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N O T E T O T H E R E A D E R

This thesis is a collection of works in the area of Word Sense Disambigua-

tion, specifically focused on the exploitation of semantic subgraphs. It is

structured into three parts. Part I includes a literature review split into two

chapters, as well as a chapter outlining the scope of the research. Part II

includes four chapters, each describing milestones made throughout the

research in chronological order. Each of these chapters include a method-

ology, results, and related work where appropriate. Part III concludes the

contributions of the thesis, through discussion of results and outlook to-

wards future work. Finally there is the appendix which contains papers

published by the author, references, and other relevant material.

Often the chapters in Part II refer back to what has been formalised in

the literature review of Part I, therefore how to navigate between various

sections of the thesis will be explained here in advance. The example below

illustrates the referencing system employed.

Section 1.2.3.4 := <Chapter 1>.<Section 2>.<Subsection 3>.<Subsubsection 4>

Note that the first digit is very important, as it refers to the chapter num-

ber. If reading this thesis as a PDF file, these references are hyperlinks that

can simply be clicked on to navigate to each mentioned section. This is also

the case for citations. Acronyms are re-introduced in every chapter, alle-

viating the burden of memorising them all. Where appropriate, parts and

chapters of the thesis have italicised introductions. This weaves content of

the thesis together to help the reader see the bigger picture.

iii



A B S T R A C T

Hypothetically, if you were told: �Apple uses the apple as its logo� . You would

immediately detect two different senses of the word �apple� , these being the

company and the fruit respectively. Making this distinction is the formidable

challenge of Word Sense Disambiguation (WSD), which is the subtask of

many Natural Language Processing (NLP) applications. This thesis is a

multi-branched investigation into WSD, that explores and evaluates unsu-

pervised knowledge-based methods that exploit semantic subgraphs. The

nature of research covered by this thesis can be broken down to:

1. Mining data from the encyclopedic resource Wikipedia, to visually

prove the existence of context embedded in semantic subgraphs

2. Achieving disambiguation in order to merge concepts that originate

from heterogeneous semantic graphs

3. Participation in international evaluations of WSD across a range of

languages

4. Treating WSD as a classification task, that can be optimised through

the iterative construction of semantic subgraphs

The contributions of each chapter are ranged, but can be summarised by

what has been produced, learnt, and raised throughout the thesis. Further-

more an API and several resources have been developed as a by-product

of this research, all of which can be accessed by visiting the author’s home

page at http://www.stevemanion.com. This should enable researchers to

replicate the results achieved in this thesis and build on them if they wish.
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Part I

B A C K G R O U N D , F O R E G R O U N D & F O C U S

Part I of this thesis presents the literature review split into Chap-

ter 1 and Chapter 2. The former chapter is to provide the reader

with an elementary background on Word Sense Disambigua-

tion (WSD) and is aimed at making the thesis accessible to a

wider audience. The latter chapter is more technical and details

unsupervised knowledge-based WSD that employs the use of

semantic subgraphs. Following the literature review chapters,

Chapter 3 outlines the focus of the thesis. Here the literature re-

view is connected to the WSD challenges the author will tackle.



1
T H E B A C K G R O U N D : L I T E R AT U R E R E V I E W

The background of this literature review first formalises the problem of Word

Sense Disambiguation (WSD) and details the core obstacles that make it such a

formidable challenge. Following this the conventional, explicit, and in-vitro inter-

pretation of a WSD system is formalised. Finally WSD approaches, applications,

and resources are briefly elaborated on for later mention in the thesis. The purpose

of this background chapter is to make the thesis more accessible, by introducing the

elementary concepts and terminology of WSD.

2



1.1 an introductory example of wsd 3

1.1 an introductory example of wsd

A word’s intended sense (its meaning), is characterised by the context it

is used in. A definitive example is a homograph1: a class of words that

map to several etymologically2 unrelated senses. For instance �bank� , dis-

ambiguated in the text below:

�...�shing on the river bank± �

Bank(n) land := The sloping edge of land by a river.

It is used as a noun with adjacent content3 words ��shing� and �river� . Just

as the human lexicon exploits these lexical features of context to interpret

the sense of �bank� as Bank(n) land rather than Bank(n) finance, so can a machine

with access to a Lexical Knowledge Base (LKB).

The Lesk (1986) algorithm makes use of one the most established LKBs,

the Machine Readable Dictionary (MRD), by exploiting the textual overlap

of the word �river� appearing in both the context and definition of the above

example. Furthermore, instinctive lexicon exploits such as one-sense-per-

collocation/discourse (Yarowsky, 1995) and one-sense-per-part-of-speech (Steven-

son and Wilks, 2001) are also effective, with respective experiments re-

porting precision over 96% on a Lexical Sample (LS) and over 94% on an

All-Words (AW) evaluation4. There are many more published methods of

exploiting the lexicon that achieve high precision at the homograph level.

However, beyond homographs, WSD requires deeper semantic analysis, en-

suring it has remained a formidable challenge since the 1950s5. To explain

why, the core obstacles WSD must overcome will now be elaborated on.

1 See (Templeton, 2003) and (Nelson, 1976) for a clarification of homonymy.
2 A word’s etymology is a chronical account of its origin and derivation.
3 Content, or open-class words, include nouns, verbs, adjectives and adverbs. Conversely,

functional, or closed-class words, link content words together.
4 For a lexical sample, a set of words is selected in which a number of corpus instance are

found that represent the word’s usage. As for all words, this is the disambiguation of all
open-class words in text (Kilgarriff and Rosenzweig, 2000).

5 Generally speaking, the origins of WSD took shape as a subtask of Machine Translation
(MT), see (Hutchins, 1995)
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1.2 the core obstacles of wsd

1.2.1 WSD Obstacle #1: Sense Granularity

Shared etymologies between word senses makes establishing distinctions

between them an intractable challenge for lexicographers6. In the words of

Wilks and Stevenson (1996) they tackle it as either “lumpers or splitters: those

who like to divide senses without apparent end, or those who prefer larger

(more homographic) clusters of usages”. Whether lexicographers prefer to

lump or split, they must strive to do so in a consistent manner, classifying

words as:

a) Monosemous - Having one intended sense, regardless of context.

b) Homonymous - Having many senses, all with unique etymologies.

c) Polysemous - Having many senses, sharing common etymologies.

This classification task presents the obstacle of sense granularity. At first

glance a word can appear to fit neatly into one of these classifications; how-

ever on closer inspection it may have the attributes of another depending

on how coarsely or finely distinctions are made by the lexicographer.

For instance, it is easy to understand the shared etymology between the

senses Line(n) fishing and Line(n) power, since they are both a length of fibre.

While they are unique senses, their shared etymology could warrant them

being coarsely lumped together. Counterwise as Hanks (2000) points out,

even the homograph �bank� ↦ Bank(n) institution can be finely split into the

senses Bank(n) institution or Bank(n) building. This obstacle of establishing the

ideal level of sense resolution, must not only be overcome by lexicogra-

phers but also by WSD systems.

The implications of sense granularity for a WSD task is comparable to

image granularity for an image recognition task. In Figure 1, does a system

6 A lexicographer is a someone who edits and compiles dictionaries, effectively formalising
the human lexicon in written form.
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need to identify a fish (left image) or go as far as identifying a Tarpon fish

(right image) at the risk of a misidentification? Likewise, to what extent

does a WSD system need to articulate a word’s intended sense to achieve

its Natural Language Processing (NLP) task?

Figure 1: Visual Analogy of Sense Granularity

Ide and Wilks (2007) assert that coarse-grain (homographic) level WSD

is sufficient for most NLP tasks. While many publications support this, it

does not negate the importance of supplying a WSD system with knowledge

that is capable of providing finer granularity if required. In this respect,

knowledge is classified as either:

a) Structured - e.g. MRDs, ontologies, theasauri

b) Unstructured - e.g. Mono/Bi-lingual corpora, word frequencies

For structured knowledge, the level of sense granularity is decided by

the lexicographers who design them. International WSD evaluations have

demonstrated that the use of coarser lexicons results in higher reported pre-

cision (Kilgarriff, 2001), furthermore WSD evaluated at the coarse-grained

level also achieves higher precision (Navigli et al., 2007). Conversely, for

unstructured knowledge the level of sense granularity is decided by the

knowledge resource itself. For example cross-lingual approaches to WSD

that rely on bilingual corpora7 can dynamically deal with granularity; since

finer sense distinctions are only relevant as far as they are lexicalised in dif-

ferent translations of words (Lefever and Hoste, 2013).

7 Bilingual corpora are translated texts (such that corpora is the plural of corpus).
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1.2.2 WSD Obstacle #2: Under-specified Context

The human need to communicate new ideas has ensured that language con-

tinuously evolves. New words are created while existing ones are infused

with new senses, often established through metaphoric usage (Hirst, 1987,

p5-6). By analysing word frequencies in running text, a power-law distribu-

tion can be observed known as Zipf’s Law (Zipf, 1949) in Equation (1):

Pn ∼ 1

na
(1)

In running text the probability of a word in the human lexicon being the

next word shares an inverse relationship with its frequency rank n, such

that a > 1 but very close to 1 in value. In his work Zipf (1945) noticed that

more frequent words tend to be more polysemous. The implication of this

for WSD, is that even though most words in the lexicon are monosemous

(Leacock et al., 1993, p260), a majority of words in running text are not!

He explained his law in terms of economies of effort: the speaker’s effort to

produce contextualised speech finding an equilibrium with the auditor’s ef-

fort to disambiguate what is heard. In order for communicative efficiency,

humans tend to make just enough effort to contextualise their speech, only

drawing on more infrequent monosemous words when necessary to alle-

viate the disambiguation effort required by the auditor. It is only when a

speaker misjudges the effort of contextualisation required for the auditor,

that presents the WSD obstacle of context under-specification.

Under-specification is a combination of a word’s context not being abun-

dant or salient enough. When Weaver (1949, p20-21) first wrote about WSD

in his discussion of meaning and context, he likened under-specification

to be the same as reading text through an opaque mask with a window

slit. Hence the context abundancy is the number of words either side of the

ambiguous word that are visible, better known as a word’s local context or

context window size. On the other hand, context saliency refers to how unique
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the lexical, morphological, and other such features present in the context

window are.

WSD systems often base context window size on defined segments of

text, such as a sentence. If the sentence is very short, there is a risk there

will be a lack of context abundancy. For example the sentence may rely on

a cohesion device (Halliday and Hasan, 1976) that establishes a relationship

to words in previous or following sentences. Take for example the cohesion

device known as ellipsis8, in which B’s reply in the text below can only be

understood by having access to A’s preceding statement:

A:�I like the blue {hat}.�

B:�I prefer the green {}.�

The WSD system would struggle since B neglects to make Zipf’s stated

effort to mention the word �hat� in {}. If the context window included

a sentence on either side, the crucial word �hat� would be available as

input to the WSD system. Early work by Kaplan (1950) and later more

Figure 2: All Is Vanity

extensive experiments by Yarowsky (1993),

have demonstrated that the local context is re-

markably small with the two content words

on either side of the ambiguous word proving

to be adequate in most cases. If the context is

abundant enough, perhaps it lacks saliency. In

Figure 2 the image can easily be confused as ei-

ther a skull or a lady9. While there is an abun-

dance of detail in this image that can be in-

terpreted as context, these details are not very

salient and conflict with each other making it

difficult to arrive at a final disambiguation of what the eye can see. The

contextual features that can lack in saliency are:

8 Nunan (1993) defines ellipsis as occurring when some essential structural element is omit-
ted from a sentence or clause and can only be recovered by referring to an element in
preceding text.

9 This is a double image (or visual pun) painted by Charles Allan Gilbert in 1892, an early
contributor to camouflage art for the U.S. Shipping Board in WWI.
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a) Morphological/Categorical: This type of ambiguity occurs for words like

�key� , which have many senses in more than one of the syntactic cate-

gories such as nouns, verbs, or adjectives (e.g. Key(n) music, Key(v) to set, or

Key(a) to be important). In the experiments conducted by Wilks and Steven-

son (1996) that exploited parts-of-speech in WSD at the homograph

level, when there was more than one sense per syntactic category, this

was precisely what induced an upper bound in performance. Homo-

graphic ambiguity is also very prominent in the Japanese language due

to its seemingly ad hoc use of Chinese characters (Kanji) (Olinsky and

Black, 2000). While words like �key� are prevalent in English, Turdakov

(2010) notes that other languages like Russian have a morphology that

innately avoids this ambiguity.

b) Syntactic Ambiguity: This is the compounded result of several instances

of morphological ambiguity, which would confuse a part-of-speech tag-

ger. For example sentences such as: �They're cooking apples.�(Hirst, 1987),

even with the morpheme /ing/, the word cook-ing can still be inter-

preted as both the continuous present form for the verb cook, or alterna-

tively as the noun phrase cooking. The collective syntax of the sentence

as a whole does not divulge which interpretation is correct. In English,

this type of ambiguity is often caused when the copula10 is dropped,

which typically happens in casual speech or in newspaper headlines.

c) Vagueness/Indeterminacy: This occurs when the speaker tends to use coar-

ser rather than finer sense granularity in his or her speech. In other

words, there is a lack of lexical redundancy built into speech. For exam-

ple, the word �child� can refer to either a boy or a girl. Which exactly can-

not be determined; therefore it is described as indeterminant or vague

(Ravin and Leacock, 2000).

d) Pragmatic/Non-linguistic: This type of ambiguity occurs when the text re-

lies on non-linguistic cues to fill the information gap. A famous example

10 A copula is a function word that links the subject of a sentence with a predicate, i.e. Whales
are mammals.
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often used is �A brick dropped on the table, and it broke.� (Norvig, 2007).

In this instance it cannot be known from the text alone if the pronoun

�it� refers to is the brick or the table, consequently it cannot be disam-

biguated which object, if not both, actually broke. This highlights the

fact that the WSD system needs to draw on real world, or pragmatic

knowledge. Most areas of pragmatics have not received much attention

in statistical NLP, both because it is hard to model the complexity of

world knowledge with statistical means and due to the lack of training

data (Manning and Schutze, 1999).

At any time these features of context can lack enough saliency in the

defined context window for disambiguation. It reveals that WSD systems

should not rely on humans to make an adequate level of effort in building

redundancy into their speech/text through specification of context.

1.2.3 WSD Obstacle #3: Domain Coverage

The amount of human knowledge harnessed into machine readable re-

sources is improving, yet still remains scarce. This wait to harness all of

human knowledge at the machine level is often cited as the “Knowledge

Acquisition Bottleneck” (Gale et al., 1992b). The implications of this bottle-

neck can be understood by trying to guess what the spiral shape (left) is in

Figure 3 below.

Figure 3: Visual Analogy of Domain Coverage
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If you have a good understanding of ballistics or are an avid James

Bond11 fan, perhaps you immediately noticed that you were staring down the

barrel of a gun, as the spiral in question depicts the rifling of a gun barrel12. If

you struggled to disambiguate Figure 3, it is because the image stems from

outside your domain of knowledge. This introduces the obstacle of domain

knowledge coverage for WSD. Regardless of the LKB the WSD system draws

from, if there is no trace of James Bond present in the knowledge, the WSD

system will lack adequate coverage to produce any sensible disambiguation

output.

Bar-Hillel (1960) understood this early on in his critique of Machine

Translation (MT) – of which also applies to WSD as an implicit subtask

of MT. He argued that fully automated high quality MT would be impossi-

ble, since the prerequisite task of mapping human knowledge to a machine

readable resource for a MT system to access is also impossible. He reasons

this with his example of �The box was in the pen� . A machine would require

either real world knowledge to gauge the size of boxes and pens, to deter-

mine that a typical box could fit inside a play pen, but not a writing pen.

Or alternatively, a machine would require real-time non-linguistic knowl-

edge, described by Kilgarriff (2007) as what is being observed or done or

encouraged or forbidden at the time (perhaps implying MT would require

machine vision amongst other sensory input).

Although Bar-Hillel considered covering the vastness of human knowl-

edge to be a chimerical goal, he stated that a MT system would not only

need to be supplied with a MRD, but also an encyclopedia. As it turns

out this is exactly where researchers are headed today, in attempts to pool

together as much knowledge from as many domains and resource types

to solve this obstacle of coverage. Endeavours to improve the semantic web

11 http://knowyourmeme.com/memes/people/james-bond - James Bond image source. This vi-
sual context is reminiscent of the classic introduction scene of every James Bond movie. The
barrel of a gun is trained on Bond as he walks across the screen until at some point Bond
swings around and shoots the supposed holder of the gun.

12 http://www.flickr.com/photos/ranfog/7172461895/in/pool-74682133@N00 - Photo
source for the rifling of a gun barrel.

http://knowyourmeme.com/memes/people/james-bond
http://www.flickr.com/photos/ranfog/7172461895/in/pool-74682133@N00
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take things even further, by standardising linked data formats and methods

of including more semantic content in web structures.

1.2.4 WSD Obstacle #4: Meaningful Evaluation

Early evaluations of WSD systems were isolated and difficult to compare

up until Kilgarriff (1998) established SensEval, the collaborative forum and

framework to evaluate WSD. Part of the success of SensEval is the publish-

ing of sense tagged texts. This allows researchers to evaluate various WSD

solutions in identical settings and understand which methods are most ef-

fective.

SensEval also adopts the use of upper and lower bounds of performance,

advocated by Gale et al. (1992a). Upper bounds represent a ceiling for Inter

Tagger Agreement or Inter Annotator Agreement (ITA/IAA) for the hu-

mans producing an answer key for the WSD task, since naturally humans

will disagree with each other for a certain percentage of taggings. However

as Kilgarriff (2001) notes, replicability of ITA scores defines the true upper

bound of a task. That is, the level of agreement between two completely

different groups of taggers using the same methodology to tag a particular

data set need to be able to produce reasonably similar taggings.

As for the lower bound this is a baseline for WSD systems to try to beat,

of which there are four in conventional use. Listed in order of increasing

difficulty, these baselines are generated as the:

a) Random Sense - A randomly selected sense.

b) Lesk Sense - The sense selected using the Lesk (1986) algorithm.

c) First Sense (FS) - The first listed sense in a dictionary (or MRD).

d) Most Frequent Sense (MFS) - The sense most frequently used for tagging

in a sense tagged corpus.

Unsurprisingly, the Random baseline is the easiest to beat. The Lesk

(1986) baseline is not much harder, yet it is an important legacy baseline
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because it was first to exploit MRDs strictly for the purpose of WSD. As

for the FS and MFS baselines, they are comparable in terms of difficulty

and are now the baselines used in most evaluations found in modern lit-

erature. In line with Zipf’s law of meaning that infers more frequent senses

are represented by more frequent words, the FS or MFS baseline is correct

the majority of the time and therefore making it notoriously hard to beat.

In fact the FS/MFS baseline, provides a reasonable fail safe option when

the context is under-specified, described by McCarthy et al. (2004) as backing-

off. Before and since, it has been made use of in many endeavours such as

Wilks and Stevenson (1998); Navigli et al. (2007) and Ponzetto and Navigli

(2010). In fact the WSD survey written by Navigli (2009) asserts that vir-

tually all WSD systems refer to some form of back-off strategy due to the

phenomenon of data sparseness, which is synonymous to a lack of domain

knowledge coverage.

In addition to upper and lower bounds, there are two modes of evalu-

ation for WSD. Categorised by Ide and Veronis (1998) in terms borrowed

from biology, these modes are:

a) In-vitro - Evaluates WSD independent of an application.

b) In-vivo - Evaluates WSD dependent on its overhead NLP task.

SensEval began with a focus on in-vitro WSD, in which sense tagged

corpora were prepared for both Lexical Sample (LS) and All Words (AW)

tasks in a range of languages13. However over time the tasks of SensEval

evolved to investigate the WSD obstacles discussed in this section, along

with WSD evaluated in more in-vivo circumstances (this is further discussed

in the following section). To reflect the expanding range of semantic tasks,

SensEval was retitled to SemEval in 2007.

13 Refer to Table 2 and 3 in Section 1.4.4 at the end of this chapter for more details on these
tasks.
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1.2.5 The Core & All Other Obstacles Considered

All of the core obstacles discussed are inter-related. For example both an

under-specified context or a lack of knowledge coverage can render a WSD

system incapable of producing output (providing there is no back-off strat-

egy). Again the sense granularity of a WSD system’s output may not be

appropriate for the NLP task it is being evaluated for. These four obstacles

are among a number of other prevailing obstacles that have ensured WSD

to be the formidable challenge that it is. In fact, WSD is considered to be

an "AI-Complete" problem (Ide and Veronis, 1998; Mallery, 1988), which

means WSD is part of a subset of problems that need to be solved in order

to achieve Artificial Intelligence (AI) comparable to that of a human. The

effects of these four obstacles, among others, will be noticeable through-

out the thesis; therefore hopefully this discussion has been helpful to those

who have been unfamiliar with Word Sense Disambiguation.

