast to detailed

mode, because the directory and cache state is kept up-to-date during fast-forwarding.

Fast-forwarded simulation yields vastly different thread interleavings than detailed sim-

ulation, since processors do not stall on memory instructions during fast-forwarding. It is

well known that even small changes in SMP system timing often introduce large variations

in simulation results [5]. It is therefore meaningless to compare a single run of detailed

simulation and a single run of fast-forwarded simulation, because the different results may

4Another potential method for choosing sampling ratios would be to randomly skip 9i–11i (for a
1:10 average ratio) and 92i–108i (for 1:100). These narrower choices increase error for all but LU and
SP, the two benchmarks with the fewest samples.
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simply reflect the variation introduced by different, but still representative, thread interleav-

ings rather than differences in simulation accuracy. We present the fast-forwarding results

in the context of timing variations induced by altering system parameters.

We introduce two sources of variability in our system. First, we enable Bochs’s slow-

down timer component, which keeps the emulator in sync with real time on the host, and

causes emulated devices to be handled at nondeterministic rates, varying the OS scheduling

of threads. Second, we model changing processor workloads by choosing a different processor

to run 25% slower than its peers every 10,000 instructions. Repeated simulation runs with

these timing variations capture various representative thread interleavings and coherence

race conditions. We use 100,000-instruction measurement samples, which should be long

enough to span the duration of practical coherence races on our target, so samples (of which

we take hundreds per run) should observe races in proportion to their occurrence in full runs.

Accuracy comparison. We compares the cache miss rate and coherence message count

(under the MSI coherence protocol) reported by detailed simulation, FFW, and MTR. Fig-

ure 3-15 shows these metrics for only one cache, but the results are similar for the other

caches. We use FFW(a:b) and MTR(a:b) to denote the results of FFW and MTR where a:b is

the ratio of instructions executed in the detailed period to those executed in the fast period.

There are seven bars for each reported metric, each representing a simulation configura-

tion: fully detailed run, FFW(1:10), FFW(1:100), FFW(1:1000), MTR(1:10), MTR(1:100), and

MTR(1:1000).

We also remind the reader that the detailed runs can only capture some of the legal

thread interleavings, which may differ significantly from those captured by their correspond-

ing fast-forwarding runs. This means it is meaningless to state an error compared to detailed

simulation because there are many potential detailed simulations; rather, we would like to

see the confidence intervals of a sampled run fall within those of a detailed run. In this case,

there are two types of samples: 1) detailed samples within a benchmark and 2) each complete

benchmark run using different timing variation. It is prohibitive to perform enough runs of a

single benchmark to establish tight confidence intervals, so we report each result as median

of eight separate runs (denoted by the solid bars), and the range of values observed (the thin,

I-shaped lines). We do not observe, and there is no reason to expect, a normal distribution of

miss rates or message counts across runs.

In an attempt to quantify error incurred by our techniques, we note the largest excursion

from the detailed run’s median, normalized to the detailed median. Most accelerated bench-

marks, with a detailed to fast ratio of 1:10, have an error in miss rate of less than 15%. LU,

SP, and Apache exceed this error. For LU and SP, our shortest benchmarks, the problem is

likely due to an inadequate number of detailed samples. Both MTR and FFW exhibit sim-

ilar deviations from the detailed simulations — an effect most prominent in Apache. The

technique we use to introduce variability by selectively adding processor stalls has a much

larger relative impact on the fast-forwarding schemes than on the fully detailed run, where
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Benchmark Instructions Mem Refs Ambiguous Touched blocks /
(Millions) (Millions) Addresses mem refs (%)

BT 780 400 95632 0.23
CG 792 390 111818 0.42
EP 4306 2076 93786 1.40
FT 5264 2964 106356 0.44
LU 368 172 105995 0.24
MG 2621 1549 292698 1.78
SP 361 164 101855 0.23
dbench 2692 867 180328 1.07
apache 2782 947 143332 0.27
ck 2617 396 102389 0.12

Table 3.6. Benchmark characteristics: Instructions and Memory Reference
columns reflect full detailed runs of the benchmark. Ambiguity and touched block
stats are for 1:100 MTR runs with 100,000-instruction samples.

processor CPI is already much higher due to memory system stalls. We believe this explains

the bias and generally greater variance observed with the fast-forwarding schemes versus

the detailed model.

Increasing the ratio to 1:1000 leads to an unacceptable fast forwarding error in most

cases. We achieve a good balance of error and speed when we set the detailed to fast ratio

to 1:100. At this rate, six of the ten benchmarks have error within 25%, with the best per-

formers being EP, MG, and CG with error below 12%. These benchmarks have relatively

fewer invalidation and downgrade requests, indicating simpler sharing behaviors that are

less likely to be perturbed by the effects of fast-forwarding.

Despite using different fast-forwarding strategies, both FFW and MTR report similar re-

sults for all metrics. The slight discrepancies can usually be attributed to the MTR’s assump-

tion that all ambiguous blocks should be marked “modified.” Table 3.6 lists the number of

ambiguously reconstructed addresses. The number of ambiguities does not always correlate

directly with the accuracy of MTR fast-forwarding. First, although the number of ambigu-

ities may be high, the resulting error may be small if we always pick the correct way to

reconstruct. Second, the ambiguously reconstructed blocks may not be needed again, which

is likely in applications with low temporal locality. Third, the error caused by incorrect re-

construction may be negligible compared to the simulation’s variability, so it does not affect

the overall accuracy of the fast-forwarding simulation. To reduce error further, we can adopt

the more sophisticated approach of establishing eviction times to help resolve ambiguities at

the cost of slower reconstruction as described below.

Case study. The ultimate goal of sampling is to allow designers to make quick and reliable

architectural. This section presents a simple example to show that results obtained by online

sampling during multiprocessor simulations can provide as much insight as those from de-
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Figure 3-15. Accuracy comparison of FFW and MTR to detailed simulation. Each
bar represents the median of eight individual runs of the benchmark. Max and min
are noted with thin lines. No ambiguity resolution is performed.
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Figure 3-15 (continued)
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Figure 3-16. Comparison of MSI and MESI protocols. The bottom figure shows the
reduction in writeback messages caused by resolving M/S ambiguities as described
in Section 3.1.5.
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Figure 3-17. Normalized running time of FFW and MTR and the relative speedup
of MTR over FFW. Each group of three bars represents the run time with detailed-
to-fast ratios of 1:10, 1:100, and 1:1000. Each bar separately shows time spent in the
three phases of simulation including transitions.

tailed runs. We have run the EP benchmark under both the MESI and the MSI protocols, and

the collected coherence message metrics are shown in Figure 3-16. As expected (unless many

read-modify-writes are present), shared requests under MESI and MSI are similar. However,

the shared replies are quite different, since part of the shared reply messages in MSI become

exclusive reply messages in the MESI protocol. The reduction in shared replies with MESI is

prominent in both sampled and complete detailed simulation data, thus allowing one to draw

the same conclusion about the effects of MESI versus MSI with much shorter simulations.

Despite indicating a much larger absolute number of writeback replies than detailed or

FFW runs, MTR runs present similar writeback replies under both protocols, which allows

one to draw the correct conclusion about the effect of MESI on writeback replies. This MTR

discrepancy in writeback replies is due to our assumption that certain ambiguous blocks

should be marked M (modified) rather than S (shared). When we enhance MTR recon-

struction to resolve this category of ambiguities, MTR results approach their detailed and

FFW counterparts, because fewer spurious writeback messages get generated by incorrectly

marked M blocks (bottom graph of Figure 3-16).

Speedup. In online sampling, snapshot generation time is a major component of overall

runtime. Figure 3-17 compares the running times of our two online sampling schemes. Each

group of three bars represents the benchmark’s execution time normalized to the slowest

run for that benchmark. The three bars represent detailed-to-fast ratios of 1:10, 1:100, and

1:1000 respectively. When only 1% or fewer instructions are run in detailed mode, over 95%

of the simulation time is spent in fast mode. The small fast-to-detailed transition times

confirm that the reconstruction time of the MTR scheme does not outweigh the speedup it

can provide during fast mode. This is largely due to the fact that while our programs can

make billions of memory references, the MTR compresses repeated references to the same

block. Table 3.6 shows the total number of memory references during all of execution and

the ratio of “touched blocks” to total references. The number of touched blocks which must be
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C = (Tf ast,FFW +Tslow,FFW )− (Tf ast,MTR +Tslow,MTR )

Tslow,MTR
+1

Figure 3-18. Determining number of configurations possible in previously allotted
time. In this equation, C represents number of configurations, Tspeed,scheme is an
absolute time, and Tslow includes all reconstruction time.

considered during reconstruction is a small fraction of the total requests — usually less than

half a percent.

MTR edges out FFW by up to 1.45× speedup on average, as shown in Figure 3-17. While

MTR is always faster than FFW, the relative improvement due to sampling ratio is effected

by variation, number of touched blocks, and particular sharing scenarios. Although MTR

achieves a respectable speedup in the serial execution of a single configuration, what is more

exciting is the additional speedup from multi-configuration simulation and parallelization.

Using the equation in Figure 3-18 and assuming 1% detailed execution time, we estimate that

MTR could simulate five different configurations simultaneously and still have comparable

running time to FFW running one configuration. The numerator represents the amount

of time saved by using MTR instead of FFW. This time can be spent reconstructing and

executing additional detailed simulations — each requiring Tslow,MTR .

For completeness, we note that the MTR is 7.7 times faster than our detailed model when

using the relatively accurate 1:100 sampling ratio. FFW is 5.5 times faster at this ratio. Of

course, much higher speedups will be achieved when using a more complex detailed model,

for example, with a detailed DRAM model in place of our fixed-latency memory, or an out-of-

order superscalar processor model instead of our in-order single-issue processor model.

3.3.4 Checkpointing with MTR

Checkpointing removes the overhead of repeatedly creating MTRs with functional simulation

when evaluating multiple microarchitectural configurations. However, it is more difficult to

implement and requires large files on disk to hold the memory contents at each checkpoint.

MTR snapshots can be added to architectural checkpoints to reduce the amount of detailed

warming required. Because the MTR is microarchitecture-independent, many different con-

figurations can be initialized from the single snapshot.

The MTR representation is highly compressible. A significant savings is achieved in the

spatial dimension using the multilevel valid-bit scheme, discussed in Section 3.1.4. This

eliminates the need to store addresses along with data: the address can be reconstructed

based on offset within the snapshot and the empty page bit vector. In the temporal dimension,

delta encoding may be used instead of full timestamps — although we show that this offers

relatively minor benefit for short warming periods.
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Scheme ID
Number of blocks
Page size
Block size
Number of CPUs (N)

Table 3.7. Header of compressed MTR.

To examine the extent to which the MTR can be compressed, we implemented several

compression schemes. Each scheme uses a common header that contains the fields shown in

Table 3.7. The Scheme ID indicates which format is in use and allows proper interpretation

of the structure. The number of blocks can be divided by the page size to discover the number

of pages; several schemes require this number to parse the next block of the snapshot. Block

size is used to infer the address represented by each MTR entry, and the number of CPUs is

needed to determine the entry’s size.

The schemes are enumerated below:

1. All. Each block of the MTR is written to disk using the variable-length representation

shown in Table 3.8. We assume 1 byte to store the CPU identifier (supporting up to

256 CPUs) and 4 bytes for a logical timestamp (supporting up to 232 memory accesses

in a warming period). Output is written at a byte-granularity as it is more easily

compressed by general purpose compressors such as gzip and bzip2.

2. Accessed. The output begins with a vector denoting which pages of the MTR contain

blocks that have been accessed. Only those pages indicated by the vector are written

using the format of the All scheme.

3. Accessed unshared. Even in programs that share memory among several processors,

many memory blocks are accessed by just a single processor. This scheme employs the

alternate encoding shown in Table 3.9 to reduce the space occupied by these common

single-access cases.

4. Accessed horizontal. We begin with the vector of accessed pages described above.

When outputting MTR records, write time is emitted explicitly, but read times are re-

ported as deltas from the write time. The hope is that the read timestamp arrays

become similar arrays of small numbers which would be easier to encode than mono-

tonically growing timestamps.

5. Accessed vertical. We begin with the accessed page vector. The first valid record on

each page is denoted the base. Additional write times on the same page are reported

using a delta from the base write time. Additional reads are reported as deltas from

the N base read times. This scheme should work well in the presence of locality at the

page granularity.
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Valid Remainder Record Size (Bytes)

Valid entries 1 <writer, last write time, read time array > 1+(1+4+4N)
Invalid entries 0 <> 1

Table 3.8. Variable length MTR records: default encoding.

Code Contents Record Size (bytes)

Invalid entries 0 <> 1
Single writer 1 <writer, last write time> 6
Single reader 2 < reader, last read time> 6
Default 3 <writer, last write time, read time array> 6+4N

Table 3.9. Variable length MTR records: Accessed unshared encoding.

6. Accessed vertical2. Same as Accessed vertical. However, after each block is emitted,

its times become the new base time so that each block’s times are output relative to the

previous block on the page. This should work well for unit-stride accesses.

7. Accessed both. This scheme combines the horizontal (temporal) and vertical (spatial)

approaches. We record a base write time for the first valid block on a page. Read times

for the first block are reported relative to the base write time. Write times for following

blocks are also reported relative to the base write time. Read times for following blocks

are reported as the difference between the actual read time and difference between the

record’s write time and the base write time:

delta time = mtr[record].readtime[cpu] - base write time - mtr[record].writetime.

We use two baselines, similar to the analysis in Section 4.4.1. The first is a trace of all

memory accesses. Like the MTR, such a representation allows reconstruction of any cache or

directory state, but unlike the MTR, the trace is likely to contain many references that are

not actually necessary to warm-up state. Each reference is represented with the fields shown

in Table 3.10. Second, we consider a direct serialization of the contents of each CPU’s cache.

Storing concrete cache state allows quick reconstruction, but only for the microarchitecture

that has been stored. We assume a 4-way, 16 KB cache per CPU.

The cache state is serialized to a snapshot using a method similar to the MTR All scheme

as shown in Table 3.11. The encoded cache blocks are preceded by a header which provides

the number of blocks, block size, and the number of bytes per way. A footer provides the LRU

metadata for each set. Each of the three representations (MTR, Memory Trace, and Concrete

Cache) is compressed with gzip and bzip2. The per-cpu cache snapshots are combined with

State Size (Bytes)

Load/Store 1
CPU 1
Address 4

Table 3.10. Format of memory reference trace.

65



Valid Remainder Record Size (Bytes)

Valid entries 1 < tag, dirty > 6
Invalid entries 0 <> 1

Table 3.11. Variable length encoding of cache blocks.

tar before compression so that the general-purpose compressor is able to take advantage of

similarities between individual snapshots.

