43 research outputs found

    Semantic Role Labeling for Knowledge Graph Extraction from Text

    Get PDF
    This paper introduces TakeFive, a new semantic role labeling method that transforms a text into a frame-oriented knowledge graph. It performs dependency parsing, identifies the words that evoke lexical frames, locates the roles and fillers for each frame, runs coercion techniques, and formalizes the results as a knowledge graph. This formal representation complies with the frame semantics used in Framester, a factual-linguistic linked data resource. We tested our method on the WSJ section of the Peen Treebank annotated with VerbNet and PropBank labels and on the Brown corpus. The evaluation has been performed according to the CoNLL Shared Task on Joint Parsing of Syntactic and Semantic Dependencies. The obtained precision, recall, and F1 values indicate that TakeFive is competitive with other existing methods such as SEMAFOR, Pikes, PathLSTM, and FRED. We finally discuss how to combine TakeFive and FRED, obtaining higher values of precision, recall, and F1 measure

    Biomedical ontology alignment: An approach based on representation learning

    Get PDF
    While representation learning techniques have shown great promise in application to a number of different NLP tasks, they have had little impact on the problem of ontology matching. Unlike past work that has focused on feature engineering, we present a novel representation learning approach that is tailored to the ontology matching task. Our approach is based on embedding ontological terms in a high-dimensional Euclidean space. This embedding is derived on the basis of a novel phrase retrofitting strategy through which semantic similarity information becomes inscribed onto fields of pre-trained word vectors. The resulting framework also incorporates a novel outlier detection mechanism based on a denoising autoencoder that is shown to improve performance. An ontology matching system derived using the proposed framework achieved an F-score of 94% on an alignment scenario involving the Adult Mouse Anatomical Dictionary and the Foundational Model of Anatomy ontology (FMA) as targets. This compares favorably with the best performing systems on the Ontology Alignment Evaluation Initiative anatomy challenge. We performed additional experiments on aligning FMA to NCI Thesaurus and to SNOMED CT based on a reference alignment extracted from the UMLS Metathesaurus. Our system obtained overall F-scores of 93.2% and 89.2% for these experiments, thus achieving state-of-the-art results

    Foundational Ontologies meet Ontology Matching: A Survey

    Get PDF
    Ontology matching is a research area aimed at finding ways to make different ontologies interoperable. Solutions to the problem have been proposed from different disciplines, including databases, natural language processing, and machine learning. The role of foundational ontologies for ontology matching is an important one. It is multifaceted and with room for development. This paper presents an overview of the different tasks involved in ontology matching that consider foundational ontologies. We discuss the strengths and weaknesses of existing proposals and highlight the challenges to be addressed in the future

    Harnessing sense-level information for semantically augmented knowledge extraction

    Get PDF
    Nowadays, building accurate computational models for the semantics of language lies at the very core of Natural Language Processing and Artificial Intelligence. A first and foremost step in this respect consists in moving from word-based to sense-based approaches, in which operating explicitly at the level of word senses enables a model to produce more accurate and unambiguous results. At the same time, word senses create a bridge towards structured lexico-semantic resources, where the vast amount of available machine-readable information can help overcome the shortage of annotated data in many languages and domains of knowledge. This latter phenomenon, known as the knowledge acquisition bottlneck, is a crucial problem that hampers the development of large-scale, data-driven approaches for many Natural Language Processing tasks, especially when lexical semantics is directly involved. One of these tasks is Information Extraction, where an effective model has to cope with data sparsity, as well as with lexical ambiguity that can arise at the level of both arguments and relational phrases. Even in more recent Information Extraction approaches where semantics is implicitly modeled, these issues have not yet been addressed in their entirety. On the other hand, however, having access to explicit sense-level information is a very demanding task on its own, which can rarely be performed with high accuracy on a large scale. With this in mind, in ths thesis we will tackle a two-fold objective: our first focus will be on studying fully automatic approaches to obtain high-quality sense-level information from textual corpora; then, we will investigate in depth where and how such sense-level information has the potential to enhance the extraction of knowledge from open text. In the first part of this work, we will explore three different disambiguation scenar- ios (semi-structured text, parallel text, and definitional text) and devise automatic disambiguation strategies that are not only capable of scaling to different corpus sizes and different languages, but that actually take advantage of a multilingual and/or heterogeneous setting to improve and refine their performance. As a result, we will obtain three sense-annotated resources that, when tested experimentally with a baseline system in a series of downstream semantic tasks (i.e. Word Sense Disam- biguation, Entity Linking, Semantic Similarity), show very competitive performances on standard benchmarks against both manual and semi-automatic competitors. In the second part we will instead focus on Information Extraction, with an emphasis on Open Information Extraction (OIE), where issues like sparsity and lexical ambiguity are especially critical, and study how to exploit at best sense-level information within the extraction process. We will start by showing that enforcing a deeper semantic analysis in a definitional setting enables a full-fledged extraction pipeline to compete with state-of-the-art approaches based on much larger (but noisier) data. We will then demonstrate how working at the sense level at the end of an extraction pipeline is also beneficial: indeed, by leveraging sense-based techniques, very heterogeneous OIE-derived data can be aligned semantically, and unified with respect to a common sense inventory. Finally, we will briefly shift the focus to the more constrained setting of hypernym discovery, and study a sense-aware supervised framework for the task that is robust and effective, even when trained on heterogeneous OIE-derived hypernymic knowledge