1.3 wsd systems

1.3.1 WSD Applications

WSD is present in a range of NLP applications, and is often referred to as

an intermediate task, meaning it is only desired as a means to an end, not

as an application in and of itself (Wilks and Stevenson, 1996). For this rea-

son in-vitro WSD can be criticised as having no real world purpose, yet

as Navigli (2009, p57) asserts and this author agrees, investigations into

in-vitro WSD must go on. Since there are many questions it can answer,

that in turn could improve in-vivo WSD. This is reflected in the diversifi-

cation of SemEval tasks over the years which address new WSD obstacles

as others are overcome. More recent tasks are also geared towards more in-

vivo evaluation, perhaps because some researchers feel in-vitro WSD has
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plateaued (Agirre and Edmonds, 2007) or perhaps there is a growing desire

to demonstrate WSD has real world use. As a subtask, WSD can be either:

a) Implicit - WSD is an inseparable process from its NLP task.

b) Explicit - WSD is a separable process from its NLP task.

In-vitro WSD is inherently explicit, because it is performed independent

of an application. A challenge for researchers is to use in-vitro WSD in

in-vivo settings, because unfortunately by design, NLP applications tend

not to accommodate WSD being an explicit module that can be added or

removed. Instead, WSD is an implicit process of a greater module in the

NLP application, and therefore is inseparable. Such an example of implicit

in-vivo WSD, is a statistical Machine Translation (MT) system that draws

from knowledge that is a set of translated documents. Words and chunks

of text are probabilistically mapped from one language to another, such as

was performed by Brown et al. (1990).

This makes it difficult for SemEval advances made in explicit in-vitro

WSD to be projected onto the in-vivo WSD realm. As relatively recent sur-

veys detail, it has yet to be seen for in-vivo WSD to significantly improve the

performance of one of its applications (Agirre and Edmonds, 2007; Navigli,

2009) and for a framework for in-vivo WSD evaluation to be well estab-

lished (Turdakov, 2010) to the extent of the in-vitro framework established

by Kilgarriff (1998) for SensEval. If explicit in-vivo WSD can successively

be harnessed, then some NLP applications that it holds promise for are

briefly described as follows:

a) Machine Translation (MT) was the first notable application that high-

lighted a need for WSD. Naturally, a MT system needs to understand

the correct sense of a word in the source text, and produce target trans-

lations with words that map to the original senses as close as possible.

As for some examples taken from the literature, to translate the French

word �grille� to English, depending on the context, can be translated as

railings, gate, bar, grid, scale, or schedule (Ide and Veronis, 1998), likewise
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the Italian word �penna� can be translated in English as feather, pen, or

author (Navigli, 2009).

b) Information Retrieval (IR) or Hypertext Navigation is another notable ap-

plication of WSD, that all internet users are familiar with when browsing

the web. For example, when searching for a person who shares the same

name as someone very famous like �Michael Jackson� , the chances of find-

ing them can be potentially troublesome if they have a lack of presence

on the internet. However as Turdakov (2010) suggests, this turns out

not to be too much of a problem since modern IR systems do not use

special WSD algorithms and rely on the assumption that the user in-

troduces additional information to the context that is sufficient to get

relevant results. Even more so these days, search engines collect data

from their users to build up a pre-defined context for their searches.

c) Lexicography is another interesting application of WSD. For example the

automated tagging of text can help lexicographers build up a large sense

tagged corpus from a collection of documents. This would be a repos-

itory of word senses used in authentic ways. While not every tagging

would be correct, it would alleviate the burden of trying to locate a sense

that is rarely in use. For example locating an example of the word �date�

used with the intended sense of Date(n) fruit, rather than Date(n) time.

There are many other NLP applications that could make use of WSD

advancements, such as speech and text processing, content and theme anal-

ysis, semantic web endeavours, information extraction, and so forth. This

highlights that WSD is an intermediate task in a broad range of greater

NLP applications, even if only implicitly.

1.3.2 WSD Approaches

The previous section covered motivations of why WSD should be achieved

by reviewing the applications it is used in, whereas this section details
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how WSD is achieved by reviewing the core approaches employed. Once

again this section is also brief, primarily because it only serves to point

out the broader differences and similarities in each approach. Recall from

the title of this thesis, the approach this author will investigate is unsu-

pervised knowledge-based WSD, which employs the use of semantic sub-

graphs. This will be formalised in detail later in Chapter 2.

a) Knowledge-based WSD – As the name suggests, this approach exploits

LKBs to achieve WSD. The knowledge is structured, drawing from re-

sources such as MRDs or semantic graphs, rather than unstructured

corpora. Advancements in the semantic web and organisation of knowl-

edge have seen LKBs take strides in development. This directly benefits

knowledge-based WSD and helps alleviate the knowledge acquisition bot-

tleneck (Gale et al., 1992b). The key strength of knowledge-based meth-

ods for WSD is they are usually applicable to all words in unrestricted

text (Mihalcea, 2007) ensuring it is capable of a broader range of tasks

than corpora based WSD methods.

b) Supervised WSD – This approach is typically achieved with the use of

a sense tagged corpus, to which machine learning techniques are ap-

plied. This form of WSD tends to achieve the best performance out

of all approaches (Màrquez et al., 2007). Yet as Pedersen (2007) rightly

states, supervised WSD systems are bound by their training data, and

therefore are limited in portability and flexibility in the face of new do-

mains, changing applications, or different languages. Furthermore train-

ing data is very expensive to produce and is by no means an easy task

even for experienced human taggers. As Palmer et al. (2001) describe,

the sense inventories that taggers refer to may have redundancies and

gaps, sense descriptors (glosses) can be ambiguous, among many other

unforeseen issues.

c) Unsupervised WSD – A key advantage of this approach is it does not

require the use of sense-tagged corpora that are so scarce and expensive
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to produce. Furthermore if untagged corpora are used then sense gran-

ularity poses no obstacle, since this is only caused when knowledge

is structured and senses are discretised (Pedersen, 2007). Although in

early SensEval tasks unsupervised systems under-performed in com-

parison to their supervised counter-parts (Palmer et al., 2001; Snyder

and Palmer, 2004), as of SemEval they have proven to be a robust and

competitive alternative, particularly with the use of LKBs (Navigli et al.,

2007; Agirre et al., 2010; Navigli et al., 2013).

It is worth pointing out that these approaches are not mutually exclusive.

For example an unsupervised approach as seen in (Yarowsky, 1995) is

knowledge-lean because it relies on unstructured untagged corpora. Whereas

an unsupervised approach like (Ponzetto and Navigli, 2010) is knowledge-

rich because it relies on a structured LKB. Each WSD system exhibits some

degree of both supervision and knowledge-richness (or structuredness). To

establish a better understanding of these two dimensions, the explanation

and figure produced by Navigli (2009, p15-16) is very helpful.

1.4 wsd resources

To end this chapter some well known resources used for WSD are briefly

introduced, in order of sense inventories, then corpora, and finally sense

annotated corpora which are the product of a corpus and sense inventory.

However before these introductions, it is important to clarify the relation-

ship between LKBs and sense inventories, and the implications this has for

WSD.

1.4.1 LKB to Sense Inventory

Representing the sense of a word and the context it is used in is a diffi-

cult challenge for WSD. In Table 1, a snapshot of a well known LKB can
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be observed, the dictionary14. It has entries for word senses with their part-

of-speech, definition, and a context example. A dictionary’s purpose is to be

an educational device for humans, facilitating exchange of knowledge and

helping humans establish contextual boundaries between word senses. To

achieve this, lexicographers must identify a discrete set of senses for each

word that warrant being listed for easy comprehension. This makes a dic-

tionary an easy LKB to convert into a sense inventory.

Table 1: Example of WSD for Pen and Bank

Sense Definition Context Examples

“Pen”

Pen1 An instrument for writing or drawing with ink, This pen won’t write.

(noun) originally consisting of a shaft with a sharpened

quill or metal nib, now more widely applied.

Pen2 A small enclosure for cows, sheep, poultry, etc. The dogs herded the

(noun) sheep into the pen.

“Bank”

Bank1 A financial establishment that uses money The bank lent her

(noun) deposited by customers for investment, pays it money to buy a car.

out when required, makes loans at interest,

exchanges currency, etc.

Bank2 The sloping edge of land by a river. The River Frome had

(noun) burst its banks after

the torrential rain.

However, what is a sense inventory and how does it differ from a LKB?

Amsler (1984) defines a LKB as being a general repository of any kind

of lexical knowledge about concepts and their relationships, that is not

intended for any particular application. A sense inventory on the other

hand is a collection of senses specifically organised to complement WSD

and other NLP applications. Therefore if dictionary’s definitions are viewed

as discrete senses, it makes for an easy conversion into a sense inventory.

As Agirre and Edmonds (2007) note, a consequence of dictionaries is they

lead many to assume that words have a finite and discrete set of senses.

14 The meanings are taken from the New Zealand Oxford Dictionary (Deverson and Kennedy,
2005), with the context examples taken from the Oxford Collocations Dictionary for Students of
English (Crowther et al., 2002).
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While the discretisation of senses helps humans more efficiently pass on

knowledge, an information loss occurs through all the minor interpreta-

tions that are omitted. As Ide and Veronis (1998) pointed out, dictionaries

are created for human use, and not for machine exploitation. While LKBs

can be converted to sense inventories to be harnessed by machines, the in-

formation loss involved in forming discrete sets of senses will inherently

affect the sense granularity, domain coverage, and other such obstacles for

the WSD system. In fact, some researchers argue against treating senses as

discrete altogether (Kilgarriff, 1997; Hanks, 2000) and advocate WSD as an

implicit subtask.

As previously alluded to, LKBs vary in how easily they are converted

into sense inventories. Suitable candidates include thesauri, encyclopedias,

ontologies, bilingual corpora, and other LKBs with a little data mining and

processing. Certain LKBs are even better because they are designed specif-

ically for NLP tasks, including WSD, and have endpoints and Application

Programming Interfaces (APIs) developed for them for easy integration.

These include semantic graphs, concordance systems, web dictionaries/en-

cyclopedia made accessible through standardisation of the semantic web,

and so forth.

The experiments conducted in this thesis focus on explicit and in-vitro

WSD, for input that is linguistic-only. Therefore only sense inventories

which by their design have senses discretised will be used throughout this

thesis. They will now be described.

1.4.2 Sense Inventories

Firstly there are the obvious candidates for sense in-

ventories, those that map the human lexicon such

as the Longman Dictionary of Contemporary En-

glish (Procter, 1978) or the Oxford Dictionary of En-

glish (Deverson and Kennedy, 2005). Also online,
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there are collaboratively developed dictionaries such as Urban Dictionary15

which is constantly updated with the latest colloquial expressions, and Wik-

tionary for which semantic resources such as DBnary (Sérasset, 2012) have

had their development based on. Again there are thesauri such as Roget’s

Thesaurus (Chapman, 1977) or WordNet (Fellbaum, 1998) which doubles as

both a dictionary and thesaurus with its synonym sets (known as synsets).

Since 1985 WordNet has been continuously updated at the Princeton Uni-

versity’s Cognitive Science Laboratory16. It has since then been perhaps the

most widely used sense inventory for WSD evaluations.

Next there are encyclopedia based sense invento-

ries, perhaps the most well known being Wikipedia,

it has been able to demonstrate similar accuracy to

Britainica as an encyclopedic source (Giles, 2005).

Naturally many researchers try to exploit this multi-

lingual and freely available knowledge, therefore several tools17 have been

developed in order to harness this knowledge. There are no shortage of

works that try to explore this ever growing collaborative resource, see

(Medelyan et al., 2009) for a comprehensive account of mining Wikipedia.

Freebase18 is an online collaborative resource much

like Wikipedia, except it is more geared towards ma-

chine exploitation and link structure, rather than hu-

man use and textual content. This is reflected by Free-

base’s SPARQL endpoint allowing it to be remotely

queried, or locally if Freebase is downloaded. Again

the semantic links are defined with the semantic web

in mind, using RDF (Resource Description Frame-

work) triples, that denote relationships by subject-predicate-object. For ex-

15 http://www.urbandictionary.com/ - Urban Dictionary Homepage
16 http://wordnet.princeton.edu - The Princeton University Homepage of WordNet
17 http://www.mediawiki.org/wiki/Alternative_parsers - Alternative Parsers used to Mine

Wikipedia.
18 http://www.freebase.com - The Homepage of Freebase

http://www.urbandictionary.com/
http://wordnet.princeton.edu
http://www.mediawiki.org/wiki/Alternative_parsers
http://www.freebase.com
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ample, <Napoléon Bonaparte> </people/person/height_meters> <1.68> is

a triple that denotes the height of Napoléon Bonaparte at 1.68cm tall.

DBpedia19 is an effort to mine Wikipedia as a semantic graph, to align

it with other linked data resources (e.g. Freebase). It also has a SPARQL

endpoint to query, leading it to be a popular means of easily accessing

Wikipedia. Works such as DBpedia Spotlight (Mendes et al., 2011) which is

a system for automatically annotating text documents with DBpedia URIs

is evidence of this.

Over 50 years ago Bar-Hillel (1960) in his critique of

MT, and later in his report to the Automatic Language

Processing Advisory Committee (ALPAC), brought on

starvation of funding to MT in the USA for over a

decade (Hutchins, 1995). He described his colleague’s

suggestion of giving a machine access to both a dic-

tionary and an encyclopedia as utterly chimerical

and hardly deserving any further discussion. Yet this

is now a reality with sense inventories such as BabelNet (Navigli and

Ponzetto, 2012a) and Uby (Gurevych et al., 2012) that map the lexicon Word-

Net (Fellbaum, 1998), the encyclopedia Wikipedia, along with a collection

of other semantic resources all together as one sense inventory.

1.4.3 Corpora

The Hector Lexical Database, now known as the

British National Corpus20 is an ongoing project at Ox-

ford University (Atkins, 1992). It was the corpus used

for the first SensEval (Kilgarriff and Palmer, 2000) in

1998 at Herstmonceux Castle, Sussex, England.

19 http://dbpedia.org - The DBpedia Homepage (Wiki)
20 http://www.natcorp.ox.ac.uk - The British National Corpus

http://www.freebase.com/m/0j5b8
http://www.freebase.com/people/person/height_meters?schema=
http://www.freebase.com/m/0j5b8?props=&lang=en&filter=%2Fpeople%2Fperson%2Fheight_meters
http://dbpedia.org
http://www.natcorp.ox.ac.uk
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Then there is the Brown Corpus (Kucera and

Francis, 1967) which was originally put together

in 1963 to analyse the word frequencies in Amer-

ican English. It contains 500 samples of writing from a range of styles and

domains, each is approximately 2000 words in length, making up a total of

1,014,000 running words of text in the corpus.

For a more universal representation of the English

language, there is the Internet Corpus (Sharoff, 2006)

which is an ongoing project at Leeds University. In

fact this is an open-source corpus in a number of lan-

guages. Notably, the Cross-Lingual Lexical Substitu-

tion task in SemEval 2010 made use of this corpus (Mihalcea et al., 2010).

There is a range of corpora that are available, many of which can be ac-

quired through the Linguistic Data Consortium (LDC)21 or the Evaluation

and Language resources Distribution Agency (ELDA)22.

1.4.4 Sense Tagged Corpora

Sense tagged corpora are produced either manually for precision or auto-

matically for speed and quantity. It is the process of tagging each word in

running text with a sense taken from a common sense inventory. Over the

next three pages are lists of notable sense tagged corpora in English, most

of which are the by-product of a SensEval or SemEval evaluation tasks23.

The sense tagged corpora listed in Table 2 are Lexical Samples based,

whereas those listed Table 3 are All Words based. Table 4 also lists All

Words based sense tagged corpora, however the corpora contain extra com-

plexity because they are each created for the purpose of investigating a

particular WSD obstacle, such as those discussed earlier in Section 1.2.

21 https://www.ldc.upenn.edu - Linguistic Data Consortium Homepage
22 http://www.elda.org - Evaluation & Language resources Distribution Agency Homepage
23 Note that for sense tagged corpora which are the product of an ongoing project, the details

listed in the following tables are likely to change over time.

https://www.ldc.upenn.edu
http://www.elda.org
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2
T H E F O R E G R O U N D : L I T E R AT U R E R E V I E W

Previously in Chapter 1, Word Sense Disambiguation (WSD) was introduced

along with its core obstacles to overcome, as well as its applications, approaches,

and resources. Now the basics of WSD have been covered, this chapter details the

mode of WSD to be investigated and improved. That is – unsupervised knowledge-

based WSD, which makes use of semantic subgraphs and is subjected to in-vitro

evaluation.

The formalisations established in this chapter represent the author’s own inter-

pretation of this WSD mode, as well as a consolidation of key advancements made

in the literature unified under a common notation. All of which are drawn from in

successive chapters, using this chapter as a reference.

26



2.1 subgraph-based wsd 27

2.1 subgraph-based wsd

Essential to this mode of WSD is the semantic subgraph, which encapsu-

lates the contextual usage of a set of words. It contains candidate sense

nodes for each ambiguous word, and edges that represent the semantic

relationships between them. WSD can be achieved based on the assump-

tion that – the most central sense nodes in the semantic subgraph best reflect the

intended sense for each ambiguous word. The resources and methodology for

this mode of WSD will now be formalised.

2.1.1 Requirements of Sense Inventory G

Firstly, to construct a semantic subgraph a WSD system needs to draw from

a supergraph. Let this be G, which is simply a Lexical Knowledge Base (LKB)

that can be represented as a graph-based sense inventory. Regardless of the

LKB that G is based on, an intrinsic requirement for WSD is the mapping

of words and senses. Therefore G would at least need to contain a bipartite

subgraph, Gβ, of word and sense nodes such as illustrated by Figure 4.

w1

w2

w3

w4

s1

s2

s3

W

S

Gβ

Figure 4: Arbitrary Sense Inventory
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Paraphrasing Wilson and Watkins (1990, p37), Gβ would have a vertex-

set that could be split into setsW and S in such a way that each edge of the

graph joins a vertex wi ∈W to a vertex sj ∈ S. Let β be this set of edges that

denote one-to-many mappings between W and S, therefore Gβ = (W ,S,β).

Naturally not all LKBs are suitable for subgraph WSD, for example how

would the necessary bipartite word/sense edges be established from a large

collection of word collocation frequencies? On the other hand a LKB such as

Wikipedia has these bipartite edges readily available, since each hyperlink

has a text label (a word) that links to another page (a sense).

enclosure

utensil

feather

�pen�

�cage�

skos:prefLabel

skos:altLabel

skos:altLabel

skos:prefLabel

skos:related

(a) Labelled Edges

s1

s2

s3

s4

s5

s6

S

(b) Sense-sense Edges

Figure 5: Extended complexities of sense inventories

Putting bipartite edges aside, Wikipedia has a wealth of semantic infor-

mation that can be exploited when converted to sense inventory G. For

example in Figure 5 (a) the edge information in Wikipedia could be translit-

erated into standardised vocabulary for the semantic web such as SKOS1

(Simple Knowledge Organisation System). Again in Figure 5 (b) the links

between pages could be included as sense to sense edges. Sense inventories

can vary widely, even if they are converted from the same LKB, therefore

careful consideration is required when selecting (or building) one for WSD.

1 http://www.w3.org/TR/swbp-skos-core-spec

http://www.w3.org/TR/swbp-skos-core-spec
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2.1.2 Disambiguation Methodology

At a glance across the text of any language, meaning and new information

is absorbed through its lexical composition. Depending on the length of text

being read, it could be interpreted as one of many structural subsequences

of writing such as a paragraph, excerpt, quote, verse, sentence, among many

others. Let T = (ta, ..., tb) be this subsequence of words, which can be

interpreted as a sliding window. Again let T = (t1, ..., tm) be the larger

body of text of length m, such as a book, newspaper, or corpus of text, that the

sliding context window of length b−amoves through to disambiguate. For

each window, collect these text tokens in T into a set of words W as seen

in Equation (2). Note word identity and order are preserved by subscript i.

W =
b

⋃
i=a

ti ∶ T = (ta, ..., tb) (2)

∴ if T = (the, children, were, fishing, from, the, river, bank)

then W = {bank8, children2, fishing4, from5, river7, the1, the6, were3}

Explicit WSD benefits from some preprocessing, in which the words in

sequence W are mapped to a set of lemmas L. To do this each word is

tagged with its part-of-speech, then mapped to its lemmatisation, such that

{wa, ...,wb}↦ {`a, ..., `b}. Lemmatisation is the many-to-one mapping of the

different inflected forms of a word to a consolidated lemma (or headword)2,

as seen in Equation (3).