Each benchmark is run until it has completed one unit of work, advancing to each sample

in an online mode. State snapshots are taken at the end of each warming period. The MTR is

cleared, and the process repeats. Thus, the nth snapshot, snapn contains information about

the memory accesses that have occurred between samples n−1 and n. Reconstructing the

state at sample n requires snap1 through snapn inclusive.

Figures 3-19 and 3-20 show compression ratio normalized to the size required to store a

snapshot of eight 16 KB caches (compressed file size / compresses cache snapshot size). The

bars are annotated with compression ratio when it is off the scale. The figures show that the

compressed MTR always requires less storage than the memory trace. In several cases, the

memory trace does surprisingly well when compared to the MTR and would likely improve

if specialized compression were applied. However, if larger samples are desired, the self-

compressing nature of the MTR is an advantage. Furthermore, while a trace is versatile, it

requires time to simulate each of the memory accesses to warm a cache. MTR reconstruction,

however, scales with the number of entries in the MTR.

With gzip compression, the MTR requires 6.6–7.1 times more storage than eight 16 KB

caches (depending on the length of the fast-forward period), but is more flexible than the

small concrete cache snapshot. With bzip2 compression, the MTR improves, requiring 6.3–

6.9 times the space of a concrete snapshot. Memory traces require 55–65 times more space

than the cache snapshot, or 25–31 times the space when bzip2 is used. Interestingly, bzip2 is

able to make the MTR’s All format compress to almost the same size as its Accessed format.

The simple Accessed unshared scheme proves almost as good as the techniques which

use time deltas. This is likely due to the fact that, during relatively short warm-up periods,

regular time strides are not nearly as common as singly-accessed blocks. Though the use of

deltas reduces the number of bits that are needed to represent a timestamp, deltas do not

skew the distribution enough to aid the entropy coding of gzip and bzip2. For example a

bunch of large numbers such as “36114” can be encoded with just as few bits as an equally

likely bunch of small numbers like “14.”

The amount of storage can be dramatically reduced — by a factor of 720 — by storing

only memory access information for those blocks that will be accessed during an ensuing

detailed sample point [125]. This requires that the simulation progress through the instruc-

tions belonging to the detailed sample, record the required memory addresses, and include

only information about these addresses in the preceding snapshot. Such a method excludes
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references generated by incorrect speculation. In practice, few such accesses are observed, so

the impact on performance estimation is small. This method of excluding portions of mem-

ory was proposed to reduce the amount of memory values needed in a memory snapshot, but

could similarly be applied to exclude the corresponding unneeded memory metadata from an

MTR snapshot.

3.4 Interfacing with the MTR

To cleanly integrate an existing multiprocessor cache simulator with the MTR requires the

following methods:

get_blocksize()

get_cachesize()

get_ways()

store(int cpu_id, addr_t addr, eviction_t & evictions);

load(int cpu_id, addr_t addr, eviction_t & evictions);

invalidate(int cpu_id, addr_t addr, eviction_t & evictions);

The goal of the interface is to expose as few details about a given cache simulator to

the MTR as possible. Rather than a block-by-block reconstruction, the interface supports an

indirect means of reconstructing the state of the detailed simulator’s cache. This decoupling

allows the MTR and cache simulator to be modified and improved without affecting each

other. In addition, reconstruction automatically respects the replacement policy of the cache

without changes to the reconstruction algorithms.

eviction_t is a structure that contains the identity of the evicting CPU and the ad-

dress of an evicted cache block. The load() and store() methods are used to restore

caches from the CSR. The methods have ordinary cache semantics: e.g., store(n, addr,

evictions); informs the cache that the nth CPU is performing a write to address addr

(the data can also be sent if required by the simulator). In addition to performing the load

or store and the appropriate actions of the cache (tag checks, replacement, writeback, etc.),

the load() and store()methods fill in the eviction reference argument with the block

(if any) that is evicted as a result of the call. This eviction argument informs the MTR of

evicted lines. The MTR uses this information when reconstructing the directory to prevent

lines that have been dropped from the cache from erroneously being labeled as shared.

The directory interface must include the functionsset_sharers(int addr, vector

<int> sharers) and set_state(int addr, state_t state), which are called by

the MTR to reconstruct the directory. set_state sets the state of the memory block at ad-

dress addr to state (e.g., Modified). set_sharers sets the sharing vector of a block, or

specifies its sole owner if sharers has just one element.

Special steps are taken to support alternating between slow and fast mode, merging

newly reconstructed cache state with the state already present. When the CSR contains ways
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Figure 3-19. The MTR is easily compressed (gzip).
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Figure 3-20. The MTR is easily compressed (bzip2).
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elements of a set, there is a possibility that some number of memory references has occurred

above and beyond ways. Were we to merely reconstruct the ways blocks that we know about,

a dirty block already present in the cache could cause a load()ed line to appear dirty when

the CSR knows that it is clean. In this case, we generate a list of load()/invalidate()

pairs to identical addresses to insure writebacks of old data occur when necessary. The

load() may evict the previous occupant of the way, which is written back if necessary, and

the invalidate() clears the block so it may be brought in by a load() or store() call.

When less than ways elements are present, ordinary loads and stores are issued, letting the

cache’s replacement policy dictate placement and retaining dirty lines, if present.

When reconstructing lines that should be marked dirty, we call the store() method in

timestamp order, oldest to newest. Every store() is followed by an invalidate() to all

other caches. Clean lines are brought into the cache using calls to load() in timestamp

order. Lines that FixupCaches has marked as invalid generate a series of invalidate()

calls to the detailed cache.

By “replaying” the relevant accesses, the reconstruction process defers to the cache for all

replacement decisions rather than exposing such policies to the reconstruction algorithm or

requiring fine-grained read/write access to the cache model. For example, the CSR could store

more than w ways and invoke a longer stream of loads and stores. By including additional

memory references, one could prime a pseudo-LRU tree [103].

While reconstruction via replay is similar to the FFW approach, the MTR has a few ad-

vantages. We can store FFW-gathered state in a checkpoint, but we can only reconstruct

caches that reflect a predetermined structure and predetermined replacement and coherence

policies. MTR allows other replacement policies and a better estimate of coarse grained direc-

tory protocols because microarchitectural state is rebuilt using relative time stamps rather

than with cache metadata. When used for online sampling, the MTR only runs functional

cache/directory simulator on a small subset of requests while FFW runs it on every memory

access.

3.5 Related Work

The concept of microarchitecture-independence is reflected in stack algorithms which allow

single-pass simulation of multiple cache associativities [70]. Each set, 1..k is represented by

a list called an LRU Stack. Addresses are added to the head of the list. When an address is

accessed a second time, its depth, n, in the stack (or position in the list) indicates that the

access is a hit in all caches with size ≤ n. The address is removed and placed on the top of the

stack; entries above the vacancy are pushed down to fill it. While this update procedure is not

directly supported by a canonical stack, the elements make up an “LRU Stack” with the most

recently accessed element at the top. The term “stack simulation” refers to the collection

of elements, rather than the operations supported by the structure. The inclusion property
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is initially demonstrated for fully associative caches of varying size (k = 1), then extended

to set-associative caches. While various associativities are supported in a single pass, each

cache must possess an equal number of sets due to an assumption of identical set mapping

functions.

To simulate M different associativities (m1 ≤ mi ≤ mM) at the same time requires M logi-

cal collections of stacks, each collection containing a stack for each set in the mi-way associa-

tive cache (though tag storage may be shared among the collections) [46]. To further extend

the stack algorithm, a set-refinement property was described that supported arbitrary refin-

ing set-mapping functions rather than merely a mapping based on least-significant-bits [46].

This allows single-pass simulation of direct-mapped and a larger range of set-associative

caches. The extended algorithms, referred to as “forest simulation,” support direct-mapped

caches, while a generalized version, “all-associativity simulation,” models the spectrum from

direct-mapped to fully associative. It is embodied in a tool called Tycho. All-associativity sim-

ulation has a longer theoretical runtime than stack algorithms, but runs at similar speeds in

practice. Later, a binomial tree algorithm reduced theoretical runtime from exponential to

linear and was found to run faster on practical traces [110]. The binomial tree algorithm is

used in a tool named Cheetah.

Stack analysis has been extended by Thompson to calculate the number of writes avoided

by write-back caches in addition to standard miss rate metrics [114]. Whether a block has

been written back depends on the size of the cache that contains/contained it. However,

Thompson proved an inclusion property for dirtiness: if “a block is dirty in a cache of size C,

then it is dirty in ... all larger caches.” A dirty level is stored for each block that indicates the

smallest cache size for which the block is dirty. When a block to be written is dirty at some

level, a write is avoided in all caches greater than or equal to that level. When the dirty level

is less than the valid level, it implies that the block is dirty in some cache sizes, but invalid

(written back from) caches that are too small to contain it. When the dirty level is greater

than the valid level, the block is clean in the relatively small caches with sizes between the

dirty and valid level because the dirty block has been evicted and brought back in the clean

state. A cache that is larger than the dirty level does not need to evict the line and retains it

in the dirty state.

Thompson continued by extending stack analysis to support single-pass simulation of

multiple configurations for multiprocessors. In the sense that he uses a single data struc-

ture to manage cache coherence state in a microarchitecture-independent fashion, his work

has similar goals to ours, but it was proposed in a different context (online determination of

memory system metrics with no sampling), and it uses a difference approach (stack analysis

rather than timestamping and reconstruction). He observed that a block’s coherence state

in MOESI-based protocols (e.g., whether it is modified, owned, exclusive, shared, or invalid)

can be determined by combining three properties: validity, ownership, and exclusivity. Own-

ership is based on the dirtiness of a block: a cache that modifies a block is said to own that
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Figure 3-21. A figure from Efficient Analysis of Caching Systems showing how a
block’s state is determined based its levels and the size of its cache [114].

block. The dirty level used in the write-back analysis can be used to determine whether a

block is owned in a cache. Like our MTR, the multiprocessor stack-based scheme takes ad-

vantage of the coherence property that there can be at most one outstanding dirty copy of

any block.

Thompson proved that the valid and dirty inclusion properties hold in a collection of use-

ful multiprocessor settings. An additional property regarding sharing inclusion was proven

and used to determine whether a block is shared or exclusive. To take advantage of these

theorems, a dirty level, an owner, and a sharing level is maintained for each block along with

the valid level that is implicit in the stack representation of a set. A level indicates the small-

est cache for which a property holds. As new blocks are pushed onto the stack, the valid level

of existing blocks increases. The levels are updated on every memory access according to the

parameters of the cache coherence protocol. For a given cache size, the relationship between

the levels determines the state of a block. Figure 3-21 duplicates a figure from Thompson’s

thesis to illustrate the determination of block state given a cache size and block levels. The

figure shows five legal level configurations. The levels for each block are shown as points on

an abstract number line (e.g., V to the left of S indicates that the valid level of the block is less

than its sharing level). Above the line are listed the possible coherence states of the block.

Given a cache size, C, one makes the determination of a block’s coherence state by choosing

the line that represents the relationship of the block’s levels, placing C on the number line,

and consulting the coherence state at C. For example, if V < S < D (the first configuration in

the figure) and V ≤ C < S, the block is clean and held Exclusive in this cache.
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While multiprocessor stack simulation achieves many of the MTR’s goals, there are sev-

eral complications. It would be difficult to invoke in a parallel simulation as each cache must

analyze each memory access as it is issued. Since no record of the access persists after a

cache update, it would be difficult to reconstruct a directory system that allowed silent drops.

Silent drops can reduce coherence traffic by allowing entries in a sharing vector that are no

longer present in the cache. A multiprocessor stack analysis may be restricted to same-size

caches for certain coherence protocols. While rare today, the trend toward heterogeneous

processors could increase the significance of this restriction. The MTR does not have this

problem as it can be coalesced in many ways. In additional to these particular advantages,

the MTR has additional benefits in terms of size and snapshot generation speed.

The MTR is used as a self-compressing snapshot whereas the stack-based algorithms

are used for online performance analysis. Though they share the goal of microarchitecture-

independence, the usage differs. It would be possible to run a stack algorithm during func-

tional simulation and use the contents of its structures as a MINSnap, but this would require

fixing a maximum cache size and appears to require more storage than an MTR. We estimate

the size of each structure using the calculations shown in Table 3.12. A stack simulator for a

fully associative cache requires a tag for each element in the stack and a stack for each CPU

in the target. Set-associative caches with less than w ways are represented by a set of point-

ers to the stack representing the fully associative cache [46]. For every block in the largest

representable cache, maintaining coherence requires storing sharing level, dirty level, and

the identity of the CPU that contains the dirty block. The size of the MTR is described in

Section 3.1.1. Recall that the MTR contains an entry for every block referenced between de-

tailed samples while a stack simulator’s size is bounded by the largest cache it can represent.

With the number of blocks touched per sample likely to be less than the maximum supported

cache size, the size of the stack-based structures would be also be proportional to the number

of touched blocks (rather than cache size), and the MTR would have an uncompressed size

about 10% smaller than the size of multiple stacks. The MTR has a size advantage because

the state of a line need not be stored as it is not determined until reconstruction. Likewise,

no pointers are needed to support caches of varying associativity because the coalesce phase

can determine each set’s occupants during reconstruction. On the other hand, for targets

and benchmarks for which the MTR leads to many lines in an ambiguous state, it may be

worth sacrificing storage space and use the algorithms suggested by Thompson to eliminate

the ambiguities.

Delaying cache reconstruction provides the MTR with a fast snapshot creation phase as

it consists of simple, table updates with locality that corresponds to the target application.

With stack algorithms, each memory reference requires more complex stack analysis, though

this cost is amortized when snapshots are used.

Combining microarchitecture-independent structures with sampling of traces was sug-

gested by Conte [25] and has recently reappeared in the context of execution-driven sim-
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Storage required for stack-based one-pass analysis of multiprocessor caches

tags all-associativity state per block (dirty cache, total
pointers sharing level, dirty level)

4nc 4(w−1) c(4+4+1) 4nc+9c+4w−4
Storage required for MTR

read timestamps writer write timestamp total
4nt t 4t 4nt+5t

Table 3.12. Amount of state in stack-based and MTR snapshots. Assuming four byte
tags, pointers, level counters, and timestamps; one byte to indicate CPU (supports
up to 255 processors). c=cache size, n=number of CPUs, w=ways (associativity),
t=touched blocks.

ulation. The lengthy warming phase which precedes a detailed, execution-driven sample

point may be amortized across many experiments by operating from stored snapshots which

support various uniprocessor microarchitectures [125, 119]. Stack algorithms or structures

similar to the Cache Set Record are used to represent state of all caches below a maximum

size. Prior work suggests that a snapshot contain the state of every branch predictor config-

uration that might eventually be examined, but this can become prohibitive as we discuss in

Chapter 4. Instead, we propose using specialized branch trace compression.

Solutions to the cold-start problem discussed in Section 2.3.3 must be adapted when sam-

pling is used with single-pass algorithms [25]. A “fill-flush” technique flushes the cache prior

to each detailed sample. Then, fill references (those that are not already in the cache) are

used to update the cache simulator state, but they are omitted from the statistics calculation.