    Analysing top-level and domain ontology alignments from matching systems

    Get PDF
    Top-level ontologies play an important role in the construction and integration of domain ontologies, providing a well-founded reference model that can be shared across knowledge domains. While most efforts in ontology matching have been particularly dedicated to domain ontologies, the problem of matching domain and top-level ontologies has been addressed to a lesser extent. This is a challenging task, specially due to the different levels of abstraction of these ontologies. In this paper, we present a comprehensive analysis of the alignments between one domain ontology from the OAEI Conference track and three well known top-level ontologies (DOLCE, GFO and SUMO), as generated by a set of matching tools. A discussion of the problem is presented on the basis of the alignments generated by the tools, compared to the analysis of three evaluators. This study provides insights for improving matching tools to better deal with this particular task

    Semantic Enrichment of Ontology Mappings

    Get PDF
    Schema and ontology matching play an important part in the field of data integration and semantic web. Given two heterogeneous data sources, meta data matching usually constitutes the first step in the data integration workflow, which refers to the analysis and comparison of two input resources like schemas or ontologies. The result is a list of correspondences between the two schemas or ontologies, which is often called mapping or alignment. Many tools and research approaches have been proposed to automatically determine those correspondences. However, most match tools do not provide any information about the relation type that holds between matching concepts, for the simple but important reason that most common match strategies are too simple and heuristic to allow any sophisticated relation type determination. Knowing the specific type holding between two concepts, e.g., whether they are in an equality, subsumption (is-a) or part-of relation, is very important for advanced data integration tasks, such as ontology merging or ontology evolution. It is also very important for mappings in the biological or biomedical domain, where is-a and part-of relations may exceed the number of equality correspondences by far. Such more expressive mappings allow much better integration results and have scarcely been in the focus of research so far. In this doctoral thesis, the determination of the correspondence types in a given mapping is the focus of interest, which is referred to as semantic mapping enrichment. We introduce and present the mapping enrichment tool STROMA, which obtains a pre-calculated schema or ontology mapping and for each correspondence determines a semantic relation type. In contrast to previous approaches, we will strongly focus on linguistic laws and linguistic insights. By and large, linguistics is the key for precise matching and for the determination of relation types. We will introduce various strategies that make use of these linguistic laws and are able to calculate the semantic type between two matching concepts. The observations and insights gained from this research go far beyond the field of mapping enrichment and can be also applied to schema and ontology matching in general. Since generic strategies have certain limits and may not be able to determine the relation type between more complex concepts, like a laptop and a personal computer, background knowledge plays an important role in this research as well. For example, a thesaurus can help to recognize that these two concepts are in an is-a relation. We will show how background knowledge can be effectively used in this instance, how it is possible to draw conclusions even if a concept is not contained in it, how the relation types in complex paths can be resolved and how time complexity can be reduced by a so-called bidirectional search. The developed techniques go far beyond the background knowledge exploitation of previous approaches, and are now part of the semantic repository SemRep, a flexible and extendable system that combines different lexicographic resources. Further on, we will show how additional lexicographic resources can be developed automatically by parsing Wikipedia articles. The proposed Wikipedia relation extraction approach yields some millions of additional relations, which constitute significant additional knowledge for mapping enrichment. The extracted relations were also added to SemRep, which thus became a comprehensive background knowledge resource. To augment the quality of the repository, different techniques were used to discover and delete irrelevant semantic relations. We could show in several experiments that STROMA obtains very good results w.r.t. relation type detection. In a comparative evaluation, it was able to achieve considerably better results than related applications. This corroborates the overall usefulness and strengths of the implemented strategies, which were developed with particular emphasis on the principles and laws of linguistics

    Unsupervised Knowledge-based Word Sense Disambiguation: Exploration & Evaluation of Semantic Subgraphs

    Get PDF
    Hypothetically, if you were told: Apple uses the apple as its logo . You would immediately detect two different senses of the word apple , these being the company and the fruit respectively. Making this distinction is the formidable challenge of Word Sense Disambiguation (WSD), which is the subtask of many Natural Language Processing (NLP) applications. This thesis is a multi-branched investigation into WSD, that explores and evaluates unsupervised knowledge-based methods that exploit semantic subgraphs. The nature of research covered by this thesis can be broken down to: 1. Mining data from the encyclopedic resource Wikipedia, to visually prove the existence of context embedded in semantic subgraphs 2. Achieving disambiguation in order to merge concepts that originate from heterogeneous semantic graphs 3. Participation in international evaluations of WSD across a range of languages 4. Treating WSD as a classification task, that can be optimised through the iterative construction of semantic subgraphs The contributions of each chapter are ranged, but can be summarised by what has been produced, learnt, and raised throughout the thesis. Furthermore an API and several resources have been developed as a by-product of this research, all of which can be accessed by visiting the author’s home page at http://www.stevemanion.com. This should enable researchers to replicate the results achieved in this thesis and build on them if they wish

    Matching events and activities by integrating behavioral aspects and label analysis

    Get PDF
    Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs

    Matching events and activities by integrating behavioral aspects and label analysis

    Get PDF
    Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. Mapping the produced events to activities of a given process model is essential for conformance checking, annotation and understanding of process mining results. In order to accomplish this mapping with low manual effort, we developed a semi-automatic approach that maps events to activities using insights from behavioral analysis and label analysis. The approach extracts Declare constraints from both the log and the model to build matching constraints to efficiently reduce the number of possible mappings. These mappings are further reduced using techniques from natural language processing, which allow for a matching based on labels and external knowledge sources. The evaluation with synthetic and real-life data demonstrates the effectiveness of the approach and its robustness toward non-conforming execution logs
    corecore