`w ∶W → L (3)

∴ if W = {bank8, children2, fishing4, ..., were3}

then L = {bank(n),8, children(n),2, fish(v),4, ..., be(v),3}

2 For a detailed explanation of the processes leading up to lemmatisation (and beyond), see
(Navigli, 2009, p12)
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Given `i ∈ L, it needs to be disambiguated, as seen in Equation (4). Let

R(`i) be a function that Retrieves from G all the senses, {si,1, si,2, ..., si,k},

that lemma `i could refer to:

R(`i) = {si,1, si,2, ..., si,k} (4)

∴ if `i = bank(n),8

then R(`i) = {Bank(n),finance,8, ..., Bank(n),land,8}

Given this, let R(L) return all senses for all lemmas in the context win-

dow L. Assume that GL is a semantic subgraph constructed from the senses

retrieved by R(L), which is detailed later in Section 2.2.1. Furthermore, ex-

plained later in Section 2.2.2, assume φ is a graph centrality measure em-

ployed to estimate the most appropriate sense, si,∗ ∈ R(`i) = {si,1, si,2, ..., si,k},

which is added to a set of disambiguated senses D. This subgraph-based

WSD process is illustrated in Figure 6.

L GL φ Dconstruct disambiguate assign

Figure 6: Subgraph-based WSD Process

Effectively, this is a classification problem to estimate si,∗, the most appro-

priate sense for `i, by finding ŝi,∗ = arg maxsi,j∈R(`i)φ(si,j) with GL taken

as input. In the running example, a robust subgraph-based WSD system

should be able to correctly estimate ŝi,∗ = Bank(n),land,8 (such that i = 8).

2.2 further explanation of φ and GL

2.2.1 Construction of Semantic Subgraph GL

For unsupervised subgraph-based WSD, the key publications that have

advanced the field broadly construct subgraph, GL , as either a union of
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subtree paths, shortest paths, or local edges3. First GL is initialised, by setting

SL ∶= ⋃ni=1 R(`i) and EL ∶= ∅. Next edges are added to EL, depending on the

desired subgraph type, by adding one of the following:

(a) Subtree paths of up to length L, via a Depth-First Search (DFS) of G. In

brief, for each sense sa ∈ SL, if a new sense sb ∈ SL, i.e. sb ≠ sa, is

encountered along a path Pa→b = {{sa, s}, ...,{s′, sb}} with path-length

∣Pa→b∣ ≤ L, then add Pa→b to GL. [cf. Navigli and Velardi (2005), Navigli

and Lapata (2007), or Navigli and Lapata (2010)]

(b) Shortest paths, via a Breadth-First Search (BFS) of G. In brief, for each

sense pair sa, sb ∈ SL, find the shortest path Pa→b = {{sa, s}, ...,{s′, sb}};

if such a path Pa→b exists and (optionally) ∣Pa→b∣ ≤ L, then add Pa→b to

GL [cf. Agirre and Soroa (2008), Agirre and Soroa (2009), or Gutiérrez

et al. (2013)]

(c) Local edges up to a local distance D. In brief, for each sense pair sa, sb ∈

SL, if the distance in the text ∣b −a∣ between the corresponding words

wa andwb satisfies ∣b−a∣ ≤D, then add edge {sa, sb} to GL (preferably

with edge-weights). [cf. Mihalcea (2005) or Sinha and Mihalcea (2007)]

(Note this subgraph is a hybrid, because only its vertices belong to G)

In practice, subgraph edges may be directed, weighted, collapsed, or filtered.

However to keep the distinctions between subgraph types simple, this is

not included in our formalisation (albeit implemented in the algorithms of

later experiments).

2.2.2 Graph Centrality Measures φ

In this section each graph centrality measure φ, that is used throughout

this thesis to find ŝi,∗ = arg maxsi,j∈R(`i)φ(si,j) is formalised.

3 Note that local describes the local context, which is typically the 2 or 3 words either side of a
word, see (Yarowsky, 1993)
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degree centrality Firstly φ does not need to be a complicated mea-

sure, this is demonstrated by the success of ranking senses by their number

of incoming and outgoing edges. Even though it is very simple, it performs

surprisingly well against others for both in-degree (Navigli and Lapata,

2007) and out-degree (Navigli and Ponzetto, 2012a) simply written as func-

tions in Equations (5) and (6).

In-Degree ∶= I(s) (5)

Out-Degree ∶= O(s) (6)

the semantic web Next there are the graph centrality measures pri-

marily used to disambiguate the semantic web, such as PageRank (Brin and

Page, 1998), Hypertext Induced Topic Selection (HITS) (Kleinberg, 1999),

and a personalised PageRank (Haveliwala, 2003); which have since been ap-

plied to WSD by Mihalcea (2005), Navigli and Lapata (2007), and Agirre

and Soroa (2009) respectively.

HITS scores each page on the web in terms of being an authority (A(s′),

a page with lots of content), and in terms of being a hub (H(s′), a page

that points to a lot of authoritative pages, but lacks its own content). By

substituting senses for pages in GL, HITS is denoted in Equation (7). Notice

HITS is mutually recursive, meaning the hubs score defines the authority

score and vice-versa for each iteration.

H(s′) = ∑
s∶(s,s′)∈EL

A(s) ; A(s′) = ∑
s∶(s′,s)∈EL

H(s) (7)

PageRank effectively models a random surfer on the internet, in which

after a sufficiently large amount of time there is a probability of the surfer

will end up at a particular page in the graph (or internet). However there

is a probability 1 − d the surfer will jump to another page by for instance,

clicking a bookmark. This is observed in the left term in Equation (8), in
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which d is a damping factor that determines this. By substituting senses for

pages in GL, then for traditional PageRank, if the surfer does jump there is

uniform probability 1
∣SL∣

to land on any of the other sense in the graph.

PR(s′) = 1−d∣SL∣
+d ∑

s,s′∈EL

PR(s)
O(s) (8)

Personalised PageRank takes this notion one step further, by biasing the

chance to land on particular senses in the graph. Bias can be given towards

seed senses (Agirre and Soroa, 2009) or senses that rank highly in sense

annotated corpora (Gutiérrez et al., 2013) such as SemCor (Miller et al.,

1993) .

social network analysis Also included from the study of social

networks is Betweenness Centrality (Freeman, 1979). Betweenness is de-

fined as the a ratio of how often a sense s belongs in a shortest path Pa→z(s)

from a to z out of all the shortest paths Pa→z

BC(s) = ∑
a,z∈S ∶a≠s≠z

Pa→z(s)
Pa→z

(9)

wsd focused The graph centrality measures described so far were de-

signed with other disciplines in mind. However for the last measure, Sum

Inverse Path Length (Navigli and Ponzetto, 2012a,b), it has been designed

with WSD in mind, therefore is a little less well known.

SIPL(s) = ∑
p∈Ps→c

1

e∣p∣−1
(10)

This measure scores a sense by summing up the scores of all paths that

connect to other senses in GL (i.e. senses that are not intermediate nodes,

but have a mapping back to a lemma in the context window L). In the

words of Navigli and Ponzetto (2012a), Ps→c is the set of paths connecting
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s to other senses of context words, with ∣p∣ as the number of edges in the

path p and each path is scored with the exponential inverse decay of the

path length.

2.2.3 Filtering/Refinement of Subgraph GL

After producing any of the subgraphs previously formalised in Section 2.2.1,

it is also worth considering if they can be refined by means of adding or

filtering vertices, edges, or whole paths. Subgraphs can occasionally be too

sparse, providing little semantic information to work with. Or alternatively

subgraphs can contain a lot of noise, thereby increasing the time to run

graph centrality measures and reducing disambiguation accuracy.

One such issue that has been reported to be a problem by both Agirre

and Soroa (2009, p36) and Navigli and Ponzetto (2012a, p238) is that of

which, if very polysemous senses derived from the same lemma in GL are

in close proximity to each other, they reinforce each other’s score in what-

ever graph centrality measure is applied. Fortunately BabelNet ships with a

filter called SENSE_SHIFTS, that removes paths added to GL that share senses

derived from the same lemma. The effect of the filter is observable in Fig-

ures 7 (a) and (b). Let the graph centrality measure φ be the out-degree of

a sense. Then for Figure 7 (a), the sense si,j is the most appropriate since

it has the highest out-degree. However after the SENSE_SHIFTS filter is ap-

plied in Figure 7 (b), si,3 is now has a higher out-degree and therefore is

the most appropriate.

2.3 precision, recall , & f-measure

Precision, recall, and F-Measure are the conventional evaluation measure-

ments used across the in-vitro WSD literature to compare results. Originally

these measurements were used to evaluate Information Retrieval (IR) sys-

tems in terms of their effectiveness; this is assumed to be an indicator of user
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si,j

si,1

si,2

si,3

sx,1

sy,1

c1

c2 c3

c4

c5

c6

c7

c8

c9

c10

c11 c12

c13

(a) Unfiltered GL

si,j

si,1

si,2

si,3

sx,1

sy,1

c1

c3

c4
c8

c11 c12

c13

(b) GL + SENSE_SHIFT

Figure 7: Effects of Subgraph Filtering

satisfaction with search results. With this in mind, Van Rijsbergen (1979) de-

scribes effectiveness to be a measure of a system’s ability to retrieve relevant

documents while at the same time holding back non-relevant ones.

Thus in WSD terms, for a system to be effective, it should strive to pro-

vide disambiguations where possible (achieve high recall), however not so

many as to significantly dilute the accuracy of all disambiguations made

(maintain high precision). To report both precision ad recall as a single

measurement, effectiveness is often reported as the F-measure. This is sim-

ply the harmonic mean between precision and recall.

Let D be the set of senses that the WSD system maps to the set of am-

biguous words W . Furthermore let K be the key set of correct senses for

each lemma `i ∈ L.

Precision, P, is therefore:

P = ∣D ∩K∣
∣D∣ (11)

Recall, R, is:

R = ∣D ∩K∣
∣L∣ (12)
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Finally, F-measure, F, is equal to:

F = 2 ⋅ P ⋅R
P +R ∼ 2 ⋅ ∣D ∩K∣

∣D∣+ ∣L∣ (13)

Refering to the methodology of subgraph-based WSD outlined in Sec-

tion 2.1.2, assume in Equation (14) the WSD system needs to disambiguate

content words only.

T = (fishing, for, eels, from, the, river, bank) (14)

L = {bank(n),7, eel(n),3, fish(v),1, river(n),6}

D = {Bank(n),financial,7, Fish(v),sport,1, River(n),stream,6}

K = {Bank(n),land,7, Eel(n),fish,3, Fish(v),sport,1, River(n),stream,6}

First, the text T undergoes part-of-speech tagging and lemmatisation to

produce the set of lemmas L. Next the WSD system attempts to disam-

biguate each lemma `i ∈ L to produce an appropriate set of sensesD. Finally

the key set K containing the correct disambiguations is used to score the

disambiguation results in set D. Notice in this example, the WSD system

fails to produce output for the lemma `3 = eel(n),3. Also notice the senses for

the lemma `7 = bank(n),7 are not the same in sets D and K. Given L, D, and

K, the precision, recall, and F-measure can be calculated for this example

as seen in Equation (15).

P = ∣D ∩K∣
∣D∣

2

3
= 0.667 (15)

R = ∣D ∩K∣
∣L∣

2

4
= 0.500

F = 2 ⋅ ∣D ∩K∣
∣D∣+ ∣L∣ 2 ⋅ 2

3+ 4 = 0.571
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R E S E A R C H F O C U S

3.1 motivations

The author is motivated to take on the challenge of Word Sense Disam-

biguation (WSD) due to past research endeavours – these being an under-

graduate final year project and a masters thesis. Research was undertaken

into making Machine Translation (MT) accessible through mobile devices

(Punchihewa et al., 2006), constructing a MT system (Manion and Punchi-

hewa, 2008b), and improving MT output to sound more native-like (Man-

ion and Punchihewa, 2008a) with the use of the Google Web 1T 5-gram

corpus (Brants and Franz, 2006)1. As already covered in the literature re-

view, the implications of WSD are perhaps the most evident in MT, after

all it was this application that urged Weaver (1949) to write his influential

memorandum on the matter.

Beyond the motivation stemmed from the author’s passion for MT, is

the concrete appeal of the unsupervised knowledge-based approach to

WSD, that could have its success extended to MT. As already noted, corpus-

based supervised approaches to WSD have dominated for some time now

(Màrquez et al., 2007) but they are restricted by the availability of training

data due to the knowledge acquisition bottleneck (Gale et al., 1992b). There-

fore supervised approaches fail to be portable across alternative languages

and domains if the annotated corpora do not exist. Conversely, knowledge-

based approaches for WSD are usually applicable to all words in unre-

stricted text (Mihalcea, 2007). It is this innate scalability that is a motiva-

tion for the author to pursue knowledge-based approaches. Regardless of

1 http://catalog.ldc.upenn.edu/LDC2006T13 - Catalogue listing of Google Web 1T 5-gram
corpus.
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whether sense inventories can maintain a high level knowledge-richness (or

structuredness) as they grow, their continued refinement by contributors

should ensure any type of WSD/MT system that employs a knowledge-

based approach can only hope to improve.

3.2 objectives & scope

The scope of this research focuses on investigating and exploring unsuper-

vised knowledge-based WSD that makes used of semantic subgraphs. The

objectives to be achieved are:

objective 1 : To construct a large semantic graph G of concepts and named

entities, to be indexed and accessible to a WSD system.

objective 2 : To build a system that achieves WSD by constructing a

context-seeded subgraph from G, which then utilises a graph cen-

trality measure to select the appropriate sense based on the context

embedded in the subgraph.

objective 3 : To evaluate and experiment with a range of subgraph con-

struction methods and graph centrality measures, including the range

of variables that influence them, in order to understand optimal con-

ditions for unsupervised subgraph based WSD.



Part II

B R A N C H E S O F R E S E A R C H

Part II of this thesis contains a chapter devoted to each branch of

research undertaken, in which each branch details peer-reviewed

published research, that has been presented either orally or as a

poster (or both) at various venues. These branches consist of:

• Chapter 4: The development of a data mining tool, that

mines Wikipedia to construct a large semantic graph, in

which smaller subgraphs can be shown to demonstrate the

context embedded in its structure.

• Chapter 5: The development of a module to disambiguate

concepts from a range of heterogeneous semantic graphs.

This module was part of an automated system that con-

structs a taxonomy tailored to a given document collection.

• Chapter 6: The development of a new graph centrality mea-

sure (Peripheral Diversity), that was entered into SemEval

2013 Task 12 - “Multilingual Word Sense Disambiguation”.

• Chapter 7: An iterative ’Sudoku Style’ approach to subgraph-

based WSD, that improves the performance of a range of

graph centrality measures.

Each chapter contains a methodology, results achieved, and re-

lated literature where appropriate. Overall discussion of results

is left to Part III of the thesis.
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M I N I N G S E M A N T I C G R A P H S

This chapter details work completed, in which a data mining tool was developed to

extract the underlying semantic graph inherently present in Wikipedia. Given that

there are publicly available and continuously evolving tools capable of this it was

an ambitious undertaking. However the key motivation was the flexibility that an

in-house data mining tool could offer given it could be customised to the needs of a

WSD system.

Despite this endeavour, work on the data mining tool eventually ceased in favour

of using BabelNet. Not only does BabelNet provide the author with an indexed ver-

sion of Wikipedia that is accessible through its free to use Application Programming

Interface (API), it also maps Wikipedia pages to WordNet1 and vice-versa. Further-

more, the development of BabelNet is ongoing and its publications clearly intend

on improving the quality of WSD as one of its foremost objectives. Therefore it was

decided that the data mining tool code base should be reused, in order to develop

it into its own API which extends that of BabelNet’s. Dubbed as the Daebak API,

it has continued to be developed throughout the rest of this thesis to produce the

results in successive chapters.

Finally, prior to ceasing work on the data mining tool experiments presented

in this chapter were completed on the data that was successfully mined and in-

dexed. Through visual illustrations, the experiments were aimed at demonstrating

subgraphs do actually hold a unique context for the words that seed their construc-

tion. These particular results found in this chapter, were presented at the Machine

Learning Summer School (MLSS) as a poster in Bordeaux, France.

1 See (Navigli and Ponzetto, 2012a) for concise details on BabelNet’s construction, also see
(Navigli and Ponzetto, 2012c) for examples of how to use its API.
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4.1 mining wikipedia

4.1.1 The Consequences of Collaborative Editing

Wikipedia is freely available to download2 in the form of XML dumps.

These XML dumps contain various splices of Wikipedia content, from edit

histories to descriptive statistics. To begin with, only the English Wikipedia

in its then current state was downloaded. At the time of download it was

5GB, then 26GB upon been unzipped with approximately 9.7 million Wiki-

pedia pages.

Figure 8: Ambiguity of Markup Language Clashes

As illustrated by Figure 8, the source of a Wikipedia page is a combi-

nation of various markup languages, code/template environments, run-

ning text, and more. The markup languages used in Wikipedia, such as

HTML, XML, as well as Wikimedia’s own markup language, need to be

well-formed. That is, tags need to be appropriately open and closed, nested,

and conform to the standards of the markup language in question. The

XML dumps of Wikipedia reveal that contributing Wikipedians are not re-

quired to check the article they edited is well-formed before saving. There-

fore it appears the collaborative editing process of Wikipedia leads to in-

2 http://en.wikipedia.org/wiki/Wikipedia:Database_download - Here the Wikipedia XML
dumps can be downloaded.

http://en.wikipedia.org/wiki/Wikipedia:Database_download
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consistent use of markup language. This is possibly because later edits by

Wikipedians break up the previous correct use of markup from earlier edits.

Two such examples that were found to occur often are given in Table 5.

Table 5: Examples of Markup Language Misuse

Misusage Type Example Issue

Unclosed Tags <ref> . . . Where is the closing tag </ref> supposed to be?

Floating Tags [[ . . . [[ . . . ]] Add extra ]] tag? Or remove middle [[ tag?

The first is when Wikipedians fail to close </ref> tags which hold web-

site URLs that contain any number of characters that serve a purpose in

another markup language. The second is when extra [[ and ]] tags used for

internal hyperlinking are left floating about, either requiring removal or

complementing. Figure 9 shows the source for the Wikipedia article page

“CLS Holdings” found in the XML dump. It will be referred to throughout

the rest of this chapter to provide sample output from the data mining tool.

Figure 9: Sample Page (CLS Holdings) from Wikipedia XML Dump

While this page is well-formed in its simultaneous use of different markup

languages, it does help one appreciate the complexities that could arise if

it was not. The Wikimedia engine most likely compensates for the most

common bad uses of markup languages, therefore so must the data mining

tool. Most of these issues could be addressed with the SAX API3 that the

3 http://www.saxproject.org/apidoc/org/xml/sax/package-summary.html - SAX Parser
Documentation

http://www.saxproject.org/apidoc/org/xml/sax/package-summary.html
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data mining tool made use of, however not all pages could be parsed 100%

correctly. When markup languages are used in conjunction with each other

and are not well-formed, the boundaries for parsing environments become

unclear. In such cases as the examples in Table 6 below, the data mining

tool attempts to recover as much information as possible.

Table 6: Examples of Markup Language / Text Similarity Clashes

Clash Example / Explanation

: It represents an indent in Wiki Markup, however in Text it is used in

times (2:45), URLs (http://...) and many other expressions

== It represents a level 2 heading (<h2>) in Wiki Markup, however in Code

written within Text it it often used for if-statements (if x == 1)...

If a page was too difficult for the parser to make sense of then it is added

to a list of voided pages. This list was a useful reference in understanding

how to parse in a more robust manner, to eventually achieve a rate of void-

ing less than 1 in 1000 pages.

4.1.2 The Structure of Wikipedia

Through parsing the XML dump with the data mining tool, the greater

structure of Wikipedia began to emerge. Illustrated by Figure 10 in terms

of page and hyperlink types, Wikipedia contains both a mix of cycles and

trees. This ties in with the findings of Lizorkin et al. (2009), in which they

showed Wikipedia’s structure to be a hierarchy of communities (or alterna-

tively, strongly connected components). As for cycles, a good example they

offered taken from category links was “The Beatles” < “Apple Records

artists” < “Apple Records” < “Apple Corps” < “The Beatles”.
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Wikipedia Page
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Figure 10: Wikipedia Structure Revision
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4.1.3 Indexing Methodology of Wikipedia

After careful consideration of Wikipedia’s structure, the following informa-

tion in Figure 11 was mined from the Wikipedia XML dump.