This method ignores some memory references rather than risk determining their impact in-

accurately. When the entire trace is available, references that do not occur during a detailed

sample can be used to avoid any state loss at the expense of increased time. Statistics in-

dependent of cache associativity (number of references and recurrences) are computed using

the entire trace, while misses that depend on size and associativity are accounted for during

the sample with a single-pass simulation algorithm. This “no state loss” approach results in

less error than fill-flush for smaller caches; it eliminates error altogether for larger caches.

Whole Execution Traces (WETs) are a compact, lossless representation of program be-

havior formed by annotating a program with addresses and data and dependency informa-

tion (control and data) gathered at runtime [131]. The WET is represented as a graph with

nodes for each basic block. Its edges contain control flow and dependency profiles for each

statement in the block. Timestamps are used to identify dynamic instances of each basic

block. In practice, the number of timestamps can be reduced by associating the same time to

a group of basic blocks along the same acyclic path. Though the WET format is useful due

to its compact size and its capability for bidirectional traversal, it does not account for pro-

grams run on a multiprocessor. Though one could extract memory access information from

the WET, warming a single cache in the same way we use branch traces to warm a branch

predictor, a WET does not attempt to represent microarchitectural structures.
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Traces of committed instructions are inherently microarchitecture independent and, when

used carefully, can sometimes replace the need for execution-driven simulation. The PHARM-

sim project desired to use deterministic traces so that one full-system multiprocessor simu-

lation could be compared to another [64]. Their traces consist of memory accesses annotated

with logical timestamps and dependency information to preserve the interleaving of memory

accesses from different processors. External interrupts are recorded in the trace along with

a logical timestamp. Time is measured using a count of committed instructions per CPU

so that the interrupt is aligned with work rather than with cycles. If a microarchitectural

change increases performance in spite of the delay injected to preserve memory dependencies,

we know the change is beneficial. If the change hurts performance, the result is inconclusive

unless the degradation is greater than the injected delay. The determinism delay metric is

useful for judging whether the collected trace reflects the target machine. When many cycles

have to be injected in order to preserve determinism, it may indicate that the stored trace is

not representative of the current model.

Sun Microsystems recently presented an alternative approach: the Rapid, Accurate Sim-

ulation Environment (RASE) [30]. RASE uses a carefully validated simulator of an exist-

ing M-way platform to produce traces which are then duplicated to drive an N-way (N > M)

chip-multithreaded simulation target. The simulation is fast because it is trace-driven rather

than execution-driven. It is accurate because the traces are rigorously validated using real

systems. RASE works well with applications, such as commercial database workloads, that

scale-up linearly when run with additional processors and have a single phase of execution.

Duplication involves shifting the non-shared address space to a non-overlapping region of

memory, while shared segments remain shared. Such artificial replication could lead to tim-

ing variability due to new thread interactions, but no such variability is observed in practice.

Random sampling need not be used when evaluating an application with a single phase of

execution, but tens of millions of instructions are required to overcome cold-start effects and

detect the result of architectural changes.

3.6 Summary

We have introduced the Memory Timestamp Record (MTR) and algorithms for its use. De-

spite its extensive description, the MTR is a simple concept which exploits fundamental prop-

erties of caches and cache coherence. Online sampling with the MTR enables faster execution

of multiprocessor simulations: up to 1.45× faster than a multiprocessor functional warming

model (FFW) and 7.7× faster than our detailed baseline. In addition, the MTR snapshot rep-

resentation is not tied to specific microarchitectural details. We have shown how it can be

used to reconstruct multiple cache configurations and coherence protocols. An MTR-enabled

simulator will allow computer architects to evaluate a wide range of complex multiprocessor

architectures with one snapshot per sample, rather than one snapshot per sample per target.
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Chapter 4

Branch Predictor-based

Compression

The previous chapter discussed how a single structure could represent the state of many

caches and directories in a multiprocessor. Here we address the issue of representing a sec-

ond type of structure which requires warming for accurate simulation: the branch predictor

tables used by modern pipelined processors to mitigate the effects of control hazards. The

main contribution of this chapter is a Branch Predictor-based Compression (BPC) scheme,

which exploits a software branch predictor in the compressor and decompressor to reduce

the size of the compressed branch trace snapshot. We show that when BPC is used, the

snapshot library can require less space than one which stores just a single concrete predictor

configuration, and it allows us to simulate any sort of branch predictor.1

A taken branch diverts a program from its current path, while a not-taken branch lets a

program “fall-through” to the next instruction. The decision to take a branch does not occur

until the branch has progressed several stages into a processor pipeline. In the meantime,

to keep the pipeline full and the computer working at peak efficiency, the computer must

continue to fetch instructions and begin their execution. If a branch deep in the pipeline is

resolved to be taken, those speculatively fetched instructions must be discarded and their

results nullified. An alternative is to stall execution until a branch is resolved. Both choices

result in an underutilization of machine resources; had the correct instructions been fetched,

no squashing or stalling would be necessary.

Accurate branch predictors reduce the number of cycles lost to wrong-path execution and

are a popular area of study. Out-of-order superscalar processors are continually evolving

their prediction strategies and simpler cores can now choose among many well-understood

branch predictor options. To speed the evaluation of new and existing branch predictor struc-

tures, we would like to use microarchitecture-independent snapshots.

1The material in this chapter is based on the joint work of Kenneth Barr and Krste Asanović. The
work originally appeared in the International Symposium on Performance Analysis of Systems and
Software held in March of 2006 [7].
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In a multiprocessor system, the issues of snapshot size and speed-of-use are multiplied

by the number of processors, N, being simulated. Thus, it is crucial to have a technique that

is as small and as fast as possible for flexible warming of a single branch predictor. Every

byte of storage saved for a uniprocessor snapshot is N bytes in a multiprocessor snapshot;

every minute of warming eliminated is N minutes that can be avoided in a multiprocessor

simulation.

We begin with a review of branch predictor organization. Section 4.2 then explains why

an MTR-like structure cannot be used to summarize the state of a predictor and why we

resort to what is effectively trace-based simulation. We describe the structure of our BPC

compressor in Section 4.3. In Section 4.4, we examine the performance of our technique

versus general-purpose compressors and snapshots in terms of storage and speed.

4.1 Branch predictor overview

Two pieces of information can be predicted on every branch: the target address and whether

or not the branch is taken. The earlier a correct prediction is made, the fewer cycles are lost

due to stalls or wrong-path computation.

Typically the target address is looked up early in the pipeline by consulting a Branch

Target Buffer (BTB). As with a cache, indexing is performed with low-order bits, and high-

order bits are used to perform a tag match. If an instruction address is found in the BTB,

the target from the BTB is used to redirect the fetch stage. The BTB is updated at branch

target resolution and only stores targets of taken branches to save space. A tagged structure

is used so that we do not attempt to redirect fetch on non-branch instructions. Figure 4-1

shows a direct mapped BTB, although most BTBs use associativity to reduce conflict misses.

To improve prediction accuracy for indirect branches, in which the target is computed rather

than encoded in the instruction, BTBs can be augmented with various schemes including

loop predictors [97] and path-based predictors [31].

Later in the pipeline, when the instruction has been decoded and is known to be a branch,

we can consult the untagged direction predictor. When predictive structures are accessed

in several pipeline stages, there can be several misprediction penalties. For example, the

Alpha 21264 stored line and way predictions in the L1 cache [53]. These predictions could

be overridden by a more complex, more accurate branch predictor. The single-cycle penalty

resulting from a correctly overridden prediction is small compared to the full seven-cycle

branch misprediction penalty.

Figure 4-2 shows a canonical two-level adaptive direction predictor [116]. This predic-

tor contains a branch history table (BHT) and one or more pattern history tables (PHTs).

The BHT contains one or more branch history registers (BHRs) that store the outcomes

(taken/not-taken) of prior branches. The BHR is a shift register: to update it, all bits are

shifted, dropping the oldest outcome. A bit denoting the most recent branch outcome is
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Figure 4-1. A branch target buffer (BTB). A canonical BTB is updated only with
taken branches. Thus, hits in the BTB indicate the lookup PC is a taken branch.

shifted in. The program counter (PC) is used to choose one or more BHRs. This BHR is

combined (optionally) with the PC to choose a prediction from a PHT. A PHT is a group of

direction predictions. Usually, predictions are represented by the most significant bit of a sat-

urating counter (e.g., 1=taken, 0=not-taken). Counters are usually at least two bits wide to

provide hysteresis. For example, a two-bit counter becomes saturated “strongly taken” dur-

ing a for-loop and will mispredict the final not-taken branch, but this misprediction brings

the counter into a “weakly taken” state, preventing it from mispredicting the next occurrence

of the taken loop branch. If there is more than one PHT, the PC is used to select a particular

PHT.

4.2 Why can’t we use a branch timestamp record?

While the BTB looks like a cache and can use MTR or stack-algorithm techniques for a

microarchitecture-independent representation, indirect branch predictors and direction pre-

dictors are not as simple. The use of anti-aliasing hardware designs, the value of preserving

historic branches, and the desire to keep snapshots small and microarchitecture-independent

make stack algorithms infeasible and a “branch timestamp record” unappealing.

4.2.1 Anti-aliasing efforts complicate coalescing

To insure fast access times, branch direction predictors have limited capacity, which creates

the potential for aliasing. Aliasing occurs in a branch direction predictor when multiple

branches map to the same counter in the PHT. The aliasing can be destructive if a biased-

taken branch is aliased with a branch that is biased not-taken.
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Figure 4-2. Parts of a canonical two-level adaptive branch predictor.

A second form of aliasing involves dynamic branches with the same static address, but

different branch outcomes. A branch at the end of a loop is one example. It may be taken 10

times, but not-taken on the 11th occurrence. In this case, the outcome of a particular instance

of the branch can be determined based on the context in which it appears. In the case of the

loop-closing branch, we would predict taken unless the prior 10 outcomes were taken.

One way to reduce this form of aliasing is by combining the branch address with global

history. This is shown in Figure 4-3 in which a single branch (at address 0x2400) is mapped

to two different PHT entries depending on context. The figure depicts the use of an XOR oper-

ator to hash the branch address with the global history; other hash functions are acceptable.

The hash function also results in a more efficient use of space, spreading branches across the

entire table.

Figure 4-3 helps illustrate why MTR-like structures cannot directly be applied to branch

direction predictors that incorporate history. Simple coalescing of addresses is insufficient

to find all branches that map to a particular counter because the hash with history bits

may have forced additional branches to the same counter. Also, dynamic instances of the

same branch are often mapped to different counters, so an address-based organization is

inappropriate.
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Figure 4-3. Anti-aliasing maps a single branch to multiple PHT entries depending
on context.

initial state state after outcome possible predictions
T NT T ... NT T

0 1 0 1 ... NT
1 2 1 2 ... NT, T
2 3 2 3 ... T
3 3 2 3 ... T

Table 4.1. Role of initial counter state in predicting direction.

4.2.2 Long-lived history is helpful

In the MTR, we can save space by overwriting least-recently-used entries, as these are the

ones that would be evicted by a cache using time-based replacement. In a branch predictor,

the use of history means that the address and outcome of old branches can play an important

role in determining the prediction of new branches. Maintaining individual counter history

is important as well. If a single counter in the PHT undergoes a long period of alternating

taken/not-taken, it is crucial that we have stored enough previous branches mapping to this

counter in order to determine, from its most recent confirmable state, whether it now predicts

taken or not-taken. This phenomenon, where a final prediction depends on initial state, is

shown in Table 4.1.

4.2.3 Certain structures are difficult to generalize

One possible way to create a MINSnap for two-level predictors with one BHR and one PHT is

to identify each branch by its address and the global history at the time it was encountered.

This is not truly microarchitecture independent as it fixes an upper bound on the size of
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the global history register. Smaller histories are supported by considering, at reconstruction

time, only the most recent history. Each < branch,history > pair could be used as a key to

index into a hash table. The key’s value is a time-ordered list of booleans indicating taken

or not-taken. To reconstruct a two-level adaptive predictor with a global history register, we

determine the size of the BHR and PHT and the indexing function (a function of the PC and

history). For every populated entry in the hash table, we perform the indexing function on

the < branch,history > key, coalescing entries that have the same PHT index. We consult

the coalesced direction list in reverse order until we are certain of the counter’s state (e.g., if

the three most recent branches are taken, a two-bit counter must be saturated). If we reach

the oldest branch without discovering a saturating sequence (e.g., an alternating pattern of

taken/not-taken), then the predicted direction of this branch is ambiguous without knowledge

of the counter’s initial state. The lists could be gradually pruned if the size of the saturating

counter was known in advance. While this scheme is functionally correct, it requires a lot of

state and considerable time to perform reconstruction. Most predictors are not so simple to

represent.

Some branch predictors, such as the “local” component of the Alpha 21264, use multiple

BHRs in which certain branches share a specific history register. In such predictors, we would

have to coalesce sharers of a history register prior to determining to which counter a branch

is mapped at a particular point in time. Not only does this drastically increase the amount

of state in the timestamp record, but the multiple coalescing is now more complicated than

the branch predictor itself. Working with tournament predictors, which include a “chooser”

to select between two predictors, is even more difficult as the reconstruction process must

somehow determine the value of the chooser counter by determining the predictions of each

component predictor at the time prior to updating the chooser.

The newest branch predictor proposals break away from the use of a PHT with simple

saturating counters, relying on structures called perceptrons to learn a branch’s behavior

and predict its outcome [51]. A hash of the branch address is used to select a perceptron

from an array. Each perceptron contains a collection of positive and negative weights. The

dot-product of these weights and the bits of the global history register is computed to produce

a prediction. A “0” in the global history is treated as “-1” when performing the dot-product;

a positive dot product indicates taken, and negative dot products are not-taken. A train-

ing threshold (which is dependent on the width of the weights) dictates whether or not the

perceptron is updated as a result of a branch. Since the state of a concrete predictor is com-

prised of its weights, and the weights can increment or decrement with every branch in the

program (subject to training threshold), it appears that an entire branch trace is needed to

reconstruct any given perceptron predictor. Imposing a maximum branch history length,

perceptron count, and weight width might allow coalescing, but makes the structure decid-

edly microarchitecture-dependent. Such a reconstruction algorithm might process as follows.

Once the hash function used to select predictors is determined, perceptrons mapped at the

81



Parameter Size Example

predictor size 8 KB gshare predictor with 15 bits of global history and 2-bit counters
samples 1000 1B instructions of application sampled every 1M instructions
other predictors 10
benchmarks 26 SPECCPU 2000
processors 16

Total 32 GB

Table 4.2. High storage costs for branch predictors in sampling simulation.

same hash table index are coalesced by summing corresponding weights and truncating the

values according to the width of each weight. When there are more weights than there are

history bits of the concrete predictor, the excess weights are discarded. This algorithm does

not support a threshold parameter as it is unknown which weights will be combined until the

indexing function is determined (i.e., we cannot know when the threshold is exceeded); also,

the ideal threshold depends on the history length which is not known until reconstruction

time.

4.3 Design of a branch predictor-based trace compressor

Previous work suggested that snapshots should contain the microarchitectural state of ev-

ery predictor that might be examined [119, 125]. Unfortunately, this limits flexibility and

increases snapshot size, particularly when many samples are taken of a long-running multi-

processor application. A back-of-the-envelope calculation shows that this can quickly become

unreasonable. The conservative parameters in Table 4.2 lead to 32 gigabytes of required

storage — and this is before the inclusion of branch target predictors.

To evaluate a predictor that has not been stored, one must regenerate the snapshot li-

brary, forfeiting the time-savings expected of pre-generated snapshots, or suffer the effects

of an inaccurately-warmed predictor. We advocate an alternative approach in this chapter,

which is to store a compressed version of the complete branch trace in the snapshot. This

approach is microarchitecture-independent because any branch predictor can be initialized

before detailed simulation begins by uncompressing and replaying the branch trace.

In general, lossless data compression can be partitioned into two phases: modeling and

coding [94]. The modeling phase attempts to predict the input data symbols. For each symbol

in the input text, the compressor expresses any differences from the model. The coding phase

creates concise codewords to represent these differences in as few bits as possible. BPC uses

a collection of internal predictors to create an accurate, adaptive model of branch behavior.

We delegate the coding step to a general-purpose compressor.

To model the direction and targets of branches in a trace, we can draw on years of re-

search in high accuracy hardware branch predictors. When using branch predictors as mod-

els in software, we have two obvious advantages over hardware predictors. First, the severe
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constraints that usually apply to branch prediction table sizes disappear. Second, a fast

functional simulator (which completes the execution of an entire instruction before proceed-

ing) can provide oracle information to the predictor such as computed branch targets and

directions. We use the accurate predictions from software models to reduce the amount of

information passed to the coder. When the model can predict many branches in a row, we do

not have to include these branches in the compressor output; we only have to express the fact

that the information is contained in the model.

4.3.1 Structure

Figure 4-4 shows the different components in our system. A benchmark is simulated with

a fast functional simulator, and information about branches is passed to the BPC Compres-

sor. The BPC Compressor processes the branch stream, filters it through a general-purpose

compressor, and creates a compressed trace on disk. We will show momentarily how the BPC

Compressor can improve its compression ratios by using its own output as input to compress

the next branch.

We define a concrete branch predictor to be a predictor with certain fixed parameters.

These parameters may include size of global history, number of branch target buffer (BTB)

entries, indexing functions, etc. To recreate the state of various concrete branch predictors,

we retrieve the compressed trace from disk, perform general-purpose decompression, and

process the result with the BPC Decompressor. The structure of the decompressor is identical

to that of the compressor. The branch trace output from the BPC Decompressor is replayed

into one or more concrete predictors. Branches later in the trace will overwrite entries in the

concrete predictor according to its policies.

The particular collection of internal predictors has nothing to do with the concrete branch

predictors that BPC will warm. The implementation of BPC merely uses predictors to aid

compression of the complete branch trace which, by its nature, can be used to fill any branch

predictor with state based on information in the trace. Furthermore, the precise construction

of a BPC scheme is up to the implementer who may choose to sacrifice compression for speed

and simplicity or vice versa. We merely describe what appears to be a happy medium.

This implementation differs from other proposed value predictor-based compression (VPC)

techniques, which feed several predictors in parallel and emit a code indicating which predic-

tor is correct [15, 108]. For our datasets of branch traces, we have found that such a stream of

predictor selection codes does not compress as well as the BPC trace with its single, statically

determined predictor.

4.3.2 Branch notation and representation

Before explaining the details of the compressor, we describe the information stored in the

compressed trace and introduce some notation used in this section.
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Figure 4-4. System diagram. The compressed trace is stored on disk until it is
needed to reconstruct concrete branch predictors.

Using the Championship Branch Prediction (CBP) framework [108], the uncompressed

branch traces in our study consist of fixed-length branch records as shown in Table 4.3. Each

branch record contains the current instruction address, the fall-through instruction address

(not obvious in CISC ISAs), the branch target, and type information that indicates whether

the branch is a call, return, indirect, or conditional (not mutually exclusive). The branch

records are generated by a functional simulator which can resolve the branch target and pro-

vide a taken/not-taken bit. The taken bit is stored in a one-byte field to facilitate compression

via popular bytewise algorithms such as gzip [40], bzip2 [95], or PPMd [99].

field size
(Bytes)

instruction address 4
fall-through instruction address 4
branch target address 4
taken 1
is_indirect is_conditional is_call is_return 1

Table 4.3. Format of branch records.

Rather than predicting the direction and target of the current branch, Bn, as in a hard-

ware direction predictor and BTB, we predict information about the next branch, Bn+1. We

denote the actual branch stream as B1..k and denote predicted branches as β1..k. If the pre-
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dictor proves correct (i.e., βn+1 == Bn+1), we concisely note that fact and need not provide the

entire Bn+1 branch record. Furthermore, we use βn+1 to produce βn+2..n+i for as large an i

as possible. This allows us to use a single symbol to inform the decompressor that i chained

predictions will be correct.

Figure 4-5 depicts an example using this notation. Given Bn, we must provide infor-

mation about βn+1. In this case, we have predicted βn+1 to be not-taken with a specific

fall-through address. If these are correct predictions, BPC can continue by chaining: using

βn+1 as input to request predictions about βn+2. The longer the chain of correct predictions,

the less information has to be written by the compressor.

Block 1
Basic Basic

Block 2

Basic
Block 3

Bn.branch target

βn+1.fall through

βn+2

βn+1Bn

Figure 4-5. An example to illustrate our notation.

The output of the compressor is a list of pairs. The first element indicates the number

of correct predictions that can be made beginning with a given branch; the second element

contains the data for the branch that cannot be predicted. An example output is shown in

Table 4.4. As in most branch traces, the example shows that the first few branches cannot

be predicted and must be transmitted in their entirety. Eventually the compressor outputs

B10 and uses B10 as an input to its internal predictors, coming up with a prediction, β11.

Comparing β11 to the next actual branch, B11, a match is detected. This process continues

until the internal predictors fail to guess the incoming branch (at B24). Thus, we output “13”

to indicate that, by chaining predictor output to the next prediction’s input, 13 branches in a

row will be predicted correctly, but β24 �= B24. We emit B24 and repeat the process.

We store the output in two separate binary files and use a general-purpose compressor

(such as gzip or bzip2) to catch patterns that we have missed and to encode the reduced set

of symbols. We also considered the less common compressor, PPMd. PPMd is a fast imple-

mentation of the PPM algorithm [23] that uses an arithmetic encoder and tends to produce

better compression ratios than bzip2 in roughly equal time. While PPM-based methods are

often discounted due to their slow speed, we found PPMd to perform faster than bzip2 for our

source data. Of course, a mild speed penalty during the compression phase could be accepted

as snapshot generation occurs just once. We used an order-14 model corresponding to the
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skip amount branch record

0 B0

0 B1

0 B2

... ...
0 B10

13 B24

Table 4.4. Example compressor output.

number of bytes-per-record in the raw trace file; this corresponds to a 1st-order model at the

branch record granularity. The model is reset when it reaches 32 MB.

4.3.3 Algorithm and implementation details

The internal structure of a BPC Compressor is shown in Figure 4-6. Each box corresponds to

one predictor. When multiple predictors are present at a stage, only one is consulted. In BPC,

the criteria for choosing a predictor stems from branch type which expresses characteristics

of the branch such as whether it is a return instruction or whether it is conditional. The

details of how type determines predictor selection are explained below.

Fall−through
address

tables
Address
Branch
Next

simulator
Functional

Target
Predictors
(RAS + 
Indirect)

Predictions
correct?

table
info
Static

Branch address

n+1

Taken

n

Predictions

1 Target

Branch address Type

Target
0

Target

Taken

Branch trace

Direction
Predictor=

Figure 4-6. Prediction flow used during branch trace compression. Input left of
the dashed line is from the current branch, Bn. To the right of the dashed line are
predictions for the next branch, βn+1.

The description below refers to the steady-state operation. We do not describe handling of

the first and last branch, nor do we detail the resetting of the skip counter. These corner cases

are addressed in our code. We use diff to validate that a compressed trace is uncompressed

correctly.

Initially, a known address, target, and taken bit of Bn are received from the functional

simulator and used to predict the address of βn+1. This address is used to look up static

information about βn+1 including its fall-through address, type, and target. In the absence of

context switches or self-modifying code, the branch address corresponds directly with a type
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and fall-through address. If the branch target is not computed, a given branch address always

has the same branch target. The type prediction helps the direction predictor decide whether

βn+1 is a taken branch. The type also helps the target predictor make accurate predictions.

Once components of βn+1 have been predicted, it can be used to generate a prediction for βn+2

and so on. Before continuing, the predictors are updated with correct data for Bn+1 provided

by the simulator.

Predicting the next branch address. Normally, branch targets must be predicted, but in

the case of BPC, they are known by the functional simulator. Instead, we must predict the

address of the next branch. Since the next branch seen by a program is the first branch to

appear after reaching a target, knowing the target allows us to know the next branch. If

the branch is not-taken, the next branch should appear shortly a few instructions later. This

prediction will be correct unless we are faced with self-modifying code or process swaps.

If Bn is a taken branch, we use a simple mapping of current branch target to next branch

address. This map can be considered a Last-1-Value predictor or a cache. Our map is im-

plemented with a 256K-entry hash table. The hash tables and fixed-size predictors of BPC

provide O(1) read and write time with respect to trace length. Since the hash table merely

provides predictions, it need not detect or avoid collisions. This property permits a fast hash

function and immediate insertion/retrieval, but we choose to use linear probing to avoid col-

lisions and achieve higher prediction accuracy. When the hash table becomes full, we allow

overwriting of the element currently stored at the hash key location.

If Bn is not-taken, we use a separate table indexed by current branch address to reduce

aliasing. By using two tables we ensure that taken and not-taken instances of the same

branch do not overwrite each other’s next address mapping.

Recall that BPC is benefiting from the oracle information provided by the functional sim-

ulator. Hardware target predictors are accessed early in the cycle before the instruction has

been decoded and resolved. Here, the simulator has produced Bn.taken and Bn.target which

it uses to select and index the maps.

Predicting the next branch’s static information. The compressor looks up βn+1’s branch

address in a hash table to find the type, the fall-through address, and a potential target for

βn+1. Note that this target may be overridden if the branch type indicates an indirect branch

or return instruction. The lookup table is implemented as above.

Predicting the next branch’s direction. If the predicted type indicates the next branch

is conditional, we look up its direction in a direction predictor. Recall that our software pre-

dictors are not constrained by area or cycle time as in a hardware predictor. Thus, we chose

a large variant of the Alpha 21264 tournament predictor [53]. Like the gshare predictor [72],

we use the XOR operator to combine the program counter with a 16-bit global branch history.

The result is an index used to access a global set of two-bit counters. We use 216 local histories
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(each 16 bits long) to access one of 216 three-bit counters. A chooser with 216 two-bit coun-

ters learns the best-performing predictor for each PC/History combination. This represents

1.44 Mbits of state, much more than one could expect in a real machine. Branches predicted

to be non-conditional are marked taken.

Predicting the next branch’s target. If the next branch is a return, we use a 512-deep

return address stack to set its target. This extreme depth was necessary to prevent stack

overflows in some of our traces that would have hidden easily-predicted return addresses.

If the next branch is a non-return indirect branch, we use a large filtered predictor to

guess the target [32]. We introduce a 32 K-entry BTB leaky filter in front of a path-based

indirect predictor. The path-based predictor is a 220-entry version of the predictor provided

by the Championship Branch Prediction contest [108]. It has a PAg-like structure — each

PC has its own path register which indexes a single address prediction table ([116]) — and

uses the last four targets as part of the index function. The filter quickly learns targets of

monomorphic branches, reducing the cold-start effect and leaving more room in the second-

stage, path-based predictor.

If the next branch is neither a return nor an ordinary indirect branch, we set the target

equal to the last target found in the hash table of static branch information.

Emitting the output stream and continuing. The βn+1 structure created thus far is

compared with the actual next branch, Bn+1. If they match, we increment a skip counter;

if not, we emit < skip,Bn+1 >. To keep a fixed-length output record, we do not allow skip to

grow past a threshold (e.g., a limit of 216 allows the skip value to fit in two bytes).

Before repeating, all predictors are updated with the correct information: for each Bn, the

instruction address tables are indexed by Bn’s address or target address and updated with

Bn+1’s instruction address, while the remaining predictors are indexed by Bn+1’s instruction

address and updated with Bn+1’s resolved target, taken bit, fall-through address, and type.

Finally, we increment n and repeat the above steps.

Entropy coding. The output of the BPC compressor is significantly smaller than the origi-

nal branch trace, but better results are possible by employing a general-purpose compressor

such as gzip, bzip2, or PPMd. These highly tuned compressors are sometimes able to cap-

ture patterns missed by BPC and use Huffman or arithmetic coding to compress the output

further.

4.3.4 Decompression algorithm

The decompressor must read from the skip amount and branch record files and output the

original branch trace one branch at a time and in the correct order. The BPC decompression

process uses the same structures described in Section 4.3.3 so it can be described quickly. As

above, we assume a steady state where we have already read Bn.
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After reversing the general-purpose compression, the decompressor first reads from the

skip amount file. If the skip amount is zero, it emits Bn+1 as found in the branch record file,

and updates its internal predictors using Bn and Bn+1.

If it encounters a non-zero skip amount, it uses previous branch information to produce

the next branch. In other words, to emit Bn+1, it queries its internal predictors with Bn

and outputs the address, fall-through, target, type, and taken information contained in the

internal predictors. Next, the skip amount is decremented, Bn+1 becomes the current branch

(Bn), and the process repeats. Eventually, the skip amount reaches 0, and the next branch

must be fetched from the input file rather than emitted by the predictors.

As the decompressor updates its internal predictors using the same rules as the com-

pressor, the state matches at every branch, and the decompressor is guaranteed to produce

correct predictions during the indicated skip intervals. The structure of the decompressor is

identical to that of the compressor, so decompression proceeds in roughly the same time as

compression.

4.3.5 Usage

Recall that the motivation for compressing a branch trace is to replace concrete branch pre-

dictor snapshots for sampling-based simulation. By piping the output of our decompressor

into a concrete branch predictor model, the model becomes warmed-up with exactly the same

state it would have contained had it been in use all along. Furthermore, the decompressed

branch stream can be directed into multiple concrete branch predictors so that each may be

evaluated during detailed simulation. After each branch has been observed by a concrete pre-

dictor, it is no longer required. Thus, no additional storage is needed on the simulation host

to hold the uncompressed trace. Note that some detail is lost since the PHT is not updated

with wrong-path branches, and a trace does not capture the effects of delayed update.