Figure 11: Indexed Information from Wikipedia

Information was first stored as raw text files, with tab delimitations

where appropriate. This storage medium provides convenience of running

the data mining tool only once, however having the flexibility to store the

information in a range of database designs for later experiments. Effectively

there were four classes of information mined:

1. Vertices - the title of each page was parsed and recorded as a vertex,

along with the page type

2. Edges - the outgoing hyperlinks for each page were parsed and recorded

as edges, again according to the page type

3. Pointers - the redirects, disambiguations, and aliases (alternative text

for links) for each page were parsed and recorded

4. Content - the content of Wikipedia article pages and file pages was

parsed and recorded as nice clean text without any markup language

included

Over the next few pages examples of this captured information are given.

Note the selected examples are not representative of everything the data

mining tool can capture, just the information relevant to experiments com-

pleted in later sections of this chapter. To begin with, Table 7 illustrates
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the useful links and textual content captured from the source of the “CLS

Holdings” page from Figure 9.

Also given in Table 8 are two pointer type examples: redirects and aliases.

Within the scope of this thesis, pointers are defined as a snippet of text

that has the semantic realisation of another snippet of text. To describe

each pointer, a redirect typically compensates for variances in spelling or

alternative names people may use when searching for a Wikipedia article.

An alias on the other hand is the alternative text used for hyperlinks in

Wikipedia. Aliases were collected for hyperlinks to English articles, Non-

English articles, and media files. This is one aspect in which our data min-

ing tool sought to distinguish itself from competing alternatives at the time.

Collectively, pointers are comparable to a very short gloss found in Word-

Net (Fellbaum, 1998) or alternative labels in SKOS4. SemEval tasks such as

Cross-Lingual Lexical Substition (Mihalcea et al., 2010) or Semantic Textual

Similarity (Agirre et al., 2013) are definitely candidates that can make use

of pointers.

The “CLS Holdings” page also links to the page in Table 9 where the

image is stored and its respective information is noted. With this informa-

tion stored by the data mining tool, images can easily be pulled down from

Wikipedia through knowing the file name and opening the following URL.

http://en.wikipedia.org/wiki/File: + the file name (CLSholdingslogo.PNG)

Finally in Table 10 some examples of media aliases are shown. The same

image can be used in several Wikipedia pages, therefore can take on several

text descriptions.

4.2 context graphs

After mining the previously described data, Wikipedia could now be mod-

elled as a large semantic graph, that if queried with a word could return a

4 http://www.w3.org/2004/02/skos/core - Definition of skos:altLabel found here.

http://www.w3.org/2004/02/skos/core
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Table 7: Page Content

Wiki Page

Page Content

CLS Holdings

CLS Holdings plc is a large British property business. The Company is listed on the

London Stock Exchange and is a former constituent of the FTSE 250 Index.

$2$History

The Company was founded by Sten Mortstedt in 1987 and was �rst listed on the

London Stock Exchange in 1994. In 2006 the Company bought three o�ce buildings

in Germany. It went on to buy a 27.6% stake in Catena AB, a Swedish property

company in 2007.

$2$Operations

As of 30th June 2009 the Company's property portfolio was valued at ¿767.1m.

The properties are located in the United Kingdom, France, Sweden and Germany.

CLS Holdings, Sellar Property Group and CN Limited were originally joint owners of

Teighmore, developers of the Shard of Glass in London however more recently

CLS Holdings has been bought out of the deal.

Internal Links Category Links

x2 United Kingdom x1 Companies based in London

x2 London Stock Exchange x1 Companies established in 1987

x1 FTSE 250 Index x1 Property companies of the United Kingdom

x2 Germany

x2 Sweden

x1 France

x1 Shard London Bridge

x1 London
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Table 8: Examples of Pointers

Redirects

Ein Kuniyye Ð→ Ein Qiniyye

ISN 22 Ð→ Shakhrukh Hamiduva

HMS Junon (1810) Ð→ French frigate Bellone (1807)

Sunday Inquirer Magazine Ð→ Philippine Daily Inquirer

Patents are bad Ð→ Criticism of patents

Intellectual property is bad Ð→ Criticism of intellectual property

Welsh Communist Party Ð→ Communist Party of Wales

Survivors remake Ð→ Survivors (2008 TV series)

Article Aliases

political issues of water Ð→ water politics

Jordan River Valley Ð→ Jordan Valley (Middle East)

alluvial Ð→ �uvial terrace

morphology Ð→ Geomorphology

delta Ð→ river delta

Hasbani Ð→ Hasbani River

Dan Ð→ Dan River (Israel)

Palestine Ð→ Palestinian territories

wealth of information about the typical contexts it is found in. With context

being a subset of Wikipedia pages semantically associated with the target

word. This context could then be used to derive semantic subgraphs in

order to achieve WSD.

4.2.1 From Wikipedia to Context Graph

Wikipedia can be interpreted as a multigraph Gw, with a set of pages P =

{p1, ...,pn} connected by a multiset of directed and unweighted hyperlinksH.

Therefore P and H are the respective vertices and edges for the Wikipedia

graph, such that Gw = (P ,H). Note thatH is a multiset that allows duplicate

(or parallel) edges to account for when Wikipedians hyperlink to the same

page several times in the text of the page they are editing.

When two pages are hyperlinked, this indicates there is some semantic

relationship between them. However since the hyperlinks are unweighted
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Table 9: File Page

File Page

File Details

File Name = CLSholdingslogo.PNG

Description = This is the logo of CLS Holdings.

Source = The CLS Holdings website

Portion = All.

Article = CLS Holdings

Purpose = To illustrate the organisation in question in the CLS Holdings article.

Resolution = No, the image is already at a low resolution.

Replaceability = No. This is irreplaceable as any image of the logo is copyrighted.
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Table 10: Images Corresponding to the Media Aliases

Media Alias Image

Carland Cross windfarm
↪ Carland Cross Wind Farm.jpg

Singles defending champion Philipp Kohlschreiber
↪ PhilippKohlschreiber GerryWeberOpen2008.jpg

Royal West Campus
↪ RoyalWestHowardCoad.jpg

Austin Adams
↪ Austin Adams - History of Iowa.jpg

Part of Glengarra Wood, December 2008

↪ Glengarra.JPG
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edges in Gw, the strength of the semantic relationship is unknown. Typi-

cally for the article pages in Wikipedia, the most semantically significant

hyperlinks are found in the first few paragraphs, with hyperlinks in the

body of the article having a more happenstance semantic association to the

article’s topic. However this is never a certainty, therefore to understand

which hyperlinks are the most significant and best represent the topic of

an article page, the hyperlinks in Gw need to be weighted to reflect this.

Let this edge weighted semantic graph that more acutely represents con-

text be Gc = (P ,H,m), such that m ∶ H → [0,1] is a mapping function of

edges to semantic weights. The methodology of calculating edge weights

is described in the next section.

4.2.2 Step 1: Representing Pages as HF-IPF Vectors

The measure chosen to weight the significance of a page’s hyperlinks is a

modification of TF-IDF (Term Frequency - Inverse Document Frequency).

Traditionally it is used in Information Retrieval (IR) to indicate how signif-

icant a term is in a document relative to other documents within a whole

collection (Salton and McGill, 1983). The modification of TF-IDF comes by

way of substituting hyperlinks for terms and pages for documents, therefore

re-acronymised to HF-IPF.

To implement HF-IPF, the first step is to represent each Wikipedia page

pi ∈ P as a hyperlink frequency vector. Given the adjacency matrix A for

Gw, this is simply the row vector A⃗i = ⟨αi,1, ...,αi,n⟩ anchored by i to page

pi, such that n = ∣P ∣. However each hyperlink frequency αi,j in A⃗i only

gives its local significance to page pi, without factoring in its global signifi-

cance to all pages in P . To account for global significance, each hyperlink

frequency is scaled by the logarithm of the inverse frequency of the hyper-

link occurring in any of the pages in P . The HF-IPF modified frequency fi,j
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for αi,j, the number of hyperlinks between pages pi and pj, is calculated

by Equation (16) below.

fi,j = αi,j × log( n

∑ni=1αi,j
) (16)

Again the adjacency matrix A for Gw is useful, since ∑ni=1αi,j is simply

the sum of the frequencies in column vector A⃗j. Using this equation, a HF-

IPF vector F⃗i = ⟨fi,1, ..., fi,n⟩ can be produced for each page pi. Now each

page pi is associated with a F⃗i vector of local hyperlink frequencies scaled

to their global semantic significance.

4.2.3 Step 2: Weighting Hyperlinks based on Cosine Similarity

For the second step, the edge weights for Gc can now be calculated from

the F⃗i vectors associated with each pi ∈ P . For this Cosine Similarity (CS),

a measure between 0 and 1 indicating the intersection between two vectors

was chosen. This translates to a CS score of 0 meaning there is no similarity

at all between two pages, and 1 meaning the two pages have exactly the

same inbound and outbound edges (as well as frequency of them), sug-

gesting they are semantically equivalent. Since Wikipedia is a scale-free

graph (Voss, 2005), F⃗ vectors are very sparse. This makes CS a very efficient

measure of semantic similarity because only non-zero values need to be

calculated. CS is defined by Equation (17) which completes the calculation

of edge weights. Let E be a matrix that stores these edge weights, indexed

in the same way as adjacency matrix A stores edge frequencies.

ei,j =
F⃗i ⋅ F⃗j

∥F⃗i∥∥F⃗j∥
(17)
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Algorithm 1 summarises both of the previous two steps to calculate edge

weights. With function GetHFIPF(A, i, j,n) representing Equation (16) and

GetCosineSimilarity(F, i, j) representing Equation (17).

Algorithm 1: Calculating Edge Weights for Semantic Graph Gc
Input: Gw = (P ,H)
Output: E
n← ∣P ∣;
A← GetAdjacencyMatrix (Gw);
F← GetZerosMatrix (n,n);
for i← 1 to n do

for j← 1 to n do
fi,j ← GetHFIPF (A, i, j,n);

E← GetZerosMatrix (n,n);
for i← 1 to n do

for j← 1 to n do
ei,j ← GetCosineSimilarity (F, i, j);

There are also the standard functions GetAdjacencyMatrix(Gw) that re-

turns the hyperlink frequencies of Gw and GetZerosMatrix(n,n) that ini-

tialises an n×n matrix of zeros. The final output matrix E that contains the

calculated edge weights can be used as the mapm ∶H → [0,1]. Therefore Al-

gorithm 1 maps each edge (pi,pj) to the edge weight ei,j, i.e. (pi,pj)↦ ei,j.

This completes the construction of Gc = (P ,H,m), which is used to create

subgraphs in the following section.

4.3 context visualisation results

The visualisation results that follow were presented in poster form at MLSS

2011 in Bordeaux, France. These results, represented in visual form, demon-

strate how semantic subgraphs can indeed hold context, particularly if they

are weighted in a meaningful way. These subgraphs could go on to comple-

ment Machine Translation (MT) or Information Retrieval (IR) applications.

Three cases will now be presented that reflect this potential, with each ex-

plained in turn.
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4.3.1 Case 1: Competing Contexts

The first case put forward constructs a subgraph from Gc with one single

lemma. For example, consider the intended senses of the word �chip� , in

which a noun premodifier5 determines the type of chip it is (e.g. potato vs

chocolate �chip�). If �chip� is lemmatised as the second word to chip(n),2, let

R(`2) retrieve from Gc the set of candidate senses in Equation (18).

R(`2 = chip(n),2) ={Chip(n),wood,2, Chip(n),micro,2, Chip(n),potato,2, (18)

Chip(n),casino,2, Chip(n),chocolate,2, Chip(n),mod,2}

Admittedly, there are more senses for the lemma chip(n),2, yet for ease

of interpretation the number is capped at six. Next, a subtree subgraph

as formally described in Section 2.2.1 with L = 1 is constructed for each

sense in Equation (18). These six subgraphs together make up a supergraph

Gchip, which is a subgraph of Gc and takes on its respective edge weights.

From Gchip the page cloud produced by Wordle6 in Figure 12 illustrates six

competing contexts of the senses retrieved by R(`2 = chip(n),2).

What is immediately striking, is the dominance of the context for the

sense Chip(n),micro,2, there are more pages for this sense and furthermore

some of these pages, such as BCDMOS and Four-phase logic exhibit a higher

degree of semantic similarity than observed for the most semantically re-

lated pages of other senses (such as Corn chip, XBOX Modchips, and Poker

chip). In fact Chip(n),micro,2 could be considered as the Most Frequent Sense

(MFS) baseline for the lemma chip(n),2 in Wikipedia. Also noticeable, is the

Zipfian-like distribution in which each consecutively less dominant sense

in the subgraph, is much less visually present.

5 Noun premodification, i.e. (modifier) noun + (head) noun sequences, contain only content
words, with no function word to show the meaning relationship between the two parts, i.e.
Poker chip → a chip used for playing poker (Biber et al., 2002, p272-274).

6 http://www.wordle.net - Wordle Homepage

http://www.wordle.net
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Figure 12: A colour is associated with each sense (or page p) for the lemma chip(n),2.
Font size is determined by the edge weights in Gchip between page p
and other pages that it has inbound or outbound links to, which are
representative of the sense’s context.

4.3.2 Case 2: Subtle Differences

The choice of words in a sentence naturally conjure up different images in

one’s mind, such as when reading the statements made in Figure 13.

Figure 13: Choosing Words Carefully

In the non-linguistic context of a hospital, naturally patients would be a

little alarmed if they heard the first sentence rather than the second. Recall

image information was recorded by the data mining tool in Tables 9 and 10.

The difference between cut and amputate is subtle, but very significant. For

the next set of results the image files in Wikipedia are utilised.

Again the same type of subtree subgraph is created as in Section 4.3.1 with

L = 1 and the edge weights of Gc made available. Except on this occasion,
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rather than using page titles, the first image from each page is used. For this

some Hyper Text Markup Language (HTML) was generated from the data

mining tool output, to arrange these semantically related images into an

image cloud viewable in a web browser. The target image is placed in the

middle, and it is surrounded by images from other pages that are weighted

as the most semantically significant to the target image. The larger and

closer each image is to the target image, the more semantically significant

the page it comes from is. As seen in Figure 14 (a), the most semantically

significant images are grouped into three tiers. The top 4 are in first tier,

next the top 6-10 are in the second tier, and finally the top 11-18 are in the

third tier7. For example see Figure 14 (b), that has the Korean dish �Kimchi�

as the target image. Notice there are many other types of Kimchi, Korean

dishes, and ingredients that are also associated with it.

7 Note if a semantically related page had no image, it was discarded in order to consider the
next most semantically related one.
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Now to return to the subtle yet significant difference between the in-

tended sense of amputating and cutting off limbs. A subgraph was made for

each sense with the closest Wikipedia page equivalent possible. These were

the pages Amputation and Cutting respectively, for which subtree subgraphs

Gamputation and Gcutting were constructed. As image clouds they can be seen

in Figures 15 (a) and (b), illustrating the context of each word and perhaps

the images that the reader him/herself would conjure up upon hearing

them. A patient would certainly not desire any of the torturous devices

such as a grinder, drill, or hand plane found in Figure 15 (a) near him/her

for a surgical amputation. In a hospital ward (rather than a workshop or

butchery) more precise and hygienic tools would be expected to be in use.

4.3.3 Case 3: Specified vs Unspecified Contexts

Finally in Figure 16 two different image clouds are produced from sub-

graph Gamputation. Figure 16 (a) contains the 18 most semantically related im-

ages, whereas Figure 16 (b) contains the 19 least semantically related (the

extra image is accounted for by the least related image taking the centre po-

sition of the image cloud). Even though all the images in the visual context

given by the page cloud in Figure 16 (b) are hyperlinked to the page Am-

putation, it would be very difficult to deduce that it was in comparison to

Figure 16 (a). This illustrates how a lot of Wikipedia links are very weakly

related to they page the are found in, which also highlights the importance

of mapping globally-scaled semantic edge weights such as was formalised

in this chapter.
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5
D I S A M B I G U AT I N G C O N C E P T S T H AT O R I G I N AT E

F R O M H E T E R O G E N E O U S S E M A N T I C G R A P H S

Based on the achievements of mining context from Wikipedia in the previous chap-

ter, the author was offered an internship for 6 months at the company Pingar. This

involved developing a system that automatically generates a taxonomy1 from a doc-

ument collection. This was a joint project funded by New Zealand’s Ministry of

Science & Innovation (MSI), between Pingar and Waikato University, enabling

the author to work with Dr Alyona Medelyan, Dr Jeen Broekstra, Dr Anna Divoli,

Dr Anna Huang, Dr David Milne, and Prof Ian Witten.

This chapter details the disambiguation module developed by the author which

was implemented into the taxonomy generation system. Leading up to this module,

words (or ngrams) found in the documents have several concepts and named enti-

ties mapped to them from a range of heterogeneous semantic graphs. The purpose

of the disambiguation module is to ascertain for each word, whether the concepts

and named entities that are mapped to it are semantically equivalent.

Finally the taxonomy generation system that makes use of this disambiguation

module has been published as a peer reviewed paper (Medelyan et al., 2013) which

can be found in Appendix B.1. This paper was presented at the proceedings of

ESWC 2013 in Montpellier, France. More information about the taxonomy gener-

ation system as a product can be found by visiting Pingar’s company website.

1 A taxonomy is a hierarchical structure to formally classify a set of concepts or named
entities.

61
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5.1 focused skos taxonomy extraction process (f-step)

The F-STEP system is comprised of several processing steps in order to

make sure the resulting taxonomy is as comprehensive as possible, exhibit-

ing both breadth and depth that draws from a range of semantic graphs.

The focus of this chapter is the disambiguation module (or processing step)

of the F-STEP system. However before getting into details, it is worth briefly

explaining all of the processing steps the F-STEP system has in order to bet-

ter understand its purpose. Therefore the explanations of each step will be

purely non-technical and introduce the technologies and resources utilised.

5.2 a brief step by step system overview

The F-STEP system is designed to help companies organise their internal

documents (text, spreadsheets, slides, etc). The motivation is that if a taxon-

omy can be generated based upon a document collection then that taxon-

omy could be useful in managing those documents. Generally, information

architects design taxonomies which is an expensive task in terms of time

and money. Furthermore it is very difficult to keep a taxonomy up to date

when documents are constantly added to the collection. F-STEP aims to au-

tomate this process, with the end result being that companies will be able

to better structure and manage their data instantaneously without such

expense and effort.

Taken from (Medelyan et al., 2013), Figure 17 over the following page is

a view of the F-STEP system’s processing steps and their order of occur-

rence, for which each will now be briefly explained. It is also worth noting

here that the author worked on all parts of the F-STEP system, implement-

ing the code of the other co-authors. As for the focus of this chapter, the

disambiguation module, this was the author’s own innovation.



5.2 a brief step by step system overview 63

Figure 17: System View of F-STEP

5.2.1 Processing Step 1: Initialisation

Processing step 1 achieves initialisation by first indexing each document

into a Solr2 repository. Solr has full-text search and indexing features for

document collections that F-STEP makes use of, accessing documents via

its URL referencing system. Before loading documents into Solr they need

to be stripped of any formatting. For this Apache Tika3 was used, since it

is packaged with a number of useful libraries for parsing documents.

In conjunction with loading documents into Solr, a Sesame4 repository

is automatically set up to store semantic relations deduced from the doc-

ument collection. The Sesame repository can be queried with the use of

SPARQL5 – a query language widely used to add, remove and manipu-

late semantic data. In fact, several well known semantic graphs including

Freebase and DBpedia have SPARQL endpoints, which allow the public to

query their semantic data.

2 http://lucene.apache.org/solr - Apache Solr Homepage
3 http://tika.apache.org - Apache Tika Homepage
4 http://rdf4j.org - Sesame Homepage
5 http://www.w3.org/TR/rdf-sparql-query - Latest W3C SPARQL Query Language for RDF

Recommendation

http://lucene.apache.org/solr
http://tika.apache.org
http://rdf4j.org
http://www.w3.org/TR/rdf-sparql-query
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5.2.2 Processing Steps 2(a), 2(b) & 3: Extraction & Annotation of Concepts &

Named Entities

Processing steps 2(a) and 2(b) are focused on extraction – these being the

Entity Extraction service of the Pingar API6, along with the Wikify service

of Wikiminer7. Following this, processing step 3 involves linked data anno-

tation, which is the querying of the DBpedia and Freebase endpoints using

SPARQL to map even more concepts to the target ngrams. These mapping

steps are detailed below.

processing step 2(a): pingar entity extraction Pingar Entity

Extract (PEE) is one of the many services provided by the Pingar API. PEE

achieves two types of entity extraction – the first is the mapping of named

entities such as locations, dates, and people to ngrams, and the second is the

mapping of concepts from an input taxonomy, again to ngrams.

processing step 2(b): wikify extraction Wikify is one of the

many services provided by Wikiminer, in which the key concepts in a block

of plain text are hyperlinked to pages in Wikipedia. If Wikipedia pages

are considered to represent concepts and named entities, then Wikify simply

achieves the task of mapping them to ngrams.

processing step 3 : dbpedia & freebase annotation Finally

there is the annotation processing step, in which each of the named entities

found by PEE for a target ngram are iterated over to see if they can be lo-

cated in either DBpedia8 or Freebase9 by querying their SPARQL endpoints

(note the entity type must also match). If a named entity exists in DBpedia

or Freebase, it is also mapped to the target ngram.

6 http://apidemo.pingar.com - Demo Page for the Pingar API
7 http://wikipedia-miner.cms.waikato.ac.nz/services/?wikify - The Wikify service,

hosted by SourceForge and the University of Waikato
8 http://dbpedia.org/sparql - DBpedia SPARQL Endpoint
9 http://sparql.freebase.com - A Collection of Freebase SPARQL Endpoints

http://apidemo.pingar.com
http://wikipedia-miner.cms.waikato.ac.nz/services/?wikify
http://dbpedia.org/sparql
http://sparql.freebase.com
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5.2.3 Processing Step 4: Disambiguation of Concept & Named Entity Mappings

The disambiguation processing step is yet to be elaborated on in greater de-

tail later, but is mentioned here briefly to continue the flow of F-STEP’s

description. The previous processing steps mapped concepts and named

entities from a range of semantic graphs to the ngrams in the documents.

The purpose of the disambiguation processing step is to ascertain whether

these particular mappings are correct, then discard those that are not while

merging the rest together. This results in one canonical concept mapping

per ngram, that represents one or more semantically equivalent concepts or

named entities that originate a range of heterogeneous semantic graphs.

5.2.4 Processing Step 5: Consolidation of Taxonomy

The taxonomy consolidation processing step is where all the extracted, anno-

tated and then disambiguated concept and named entity mappings are ex-

amined to look for broader/narrower relations in the semantic graphs they

originated from. Based on a collection of heuristics, the final taxonomy is

populated and consolidated.

For further details on any of these processing steps, reading the paper

(Medelyan et al., 2013) contributed to by the author is recommended.

5.3 skos : simple knowledge organisation system

To construct a taxonomy, the range of semantic graphs utilised and the

documents in the collection need to be described in a well defined semantic

vocabulary. For this the Simple Knowledge Organisation System (SKOS10)

vocabulary was chosen, of which the fraction of it that is used in the F-STEP

system is defined in Table 11 on the following page.

10 http://www.w3.org/TR/2009/REC-skos-reference-20090818 - The W3C Recommendation
Document for SKOS

http://www.w3.org/TR/2009/REC-skos-reference-20090818
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Table 11: The SKOS Vocabulary Specifically Employed in F-STEP

SKOS Vocabulary Meaning Example

skos:Concept The concept class Beer is a concept

skos:prefLabel The preferred label Beer is the preferred label of the

for a concept Concept

skos:altLabel The alternative A cold one is an alternative label for

label for a concept beer

skos:related The related concept Wine is a related concept to beer

of a concept

skos:closeMatch The close match of Guinness is a close match to beer

a concept

skos:exactMatch The exact match of Ale is an exact match to beer

a concept

skos:broader The broader concept Beer has a broader concept of

of a concept alcohol

skos:narrower The narrower concept Alcohol has a narrower concept of

of a concept beer

SKOS is a Resource Description Framework (RDF) based vocabulary de-

signed to represent onotologies, taxonomies, thesauri, among many other

semantic graphs. Some semantic graphs are already SKOS formatted, where

as the semantic relationships gathered from Wikiminer or the DBpedia and

Freebase Annotators require formatting to the SKOS vocabulary before be-

ing added to the Sesame repository. Semantic relationships in RDF are de-

noted as triples – a sequence of three Uniform Resource Identifiers (URIs)

formatted as <vertex> <edge> <vertex>. For example:

<http://en.wikipedia.org/wiki/Beer>

<skos:related>

<http://en.wikipedia.org/wiki/Brewing>

This triple denotes an hyperlink (or graph edge) existing between the

two Wikipedia pages for Beer and Brewing.

http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2004/02/skos/core#altLabel
http://www.w3.org/2004/02/skos/core#related
http://www.w3.org/2004/02/skos/core#closeMatch
http://www.w3.org/2009/08/skos-reference/skos.html#exactMatch
http://www.w3.org/2004/02/skos/core#broader
http://www.w3.org/2004/02/skos/core#narrower
http://en.wikipedia.org/wiki/Beer
http://www.w3.org/2004/02/skos/core#related
http://en.wikipedia.org/wiki/Brewing
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5.4 formalisation of f-step

A brief description of each processing step has now been covered in Sec-

tion 5.2, along with an outline of the SKOS vocabulary in Section 5.3 that all

the semantic information of the taxonomy is formatted in. Now the F-STEP

system can be formalised, with specific attention given to the disambigua-

tion processing step as detailed in Algorithm 2 below.

Algorithm 2: Disambiguating Concepts that Originate from Heteroge-
neous Semantic Graphs
Input: D
Output: T
SetUpRepositories (); // Step 1

Rd ← IndexDocuments (D);
Rt ← AddPingarEntityExtractions (); // Step 2(a)

Rt ← AddWikifyExtractions (); // Step 2(b)

Rt ← AddDBpediaAnnotations (); // Step 3

Rt ← AddFreebaseAnnotations ();
/* ----------------------- Step 4 Function Expanded (Start) */

DisambiguateHeterogeneity () {
foreach d ∈ Rd do

foreach η identified in d do // Phase 1: Get Canonical Concept

C← GetConceptsMappedToNgram (η);
ĉ∗ ← arg maxc∈C GetMeanSimilarity(ω(c),ω(η));
Rt ← AddSKOSExactMatch (ĉ∗,η);
foreach c ∈ C such that c ≠ ĉ∗ do // Phase 2: Merge/Discard

γ← GetMeanSimilarity (ω(c),ω(ĉ∗));
if γ > 0.9 then

Rt ← AddSKOSExactMatch (c,η);
else if 0.7 < γ ≤ 0.9 then

Rt ← AddSKOSCloseMatch (c,η);
else

Rt ← DiscardConcept (c,η);

}
/* ------------------------- Step 4 Function Expanded (End) */

Rt ← ConsolidateTaxonomy (); // Step 5

T ← ExportTaxonomy ();
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5.4.1 System Input, Output, & Resources

The collection of documents D is taken as input, for which the taxonomy

T , is output of the F-STEP system. The Solr repository that stores the doc-

uments is denoted as Rd, while the Sesame repository that stores semantic

relationships as triples is denoted as Rt. All functions have access to and

can manipulate either of these two repositories. For the semantic graphs

Wikipedia, DBpedia, Freebase, or any other relevant taxonomies, functions

can either remotely access them by their SPARQL endpoints, or locally ac-

cess them in Rt (i.e. in other words, a subset of relevant nodes and edges

from a semantic graph can be locally cached in Rt).

5.4.2 Leading up to Disambiguation

First is initialisation (Step 1) as described in Section 5.2.1, in which both

repositories Rd and Rt are set up. Following this, the document collection,

D, is uploaded to Solr via the function IndexDocuments(D).

Next is extraction and annotation (Steps 2(a), 2(b), and 3) as described in

Section 5.2.2. The extraction functions AddPingarEntityExtractions() and

AddWikifyExtractions() map concepts and named entities from input tax-

onomies and Wikipedia to ngrams in the documents. Then the annotation

functions AddDBpediaAnnotations() and AddFreebaseAnnotations() look

for named entities mapped to ngrams by AddPingarEntityExtractions() in

DBpedia and Freebase, adding mappings for these named entities if they can

be found.

5.4.3 Concept URI Mappings

At this point all the ngrams in each document have several concepts and

named entities mapped to them that each originate from a different semantic

graph. From (Medelyan et al., 2013), take for example �Apple� . The two
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(a) (b)

Figure 18: (a) Apple the fruit and (b) Apple the company

concept URIs <http://www.freebase.com/view/en/apple> from Freebase and

<http://en.wikipedia.org/wiki/Apple_Inc.> from Wikipedia as portrayed by

Figure 18, could both be mapped to the the ngram �Apple� . Naturally this is

undesirable because they are distinct concepts (or senses) that while related,

are not semantically equivalent.

This calls for a disambiguation processing step to resolve concept to ngram

mappings that exhibit a semantic conflict. This is achieved with the function

DisambiguateHeterogeneity() expanded as Step 4 in Algorithm 2, and to

be explained in detail henceforth.

5.4.4 Disambiguating Heterogeneity

5.4.4.1 Phase 1: Acquiring the Canonical Concept

Each document d, is pulled down from the Solr repository Rd. For each

ngram η, that is identified in document d, there are a set of concepts C that

map to it. The requirement of the first phase is to find the concept (or sense)

mapped to the ngram that best fits the context it used in. This is deemed to

be the canonical concept and denoted as ĉi,∗ ∈ C. For this chosen concept a

new URI for its canonical representation is generated and this is linked to

its former concept URI with a skos:exactMatch semantic relation.

http://www.freebase.com/view/en/apple
http://en.wikipedia.org/wiki/Apple_Inc.
http://www.w3.org/2009/08/skos-reference/skos.html#exactMatch


5.4 formalisation of f-step 70

5.4.4.2 Phase 2: Merging of Other Concepts with the Canonical Concept

Phase 2 deals with merging or discarding the remaining competing con-

cepts. Each remaining concept c ∈ C such that c ≠ ĉi,∗ is now compared

to the canonical concept using the function GetMeanSimilarity(<Bag of

Words#1>, <Bag of Words#2>). Again the function ω(<ngram|concept>) is

used to generate a bag of words context for the canonical concept ĉi,∗ and

for each concept c it is compared to. Depending on the mean similarity

score γ, a competing concept c will be mapped as a skos:exactMatch seman-

tic relation, a skos:closeMatch semantic relation, or discarded as a concept

with a semantically different sense11. Taken from (Medelyan et al., 2013),

the thresholds for each action taken are given in Table 12.

Table 12: Similarity Thresholds for Concept Merging

Mean Similarity Score (γ) Action Taken

γ ≤ 0.7 Discard concept
0.7 < γ ≤ 0.9 List as skos:closeMatch

γ > 0.9 List as skos:exactMatch

The similarity thresholds values were manually selected upon reviewing

output. Preferably if a large enough test data set could be prepared, more

optimal values could be learned. This marks the end of the disambiguation

processing step, which results in one canonical concept that represents a

particular sense of the ngram it is mapped to, based on the particular con-

text of the document it is found in. Each canonical concept may even be

a merger of several concepts from different semantic graphs, which will

naturally make for a much richer taxonomy to be output by the system.

11 To avoid conflict with the notation, the variable γ replaces the variable s in the paper
(Medelyan et al., 2013), since s denotes a sense in this thesis.

http://www.w3.org/2009/08/skos-reference/skos.html#exactMatch
http://www.w3.org/2004/02/skos/core#closeMatch
http://www.w3.org/2004/02/skos/core#closeMatch
http://www.w3.org/2009/08/skos-reference/skos.html#exactMatch
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5.4.5 The End Result

After the final processing step of taxonomy consolidation has taken place, as

described in Section 5.2.4, the final taxonomy T can be exported from the

Sesame Repository Rt in the SKOS vocabulary. In this format the taxonomy

can be easily explored by a number of programs that can exploit SKOS se-

mantic structures. Furthermore this format ensures the taxonomy is easily

interropable to whatever purpose it may be used for on the semantic web.

5.4.6 Details of Key Functions

Now the implementation of two key functions ω(<ngram|concept>) and

GetMeanSimilarity(<Bag of Words#1>, <Bag of Words#2>) found in Al-

gorithm 2 will be detailed.

5.4.6.1 Generating Bag of Words Context

The purpose of the function ω(<ngram|concept>) is to build a bag of words

context for either an ngram or a concept. To build a context for an ngram, this

is achieved by collecting labels denoted as skos:prefLabel or skos:altLabel of

the concepts that map to ngrams in the document12. On the other hand,

to build a context for a concept (or named entity), this is achieved by

collecting labels denoted as skos:prefLabel or skos:altLabel of adjacent con-

cepts in the semantic graph it originates from. The edge types for these

adjacent concepts, must be either skos:broader, skos:narrower, or skos:related.

For example, a Wikipedia category page would be the equivalent to a

skos:broader concept, with the page title and redirects being the equivalent

to the skos:prefLabel and skos:altLabels respectively, both of which are in-

cluded in the returned bag of words.

12 Admittedly this will include the labels of some incorrect concept mappings, however the
detrimental effect of this is negligible since often a majority of mappings are correct.

http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2004/02/skos/core#altLabel
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2004/02/skos/core#altLabel
http://www.w3.org/2004/02/skos/core#broader
http://www.w3.org/2004/02/skos/core#narrower
http://www.w3.org/2004/02/skos/core#related
http://www.w3.org/2004/02/skos/core#broader
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2004/02/skos/core#altLabel
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5.4.6.2 Calculating Mean Similarity

Finding the intersection between a two bags of words is very reminiscent of

the Lesk (1986) algorithm, with the difference that local context is matched

with concept labels found in the relevant semantic graphs, rather than with

definitions (or glosses) found in dictionaries. The author’s implementation

of this will now be detailed as the function GetMeanSimilarity(<Bag of

Words#1>, <Bag of Words#2>).

This function in its most basic form compares all the labels in the first

bag with all the labels in the second bag, returning the total number of

matches divided by the total number of comparisons made. Naturally some

adjustments were required to address some of the obvious caveats that

would affect the accuracy of this overly simplistic function.

Firstly, taking into account that documents vary in content and length, as

well as the fact that semantic graphs vary in granularity and coverage, the

set size of the bag of words context varies considerably. For example while

some Wikipedia concepts have thousands of SKOS equivalent relations, tax-

onomies and thesauri such as the AGROVOC thesaurus13 may only have

a handful of SKOS relations in comparison. As a consequence, this will

severely dilute the mean similarity, even if there are some very relevant

label matches. To address this issue the variable n =min{∣ω(cx)∣ , ∣ω(cy)∣}

was devised. Now only the mean of the top n (rather than all) similar-

ity scores, is returned by the function. The assumption is, if the two con-

cepts the sets represent are semantically equivalent, then every label in the

smaller set should have at least one reasonably similar partner label in the

larger set.

Secondly, deviations in word etymology and orthography of concept la-

bels, such as beer and bier or neighbour and neighbor, will result in a mis-

match. However with the use of string similarity metrics, at least a partial

match can be credited. There are several string similarity metrics, as listed

on the following page.

13 http://aims.fao.org/agrovoc - The AGROVOC (Multilingual Agricultural) Thesaurus

http://aims.fao.org/agrovoc
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1. Levenshtein (1966) Distance (LD)

2. Longest Common Subsequence (LCS)

3. Dice (1945) Coefficient (DC) – later known as the Sorensen (1948) in-

dex (SSI)

The author chose to use the string similarity metric SSI, denoted in Equa-

tion (19). This provides a value between 0 and1, that is sensitive to devia-

tions in spelling at the lexical level.

SSI = 2 ∣A∩B∣
∣A∣+ ∣B∣ (19)

Figure 19: Venn Diagram of A, B, & A∩B

For example compare the alterna-

tive spellings of neighbour and neigh-

bor in British and American English.

By breaking down each string into

a set of character pairs, such that

A = {ne, ei, ig, gh, hb, bo, ou, ur}

and B = {ne, ei, ig, gh, hb, bo, or},

the intersection between these two

sets can be illustrated as the Venn

diagram in Figure 19. Based on this, the SSI value for the two alternative

spellings can be calculated as seen in Equation (20) below.

SSI = 2 ∣A∩B∣
∣A∣+ ∣B∣ =

2× 6
8+ 7 =

12

15
= 0.8 (20)

The use of SSI increased the sensitivity of label matching to ensure the

labels in the smaller set had the best chance of finding an equivalent in the

larger set. Although of course, some matches included in the top n were

not valid. For example as Kondrak (2005) also found in his experiments,

a worse case scenario for SSI used with character pairs is that a similarity



5.5 example from disambiguation results 74

value of 1.0 is possible for words such as �Xanex� and �Nexan� which have

the same character pairs {an, ex, ne, xa} but are not semantically equivalent.

Furthermore character pairs can be credited although they appear in very

different positions of the words, for example �Voltaren� and �Tramadol� . This

occasionally led to a concept mapping being included in the final taxonomy

when it should have been discarded by the disambiguation processing step,

however the cut-off threshold of 0.7 ensured this did not happen often.

5.5 example from disambiguation results

During the author’s internship period, only an evaluation of the F-STEP

system’s performance as a whole was conducted. The results and discus-

sion of this can be found in the paper (Medelyan et al., 2013) which is

in Appendix B.1. Alternatively, provided here is an example result of the

disambiguation module’s implementation.

Consider for document d, the ngram η = �beer� is found in the sentence:

�Guests at the festival also got the chance to enjoy some locally sourced food to

accompany the free beer.�

Assume it has a concept cw, from Wikipedia and a concept ca, from the

AGROVOC thesaurus, mapped to it by the extraction and annotation func-

tions leading up to the disambiguation module. Then assume for Phase 1

of dismabiguation, it was decided that the canonical concept ĉ∗ = cw. For

Phase 2 it now needs to be decided whether to merge or discard the other

concept ca. This illustrated by Table 13 over the following page.

The concepts ĉ∗ =<http://en.wikipedia.org/wiki/Beer> from Wikipedia and

ca =<http://aims.fao.org/aos/agrovoc/c_864> from the AGROVOC thesau-

rus are input for the function GetMeanSimilarity(ω(ĉ∗), ω(ca)). In this

instance, ĉ∗ has over 400 concept relations that are mostly skos:related, where

as ca has only 4 concept relations that are either skos:broader or skos:narrower.

http://en.wikipedia.org/wiki/Beer
http://aims.fao.org/aos/agrovoc/c_864
http://www.w3.org/2004/02/skos/core#related
http://www.w3.org/2004/02/skos/core#broader
http://www.w3.org/2004/02/skos/core#narrower
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Table 13: SSI Scores for Top n Concept Label Matches

ω(ĉ∗) ω(ca) SSI

�Alcoholic Beverages� �Alcoholic Beverages� 1.000
�Stout� �Stouts� 0.889
�Lager� �Lagers� 0.889
�Beer�� �Beers�� 0.857

�Cask Ale� �Ales� 0.500

�Pale Lagers� �Lagers� 0.769
�Vienna Lager� �Lagers� 0.615

⋮ ⋮ ⋮
�Saccharomyces cerevisiae� �Stouts� 0.000

Total 4.404

Mean 0.881

Also worth noting is that the dagger† in Table 13 denotes the skos:prefLabel

for each concept – �Beer� and �Beers� respectively, which are also included

in the bag of words context. Recall that n = min{∣ω(ĉ∗)∣ , ∣ω(ca)∣}, there-

fore the mean of the top 5 label matches (shown in bold) will be returned by

the function GetMeanSimilarity(ω(ĉ∗), ω(ca)). Notice an almost perfect

match was found for each of label from ω(ca) except for �Ales� , validating

the author’s earlier assumption that if concepts are semantically equivalent

then there should be approximately n similar partners found in the larger

labels set. Considering the similarity thresholds given in Table 12 and a cal-

culated mean similarity of γ = 0.881 for the concepts ĉ∗ and ca, they would

be merged together as a skos:closeMatch.

A skos:exactMatch merger might have been more appropriate. However

given that the smaller set of labels were mostly in the plural form whereas

the larger set of labels were mostly in the singular form, at least the com-

bination of using SSI with character pairs ensured some partial credit was

awarded so the mapping of ca to η was not discarded. Without this combi-

nation, there would have been only one string match (from label �Alcoholic

Beverages�), resulting a much lower mean similarity of γ = 1/5.

http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/2004/02/skos/core#closeMatch
http://www.w3.org/2004/02/skos/core#exactMatch
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In the final taxonomy T , locating the concept for beer will have ĉ∗ listed

as an skos:exactMatch and ca listed as a skos:closeMatch. Furthermore a ma-

jority the incorrect concept to ngram mappings should have been removed,

effectively pruning away the noisy relations in taxonomy T . This under-

scores the primary purpose of this disambiguation module described in

this chapter.

http://www.w3.org/2004/02/skos/core#exactMatch
http://www.w3.org/2004/02/skos/core#closeMatch


6
P E R I P H E R A L D I V E R S I T Y

After completion of the internship at Pingar, the author decided to participate in

the SemEval 2013 task of Multilingual Word Sense Disambiguation1, for the lan-

guages English, French, German, Italian, and Spanish. This involved developing

a new graph centrality measure to achieve Word Sense Disambiguation (WSD),

dubbed as Peripheral Diversity (PD).