Speculatively updating branch predictors generally improves their accuracy as long as

a mechanism exists to repair the effects of wrong-path updates [101]. Deep pipelines allow

multiple branches to issue before earlier branches have been resolved, so speculative updat-

ing helps maintain any correlations between a current branch and its predecessors that have

not yet been committed. While the high accuracy of branch predictors results in most of these

updates applying to correctly predicted branches, experiments show that accuracy is badly

degraded if the BHR contains updates from a wrong path. Therefore, the BHR is restored

when a misprediction is detected, though the PHT typically retains wrong-path updates.

Delayed update refers to the fact that, in order to be effective, branch predictors are con-

sulted several cycles before branches are resolved. The latency between lookup and update

can cause a given branch to be mispredicted multiple times, instigating multiple pipeline

flushes [66].

Despite the inability of traces to capture microarchitecture-dependent behaviors such as

wrong-path updates and delayed updates, the proposed use of BPC-compressed traces is no
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Name Branches Insts/ Conditional Return Call Indirect Unconditional
Branch

(Millions) (percent of total)

FP-1 2.6 11.3 84.6 5.5 5.5 0.0 4.4
FP-2 1.8 16.3 99.3 0.0 0.0 0.0 0.6
FP-3 1.6 18.7 98.3 0.4 0.4 0.0 0.9
FP-4 0.9 32.0 97.2 0.9 0.9 0.0 1.1
FP-5 2.7 10.8 89.0 4.6 4.6 0.0 1.8
INT-1 5.0 5.9 83.9 4.6 4.6 0.0 7.0
INT-2 3.7 8.0 78.1 6.2 6.2 0.8 8.7
INT-3 4.1 7.1 91.2 0.7 0.7 0.0 7.4
INT-4 2.4 12.1 85.1 5.8 5.8 0.0 3.3
INT-5 3.8 7.7 98.3 0.5 0.5 0.2 0.6
MM-1 2.8 10.6 80.1 5.2 5.2 0.0 9.6
MM-2 4.2 7.0 90.4 2.6 2.6 1.7 2.7
MM-3 5.0 6.0 60.9 16.7 16.7 0.1 5.7
MM-4 5.1 5.8 95.9 1.5 1.5 0.2 0.9
MM-5 3.4 8.7 75.3 8.9 8.9 2.6 4.3
SERV-1 5.6 5.3 65.3 12.3 12.4 0.4 9.6
SERV-2 5.4 5.4 65.0 12.3 12.3 0.4 10.0
SERV-3 5.4 5.5 71.1 8.3 8.3 0.2 12.0
SERV-4 6.3 4.7 67.7 10.3 10.3 0.3 11.3
SERV-5 6.4 4.6 66.9 10.4 10.4 0.3 12.0

Table 4.5. Characteristics of traces. Note that indirect branches refer to those
branches not already classified as Calls or Returns. Unconditional branches are
those that remain after classifying indirects, calls, and returns. Columns may not
sum to 100% due to rounding.

worse than previously proposed schemes, and the wrong-path effect has been shown to be

minor — usually less than 1% of CPI [127].

4.4 Evaluation

Our simulation framework is based on the Championship Branch Prediction (CBP) compe-

tition trace reader which provides static and dynamic information about each branch in its

trace suite [108]. The trace suite consists of 20 traces from four categories: integer, floating

point, server, and multimedia. Each trace contains approximately 30 million instructions

comprising both user and system activity, and the traces exhibit a wide range of character-

istics in terms of branch frequency and predictability as shown in Table 4.5 and Table 4.6.

Columns labeled CBP show the direction accuracy and indirect target accuracy of the predic-

tors used in the CBP trace reader: a gshare predictor with a 14-bit global history register,

and an indirect target predictor in a PAg configuration with 210 entries and a path-length of

4 (bits from the past four targets are hashed with the program counter to index into a target

table). The BPC column shows the decreased misprediction rate available to BPC with the

direction predictor and target predictor configuration described in Section 4.3.3.
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Name CBP BPC CBP BPC
Direction Indirect Target

(Mispred. Rate) (Mispred. Rate)

FP-1 0.051 0.039 0.314 0.288
FP-2 0.018 0.017 0.317 0.303
FP-3 0.009 0.008 0.286 0.277
FP-4 0.010 0.010 0.251 0.241
FP-5 0.010 0.004 0.598 0.563
INT-1 0.053 0.049 0.362 0.337
INT-2 0.078 0.074 0.597 0.526
INT-3 0.106 0.094 0.313 0.285
INT-4 0.036 0.032 0.009 0.008
INT-5 0.005 0.003 0.285 0.250
MM-1 0.099 0.108 0.001 0.001
MM-2 0.079 0.079 0.015 0.011
MM-3 0.030 0.014 0.114 0.101
MM-4 0.011 0.011 0.053 0.046
MM-5 0.067 0.055 0.172 0.062
SERV-1 0.040 0.021 0.357 0.024
SERV-2 0.043 0.023 0.377 0.026
SERV-3 0.045 0.037 0.113 0.057
SERV-4 0.040 0.026 0.242 0.023
SERV-5 0.040 0.025 0.258 0.019

Table 4.6. Predictability of traces. For a description of the CBP and BPC predic-
tors, please see text of Sections 4.4 and 4.3 respectively.

Using this framework we will show that BPC provides an excellent level of compression.

Not only does a compressed trace require less space than compressed snapshots, but a BPC-

compressed trace is smaller and faster to decompress than other compression techniques.

4.4.1 Compression ratio

Figure 4-7 shows the compression ratio resulting from various methods of branch trace com-

pression for each trace. Traces were run to completion with snapshots taken every 1M in-

structions. This sampling interval was found to produce good results on SPECCPU bench-

marks [127]. Each trace provides enough branches for 29 snapshots. We report bits-per-

branch (rather than absolute file size or ratio of original size to new size) so that our results

are independent from the representation of branch records in the input file. From left-to-

right we see compression ratios for unprocessed branched traces (compressed with various

general-purpose compressors); compressed concrete snapshots; VPC (a similar work which is

discussed in Section 4.4.6); and BPC as described in this thesis. We use the suffix +comp to

denote the general-purpose compressor used with each technique.

While slower, bzip2 and PPMd give astonishingly good results on raw trace files composed

of fixed-length records. In fact, these general-purpose compressors use algorithms that have

a more predictive nature than the dictionary-based gzip.
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Space savings (%)
Bytewise vs. Bitwise
gzip bzip2 PPMd

FP-1 -0.8 13.0 1.4
FP-2 3.6 14.9 13.0
FP-3 15.2 20.9 22.8
FP-4 14.6 20.9 16.9
FP-5 10.6 20.6 -9.9
INT-1 2.5 14.9 12.5
INT-2 -3.9 10.4 10.8
INT-3 -7.9 5.9 4.7
INT-4 1.4 13.0 12.3
INT-5 8.7 17.2 8.7
MM-1 -14.1 3.3 -0.4
MM-2 4.4 13.0 16.9
MM-3 12.3 20.9 23.7
MM-4 10.1 19.1 23.3
MM-5 4.5 12.5 16.9
SERV-1 7.2 14.1 19.7
SERV-2 7.9 14.5 20.1
SERV-3 3.3 12.4 17.5
SERV-4 5.9 14.2 18.3
SERV-5 6.9 14.8 19.0

Table 4.7. Bitwise snapshots are smaller, but less compressible than bytewise snap-
shots.

The three bars labeled “concrete” show the size of a snapshot containing a single branch

predictor roughly approximating that of the Pentium 4: a 4-way, 4096 entry BTB to predict

targets and a 16-bit gshare predictor to predict directions [75]. Together the uncompressed

size of the concrete predictor is 43.6 KB, however, we use a bytewise representation and store

a 97 KB snapshot as it is more amenable to compression than a bitwise representation — up

to 20% smaller in some cases. Figure 4-7 shows the size of bytewise snapshots after com-

pression with gzip, bzip2, and PPMd. Table 4.7 shows the savings provided using bytewise

snapshots instead of bitwise snapshots. With gzip compression, bitwise snapshots are larger

in all cases except INT-2, INT-3, MM-1, and FP-1. When bzip2 is used, bytewise snapshots

are always smaller. With PPMd, only MM-1 and FP-5 perform better as bitwise snapshots.

The state of a given branch predictor (a concrete snapshot in our terminology) has con-

stant size of q bytes. However, to have m predictors warmed-up at each of n detailed sample

points (multiple short samples are desired to capture whole-program behavior), one must

store mn q-byte snapshots. Concrete snapshots are hard to compress so p, the size of q after

compression, is roughly constant across snapshots. Since a snapshot is needed for every sam-

ple period, we consider the cumulative snapshot size: mnp. This cumulative snapshot grows

with m and n. In fact, it grows faster than a BPC-compressed branch trace even for reason-

able p and m = 1. Table 4.8 shows that combining the concrete snapshots before compression

provides context which is helpful for compression. The first three columns compare the total
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Combine snapshots, then compress. Combine snapshots, then compress.
Size savings (%) vs. compress+combine Size savings (%) versus BPC
gzip bzip2 PPMd gzip bzip2 PPMd

FP-1 0.3 77.7 23.5 -9.4 73.7 -2.3
FP-2 0.2 78.5 31.6 -351.2 4.0 -236.1
FP-3 0.4 89.3 41.7 -1584.4 -29.7 -689.8
FP-4 0.1 85.3 36.2 -1657.4 -73.4 -806.8
FP-5 -0.6 85.3 22.5 -1407.3 -47.1 -1018.7
INT-1 0.2 84.1 28.4 -156.2 50.7 -51.7
INT-2 -0.1 39.3 46.1 -34.6 -4.4 -10.2
INT-3 -0.0 54.1 38.5 13.8 46.4 22.5
INT-4 0.2 82.9 30.8 -212.1 42.1 -141.0
INT-5 0.5 86.3 29.7 -766.7 -4.7 -541.6
MM-1 -0.1 44.3 36.5 -16.9 20.5 -0.6
MM-2 0.0 55.8 55.2 -27.9 32.5 26.9
MM-3 0.2 83.5 43.9 -978.2 -67.0 -447.7
MM-4 -0.1 78.3 60.4 -574.3 -29.0 -147.8
MM-5 -0.1 42.9 56.3 -176.4 -81.4 -65.1
SERV-1 -0.0 44.3 56.4 -194.9 -58.4 -47.1
SERV-2 -0.0 43.7 53.5 -178.2 -58.7 -54.4
SERV-3 -0.1 31.7 45.1 -87.0 -20.0 -14.2
SERV-4 -0.1 35.3 51.1 -89.0 -17.6 -6.8
SERV-5 0.0 41.2 54.8 -121.1 -27.9 -17.7

Table 4.8. Combining snapshots prior to compression.

size of snapshots that are combined before compression with snapshots that are compressed

and then combined. When using bzip2 or PPMd, precombining the snapshots is very helpful,

saving 62% and 42% respectively. However, the three columns on the right of Table 4.8 show

that the files resulting from combining snapshots before compression still do not approach

the BPC trace compression ratios except in select cases (positive percentages in the table).

Combining concrete snapshots from different points in the program requires more temporary

storage than individually compressed snapshots because the entire collection would need to

be decompressed in order to read a single snapshot.

On average, BPC+PPMd provides a 3.4×, 2.9×, and 2.7× savings over stored predic-

tors compressed with gzip, bzip2, and PPMd respectively. When broken down by workload,

the savings of BPC+PPMd over concrete+PPMd ranges from 2.0× (integer) to 5.6× (floating

point). Using BPC+PPMd rather than concrete predictors compressed with gzip, bzip2, and

PPMd, translates to an absolute savings (assuming 20 traces, 1 billion instructions per trace,

and an average of 7.5 instructions per branch) of 257MB, 207MB, and 182MB respectively.

Note that this represents the lower bound of savings with BPC: if one wishes to study m

branch predictors of size P = ∑m
i=1 pi, the size of the concrete snapshot will grow with mnP,

while the BPC trace supports any set of predictors at its current size.

From these results, we note that predictive compressors (bzip2, PPMd, VPC, and BPC)

outperform dictionary-based compressors in all cases, often drastically. BPC+bzip2 outper-
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Figure 4-8. Skip amount frequency. Large skip amounts indicate chains of correct
predictions. Bucket i, labeled b[i], tallies skip amounts greater than or equal to
b[i], but less than b[i+1].

forms pure bzip2 in all cases, and BPC+PPMd exceeds stand-alone PPMd compression in

15/20 cases. In a sense, BPC is similar to the Markov modeling used by PPM. However, the

additional context (e.g., long global histories and deep return address stack) usually allows

BPC to predict better than the simpler model constructed by PPMd. In the cases where

PPMd does better, we may be able to tease out additional improvement through the use of

stride predictors or improved direction and indirect branch predictors.

Figure 4-8 shows the length of correct prediction chains and helps explain the success of

BPC. Recall that long chains are represented by a single number in the skip amount output

file and a single branch in the branch record file. These histograms show the total skip

counts for the five traces in each application domain, and we normalize to total number of

branches to allow cross-domain comparison. In terms of total branches, we remove over 90%

of branches in all cases and we remove over 95% in all but four cases: integer and multimedia

are the most troublesome due to lower accuracy in the direction predictor.

4.4.2 Scaling

How can we be certain that the compression ratios observed on this relatively short trace

(30 M instructions) will carry through an entire program execution? We extrapolate from

the data shown in Figure 4-9 which shows how storage requirements scale over time. Since

a single compressed trace suffices to represent all branches in the program, we report the

current size of the compressed trace at every 1M instructions. For the concrete snapshots,

we report the cumulative snapshot size at the given instant. Note that Figure 4-7 is merely

the final data point of Figure 4-9 divided by the number of branches observed and multiplied

by 8 bits.
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As the program begins, the concrete predictors are largely unused and the easily com-

pressed. Thus, their total size is less than a compressed trace. As the program progresses,

the concrete predictors are harder to compress. For all workloads, trace compression scales

better than storing concrete predictors. In 15/20 cases, BPC compression fares better than

PPMd compression of a raw branch trace; in two other cases (INT2 and FP1) it is competitive

or nearly equal, leaving three cases (MM1, MM2, and INT3) in which PPMd outperforms

BPC+PPMd. The server benchmarks present an interesting challenge to the compression

techniques. In general, these workloads contain branches which are harder to predict and

phase changes which are more pronounced. BPC, with its hardware-style internal branch

predictors, is more suited to quick adaptation than PPMd which uses more generic predic-

tion. When returning to a phase, BPC’s large tables and long history allow better prediction

than PPMd, which must adjust its probability models as new inputs are seen; when old in-

puts return, the model’s representation of old data is less optimal. Phase changes are visible

as steps in the lines of Figure 4-9; BPC often reacts to phase changes more subtly than PPMd.