In the results of this task (Navigli et al., 2013), Peripheral Diversity proved to

be a competitive and robust graph centrality measure, managing to defeat the Most

Frequent Sense (MFS) baseline for both French and Italian. The content of this

chapter has been published as a peer reviewed paper (Manion and Sainudiin, 2013)

which can be found in Appendix B.2. This paper was chosen for presentation and

also for the poster session at SemEval 2013, held in conjunction with *SEM and

NAACL in Atlanta, Georgia.

1 http://www.cs.york.ac.uk/semeval-2013/task12 - The Homepage for the Multilingual
WSD task.
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6.1 task description

The SemEval
2 2013 All Words (AW) task of Multilingual Word Sense Dis-

ambiguation (WSD) included the languages English, French, German, Ital-

ian, and Spanish. The task focused on disambiguating nouns, and systems

could be evaluated by their use of WordNet (Fellbaum, 1998), Wikipedia, or

both via BabelNet (Navigli and Ponzetto, 2012a) which maps these Lexical

Knowledge Bases (LKBs) together as a multilingual sense inventory3.

6.2 babel synsets

Figure 20: Illustrative View of a Babel Synset

Crucial to this task is understanding Babel synsets, of which Figure 20

presents an example taken from (Navigli and Ponzetto, 2012a) of the synset

for the sense Play(n) theatre. Effectively a Babel synset represents a unified

concept, through the mapping of senses found in the two aforementioned

heterogeneous semantic graphs WordNet (as a lexicon) and Wikipedia (as a

multilingual encyclopedia), making BabelNet a multilingual encyclopedic dic-

tionary (Navigli and Ponzetto, 2012c). As a result, each synset is a collection

of lexicalisations in several languages, in which its mappings to WordNet

and Wikipedia senses are indicated by the keys WIKIWN (Wikipedia +

WordNet), WN (WordNet only), and WIKI (Wikipedia only). As these keys

2 http://www.cs.york.ac.uk/semeval-2013/task12/index.php?id=task-description - On-
line Task Description of SemEval 2013 Task 12: Multilingual Word Sense Disambiguation

3 See Section 1.4.2 for sense inventory descriptions

http://www.cs.york.ac.uk/semeval-2013/task12/index.php?id=task-description
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suggest, it is not always possible to produce a mapping since naturally a

dictionary and encyclopedia can not be expected to completely overlap.

While the whole mapping process detailed in (Navigli and Ponzetto,

2012a, p220-224) will not be described here, there are some interesting par-

allels with Chapter 5 that also had to deal with heterogeneity between

semantic graphs. Firstly, Navigli and Ponzetto (2012a) needed to create a

common contextual representation for concepts from both semantic graphs

in order to compare semantic equivalence. A WordNet context was defined

by a sense’s synonyms, hypernymy/hyponymy, and glosses, on the other hand,

a Wikipedia context was defined by page labels, links, redirects, and categories.

Both of these contexts can be transliterated into the SKOS vocabulary intro-

duced in Table 11 in Section 5.3.

Secondly, the abundancy of context for Wikipedia is much greater than

that of WordNet making them difficult to compare. This same issue had

to be addressed in Section 5.4.6.2 when calculating the mean similarity.

While this author would reduce the Wikipedia context with the variable

n to match that of WordNet, Navigli and Ponzetto (2012a) instead increase

the context of WordNet via graph based means to match that of Wikipedia4.

While this is not the focus of this chapter, it is interesting to note that

establishing a common context and a similar degree of context abundancy

are two issues that need to be dealt with when dealing with heterogeneous

semantic graphs.

6.3 creating subgraphs with babelnet

For this task, subgraphs were constructed using the Daebak API, that works

alongside classes from the BabelNet API to access BabelNet5 and synset

paths indexed into Apache Lucene6 to ensure speed of subgraph construc-

tion. The reader should refer to Section 2.2.1 for formalisations of subgraph

4 Extra context from WordNet is discovered via a Depth First Search (DFS).
5 BabelNet 1.1.1 API, Sense Inventory, & Paths - http://babelnet.org/download
6 Apache Lucene - http://lucene.apache.org

http://babelnet.org/download
http://lucene.apache.org
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construction, and to (Navigli and Ponzetto, 2012c) for better understanding

of how to use the BabelNet API.

6.4 peripheral diversity

For this task, the author designed a graph based centrality measure φ,

named �Peripheral Diversity� (PD). The intuition behind it is, given a sub-

graph GL that is created based on the local context of a word to be disam-

biguated, then the sense that is most appropriate and should be chosen by

φ needs to be a) highly connected to b) a diverse range of peripheral senses,

thus peripheral diversity. In line with these intuitions, senses that are highly

connected to a very similar set of senses (e.g. is part of an isolated but

strongly connected component) should be rejected. Again senses that are

diverse but are not well connected to the rest of GL should also be rejected.

It is hoped that PD can select senses on the appropriate region of this con-

tinuum, which is now formalised in the following section (Note that only

φ is formalised, the rest of the WSD system is formalised the same way as

in Section 2.1.2, with GL constructed as a subtree subgraph).

6.4.1 Pairwise Semantic Dissimilarity

First, for each synset si,j ∈ R(`i), a set of its peripheral synsets needs to

be acquired. This is done by travelling a depth of up to d (stopping if

the path ends), then adding the synset reached to the set of peripheral

synsets P≤d = {sj,1, sj,2, ..., sj,k}. Next for every pair of synsets s and s′ that

are not direct neighbours in P≤d such that s /= s′, their Pairwise Semantic

Dissimilarity (PSD) δ(s, s′) is calculated, which is required for a synset’s

PD score. To generate the results for this task the complement to Cosine
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Similarity is used as the PSD measure. Commonly known as the Cosine

Distance it is denoted in Equation (21) below.

δ(s, s′) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1− ( ∣O(s)∩O(s′)∣
√
∣O(s)∣

√
∣O(s′)∣

) , if ∣O(s)∣∣O(s′)∣ /= 0

1, otherwise,

(21)

O(s) is the outgoing (out-neighbouring) synsets for s ∈ P≤d, and ∣O(s)∣

denotes the number of elements in O(s).

6.4.2 Peripheral Diversity Score

Once the PSD scores for every permitted pairing of s and s′ are calculated,

there are a number of ways to generate the φ(si,j) values. To generate

results for this task, synsets were scored on the sum of their minimum PSD

values, which is expressed formally below.

φ(si,j) = ∑
s∈P≤d(si,j)

min
s′/=s

s′∈P≤d(si,j)

δ(s, s′) (22)

The idea is that this summing over the peripheral synsets in P≤d(si,j)

accounts for how frequently synset si,j is used, in which then each usage is

scaled by a peripheral synset’s minimum PSD across all synsets in P≤d(si,j).

It is hoped that this can score highly the senses that are well connected to

a diverse range of senses.

6.4.3 Strategies, Parameters, & Filters

wikipedia’s did you mean? Deviations and errors in spelling are ac-

counted for to ensure lemmas have the best chance of being mapped to a

synset. Absent synsets in subgraph GL will naturally degrade system out-
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put. Therefore if `i ↦ ∅, then an HTTP call to Wikipedia’s Did you mean?

function was made and the response is parsed for any alternative spellings.

For example in the test data set7 the misspelt lemma: “feu_de_la_rampe”

was corrected to “feux_de_la_rampe”.

custom back-off strategy The MFS is a very powerful back-off8

strategy, yet it relies on having some quantity of hand-tagged data (Mc-

Carthy et al., 2004). Therefore a custom back-off strategy was designed. In

the event the system provides a null result, the Babel synset si,j ∈ R(`i)

with the most senses associated with it will be chosen with preference to

its region in BabelNet such that WIKIWN ≻ WN ≻ WIKI. Note that as a

participant in the task, the MFS and FS had not yet been published, which

was the motivation to design an automated back-off strategy.

input parameters The sliding context window length (b − a) was

set to encompass 5 sentences at a time, in which the step size was also 5

sentences. For subgraph construction the maximum path length9 L was set

to 2, with the peripheral search depth d set to 3. BabelNet edge weights, as

deduced in (Navigli and Ponzetto, 2012a), do not directly contribute to PD

scores in the experimental results that follow. BabelNet edge weights are

only used to qualify each path in the construction of GL, by ensuring that

an edge weight of ≥ 0.005 is found for all edges in each contributing path10.

Finally, all these parameters were set based on results obtained with the

trial data issued by the organisers before the evaluation period of the task.

7 Found in sentence d001.s002.t005 in the French test data set.
8 In the event the WSD technique fails to provide an answer, a back-off strategy provides one

for the system to output.
9 In the SemEval workshop proceedings it is reported that L = 3, however when the author

reproduced the results at a later date it was discovered that in fact L = 2. This thesis and the
most current version of the task paper on the author’s homepage now reflect this to ensure
results can be reproduced.

10 This value can be adjusted by changing the babelnet.minEdgeWeight variable of the
babelnet.properties file located in the BabelNet API.
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filters Two filters were applied to the subgraphs that ship with the Ba-

belNet API. WordNet contributed domain relations were removed with the

ILLEGAL_POINTERS filter, and then the SENSE_SHIFTS filter (see Section 2.2.3)

was applied. For more information on these filters, consult the BabelNet

API documentation. Once again, these filters were applied since they demon-

strated an improvement on performance for the trial data.

6.5 semeval results

6.5.1 Results of SemEval Submission

Language DAEBAK! MFSBaseline +/-

DE German 59.10 68.60 -9.50

EN English 60.40 65.60 -5.20

ES Spanish 60.00 64.40 -4.40

FR French 53.80 50.10 +3.70

IT Italian 61.30 57.20 +4.10

Mean 58.92 61.18 -2.26

Table 14: DAEBAK! vs MFS Baseline on BabelNet

As can be seen in Table 14, the results of the single submission titled

�DAEBAK!� , were varied and competitive. The worst result was for German

in which the system fell behind the MFS baseline by a margin of 9.50. Again

for French and Italian the MFS baseline was exceeded by a margin of 3.70

and 4.10 respectively. The Daebak back-off strategy contributed anywhere

between 1.12% (for French) to 2.70% (for Spanish) in the results, which

means the system outputs a result without the need for a back-off strategy

at least 97.30% of the time. Over all languages the system was slightly out-

performed by the MFS baseline by a margin of 2.26. Ultimately PD demon-

strated to be robust across a range of European languages. With these pre-

liminary results this surely warranted further investigation of what can be

achieved with PD.
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In Figure 21 the three teams that entered this task had their system’s

performance evaluated over increasing degrees of polysemy. As expected

the more polysemous words induce a decay in performance. Finally PD was

also the top performing system for the disambiguation of named entities.

Figure 21: F-Score According to the degree of instance polysemy, reported when
at least ten instances have the specified polysemy. (Navigli et al., 2013).

6.5.2 Exploratory Results

Some inconsistencies were observed in the task answer keys across differ-

ent languages as shown in Table 15. For each Babel synset ID found in

the answer key, the sense inventory it originated from was recorded, be it

Wikipedia (WIKI), WordNet (WN), or both (WIKIWN).

Language WIKI WN WIKIWN

DE German 43.42% 5.02% 51.55%
EN English 10.36% 32.11% 57.53%
ES Spanish 30.65% 5.40% 63.94%
FR French 40.81% 6.55% 52.64%
IT Italian 38.80% 7.33% 53.87%

Table 15: BabelNet Answer Key Breakdown
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This is not a critical observation but rather an empirical enlightenment on

the amount of development/translation effort for each language that has

gone into the contributing subparts of BabelNet – Wikipedia and WordNet.

As was the case in Chapter 5, the heterogeneity of hybrid sense inventories

such as BabelNet creates new obstacles for WSD. In the future, disambigua-

tion policies need will to be sensitive to the heterogeneity of such sense

inventories.



7
I T E R AT I V E C O N S T R U C T I O N O F S U B G R A P H S

After competing in the multilingual Word Sense Disambiguation (WSD) task of

SemEval 2013, experimentation with the Peripheral Diversity (PD) framework

described in Chapter 6 continued, along with the testing and development of other

graph centrality measures, context windows, filters, and subgraph types. All these

experiments provided the Daebak Application Programming Interface (API) with

many more features as well. After much experimentation, it became clear that PD

had its limitations. Furthermore this also appeared to be the case for most other

graph centrality measures, subgraph types, window sizes, and filters. Of course

certain combinations of these variables proved better than others, but this apparent

glass ceiling could not be broken through.

Why not?

Through re-evaluation of the literature the author noticed that most researchers,

just as this author had also done, tended to focus on developing, tweaking, and

evaluating φ, L, GL, or other parts of the WSD process individually as ordered

atomic steps of the overall process. Therefore this chapter details a shift in focus for

the investigation, by stepping back and looking at the bigger picture of how these

atomic steps could interact with each other.

Lastly, this chapter has been published as a peer reviewed long paper (Manion

and Sainudiin, 2014) which can be found in Appendix B.3. It was presented in the

proceedings of *SEM 2014, held in conjunction with COLING and SemEval in

Dublin, Ireland.
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7.1 the conventional subgraph approach

Subgraph-based WSD has been characterised over the last decade by perform-

ing the two key steps of (1) subgraph construction and (2) disambiguation

via graph centrality measures, in an ordered atomic sequence. This author

refers to this characteristic as the conventional approach to subgraph-based

WSD, while at the same time, proposes an iterative approach to subgraph-

based WSD that allows for interaction between the two atomic steps in an

incremental manner. This chapter will demonstrate its effectiveness across a

range of graph-based centrality measures and subgraph construction meth-

ods, at both the sentence and document level.

7.1.1 Algorithm for Conventional Approach

The two steps of subgraph construction and disambiguation via a graph

centrality measure have already been formalised in Chapter 2 in Section 2.2.1

and Section 2.2.2 respectively. In reference to these sections, the conven-

tional subgraph approach can be illustrated by Algorithm 3. Let L be taken

as input, and let the disambiguation results D = {ŝ1,∗, ..., ŝm,∗} be produced

as output to assign to L = {`1, ..., `m}.

Algorithm 3: Conventional Approach
Input: L
Output: D
D ← ∅;
GL ← ConstructSubGraph (L);
foreach `i ∈ L do

ŝi,∗ ← arg maxsi,j∈R(`i)φ(si,j);
put ŝi,∗ in D;

To begin with,D is initialised as an empty set and ConstructSubGraph(L)

constructs one of the three subgraphs described in Section 2.2.1. Next for

each `i ∈ L, by running a graph based centrality measure φ over GL, the

most appropriate sense ŝi,∗ is estimated, and placed in set D. Effectively,
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L is a context window based on document or sentence size, therefore this

algorithm is run for each context window division. Note that Algorithm 3

would require a little extra complexity to handle local edge subgraphs (as

described in Section 2.2.1(c)), due to its context window needing to satisfy

L = {`i−D, ..., `i+D}.

7.2 the iterative subgraph approach

7.2.1 What is Iterative WSD?

As alluded to earlier, the key observation to make about the conventional

approach in Algorithm 3, is for input L, constructing subgraph GL and per-

forming disambiguation are two ordered atomic steps. Notice that there is

no iteration between them, because the first step of subgraph construction

is never revisited for each L. For the conventional process to be iterative,

then for `a, `b ∈ L a previous disambiguation of `a, would need to influence

a consecutive disambiguation of `b, through an iterative re-construction of

GL between each disambiguation. This key difference illustrated by Fig-

ure 22, is the level of iterative WSD that is aspired to.

L GL φ Dconstruct disambiguate assign

(a) Conventional Approach

L GL φ Dconstruct

disambiguate

assign

reconstruct

(b) Interactively Iterative Approach

Figure 22: The Key Difference In Approach

It is important to note, the term iterative can already be found in WSD

literature, therefore the opportunity is taken here to make a distinction.

Firstly, a graph based centrality measure φ may be iterative, such as PageR-

ank (Brin and Page, 1998) or HITS (Kleinberg, 1999). In the experiments by
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Mihalcea (2005) in which PageRank was run over local edge subgraphs, it is

easy to perceive the WSD process itself as iterative.

Iteration can again be taken further, as observed with Personalised PageR-

ank in which Agirre and Soroa (2009) apply the idea of biasing values in

the random surfing vector, v, (see Haveliwala (2003)). For their run labelled

�Ppr_w2w� , in order to avoid senses anchored to the same lemma reinforc-

ing each other’s φ score, the random surfing vector v is iteratively updated

as `i changes, to ensure context senses sa,j ∈ v such that a ≠ i are the only

senses that receive probability mass1.

L GL φ Dconstruct disambiguate

update

assign

Figure 23: Atomically Iterative Approach

In summary, iteration in the literature either describes φ as being itera-

tive or being iteratively adjusted, both of which are contained in the disam-

biguation step alone as shown in Figure 23. This is iteration at the atomic

level and should not be conflated with the interactive level of iteration that

is proposed as seen in Figure 22 (b).

7.2.2 Iteratively Solving a Sudoku Grid

In Figures 24 (a), (b), and (c) on the following page, the solving of a Su-

doku puzzle can be observed, in which the numbers from 1 to 9 must be

assigned only once to each column, row, and 3x3 square. Each time a number

is assigned and the Sudoku grid is updated, this is an iteration. For exam-

ple, in the south west square of grid (a) (i.e. Figure 24 (a)) unknown cells

can be assigned {1,4,7,8}. Given that 1 has already been assigned to the

7th row and the 1st and 2nd columns, this singles it down to one cell it can

be assigned to (at the intersection of the 3rd column and 9th row).

1 This has a similar purpose to the SENSE_SHIFT filter described in Section 2.2.3
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The iteration of grid (a), now makes possible the iteration of grid (b) to

eliminate the number 8 as the only possibility for its assigned cell. This

iterative process continues until the completed puzzle in grid (c) is reached.

Therefore in WSD terminology, with each cell disambiguated, a new grid is

constructed, in which knowledge is passed on to each consecutive iteration.

Continuing with this line of thought, each unsolved cell is ambiguous,

with a degree of polysemy ρ, such that ρmax ≤ 9. Again, the initial Sudoku

grid has pre-solved cells, of which are monosemous. This leads to another

key observation. Typically in Sudoku, it is necessary to solve the least pol-

ysemous cells first, before you can solve the more polysemous cells with a

certainty. As the conventional approach exhibits no Sudoku-like iteration,

cells are solved without regard to the ρ value of the cell, or any interactive

exploitation of previously solved cells.

7.2.3 Iteratively Constructing a Subgraph

In the author’s ‘Sudoku style’ approach, it is proposed that each `i should

be disambiguated in order of increasing polysemy ρ, iteratively reconstruct-

ing subgraph GL to reflect 1) previous disambiguations and 2) the ρ value

of lemmas being disambiguated in the current iteration. This is illustrated

in Figures 25 (a), (b), and (c) on the following page.

Let m-labelled vertices describe monosemous lemmas. In subgraph (a)

(i.e. Figure 25) the two bi-semous lemmas a and b can be observed, in

which the arbitrary graph-based centrality measure φ has selected the sec-

ond sense of a (i.e. a2) and the first sense of b (i.e. b1) to be placed in D.

For the next iteration, notice the alternative senses for a and b are removed

from GL for the disambiguation of tri-semous lemma c. The second sense of

lemma c manages to be selected by φ with the help of the previous disam-

biguation of lemma a. This interactive and iterative process continues until

the most polysemous lemma is reached, which in this example is lemma d

with ρmax = 4 in subgraph (c).
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7.2.4 Algorithm for Iterative Approach

What is happening in Figure 25 can formally be described with Algorithm 4.

Effectively, this is a recreation of Algorithm 3 with the necessary modifica-

tions made to upgrade the WSD approach from conventional to iterative.

Algorithm 4: Iterative Approach
Input: L
Output: D
D ← GetMonosemous (L);
A← ∅;
for ρ← 2 to ρmax do
A← AddPolysemous (L, ρ);
GL ← ConstructSubGraph (A,D);
foreach `i ∈ A do

ŝi,∗ ← arg maxsi,j∈R(`i)φ(si,j);
if ŝi,∗ exists then

remove `i from A;
put ŝi,∗ in D;

Firstly as it reads, GetMonosemous(L) places all the senses of the monose-

mous lemmas into D. This is the equivalent of copying out an unsolved

Sudoku grid onto a piece of paper and adding in all the initial hint num-

bers. Next the set A which holds all ambiguous lemmas of polysemy ≤ ρ is

initialised as an empty set. Now the values of ρ can be iterated through,

beginning with ρ = 2 to add all bi-semous lemmas to A with the function

AddPolysemous(L,ρ). Notice ρ places a restriction on the degree of poly-

semy a lemma `i ∈ L can have before being added to A.

Next with the function ConstructSubGraph(A,D) the first subgraph GL
can be constructed. This previously used function in Algorithm 3, is now

modified to take the ambiguous lemmas of polysemy ≤ ρ in set A and pre-

viously disambiguated lemma senses in set D. The resulting graph has a

limited degree of polysemy and is constructed based on previous disam-

biguations.
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From this point on the given graph centrality measure φ is run over GL.

For the lemmas that are disambiguated, they are removed from A and the

selected sense is added toD. For those lemmas that are not (i.e. ŝi,∗ does not

exist2) they remain in A to be involved in reattempted disambiguations in

consecutive iterations. As more lemmas are disambiguated, it is more likely

that previously difficult to disambiguate lemmas become much easier to

solve, just like at the end of a Sudoku puzzle it gets easier as you get closer

to completing it.

7.3 experimental results

These experiments set out to understand a number of aspects. The first ex-

periment is a proof of concept, to understand whether an iterative approach

to subgraph WSD can in fact achieve better performance than the conven-

tional approach. The second set of experiments seeks to understand how

the iterative approach works and the performance benefits and penalties of

implementing the iterative approach. Finally the third experiment is an el-

ementary attempt at optimising the iterative approach to defeat the Most

Frequent Sense (MFS) baseline.

7.3.1 LKB & Dataset for All Experiments

All experiments are conducted on the most recent SemEval WSD dataset,

of which is the SemEval 2013 Task 12 Multilingual WSD (English) data

set described in Section 6.1. Once again the multilingual sense inventory

known as BabelNet (Navigli and Ponzetto, 2012a) is used along with the

Daebak API. Also the same filters were applied as described in the experi-

ments of Chapter 6, along with BabelNet edge weights only being used to

qualify an indexed path (such that babelnet.minEdgeWeight= 0.005).

2 This can happen if `i does not map to any senses, or alternatively all the senses that are
mapped to are filtered out of the subgraph before disambiguation.
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7.3.2 Experiment 1: Proof of Concept

7.3.2.1 Experiment 1: Setup

For this experiment the outset was simply to see how the iterative ap-

proach performed compared to the conventional approach in a range of

experimental conditions. Directed and unweighted subgraphs were used,

namely subtree and shortest paths subgraphs with L = 2. Disambiguation

was attempted at the document and sentence level. For the graph central-

ity measures evaluated, none were optimised to avoid masking the total

effect of the iterative approach. For this reason, while all the graph central-

ity measures formalised in Section 2.2.2 were applied to GL, Personalised

PageRank (Agirre and Soroa, 2009) was not. This is because its bias ran-

dom surfing vector is considered to be an optimisation. As for traditional

PageRank, it was allowable since it takes on a uniform random surfing vec-

tor. Also default values3 of 0.85 and 30 for damping factor and maximum

iterations were set respectively.

7.3.2.2 Experiment 1: Observations

First and foremost, it is clear from Table 16 and 17 on the following two

pages that the iterative approach outperforms the conventional approach,

regardless of the subgraph used, level of disambiguation, or the graph cen-

trality measure employed. Since no graph centrality measure or subgraph

type was optimised, let this experiment prove that the iterative approach

has the potential to improve any WSD system that implements it.

At the document level for both subgraphs the F-Scores were very close

to the MFS baseline for this task of 66.50. It is notoriously hard to beat and

only one team (Gutiérrez et al., 2013) managed to beat it for this task.

3 The default values are the same as applied by the original PageRank paper (Brin and Page,
1998) and in the Personalised PageRank paper (Agirre and Soroa, 2009) for comparative
purposes.
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For all subtree subgraphs, it was observed that In-Degree is clearly the

best choice of centrality measure, while HITS (hub) enjoys the most im-

provement. It was also observed that applying the iterative approach to

Betweenness Centrality on shortest paths is a great combination at both

the document and sentence level, most probably due to the measure being

based on shortest paths. Furthermore it is worth noting, the results at the

sentence level for all graph centrality measures on shortest path subgraphs

are quite poor, but highly improved, this is likely due to the restriction of

L = 2 causing the subgraphs to be much sparser and broken up into many

components.

Also provided here is an example from the data set in which the incor-

rect disambiguation of the lemma cup via the conventional approach was

corrected by the iterative approach. This example is the seventh sentence

in the eleventh document (d011.s007). Each word’s degree of polysemy is

denoted in square brackets.

�Spanish [1]football players playing in the All-Star [4]League

and in powerful [12]clubs of the [2]Premier League of [9]Eng-

land are during the [5]year very active in [4]league and local

[8]cup [7]competitions and there are high-level [25]shocks in

the [10]European Cups and [2]European Champions League.�

The potential graph constructed from this sentence is illustrated in Fig-

ure 26 over the following page as a shortest paths subgraph. The darker

edges portray the subgraph iteratively constructed up to a polysemy ρ ≤

8 (in order to disambiguate cup), whereas the lighter edges portray the

greater subgraph constructed if the conventional approach is employed.

Note that although the lemma cup has eight senses, only three are shown

due to the application of the previously mentioned SENSE_SHIFTS filter. The

remaining five senses of cup were filtered out since they were not able to

link to a sense up to L = 2 hops away that is anchored to an alterative

lemma.
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[8]cup#1

handle#1

[12]golf_club#2

[4]league#2

association#1

[12]club#2

[7]contest#1

tournament#1

[4]league#1

[12]baseball_club#1

baseball_league#1

[9]England#1

Australia#1

[5]year#1

[8]cup#7

golf#1

[8]cup#8

monopoly#1

[7]competition#1

match#2

sport#1

[7]competition#3

Figure 26: Conventional vs Iterative Subgraph Example

� cup#1 - A small open container usually used for drinking; usually

has a handle.

� cup#7 - The hole (or metal container in the hole) on a golf green.

� cup#8 - A large metal vessel with two handles that is awarded as

a trophy to the winner of a competition.

Given the context, the 8
th sense of cup is the correct sense, the type

known as a trophy. For the conventional approach, if φ is the centrality

measure of Out-Degree then the 8
th sense of cup is easily chosen by having

one extra outgoing edge than the other two senses for cup. Yet if φ is the

centrality measure of In-Degree or Betweenness Centrality, all three senses

of cup now have the same score, zero. Therefore in the results the first

sense is chosen which is incorrect. On the other hand, if the subgraph was

constructed iteratively with disambiguation results providing feedback to
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consecutive constructions, this could have been avoided. The shortest paths

cup#1→handle#1→golf_club#2 and cup#7→golf#1→golf_club#2 only

exist because the sense golf_club#2 (anchored to the more polysemous

lemma club) is present, if it was not then the SENSE_SHIFTS filter would

have removed these alternative senses. This demonstrates that if the senses

of more polysemous lemmas are introduced into the subgraph too soon,

they can interfere rather than help with disambiguation.

Secondly with each disambiguation at lower levels of polysemy, a more

stable context is constructed to perform the disambiguation of much more

polysemous lemmas later. Therefore in Figure 26 an iteratively constructed

subgraph with cup already disambiguated, would mean the other two senses

of cup would no longer be present. This ensures that club#2 (the cor-

rect answer) would have a much stronger chance of being selected than

golf_club#2, which would have only one incoming edge from handle#1.

Note the conventional approach would lend golf_club#2 one extra incom-

ing edge than club#2 has, which could be problematic if φ is the centrality

measure of In-Degree.

7.3.3 Experiment 2: Performance of the Iterative Approach

7.3.3.1 Experiment 2: Setup

An obvious caveat of the iterative approach is that it requires the construc-

tion of several subgraphs as ρ increases, which of course will require extra

computation and time which is a penalty for the improved precision and re-

call. It was decided the extent to which this happens should be investigated.

Betweenness Centrality and PageRank were selected from Experiment 1, in

which both use shortest path subgraphs at the document level. This is be-

cause a) they acquired good results at the document level and b) with only

13 documents there are less data points on the plots making it easier to

read as opposed to the hundreds of data points produced by sentences.
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7.3.3.2 Experiment 2: Observations

Firstly from Figures 27 (a) and (b) on the next page, it can be seen that there

is a substantial improvement in F-Score for almost all documents, with the

exception of two for φ = Betweenness Centrality and one for φ = PageR-

ank. For most documents the increased amount of time to disambiguate is

not excessive. For this experiment, applying the iterative approach to Be-

tweenness Centrality resulted in a mean 231% increase in processing time,

from 3.54 to 11.73 seconds to acquire a mean F-Score improvement of +8.85.

Again for PageRank, a mean increase of 343% in processing time, from 1.95

to 8.64 seconds to acquire a F-Score improvement of +7.16 was observed.

It was also investigated why in some cases, the iterative approach can

produce poorer results than the conventional approach. Aspects such as or-

der, size, density, and number of components were looked at for subgraphs

that produced a correct, incorrect, or no disambiguation result. One aspect

that stood out, was that a higher number of monosemous lemmas asso-

ciated with the initial subgraph construction led to better disambiguation

results. From this it was suspected from that, just like in a Sudoku puzzle, if

there are not enough hints to start with, the possibility of finishing the puz-

zle successfully becomes slim. In other words, even though monosemous

lemmas are by nature salient, if they were not abundant enough4 in the con-

struction of the initial GL, then the effectiveness of the iterative approach

could be negated.

On observing Figures 28 (a) and (b) over the following two pages, ev-

idently monosemy does effect the outcome of the iterative approach. On

the horizontal axis, document monosemy represents the percentage of lem-

mas in a document, not counting duplicates, that are monosemous. The

vertical axis on the other hand represents the difference in F-Score between

conventional and iterative approach. Through a simple linear regression

of each scatter plot, an increased effectiveness of the iterative approach is

observed with each slope of regression.

4 See context under-specification in Section 1.2.2 for an elaboration on context abundancy and
saliency.
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Withm representing document monosemy, and ∆F representing the change

in F-Score induced by the iterative approach, the slopes observed in Fig-

ures 28 (a) and (b) are denoted by Equations (23) and (24) respectively.

∆F = 0.53m− 0.11 (23)

∆F = 0.60m− 3.07 (24)

By taking document monosemy into account, these functions could make

for a useful cut-off mechanism in terms of deciding whether to use the

conventional or iterative approach for each document.

Finally, a Sudoku puzzle is a deterministic problem. The rules of Sudoku

dictate which cells/rows/columns the numbers 1 to 9 can be allocated to,

and they are therefore the constraints of the problem. Furthermore a Su-

doku grid needs at least 17 hint cells to ensure it has one unique solution

(and qualify as a valid puzzle)5. In contrast to Sudoku, when performing

WSD a panel of human judges in disagreement with each other will find

there are multiple disambiguation solutions. In spite of this fundamental dif-

ference between Sudoku and WSD, experimental results so far have shown

that treating WSD as a deterministic problem is advantageous.

Nonetheless the stricter constraints of a Sudoku puzzle, means that just

one misallocation of a number to a cell will lead to further misallocations

and ultimately an incorrect final solution. Therefore in drawing parallels

to Sudoku, is the iterative approach also susceptible to this by performing

WSD in a deterministic manner? If a sense is incorrectly allocated to a

lemma, can this lead to further sense misallocations in later iterations?

To see if this actually happens, the author deliberately allocated incorrect

senses to all lemmas with a polysemy of ρ ≤ t, then observed the difference

in F-Score calculated for the disambiguation of all lemmas with a polysemy

of ρ > t. By increasing the value of t, more misallocations of senses to lem-

5 Latest research maintains and proves by brute-force that at least 17 hint cells are required
for a Sudoku grid to have a unique solution, see (McGuire et al., 2012).
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mas occur in the initial iterations. The implementation of this is formally

described in Algorithm 5 below.

Algorithm 5: Misallocated Iterative Approach
Input: L
Output: D
D ← GetMonosemous (L);
A← ∅;
for ρ← 2 to ρmax do
A← AddPolysemous (L, ρ);
GL ← ConstructSubGraph (A,D);
foreach `i ∈ A do

if ρ ≤ t then
ŝi,∗ ← MisallocateSense (`i);

else
ŝi,∗ ← arg maxsi,j∈R(`i)φ(si,j);

if ŝi,∗ exists then
remove `i from A;
put ŝi,∗ in D;

This algorithm is a modification of Algorithm 4 that describes the itera-

tive approach, with the addition of the function MisallocateSense(`i). This

function when given a lemma `i, will return a randomly selected sense that

is known to be incorrect6. Implemented by a simple if/else statement, the

decision is made whether to misallocate or to genuinely attempt a disam-

biguation based on what value t is set to.

Over the following two pages Figures 29 and 30 illustrate the observed

effect of misallocating senses compared to both the conventional and regular

iterative approach. For a fair comparison between the approaches, with each

increase in t, F-Scores are calculated only for disambiguated lemmas that

have a polysemy of ρ > t. Furthermore since a randomly selected incorrect

sense is returned every time the function MisallocateSense(`i) is called,

then each run of Algorithm 5 will almost certainly produce different results.

Therefore the mean F-Score of 25 consecutive runs is taken as the final F-

Score for the misallocated iterative approach in the Figure 29.

6 The sense’s absence in the answer key for SemEval Task 12 is used as an indication that it
would be an incorrect allocation to the input lemma.
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In Figure 29 it appears that misallocations, similar to the Sudoku prob-

lem, do affect the final disambiguation solutions. As t increases there is a

growing gap in F-Scores between the misallocated and regular iterative ap-

proach, yet it is not that large. While one wrong misallocation of a number

to a cell in a Sudoku puzzle can be catastrophic, it is interesting to note

that for iterative WSD this is not always the case. A closer inspection of

Figure 30 shows that even though for documents d002, d007, and d013 the

misallocated senses were significantly detrimental to the success of the iter-

ative approach, a majority of documents remained unaffected such as d004,

d005 and d011. To the author’s surprise this demonstrates how robust the

iterative approach is even when provided with a large amount of sense

misallocations.

7.3.4 Experiment 3: Adding a Little Optimisation

Results for this chapter were processed right up to the point of submitting

this thesis. Therefore briefly, an effort was made into optimising the itera-

tive approach with subtree subgraphs. These results were compared with

systems from SemEval 2013 Task 12 (Navigli et al., 2013) in Table 18 below.

Team System P R F

UMCC-DLSI Run-2+
68.50 68.50 68.50

UMCC-DLSI Run-3+
68.00 68.00 68.00

UMCC-DLSI Run-1+
67.70 67.70 67.70

SUDOKU It-PPR[M]+
67.62 67.51 67.56

MACHINE MFS 66.50 66.50 66.50

SUDOKU It-PPR[M] 67.20 65.49 66.33

SUDOKU It-PR[U] 64.07 62.44 63.24

SUDOKU It-PD 63.58 61.41 62.47

DAEBAK! PD+
60.47 60.37 60.42

GETALP BN-1+
58.30 58.30 58.30

SUDOKU PR[U] 60.09 54.06 56.91

GETALP BN-2+
56.80 56.80 56.80

Table 18: SemEval 2013 Task 12 Participant vs Iterative Results
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Firstly, the author’s original results as team DAEBAK! (Manion and Sain-

udiin, 2013) were able to be marginally improved, by applying the iterative

approach to the Peripheral Diversity (see Chapter 6) graph-based centrality

measure (It-PD). Next Personalised PageRank (It-PPR[M]) was tried with

a surfing vector biased towards only Monosemous senses. Also included

was regular PageRank (It-PR[U]) with a Uniform surfing vector as a refer-

ence point. It-PPR[M] almost defeated the MFS baseline of 66.50, but lacked

recall. To rectify this, the MFS baseline was used as a back-off strategy (It-

PPR[M]+)7, which then led to the MFS baseline being beaten. As for the

other teams, GETALP (Schwab et al., 2013) made use of an Ant Colony al-

gorithm, while UMCC-DLSI (Gutiérrez et al., 2013) also made use of PPR,

except they based the surfing vector on SemCor (Miller et al., 1993) sense

frequencies, set L = 5 for shortest paths subgraphs, and disambiguated

using resources external to BabelNet. Since their implementation of PPR

beats this author’s, it would be interesting to see how effective the iterative

approach could be on the results of those teams.

7 Note that plus+ implies the use of a back-off strategy.



Part III

F R U I T I O N S & F U T U R E W O R K

Finally in Part III, the results of this research and future work

are discussed in Chapter 8. This consolidates the achievements

of each branch of this research and how the objectives stated in

Chapter 3 have been met. Based on this, the future directions of

research the author intends to pursue are then detailed.



8
C O N C L U S I O N S & F U T U R E W O R K

8.1 conclusions

8.1.1 Visualising Context in Semantic Subgraphs

Mining Wikipedia and producing a large semantically weighted graph is

not by itself a contribution to the field of Natural Language Processing

(NLP). In fact slightly alternative methods in using edge-based TF-IDF vec-

tors in conjunction with Cosine Similarity have already proven to be quite

successful in creating semantic graphs. For example the thesauri developed

by Nakayama et al. (2007) and evaluations completed by Milne and Wit-

ten (2008). The only real point of difference between each method in these

works is the treatment of link direction.

In-bound links are computationally expensive to process and are not as

semantically significant as out-bound links. Imagine the number and na-

ture of article pages in Wikipedia that point to the article pages for Europe

or Barrack Obama. The aforementioned works either reduce the influence of

in-bound links on edge weights, or they simply do not process them at all.

For the results produced in Chapter 4, all in-bound links were processed in

the same way as out-bound links, purely out of curiosity. The author found

that while they are expensive to process they do not appear to have any

negative affect the semantic edge weights of Gc.

Aside from link direction, there are also a range of link types in Wiki-

pedia as illustrated by Figure 10 on page 44. The author decided not to

give preference to, or make any distinction, between link types when cal-

culating edge weights. This resulted in images more frequently appearing

111
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as semantically similar rather than semantically related in the image clouds.

In other words, images were almost always taken from another article page,

rather than from alternative page types such as category and portal pages.

This most likely happened because pages such as these have a higher de-

gree out-bound and in-bound links, therefore receive lower edge weights.

Gathering images from pages that share a more diverse set of semantic

relationships with the target page could shift the visualisation of context

in the image clouds to being more semantically related rather than similar.

In future a restructured image cloud with tiers reserved for images from

particular page types, could be a means of achieving this.

Overall, by mining Wikipedia to build a semantic graph, the author

achieved the first objective of the thesis – to create a large graph of con-

cepts and semantic relationships in order to perform subgraph-based WSD.

While BabelNet was adopted in later chapters, through the experiments

of Chapter 4 the existence and richness of context in semantic subgraphs

was able to be visualised, giving further support to the subgraph based

approach to WSD.

8.1.2 Disambiguating Heterogeneity

Admittedly, the internship at Pingar led the author a little astray from the

objectives set out for this research. However experience in attempting dis-

ambiguation when merging heterogeneous semantic graphs as described

in Chapter 5, later become beneficial when dealing with the heterogene-

ity of BabelNet (for example, the author’s customised back-off strategy in

Section 6.4.3 that takes heterogeneity into account when choosing a sense).

With continued advancements towards the semantic web, the pooling

together heterogeneous structured knowledge will increase. To achieve this

as an automated process, in which the concepts from one semantic graph

are mapped to the concepts of another, this advocates another significant

use for WSD.
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Two key obstacles that had to be overcome for taxonomy generation, as

well as for the creation of BabelNet (Navigli and Ponzetto, 2012a) were:

• Establishing a method to generate a universal context for concepts in

a collection of heterogeneous semantic graphs

• Handling richer and poorer levels of concept context that can be ex-

tracted from heterogeneous semantic graphs

The author believes addressing these two obstacles and providing an au-

tomated means of merging together heterogeneous semantic graphs would

make for an interesting SemEval task in the future.

8.1.3 Peripheral Diversity for WSD

In Chapter 6 the author has contributed a new graph-based centrality mea-

sure to WSD literature. Dubbed with the name Peripheral Diversity (PD),

it has demonstrated to be a competitive graph based measure in its early

stages. For its entry into the SemEval Task 12: Multilingual WSD (Navigli

et al., 2013) it even outperformed the Most Frequent Sense (MFS) baseline

in both French and Italian. Additionally, by implementing and testing PD

the author needed to construct a complete WSD system, therefore achiev-

ing the second objective of this research.

Further experimentation on PD was undertaken after after SemEval in

which various combinations of subgraph filters, strategies, and input pa-

rameters were tried. Improvement was minimal, however application of

the iterative approach was able to take PD’s SemEval task score from 60.42

to 62.47. Finally PD is a framework, in which a range of Pairwise Semantic

Dissimilarity (PSD) measures could be tried in place of the Cosine Distance,

again edge weights could also be factored in too. Thus there is still many

more aspects for the author to improve PD from in future.
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8.1.4 The Iterative Approach

The third objective of this research – to understand optimal conditions for

unsupervised subgraph based WSD, is achieved by the extensive evalua-

tions conducted in Chapter 7. The iterative approach demonstrated in a

number of experiments that it can significantly improve the results of con-

ventional subgraph-based WSD, even to the point of defeating the MFS

baseline without doing anything complicated. This is regardless of the

subgraph, graph centrality measure, or level of disambiguation. The per-

formance of the iterative approach has also shown to not be excessive in

processing time. Simultaneously, while the iterative approach benefits from

higher levels of document monosemy, it also demonstrated how well it can

recover when it is deliberately given a set of incorrect disambiguations in

earlier iterations.