The figure shows trends developing in the early stages of execution that should con-

tinue throughout the program. A trace compressed with BPC will grow slowly as new static

branches appear, but reoccurrence of old branches will be easily predicted and concisely ex-

pressed (unless purged from the model). Storage of concrete snapshots grows with mnP as

discussed in Section 4.4.1.

4.4.3 Timing

We have shown the storage advantages of trace-based reconstruction versus snapshot-based

reconstruction, but we must show that the time required to compress and decompress the

data does not outweigh the space savings. In the case of BPC or BPC+general-purpose com-

pression for snapshot generation, the cost is negligible. BPC requires simple predictors and

tables which add little time to functional simulation. The second-stage, general-purpose

compressors (gzip, bzip2, and PPMd) are highly optimized and use fixed-size tables, so they

remain fast throughout the compression process. Furthermore, compression is performed

once, so the creation time of a microarchitectural snapshot can be amortized over many de-

tailed simulations. We no longer have to guess likely configurations, fix a maximum size, or

regenerate a snapshot to reflect a microarchitectural change.

Decompression speed is more important. We presume a parallel methodology in which

independent snapshots are produced and used to warm-up state for detailed samples on mul-

tiple machines. Each host could simulate a cluster of adjacent samples to amortize the work

of seeking to a region in the branch trace. In such a situation, runtime is limited by the

time to warm the final sample in program order. When working with a non-random-access

compressed trace such as BPC, the warming for the final sample in the program requires

examining every branch in the trace. While this is much slower than directly loading a snap-

97



0 10 20 30
0

5

10
x 10

5SERV1

S
iz

e 
(B

yt
es

)

0 10 20 30
0

5

10
x 10

5SERV2

0 10 20 30
0

5

10
x 10

5SERV3

0 10 20 30
0

5

10
x 10

5SERV4

0 10 20 30
0

5

10
x 10

5SERV5

0 10 20 30
0

1

2

3
x 10

5 INT1

S
iz

e 
(B

yt
es

)

0 10 20 30
0

2

4

6

8
x 10

5 INT2

0 10 20 30
0

1

2

3

4
x 10

5 INT3

0 10 20 30
0

0.5

1

1.5

2
x 10

5 INT4

0 10 20 30
0

5

10

15
x 10

4 INT5

0 10 20 30
0

1

2

3

4
x 10

5 MM1

S
iz

e 
(B

yt
es

)

0 10 20 30
0

2

4

6
x 10

5 MM2

0 10 20 30
0

1

2

3
x 10

5 MM3

0 10 20 30
0

2

4

6
x 10

5 MM4

0 10 20 30
0

5

10
x 10

5 MM5

0 10 20 30
0

5

10

15
x 10

4 FP1

Instructions (Millions)

S
iz

e 
(B

yt
es

)

0 10 20 30
0

0.5

1

1.5

2
x 10

5 FP2

Instructions (Millions)
0 10 20 30

0

0.5

1

1.5

2
x 10

5 FP3

Instructions (Millions)
0 10 20 30

0

5

10

15
x 10

4 FP4

Instructions (Millions)
0 10 20 30

0

1

2

3
x 10

5 FP5

Instructions (Millions)

 

 
concrete+ppmd
raw+ppmd
bpc+ppmd

Figure 4-9. BPC storage requirements grow slower than that of concrete snapshots.

98



SERV INT MM FP average

gzip 7.27 17.71 15.68 20.23 13.02
bzip2 0.79 0.67 0.71 0.65 0.70
PPMd 0.81 1.12 1.14 1.30 1.06
VPC+bzip2 1.29 1.90 2.03 2.47 1.82
VPC+PPMd 0.95 1.43 1.46 1.68 1.32
BPC+PPMd 2.23 3.18 2.98 4.10 2.98
sim-bpred 1.09 0.34 0.50

Table 4.9. Performance of BPC and general-purpose decompressors. Table shows
millions of branches decompressed per second (harmonic means).

shot of microarchitectural state, it is much faster than functional simulation. Intuitively,

warming via branch trace decompression can be faster than functional simulation: not only

are there many fewer branches than total instructions, but for each branch, only a few ta-

ble updates are required rather than an entire decode and execute phase. We have traded

some speed for lots of flexibility while remaining several times faster than traditional func-

tional branch predictor warming. Our traces average one branch every 6.42 instructions, and

BPC+PPMd can decompress branches at an average rate of 3.245 million branches per sec-

ond on a 3 GHz host. Thus, BPC adds an average of 48 seconds for every billion instructions

on our test platform.

Table 4.9 gives an estimate of the additional time needed to use each decompression

scheme. The times were collected on a Pentium 4 running at 3 GHz. BPC, VPC and PPMd

were compiled with gcc 3.4.3 -O3, and vendor-installed versions of gzip and bzip2 are used.

Timing information is the sum of user and system time reported by /usr/bin/time. We

require each application to write its data to stdout, but redirect this output to /dev/null.

For VPC, we modify the generated code so that 2nd-stage compression may be performed in

a separate step; the sum reported in the table may be slightly slower than had the 2nd-stage

compression been performed inline, but it allows us to examine alternative 2nd-stage com-

pressors. sim-bpred is the branch predictor driver distributed with the popular SimpleScalar

toolset [14]. We run SPEC CPU2000 benchmarks using Minnespec datasets ([55]) with sim-

bpred’s static not-taken predictor to show how quickly a fast functional simulator can decode

and identify branch instructions. Note that the SPEC CFP2000 average speed is hurt by

several benchmarks with a very small percentage of control instructions (e.g., 50 or 120 in-

structions per branch); while it is a representative average, it is difficult to compare directly

with the CBP traces which have closer to ≈ 15 instructions per branch.

Our original BPC implementations used state-of-the-art perceptron predictors and the

standard template library (STL) which dominated runtime. The current implementation,

which uses large lookup-table-based predictors and no STL, strikes a balance between speed

and compression. The table shows that while the impressive compression ratios observed

in Figure 4-7 do not come for free, one can still obtain decompression speeds that surpass

an optimized simulator. Not only is BPC faster than a fast RISC functional simulator, we
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min max mean st. dev

SERV 25.1% 42.0% 30.8% 7.2%
INT 2.6% 43.0% 23.4% 18.5%
MM 4.0% 43.9% 27.3% 18.2%
FP 1.8% 20.6% 9.1% 7.7%

Table 4.10. Decompression time is shared between general-purpose decompres-
sor and BPC. Table shows statistics for percent of time spent performing general-
purpose decompression.

note that the BPC rate will remain constant while functional simulation becomes slower as

support for CISC instructions and full system simulation is added.

We see that PPMd performs better than the more common bzip2 when dealing with all

categories of branch traces. Combining BPC with PPMd gives us performance up to 3.9×
faster than PPMd alone because BPC acts as a filter allowing PPMd to operate on a smaller,

simpler trace. The table also shows VPC times for its default 2nd-stage compressor (bzip2)

and VPC combined with PPMd. VPC performs best with bzip2, but appears slower than BPC.

The speedup is due to a combination of a BPC’s simpler hash function; fewer and smaller

predictors which may relieve cache pressure; and a more-easily compressed output to the

general-purpose compressor.

The decompression time is dominated by BPC rather than the general-purpose compres-

sion phase, but the fraction varies depending on workload. For example, the small, highly

compressed floating point branch traces spend as little as 1.75% of decompression time per-

forming general-purpose decompression, while the server traces require at least 25.0%. Ta-

ble 4.10 shows the percentage of time spent performing general-purpose decompression for

each class of trace.

4.4.4 Summary of results

Figure 4-10 summarizes the space and time information from Figure 4-7 and Table 4.9 and

is a convenient way to choose the optimal compressor for a particular goal (speed or size)

and dataset. For each of four workloads, we plot the average bits-per-branch and speed of

decompression for each class of traces. We use harmonic mean for the rate on the y-axis. The

most desirable compressors, those that are fast and yield small file sizes, appear in the upper

left of the plots. Note that gzip does not appear on the plot: it is the clear winner in speed,

but its compression ratio makes it undesirable for snapshots as we saw in Figure 4-7.

For each application domain, BPC+PPMd is the fastest. In terms of bits-per-branch,

BPC+PPMd is similar to VPC for highly-compressible floating point traces and similar to

PPMd for integer benchmarks. For multimedia, PPMd creates the smallest files, while

BPC+PPMd performs significantly better than all its peers for hard-to-predict server bench-

marks. High speed and small files across application domains are the strengths of BPC.
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Figure 4-10. Decompression speed vs. Compressed Ratio. The optimal compressed
trace format is in the upper left of each plot. Decompression speed across applica-
tions is reported with harmonic mean.

4.4.5 Alternative internal predictors

Our choice of BPC’s internal predictors was not arbitrary; we searched for the predictors

that gave the best compression ratio at the highest speed. Figure 4-11 shows the accuracy of

several predictors including several from the first Championship Branch Prediction contest.

From left to right we see: a simple gshare predictor with 15 bits of global history; four Alpha

21264-style tournament predictors of varying sizes and index functions; O-GHEL and O-

GEHL modified to use and 32-bit arithmetic (faster on a 32-bit host) and larger, fixed-size

tables which simplify indexing operations; three Piecewise-Linear predictors [50] (pwl_pow2

uses power-of-two size tables to avoid a modulus operation during indexing and a faster XOR

index function which can lead to more collisions and lower accuracy. pwl_big increases the

hash table size to reduce collisions); ppm is a CBP contest entry that uses the longest of

four available global histories to index into the PHT [73]; ppm_cache and ppm_noshift were

optimization attempts that failed to produce noticeable speedup — ppm_noshift increases

the number of counters, but uses shorter history and increases accuracy in many cases.

Clearly, O-GEHL [96], (the contest winner) is a highly accurate predictor that would

help improve BPC’s ability to provide a highly-compressed trace. However, as shown in Fig-

ure 4-12, the most accurate predictors can be slow due to their loop-based software imple-

mentation. Some of these loops were hard to unroll, but even when I could unroll a loop, the

additional work per branch led to a slowdown. Modifications were made to simplify indexing

functions and hash table performance, but in the end, we chose a tournament predictor that

could be implemented with a handful of table lookups. It appears that ppm_noshift could

outperform the chosen predictor with little decrease in speed, but this predictor was not used

in the results above.

4.4.6 Comparison to prior work

Value-predictor based compression (VPC) is a recent advance in trace compression [15]. Its

underlying predictors (last-n-value, strided, and (differential) finite context) are more general

than the branch direction and target predictors found in BPC. As such, VPC has trouble
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Figure 4-11. Accuracy of several direction predictors.
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Figure 4-12. Speed of several direction predictors.
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Figure 4-13. Comparing BPC organization with prior work.

with branch traces in which branch outcome may only be predicted given a large context.

Both predictors must emit incorrectly-predicted branches, but in contrast with BPC, VPC

runs several predictors in parallel and emits a code to indicate which predictors should be

consulted for each record. When an internal predictor cannot be used, the unpredictable

portion of the record is output. Separate output streams are used corresponding to each

internal predictor.

To see the improvement possible with BPC’s specialized predictors, we used TCgen, an

automated code generator, to generate a VPC compressor/decompressor pair [17]. We begin

as suggested by the developers, by generating code with many predictors (we used 44 of dif-

ferent classes and context lengths); running it on our traces; and refining to include only

those predictors that perform best. Paring down the predictors eliminates additional out-

put streams and reduces variability in the correct-predictor index that can negatively effect

compression. Eventually we settled on the TCgen specification in Figure 4-14 which uses

18 predictors, eliminates the simpler last-value predictor, and uses finite-context predictors

only where most useful. Figure 4-7 and Table 4.9 include data for VPC. We see that BPC com-

presses branch trace data better than VPC in 19/20 cases (all 20 if we always choose the best

2nd-stage compressor for each) and is between 1.1 and 2.2 times faster. We compressed raw

VPC streams with both bzip2 and PPMd to show the effect of the second stage compressor.

VPC was tuned for integration with bzip2, and this is evident in the results.

The CBP trace reader was written to favor compression ratio over decompression speed

and was distributed without excessive tuning [107]. CBP uses a simpler set of predictors:

gshare with 14 bits of history, a path-based indirect branch predictor with 210 entries, a 128-
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TCgen Trace Specification;
0-Bit Header;
32-Bit Field 1 = {L1 = 1, L2 = 131072: DFCM3[2], FCM3[2], FCM1[2]};
32-Bit Field 2 = {L1 = 65536, L2 = 131072: DFCM3[2]};
8-Bit Field 3 = {L1 = 65536, L2 = 131072: DFCM3[2]};
32-Bit Field 4 = {L1 = 65536, L2 = 131072: DFCM3[2], FCM1[2]};
8-Bit Field 5 = {L1 = 65536, L2 = 131072: DFCM3[2], FCM1[2]};
PC = Field 1;

Figure 4-14. Tuned TCgen specification.

entry return address stack (RAS), a static info cache with 218 entries, and two target caches

with a total of 28 +216 entries. Like VPC, a code is emitted which describes which predictors

are correct. Unlike VPC, the code is followed by a variable-length record that contains only

the information that must be corrected. CBP exploits the variable-length nature of x86 in-

structions. In addition, it includes all instructions, not just branches, so it does not need to

encode fall-through instruction addresses. Though it uses similar techniques, a direct com-

parison with CBP is not possible (CBP obtains near-perfect program counter compression

due to the interleaving of non-branch instructions). When perfect PC prediction is possible,

CBP+bzip2 outperforms BPC in 10/20 cases, but when perfect prediction is not allowed, BPC

produces smaller files. In a sense, CBP does chaining as well but outputs the chain amount

in a unary coding. For example, five 0’s in a row means that internal predictors suffice to

produce the next five branch records. With BPC, we merely output “5”. While our encoding

is simpler, the CBP encoding can lead to long runs of 0’s that are easily compressed.

Figure 4-13 illustrates the differing organizations. BPC statically chooses a predictor

while VPC and CBP dynamically choose the best predictor, requiring some non-zero-length

output per branch.

In conclusion, the specialized nature of our input data and our exploitation of long runs

of correct predictions, allow for an extremely efficient implementation that generally exceeds

the performance of more general related work.

4.5 Related Work

Apart from the branch trace compressors, much research has been performed to compress

memory traces. Memory traces of most programs exhibit temporal locality. This property can

be exploited by removing memory references to the same address that are repeated later in

the trace. Agarwal and Huffman survey several techniques that exploit temporal locality [3].

One of these techniques, a cache filter, uses a small direct mapped cache to filter out records

from the trace. Only those memory accesses which miss in the cache filter are recorded in

the trace. A cache filter reduces traces by nearly 90–95% with little or no error. Agarwal

and Huffman extend this scheme to take advantage of spatial locality as well. They apply

stratified sampling, a technique in which samples are pulled from similar strata rather than
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randomly across an entire population. Strata are detected with a structure called a block

filter. When strata with similar performance characteristics exist, as they do when programs

execute runs of accesses to the same region of memory, there is a reduction in the total

number of samples needed to achieve a fixed confidence. When the cache filter is used prior

to a block filter, traces are reduced by nearly 99% with only 10% error in miss rate estimates.

The locality properties of memory traces are harder to exploit for branch trace compression

as explained in Section 4.2.

The Mache is a technique that exploits spatial locality for lossless trace compression [93].

It keeps a three-entry cache of the last instruction fetch, data load, and data store. When a

new address arrives, the appropriate cache is examined. If the difference between the two ad-

dresses is small (e.g., less than ±213), it is emitted along with a two-bit reference to the cache

element. The size of the cache can be varied, but yields only minor improvement given the

impact on speed. Such lossless trace compression was not viewed as a method for reducing

cache simulation time as faster techniques (such as: sampling, lossy compression, and single-

pass algorithms) exist with little loss in accuracy. However, we advocate this use of lossless

compression in the domain of branch predictor simulation (Chapter 4) as there appears to

be no faster solution to the problem of a microarchitecture-independent representation of a

branch predictor.

Stream Based Compression (SBC) takes advantage of the fact that many programs con-

sist of streams of instructions that are repeatedly executed [74]. Each stream is stored once

and identified by a unique index; the remainder of the compressed instruction trace refer-

ences these indexes. Data references are compressed by storing base address, stride, and

repetition count.

The recognition that hardware value predictors are tuned to identify reference patterns

led to work in Value Predictor-based Compression (VPC) [16]. VPC employs research in

value prediction to accurately predict the next value that will appear in a trace. Value pre-

dictors provide the likely result of a computation before that result has actually been estab-

lished. The pattern recognition abilities of advanced value predictors are useful for improving

prefetching by predicting addresses that will be accessed in the future. For example, a value

predictor could discover that a program is accessing every 57th cache line and prefetch suc-

cessive lines automatically. Value predictors can also allow a machine to “exceed the dataflow

limit” — speculatively removing true data dependencies inherent to a program, e.g., quickly

predicting the result of a long multiply instruction [65]. With VPC, a collection of value pre-

dictors implemented in software offers several predictions for each element of a trace. When

at least one predictor is correct, the element can be omitted from the trace and replaced by

a reference to the correct predictor. When combined with general-purpose compressors, this

technique yields tremendous compression and high speeds, improving upon the results of

SBC. Our BPC technique is similar in spirit to VPC, but contains optimizations that make it

especially suited for representing a branch trace and decompressing that trace quickly.
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4.6 Summary

We have presented a technique, BPC, which utilizes software branch prediction structures

to produce highly compressed branch traces for use in snapshot-based simulation. Using

a popular corpus of branch traces, we show that BPC yields high compression ratios and

fast decompression speed. Chaining consecutive correct predictions from accurate software

branch predictors, BPC achieves compression rates of 0.12–0.83 bits/branch (depending on

workload). This is up to 210× better than gzip, up to 52× better than the best general-purpose

compression techniques, and up to 4.4× better than recently published, more general, trace

compression techniques. By balancing accuracy with quickness, BPC realizes decompression

speeds that exceed functional simulation by an average factor of 3–6×. In the context of

snapshot-based simulation, BPC-compressed traces serve as microarchitecture-independent

representations of branch predictors. We have shown that this representation can require

less space than one which stores just a single concrete predictor configuration, and that it

permits the reconstruction of any sort of branch predictor.

107



Chapter 5

Comparing Experimental Results of

Multiprocessor Simulation

A computer architect faces many challenges when simulating a multiprocessor target. Not

only is it challenging to build an accurate simulator, but interpreting experimental results be-

comes more complex in the presence of the non-determinism inherent to multiprocessor sys-

tems. This chapter provides a brief list of popular multiprocessor simulators to demonstrate

the acceptance of a full-system approach to multiprocessor simulation. Next, we discuss the

difficulty of comparing the outcome of two experiments in the presence of multithreading.

Finally, we present the problem of variability, which can cause the architect to misinterpret

the results of his work. The slowdown introduced by the complexity of full-system multipro-

cessor simulation can be magnified by the multiple trials required to observe variability. This

slowdown helps motivate the work of this thesis.

5.1 Current multiprocessor simulators

Implementing a simulator for a multiprocessor target requires a method for specifying the

interleaving of threads of execution. When the number of target processors meets or exceeds

the number of threads in a workload, multiple target CPU models can be instantiated, each

responsible for running a single thread. When there are more threads than target CPUs,

the architect may schedule threads manually to impose some ordering [78]. However, full-

system simulation is more realistic, as it allows a simulated operating system to schedule

processes subject to events in the target system. Running an operating system in a simulator

requires the inclusion of device models such as the disk, realtime clock, interrupt controller,

and console. It also requires that the simulated CPU faithfully implement the target ISA to

a level sufficient for booting the operating system.

Full-system simulation is used by Stanford SimOS [92], Michigan M5 [11], Wisconsin

GEMS [69], and the Carnegie Mellon SimFlex project [124]. The latter two rely on Sim-
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ics [68], a commercial product. Full-system simulation also appears in AMD SimNow [1],

Intel SoftSDV [117], and IBM Mambo [12]. These tools are used both for internal perfor-

mance modeling and with third parties for software bring-up. Such full-system simulation

is useful even for single-threaded applications on a uniprocessor as it takes into account the

performance implications of the operating system and other devices. Because these systems

offer so much fidelity, they run extremely slow. A slowdown of 10–100× is common when

compared to simpler simulators [12, 124].

5.2 Defining a task

The task whose performance we wish to improve may be difficult to isolate, especially in

the presence of multithreaded processors or shared memory. A common task for a two-way

simultaneous multithreaded (SMT) processor is executing two independent applications. If

one application runs substantially longer than the other, halting simulation at the end of the

shorter application will leave us with partially finished work in the longer application. End-

ing simulation at the completion of the longer application requires that we make a decision

about what is now running in place of the short application: does it repeat, does an idle loop

take its place, does a new application begin? Even if the two applications include roughly the

same amount of instructions, contention for shared resources may handicap the performance

of one but not the other, leading to the same complications. Running for a fixed number of

instructions, rather than stopping at the end of an individual application, is an even worse

choice as it removes the concept of work entirely.

5.2.1 Background

The FAME methodology solves this problem with repetition to generate representative work-

loads on multithreaded processors [122]. When comparing the instructions per cycle (IPC) of

an SMT using two different fetch policies, seemingly reasonable stopping conditions result in

reported improvements ranging from 13% to 53%! To narrow the range of results, the authors

recommend a profiling run to record the average IPC of each thread when run by itself. Dur-

ing the actual experiment, which runs multiple target threads simultaneously, the workload

is extended by repeating each thread until the average IPC of each thread lies within some

threshold of its prerecorded individual IPC. At the expense of increased simulation time, this

stopping condition ensures that a representative portion of all threads have been executed.

The FAME methodology relies on an assumption that may not hold true for the cooper-

ative workloads hoped to emerge with new multicore designs: that the behavior of an appli-

cation (its code signature) does not vary when other applications are running on the same

processor. This property is needed to gather a “representative trace” and profile its final IPC.

The concept of a representative trace is difficult to define for multiprocessors where variabil-

ity and thread interleaving play a role in determining application behavior. In addition, the

profiling run must be repeated when microarchitectural parameters change.
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In a single-threaded program, one could use a count of user-mode instructions to de-

fine the length of a task. When two targets have executed the same number of user-mode

instructions, we know they have performed the same task because there is a one-to-one cor-

respondence between a program’s instructions and the work it accomplishes.

When the operating system is simulated, task switching may occur, and one must be

careful when counting user-mode instructions that the instructions belong to the program

of interest — not other user threads. When the application of interest is multithreaded and

running on a target with shared memory, another possibility arises. Imagine multiple worker

threads which write to a common word of memory. The shared word must be locked to prevent

inconsistency. Whether or not a thread obtains the lock is a function of contention and timing

in the system. When spinlocks are used, a thread will continue to execute instructions until

it obtains the lock. Even if the program backs-off or yields immediately upon encountering a

held lock, it must re-execute instructions to obtain the lock before it can make progress.

To illustrate an extreme case of this point, we ran a microbenchmark which measured

locking strategies on a dual processor system. Table 5.1 shows the number of updates per

millisecond, changes of lock ownership, and instruction count per thread. Instructions are

counted using binary instrumentation. This perturbs the system, slowing it down with in-

strumentation routines not part of the actual program, but suffices to illustrate the point. In

both cases, the benchmark performs the same work — 10 million updates — but switching

from a yield to a spinlock causes a 36%-56% increase in instruction count.

Action on failure to lock updates/msec owner changes Thread 1 Insts. Thread 2 Insts

yield() 17,261 10 320,022,610 320,006,348
spin() 11,946 605,032 499,565,899 438,264,621

Table 5.1. Effect of synchronization overhead on instruction count.

With care, one could determine which instructions are involved in the overhead of syn-

chronization and omit them from the instruction count attributed to a task. Without access

to program source code, however, the separation of real work and synchronization overhead

can be extremely difficult.

5.2.2 Example

When source code is available, annotations in the application can inform the simulator of

task boundaries. Using this application-level knowledge, we show in this section that the use

of instruction count to bound individual samples can be problematic in the face of microarchi-

tectural changes. We augment each application in our benchmark suite with a marker that

denotes when its initialization phase has been passed. The benchmarks in the NAS Parallel

suite generally perform multiple iterations to refine problem solutions, and we add a marker

to count each iteration. The web server and file system benchmarks are organized with mul-

tiple clients making requests to a server in a loop. Markers are placed at the end of the main
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client loop at the point where the request has been serviced. In the Cilk checkers program,

a marker denotes the completion of parallel srch() functions. srch() is the portion of the

code that computes the score of a potential move. A toy benchmark, random (RA), is included

which includes only a loop generating random updates to a fixed-size memory. The memory

size of random is chosen to fit in an 8x256 KB cache system but not in an 8x16 KB system.

OpenMP directives are used to invoke loop iterations in parallel. Each application is first run

with a four-way, 16 KB cache in each CPU. Statistics are gathered beginning at the initializa-

tion marker, and the application is terminated after a single work marker. The total number

of instructions and cycles is recorded and used to guide a second round of simulations on

different simulated targets. The second-round target has an 8-way, 256 KB cache per CPU.

Figure 5-1 shows the additional instructions that were induced when using the perfor-

mance of the system with small caches to bound simulation in the target with large caches.

The baseline in this graph is a 256 KB cache system that uses source code annotation to end

simulation after one unit of work. Three policies are shown: samples with fixed total in-

struction count; samples of fixed cycle length; and samples that measure a fixed number of

instructions per processor, allowing processors to continue without measurement as needed

to complete the work unit. Ideally, a policy will stop the application once it has accomplished

a unit of work. Thus, small bars in the figure indicate that we have closely approximated the

number of instructions in one unit of application-level work.

Longer running applications that experience slowdown due to misses (such as CG and

RA) perform substantially more instructions because the stop condition derived from the

system with 16 KB caches overestimates the number of instructions and cycles required by

the larger memory system. Figure 5-2(a) shows the effect of these additional instructions and

cycles on the reported cache metrics.

When fixed total instruction count is the best policy (FT, CK, and MG), it is likely the ap-

plication of interest is dominating our measurements (or the interleaved processes unrelated

to the benchmark produce few memory references). Miss penalty is the greatest determinant

of performance in our idealized processor model. If an application’s miss rate with a small

cache resembles its miss rate with a large cache, then the application is using a working set

that fits within the small cache, and a sample bounded by a fixed cycle count is adequate to

provide the accurate measurements (BT and SP).

AP, CG, and RA work best when stopped after a fixed number of instructions per proces-

sor. We choose the processor which executed the least instructions, i, per work unit in the

16 KB configuration and measure each processor in the large configuration for only i instruc-

tions. This style of bounding can work well when several processors experience many misses

in the small configuration that are not present in the large configuration. By bounding the

sample with the instruction count of the fastest processor in the small configuration, the

measured instructions in the large configuration are the ones performing work related to the

identified work unit and little more.
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Figure 5-1. Additional execution resulting from incorrect sample bounds.

Figure 5-2(b) is identical to Figure 5-2(a) except that miss penalty has been doubled; we

call this configuration large_slow. This has a pronounced effect both on the size of error and

which technique is best to bound the error. Miss error is magnified for CK and FT, while

request error is generally lower. Error for our toy RA benchmark is significantly lower for

the fixed instruction and fixed cycle approaches, yet the instruction per processor approach

that worked so well with the small cache is no longer useful. A fixed cycle count is now the

best choice for AP, BT, and CG as these applications have cycle counts that match closely in

small and large_slow configurations.

Figures 5-2(a) and 5-2(b) show the difficulty of comparing the performance of two targets

when tasks are bounded with microarchitecture-dependent statistics. However, a random

sample is equally likely to capture the beginning of a work unit as the middle or end. Thus,

a sufficient number of independent samples taken at random should do a good job capturing

the performance of an entire task. However, when few samples are used and no effort is made

to correlate work with samples, one should use caution when comparing one experiment to

another.

5.3 Full-system variability

When system effects are present, there is no longer one correct timing outcome. A full-system

simulator allows one to run commercial workloads, but the determinism of a simulation envi-

ronment does not match the real-world of computer systems. In real systems, I/O may arrive

from a network card at random, interrupting the task at hand. Excessive environmental

temperature may trigger clock throttling, reducing the amount of work a process completes
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Figure 5-2. Sample bounds effect on cache metrics.
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before being context-swapped. A hard disk controller may encounter a media error, and the

time spent to correct from the error could lead to a thread losing a race for a lock that it

typically would win.

5.3.1 Variation in hardware

Awareness of variation is relevant beyond the world of simulation. Much effort goes into

determining and eliminating the sources of variation at supercomputing sites [56, 86, 102].

Sometimes this variation may be caused by events as mundane as the periodic interrupts an

operating system uses to provide process scheduling and pre-emption. A tick-less operating

system has been proposed to avoid the effects of variation in bulk synchronous scientific

applications [115]. In these applications, a delay in a single processor is experienced by

all processors as they must wait at a barrier before proceeding. Other approaches include

reserving a processor-per-SMP-node to handle operating system daemon tasks [87]. The

IBM Blue Gene/L has a heterogeneous environment in which certain nodes are devoted to

running a full operating system kernel (Linux) that handles communication, file system,

paging, etc. Other nodes are compute-only, running a single-process kernel and a user-level

runtime library to handle communication with other nodes [113]. The separation is intended

to allow full resource utilization by the compute nodes, moving the more variable system-

level tasks to the I/O nodes.

5.3.2 Modeling variation in software

Since “correctness” in a shared memory system is defined by the programmer-visible mem-

ory consistency model, multiprocessors can run the sample multithreaded program in many

correct ways. For example, a computer that presents a sequentially consistent memory to the

programmer agrees that a given processor’s loads and stores will not occur out of program

order, but no promises are made with respect to how that processor’s memory accesses are

interleaved with accesses by other processors. The only guarantee is that all processors will

see the same order of requests. This presents a performance modeling challenge: how does

a designer know that the performance measured in one simulation is the performance that

will be realized during another simulation with a different memory access order?

Microarchitectural changes have a straightforward effect on uniprocessors, but may in-

troduce surprising behavior on multiprocessors. To demonstrate this effect, we can use time-

lines such the one shown in Figure 5-3. Time (measured in cycles) runs from left to right.

Each processor is represented by a line in the plot, and each < color, marker shape > pair

represents a distinct address space. Cooperating threads have the same color and marker

shape. The plot is initiated by an annotation in the application and ends when the applica-

tion indicates a completed work unit. Each subplot shows the same amount of work. Address

space changes are noted by instrumenting the simulator to report changes to the x86 CR3

page table base register. The three subplots correspond to an eight-processor system with
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Figure 5-3. Timeline for Cilk checkers (CK) showing effect of microarchitecture on
active threads.

16 KB caches, 256 KB caches, and 256 KB caches with double miss penalty. The colors are

not necessarily consistent across the three subplots but do correlate for the most part.

Figure 5-3 shows how changes to the microarchitecture can affect the behavior of a mul-

tithreaded application. We see that in the large configurations, the Cilk checkers benchmark

requires fewer cycles to perform the same amount of work as there are fewer lengthy cache

misses. Surprisingly, the large_slow configuration requires less cycles than the large system,

even though large_slow requires twice as many cycles to satisfy a cache miss. The unexpected

performance improvement is likely due to a different thread interleaving between cycles 0

and 500,000 that allowed the overlapping of useful threads which had been serialized in the

large configuration.

Doubling the cache miss penalty was a drastic way to create an example, but even a

minor variation in system timing can result in many different observable execution inter-

leavings and lead to vastly different performance estimates as the application proceeds down

different paths depending on the order of memory accesses. This phenomenon is called space

variability [5]. To make useful performance estimates in the face of space variability, one
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may conduct multiple runs of the same application, each with slight timing variations. If we

assume that the population of all possible timing outcomes has a normal distribution, the

sampled runs form a collection of results which can be used to statistically bound the per-

formance prediction. However, the need to repeat simulations increases the number of host

CPU-hours required to accurately model a system. While many populations have a normal

distribution, the assumption that the distribution of all timing outcomes is normal remains

unproven.

We reprise the results of Wood and Alameldeen ([5]) using the benchmarks and multipro-

cessor infrastructure described in Chapter 3. While Wood and Alameldeen used several runs

of an entire benchmark as a sample, we add intra-benchmark random sampling to create a

second dimension of sampling. Figure 5-4 shows the effects of both space variation across

runs of the same benchmark and the effects of random sampling within a benchmark. The

space variation is introduced by varying processor execution order during a window of 8 mil-

lion instructions. For every 8 million instructions, we choose the fraction of the window used

by each CPU and randomize the order in which each CPU ticks. In each graph, we estimate

the average cache miss rate across all CPUs. Error bars show a 95% confidence interval as

determined from the variance of the intra-benchmark samples. We see, as expected, that

more samples narrow the intervals. However, multiple runs of the same application can re-

sult in vastly different miss rate estimations. For example, our use of the same random seeds

for each benchmark resulted in one run of each benchmark always experiencing a thread

interleaving that results in high miss rates. Most importantly, run-to-run difference in esti-

mated miss rate is not purely due to random sampling or else each run’s miss rate would be

contained within the error bars of its companions.

While this random perturbation of processor speeds is unlikely in a balanced system, it

serves to demonstrate that we cannot ignore non-determinism when performing research or

developing new multiprocessors. In a software simulation environment, the multiple runs

needed to establish the variance of results further increases the latency of an already com-

plicated simulation and suggests the need for fast execution-driven simulation of multiple

likely interleavings rather than a single simulation.

In the context of checkpoint-based sampling, capturing variation can be difficult because

the checkpoint typically represents a single ordering of memory accesses prior to that point.

Once the detailed sampling begins from checkpointed state, timing variation may induce

representative space variation. However, it has recently been shown that several million in-

structions must be executed with a detailed simulator to observe two uncorrelated outcomes

for certain benchmarks [124]. Since the creation of confidence intervals based on simple ran-

dom sampling relies on each sample being independent, it would appear that sampling across

several executions with timing variation can not always reliably quantify space variation.

However, for certain benchmarks, it may be appropriate to use the fixed thread inter-

leaving of a checkpoint to begin detailed simulations [124]. Consider a transaction process-
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Figure 5-4. Performance estimates differ when system variation is included. Lines
represent eight runs, each with different timing.
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ing workload with randomly arriving transactions. If enough samples are gathered (about

30 seconds of real time), multiple interleavings will be seen in functional mode with the

same probability as in detailed mode. This means that performance estimated from the

functionally-generated samples is likely to match performance of a fully detailed simulation

with execution-driven thread interleavings.

While checkpoint-based initialization of fixed-instruction samples has been shown to be

appropriate for capturing space variation in certain cases, it is not clear that it may be used

for all benchmarks. Generating a set of MINSnaps that captures a representative sample of

memory access interleavings remains a challenge.
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Chapter 6

Conclusion

Simulation is the cornerstone of computer architecture research and development. Simu-

lation in software allows the architect to explore a design space, refine an existing feature,

or validate proposed implementations without the expense of creating hardware prototypes.

However, as computer systems become more complex, the time required to simulate these

systems is growing.

Sampling is a popular approach to reduce simulation time while retaining high accuracy.

By confining detailed simulation to a collection of sample points, rather than simulating

an entire benchmark, architects are able to get accurate performance results quickly. We

can advance to a sample point using a functional simulator that executes a benchmark on

a target but does no performance modeling. Checkpoints, stored files that contain target

state, are another technique for initializing a sample point. In both cases, it is important

that microarchitectural structures in the target contain recent, valid data before beginning

performance analysis. Otherwise, the simulation will predict poor performance as it is using

empty caches and untrained predictors. To increase accuracy, prior work has investigated

ways to avoid this “cold-start” problem.

At one extreme, we can start with a small amount of architectural state and perform

detailed simulation to ensure structures like caches and branch predictors are warmed-up.

When the structures are warmed, measurement can be enabled. Unfortunately, large caches

and complex branch predictors require extensive detailed simulation before they are warmed-

up and ready to use.

Alternatively, we can initialize the target at the sample point with microarchitectural

state gathered online or stored as a checkpoint. If we have checkpointed the configuration

we wish to study, we can warm the microarchitecture immediately. Now, only short-lived

structures such as pipeline state and buffers require slow detailed warming. The downside

to this approach is increased checkpoint size and the need to know in advance the microar-

chitectural details that must be warmed.
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6.1 Summary of contributions

This thesis has presented new structures that store the state of a memory system and branch

predictor in a microarchitecture-independent fashion. These structures, called MINSnaps,

offer the benefits of both architecture-only and microarchitecture-dependent snapshots. A

MINSnap is nearly as versatile as loading architectural state and performing lengthy de-

tailed warming, and it is nearly as fast as initializing the microarchitecture from a concrete

checkpoint.

We were among the first to propose and evaluate functional warming for multiprocessors.

We proposed the Memory Timestamp Record, which allows for fast functional warming dur-

ing online sampling and provides a concise microarchitecture-independent snapshot for use

in checkpoint-based sampling. The microarchitecture-independent contents of the MTR are

interpreted with a reconstruction algorithm to fill in the state of a particular target memory

system.

With Branch Predictor-based Compression, we extended our MINSnap’s contents to sup-

port branch predictor warming. BPC is a specialization of Value Predictor-based Compression

especially suited for branch traces. A branch trace compressed with BPC may be decom-

pressed in less time than functionally simulating each branch. In addition, the use of BPC

requires less size than storing multiple microarchitecture-specific branch predictor snapshots

per sample point.

6.2 Open problems

Our experiences with the MTR and BPC have been encouraging. Nevertheless, the work

suggests several areas for improvement, expansion, and further investigation.

6.2.1 A true MINSnap for branch predictors

BPC transformed the problem of microarchitecture-independent snapshots into a problem

of efficient trace compression. Because a BPC-based simulation is, at its heart, a trace-

driven simulation, it may be insufficient in some settings. For long-running benchmarks, the

inability to perform random accesses into the compressed trace means that to measure the

last sample (in program order), one must first decompress the entire trace prior to the sample

point. Therefore, the time required to simulate each sample point depends on its location in

the program. While this does not preclude independent simulation of each sample point, the

imbalance of times makes BPC unattractive for very long programs. The speed problem may

be avoided if one is willing to sacrifice complete microarchitecture-independence and space:

simply revert to storing a fixed collection of branch predictor snapshots. A compromise is

to restrict the analysis to branch predictors that can be represented by a MINSnap, such as

those with a single global history register of constrained size, a single pattern history table,
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and fixed counter width. For such predictors, a timestamp approach may be successful as

illustrated in Section 4.2. Other styles of branch predictors may lend themselves to different

MINSnap formats; the discovery of such formats would be a valuable contribution to the field.

6.2.2 Tuning BPC’s internal predictors

Our initial implementation of BPC chose its internal predictors to balance accuracy with

speed. We also demonstrated, using several predictors from a recent branch prediction com-

petition, that there are other reasonable internal predictors. Further tuning of BPC will

always be possible as advances are made in the area of branch prediction.

6.2.3 Quantifying synchronization overhead

The number of instructions that comprise a unit of work varies with system effects and mi-

croarchitectural parameters. One source of this error is due to intervening threads. Another

source is synchronization overhead. When source code is not available, synchronization code

signatures may be used to identify instructions related to acquiring a lock or waiting at a

barrier. For instance, if entrance to a critical region is always implemented with a load-

link/store-conditional pair followed by a conditional branch to the load-link instruction, re-

peated instances of these instructions represent overhead due to lock contention. Such clues

have been used in hardware mechanisms to discover dynamically occurring parallelism that

is hidden by the use of locks [89]. In the context of a software simulator, more resources

can be used to analyze instructions and determine whether they are a component of synchro-

nization. However, when the implementation of a synchronization primitive is unknown,

when the use of an atomic instruction is ambiguous, or when synchronization behavior is

less regular, identification can be challenging [19]. A move toward systems that implement

critical sections with transactions may make the identification of overhead an easier task. If

work-unit-sized samples are desired with benchmarks compiled to current ISAs, effort is still

needed to reliably identify overhead.

6.2.4 Obtaining likely thread interleavings

For workloads that do not exhibit all likely thread interleavings during snapshot genera-

tion, it is helpful to induce various thread interleavings to observe a range of performance

for a target. In Chapter 3, we experimented with a processor slowdown technique, but the

effects of processor slowdown were more pronounced during functional simulation than de-

tailed simulation. The resulting interleavings are not necessarily those likely to be observed

in hardware. In Chapter 5, we discussed related work that varied DRAM timing to demon-

strate and evaluate space variability. We also showed results from an experiment that chose

a different processor tick order and utilization frequency every 8 million instructions. While

these schemes effectively produce space variability on full-system simulators, it is not likely
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that samples obtained in this fashion represent an independent selection from the population

of all possible thread interleavings. If indeed we are not choosing independent samples from

the entire population, it is inappropriate to use sample variance to establish confidence inter-

vals. Research into methods for producing appropriate samples via timing variation would

be valuable as it would allow these techniques to be applied without making questionable

assumptions about the population of possible performance outcomes.

6.2.5 Assessing non-sampling bias on modern microarchitectures

Non-sampling bias, the error due to sampling incorrectly warmed microarchitectural struc-

tures, can be made small by careful warming of large structures (caches and branch pre-

dictors). We have reviewed existing techniques from the field of trace sampling and more

modern proposals such as MRRL, functional warming, and the MINSnaps described in this

thesis. These techniques are subject to the effects of wrong-path execution. Wrong-path

execution slightly biases results as wrong-path instructions are not usually included in the

warming process. Run-ahead processing is a relatively recent microarchitecture proposal

that suggests a new form of prefetching [77]. A run-ahead processor is allowed to continue

fetching and executing instructions when it would normally be stalled by a cache miss. When

the data arrives, some or all of the speculatively issued instructions are re-executed. The goal

is that accesses after the miss are allowed to issue to the memory system. When these in-

structions are re-executed in a non-speculative mode, they may now hit in the cache as it has

been primed by these accesses when they first appeared during run-ahead mode. To account

for such effects in a sampling-based simulation of run-ahead processors, one could extend the

functional simulator to include those accesses occurring during run-ahead mode. However,

this slows snapshot generation and ties the snapshot to the run-ahead microarchitecture

that generated the snapshot. Quantifying the effects of such accesses on non-sampling bias

would be an important step for those seeking to use sampling-based simulation of run-ahead

processors.

6.2.6 Combining MINSnaps and hardware-assisted simulation

We have discussed the SimSnap project which used hardware to create snapshots for soft-

ware simulation. Even as FPGA-based simulation, such as the RAMP project, becomes more

popular, it is possible that FPGAs may be used in concert with software simulation. Such a

pairing could provide fast generation of snapshots using hardware, allowing complex and ob-

servable software simulation of samples initialized from these snapshots. Also, development

of timing models is easier in a high level language than it is in a synthesizable hardware

description language. Thus, one may wish to resort to such software models while hardware

is being developed or as a means to guide the creation of hardware models. While an FPGA

may be reconfigured to produce state for any microarchitecture, it may be more desirable

to implement MINSnaps in hardware to reduce the amount of state that needs to be stored
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and later processed in software. For memory system MINSnaps, it may be necessary to fix a

homogeneous and maximum cache size and use a stack-based approach in order to fit in the

resources of an FPGA.

If industry adopts hardware extensions such as Dynamic Instruction Stream Editing

(DISE) [27], MINSnaps could be generated at the hardware level by creating short instru-

mentation routines performed on every load, store, and branch. This is similar in spirit to

building tracing support into hardware via microcode patches [4]. However, microcode has

been relegated to supporting legacy instructions, and DISE represents a modern, low-impact

approach to dynamic hardware-based instrumentation.

6.3 Concluding remarks

This thesis has presented the Memory Timestamp Record (MTR) and Branch Predictor-based

Compression (BPC). Together, these techniques support multiprocessor simulation efforts

that rely on sampling. By summarizing the effects of multiprocessor program execution in a

microarchitecture-independent snapshot, MTR and BPC allow the researcher to amortize the

time spent generating the snapshot across multiple experimental targets — even when each

target represents a new microarchitecture. This reusability lowers storage requirements

and speeds simulation, reducing the time required to design, evaluate, and refine computer

architectures.
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