The iterative approach can still be extended much further, and the au-

thor encourages other researchers to rethink their own approaches to unsu-

pervised knowledge-based WSD, particularly in regards to the interaction

of subgraphs and graph centrality measures. In fact Agirre and Edmonds

(2007) suggested a while ago, that exploiting interdependencies in context

was a promising direction for WSD, which the experimental results of Sec-

tion 7.3 have validated. For a long time the conventional approach to sub-

graph based WSD has been treated as a classification task. However the

author has shown that by simply reducing the polysemy of subgraphs and

re-constructing them based on previous disambiguations, that subgraph

based WSD is better achieved as optimisation of the classification process.

Given all of the above, this definitely warrants further investigation into the

full potential of the iterative approach.
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8.2 future work

Experiments on the iterative approach were also conducted on two other

SensEval/SemEval tasks. These were:

• SensEval 2004: The English All-Words Task (Snyder and Palmer, 2004)

• SemEval-2010 Task 17: All-words Word Sense Disambiguation on a

Specific Domain (Agirre et al., 2010)

The results were not published in this thesis, since they are very recent

and not yet fully understood. However to summarise the results of both

these evaluations, for each document the results tended to be better, yet

compared to the improvements observed in Chapter 7 were less impressive.

At first this was a little confounding, until the author recalled that both

of these tasks only made use of WordNet (Fellbaum, 1998) where as the

SemEval 2013 multilingual WSD task a) only disambiguated nouns, and b)

made use of BabelNet (Navigli and Ponzetto, 2012a) which is a marriage of

both dictionary and encyclopedia.

Firstly, the encyclopedic senses included in BabelNet from Wikipedia

are mostly named entities and therefore more likely to be monosemous.

If Zipf’s law is taken into account, the more monosemous nature of Wiki-

pedia’s named entities can be confirmed by the very high MFS baseline ob-

served for the Wikipedia-focused WSD evaluation in (Navigli et al., 2013).

Therefore while experiments need to be conducted to prove this, the author

suspects that one of the key reasons the iterative approach is the most suc-

cessful on the multilingual WSD task is because of BabelNet. WordNet as

a lexicon contains senses that are more polysemous, therefore if this is the

only sense inventory employed in a WSD evaluation task, it is less likely

that an iterative approach which thrives on monosemy will perform as well

as it could. BabelNet’s inclusion of monosemous named entities, increases

document monosemy which results in better performance of the iterative

approach as seen in Figure 28 on page 103. In fact if other tasks had their
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datasets re-tagged with BabelNet as the sense inventory, it would be inter-

esting to see if the iterative approach could also perform better.

Finally, at the same time the iterative approach was published1 in the

conference proceedings of *SEM, so was the paper (Basile et al., 2014) in

the co-located conference proceedings of COLING. With the use of distri-

butional semantics – of which relies on characterising word senses as a

distribution of words it keeps company with, the authors of this paper

were not only able to defeat the MFS baseline, but also the beat the best re-

sult achieved in English by Gutiérrez et al. (2013) for the multilingual WSD

task. While the use of distributional semantics is in fact a corpus-based su-

pervised approach that resides outside the scope of this thesis, the author

would also like to investigate whether its performance can benefit from an

implementation of the iterative approach.

To conclude, the author hopes to have completed a more thorough analy-

sis of the iterative approach for future publication and to extend this branch

of research. Questions to begin with are:

• What constraints other than ρ could be exploited by the iterative ap-

proach?

• Could the iterative approach improve the performance of any partic-

ular NLP system under an in-vivo evaluation framework?

• What influence does the subgraph construction method have on the

outcome of the iterative approach?

• Could other non-subgraph based methods of achieving WSD also

benefit from the iterative approach?

This is now the end of this thesis. The author sincerely hopes it has

provided the reader with an interesting and unique insight into the field of

subgraph based WSD and the promise it holds for the future of NLP.

1 The author’s publication on the iterative approach (Manion and Sainudiin, 2014) can be
found in Appendix B.3



Part IV

A P P E N D I C E S

Part IV consists of both Appendix A and B. The former provides

the original WSD system description that was submitted to the

task organisers of SemEval Task 12. The latter contains the three

peer reviewed publications that stem from Chapters 5, 6, and 7.



A
A P P E N D I X : P R O J E C T R E S O U R C E S

a.1 semeval 2013 task 12 system description on submission

- Primary Researcher: Steve Manion, PhD candidate,

University of

Canterbury, New Zealand

(slmanion@gmail.com)

- Supervisor: Dr Raazesh Sainudiin, Senior

Lecturer, University of

Canterbury, New Zealand

(r.sainudiin@math.canterbury

.ac.nz)

(1) Sense Inventory Used:

- BabelNet Core Lucene 1.1.1 (in conjunction with

BabelNet Indexed Paths 1.0.1)

(2) WSD System Description: task12-DAEBAK!-PD

(Peripheral Diversity)

This system constructs subgraphs from BabelNet

Path Indexes v1.0.1 via use of the BabelNet API and

BabelNet (both v1.1.1). The measure of “Peripheral

Diversity” is built on several assumptions and

observations about word senses by the authors and the

118
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literature.

a) A sliding window of 5 sentences was used for the

construction of the subgraphs in which there is

no overlap. It has been demonstrated in research

that local context (that of +/-2 words from the

target word provide a bulk of its context).

However since we are addressing nouns only and

applying it to a semantic graph, from

observations we consider 5 sentences as an

appropriate window of local context (based on the

English/French trial data). This approximately

the size of a paragraph in any particular

language, but is likely to vary of course.

b) We compensate for deviations in spelling for

better mapping of synsets, the absence of a very

important concept can drastically change the

results of a subgraph structure.

c) The most frequent sense is a hard contender to

beat in WSD, therefore we reward synsets that are

more frequently used.

d) The more diversely a synset can be used also

indicates its dominance as the most frequent

sense, therefore we reward the diverse use of a

synset (with respect to other synsets).

e) BabelNet is the combination of two different

semantic resources, whatever nature of the WSD
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algorithm, we must be careful not to be bias

towards either of these resources.

f) Most importantly of all the above points, a

relatively connected subgraph should reward the

connectivity of synsets connected from different

lemmas, as this is effectively the embodiment in

graph form of the context we seek out from the

subgraph.

To briefly describe our “Peripheral Diversity”

algorithm, it does a breadth first search to up to 3

synsets, from there it gathers the peripheral nodes.

Then we run metrics on how much these peripheral nodes

diversify from each other and how often they are used.

We assign the result of the metric as a score to the

central synset.

A synset that is well connected and diversifies will

often be picked, however there is also room for less

frequent synsets to also be selected if they connect

with other synsets from different lemmas. Likewise,

more common synsets can be ignored if they fail to

connect to other synsets, and as a result their

peripheral nodes are all nodes internal to it and not

diverse. A more detailed description with references to

the above assumptions will be given in the paper. We

have several more “Peripheral Diversity” algorithms we

would like to explore after SemEval that are based on

this investigation.
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(3) Resources Used:

- BabelNet Core Lucene 1.1.1

- BabelNet Indexed Paths 1.0.1

- BabelNet API 1.1.1 and all its referenced libraries

- Self-constructed automated HTTP call to Wikipedia’s

“Did you mean” functionality to remove noise caused

by misspellings and inconsistent formatting, mainly

in the French and Italian test files.

(4) Languages Annotated:

- English

- French

- German

- Italian

- Spanish



B
A P P E N D I X : P U B L I C AT I O N S

Peer reviewed publications produced from this thesis can be found over

the following pages. By order of chapter occurrence, they are:

...from Chapter 5

Alyona Medelyan, Steve L. Manion, Jeen Broekstra, Anna Divoli, Anna-lan

Huang, and Ian H. Witten (2013). Constructing a Focused Taxonomy

from a Document Collection. In Proceedings of the 10th Extended Semantic

Web Conference (ESWC’13), pages 367-381, Montpellier, France. Springer,

Heidelberg.

...from Chapter 6

Steve L. Manion and Raazesh Sainudiin (2013). DAEBAK!: Peripheral Di-

versity for Multilingual Word Sense Disambiguation. In Proceedings of

the 7th International Workshop on Semantic Evaluation (SemEval-2013), in

conjunction with the Second Joint Conference on Lexical and Computational

Semantics (*SEM’13)., pages 250-254, Atlanta, Georgia. ACL.

...from Chapter 7

Steve L. Manion and Raazesh Sainudiin. An Iterative ’Sudoku Style’ Ap-

proach to Subgraph-based Word Sense Disambiguation (2014). In Pro-

ceedings of the 3rd Joint Conference on Lexical and Computational Semantics

(*SEM’14), pages 40–50, Dublin, Ireland. ACL.
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Abstract. We  describe   a  new  method  for  constructing  custom  tax- 
onomies  from document collections. It involves  identifying relevant con- 
cepts and entities in text; linking them to knowledge sources like Wikipedia, 
DBpedia, Freebase, and  any supplied  taxonomies from related domains; 
disambiguating conflicting concept mappings; and  selecting semantic re- 
lations  that best  group  them  hierarchically. An  RDF  model  supports 
interoperability  of these  steps,  and  also  provides  a  flexible  way  of in- 
cluding  existing  NLP  tools  and  further knowledge  sources.  From  2000 
news articles we construct a custom taxonomy with 10,000 concepts and 
12,700 relations,  similar  in structure to manually created  counterparts. 
Evaluation by 15 human judges  shows the precision  to be 89% and  90% 
for concepts and  relations respectively; recall was 75% with respect to a 
manually generated taxonomy for the same domain. 

	  
	  

1    Introduction 
	  

Domain-specific taxonomies constitute a valuable  resource for knowledge-based 
enterprises: they support searching, browsing, organizing information, and nu- 
merous other activities. However, few commercial enterprises possess taxonomies 
specialized to their line of business. Creating taxonomies manually  is laborious, 
expensive, and unsustainable in dynamic environments (e.g. news). E↵ective au- 
tomatic methods would be highly valued. 

Automated taxonomy induction has been well researched.  Some approaches 
derive taxonomies from the text itself [1], some from Wikipedia  [2], while others 
combine  text, Wikipedia  and  possibly  WordNet  to either  extend  these  sources 
with  new terms  and  relations  [3] or carve  a taxonomy  tailored  to a particular 
collection [4,5]. Our research falls into the last category, but extends it by defining 
a framework through which any combination of knowledge sources can drive the 
creation  of document-focused taxonomies. 

We regard taxonomy construction as a process with five clearly defined stages. 
The  first,  initialization,  converts  documents  to text. The  second  extracts  con- 
cepts and named entities from text using existing NLP tools. The third connects 



	  
	  
	  
	  

named  entities  to Linked  Data  sources like Freebase  and  DBpedia.  The  fourth 
identifies conflicting concept mappings  and resolves them with an algorithm that 
disambiguates concepts that have matching  labels but di↵erent URIs. The fifth 
connects the concepts into a single taxonomy by carefully selecting semantic re- 
lations  from the original knowledge sources, choosing only relations  that create 
meaningful  hierarchies  given the concept  distribution  in the input documents. 
These  five stages  interoperate  seamlessly  thanks  to an  RDF  model,  and  the 
output is a taxonomy expressed in SKOS, a standard RDF  format. 

The  method  itself  is domain  independent—indeed  the resulting  taxonomy 
may  span  multiple  domains  covered by the document  collection  and  the input 
knowledge  sources.  We  have  generated   and  made  available  several  such  tax- 
onomies from publicly  available  datasets in five di↵erent domains.3  This  paper 
includes  an  in-depth  evaluation of a  taxonomy  generated   from  news articles. 
Fifteen  human  judges  rated  the precision  of concepts  at  89% and  relations  at 
90%; recall was 75% with respect to a manually  built taxonomy for the same do- 
main.  Many of the apparently missing concepts are present with di↵erent—and 
arguably  more precise—labels. 

Our  contribution  is  threefold:  (a)  an  RDF  model  that allows  document- 
focused taxonomies to be constructed from any combination of knowledge sources; 
(b)  a flexible disambiguation technique  for resolving  conflicting  mappings  and 
finding  equivalent  concepts  from  di↵erent  sources;  and  (c)  a  set  of heuristics 
for  merging  semantic  relations  from  di↵erent  sources  into  a  single  hierarchy. 
Our evaluation shows that current state-of-the-art concept and entity extraction 
tools, paired with heuristics for disambiguating and consolidating  them, produce 
taxonomies that are demonstrably comparable  to those created  by experts. 

	  
	  

2    Related Work 
	  

Automatic taxonomy induction from text has been studied extensively. Early 
corpus-based  methods  extract taxonomic  terms  and  hierarchical  relations  that 
focus on the intrinsic  characteristics  of a given  corpus;  external  knowledge  is 
rarely  consulted. For example,  hierarchical  relations  can be extracted based  on 
term distribution statistics [6] or using lexico-syntactic patterns [7,1]. These 
methods  are usually  unsupervised, with  no prior  knowledge about  the corpus. 
However, they typically assume only a single sense per word in the corpus,  and 
produce  taxonomies based on words rather than word senses. 

Research has been conducted on leveraging knowledge bases to facilitate tax- 
onomy induction from both  closed- and open-domain  text collections. Some re- 
searchers derive structured taxonomies from semi-structured knowledge bases [2,8] 
or from unstructured  content  on the Web  at  large  [9]. Others  expand  knowl- 
edge bases with previously  unknown  terms and  relations  discovered  from large 
corpora—for  example,  Matuszek  et al. enrich  the Cyc knowledge base with in- 
formation  extracted from the Web [10], while Snow et al. expand  WordNet with 
new synsets by using statistical classifiers built from lexical information extracted 

	  
3  http://bit.ly/f-step 



	  
	  
	  
	  

from news articles [3]. Still others interlink documents and knowledge bases: they 
match  phrases  in the former with concepts in the latter [11,12] and identify tax- 
onomic relations  between them [4,5]. These studies do address  the issue of sense 
ambiguity: polysemous  phrases  are resolved to their intended senses while syn- 
onyms are mapped  to the same concept. However, they typically only consult a 
single source and users do not intervene in the taxonomy construction process. 

The Castanet project [4] and Dakka and Ipeirotis’s research [5] relate closely 
to our work. They  both  derive  hierarchical  metadata structures  from text col- 
lections and both consult external sources—WordNet in the former case and 
Wikipedia,  WordNet and  the Web in the latter—to find important concepts in 
documents. Castanet identifies taxonomic relations  based on WordNet’s is-a 
relations,   whereas  Dakka  and  Ipeirotis  use  subsumption  rules  [6].  The  latter 
only select  those  taxonomic  concepts  for final groupings  that occur frequently 
in the documents in non-related contexts. In contrast to our work, both  studies 
represent  the extracted  information as hierarchical  faceted  metadata:  the out- 
come is no longer  a single taxonomy  but is instead  split  into  separate facets. 
Although Dakka and Ipeirotis  consult multiple sources, they do not check which 
concepts are the same and which are di↵erent. In contrast, we explicitly address 
the problem  of sense disambiguation and consolidation  with multiple sources. 

Our work also intersects with research on relation  extraction and ontology 
induction  from text, the closest  being [13], which also links phrases  in text to 
Wikipedia,  DBpedia and WordNet URIs, extracts relations,  and represents them 
as RDF.  However, their input is a single short piece of text, whereas we analyze 
an entire document collection as a whole, and focus on organizing the information 
hierarchically. 

	  
	  

3    Architecture of the Taxonomy Generator 
	  

The primary  input to our taxonomy generator  is a collection of documents and, 
optionally, a taxonomy for a related  domain  (e.g., the Agrovoc thesaurus or the 
Gene ontology). Our system automatically consults external knowledge sources, 
and links concepts extracted from the documents to terminology in these sources. 
By default we use Freebase,  DBpedia  and Wikipedia,  but domain-specific linked 
data  sources  like Geonames,  BBC  Music,  or  the Genbank   Entrez  Nucleotide 
database can also be consulted.4  Finally,  a small taxonomy with preferred  root 
nodes can be supplied  to guide the upper  levels of the generated  taxonomy. 

	  
	  

3.1     Defining Taxonomies in SKOS 
	  

The result of each step of the taxonomy generation  process is stored as an RDF 
data  structure, using the Simple Knowledge Organization System vocabulary. 
SKOS is designed for sharing and linking thesauri, taxonomies, classification 
schemes and  subject  heading  systems  via the Web.5   An SKOS model consists 

	  
4  Suitable linked  data sources  can be found  at http://thedatahub.org/group/lodcloud 
5  See http://www.w3.org/2004/02/skos 



	  
	  
	  
	  

of a hierarchical  collection of concepts,  defined as “units of thought”—abstract 
entities representing ideas, objects or events. A concept is modeled as an instance 
of the class skos:Concept. An skos:prefLabel attribute records its preferred name 
and skos:altLabel attributes record optional synonyms.  Concepts are linked via 
semantic relations  such as skos:broader (to indicate that one concept is broader 
in meaning  than another) and  its  inverse  skos:narrower.  These  relations  allow 
concepts to be structured into a taxonomic hierarchy. 

Our  goal is to produce  a new knowledge organization system (a taxonomy) 
based  on heterogeneous sources, including  concepts extracted from text as well 
as concepts  in existing  sources, and  SKOS is a natural modeling  format.  Also, 
many  existing  public  knowledge  systems  are  available  online  as  SKOS  data,6 

and reusing these sources ensures that any taxonomy we generate  is immediately 
linked via concept mappings  to third-party data  sources on the Web. 

	  
	  

3.2     Information Model 
	  

We have built a set of loosely coupled components that perform  the individual 
processing steps. Each  component’s results are stored as RDF  data  in a central 
repository using the OpenRDF Sesame framework  [14]. 

Figure  1 shows the information model. The  central class is pw:Ngram, which 
represents the notion of an extracted string of N  words. The model records every 
position of the ngram  in the input text, and each occurrence of the same ngram 
in the same document is a single instance of the pw:Ngram class. 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Fig. 1.  Shared  RDF  model for ngram  and  entity information 
	  
	  

The  pw:EntityType class  supports  entity typing  of ngrams.  It has  a  fixed 
number  of instances representing types such as people, organizations, locations, 
events,  etc.  In  order  to be able  to record  the relation  between  an  ngram  and 
its  type,  as well as an identification  score reported  by the extraction  tool,  the 
relation  is modeled as an an object, of type pw:EntityIdentification. 

	  
6  See a.o. http://www.w3.org/2001/sw/wiki/SKOS/Datasets 



	  
	  
	  
	  

pw:DisambiguationCandidate is introduced to allow ngrams  to be annotated 
with  corresponding  concepts  from external  sources.  This  class records  the re- 
lation  (and  the system’s  confidence in it) between  an extracted  ngram  and  an 
external source. These external sources are modeled as instances of skos:Concept. 
They  are the building  blocks of the taxonomy we generate. 

Using a shared  RDF  model to hold extracted data  ensures that components 
can interoperate and  reuse each other’s results. This  is a significant advantage: 
it facilitates the use of di↵erent language  processing tools in a single system by 
mapping  their outputs to a common vocabulary. Moreover, users can add other 
Linked Data  sources, and insert and remove processing steps, as they see fit. It 
can also be used for text annotation.7 

In addition, the use of an RDF repository allows one to formulate  SPARQL8 

queries over the aggregated data.  Using these,  data  from di↵erent  components 
can be analyzed  quickly and e   ciently at each processing step. 

	  
	  

4    Generating the Taxonomy 
	  

Figure  2 shows  the processing  steps  in  our  system,  called  F-STEP (Focused 
SKOS Taxonomy  Extraction Process).  Existing tools are used to extract entities 
and  concepts  from  document  text (steps  2a  and  2b  respectively  in  the Fig- 
ure). Purpose-built components annotate entities with information contained in 
Linked  Data  sources  (step  3),  disambiguate concepts  that are  mapped  to the 
same ngram  (step 4), and consolidate  concepts into a hierarchy  (step 5). 

	  
	  

 
	  

Fig. 2.  Automated workflow for turning input documents into a focused taxonomy 
	  

7  A possible  alternative is the recently-defined NLP2RDF format http://nlp2rdf.org. 
8  See http://www.w3.org/TR/sparql11-query/ 



	  
	  
	  
	  

4.1     Initialization 
	  

Taxonomies  organize knowledge that is scattered across documents. To federate 
inputs stored on file systems, servers, databases and document management 
systems,  we use Apache  Tika  to extract text content  from various  file formats 
and Solr for scaleable indexing.9 Solr stores multiple document collections in 
parallel,  each document  being referenced  via a URL,  which allows concepts  to 
be linked back to the documents containing them in our RDF  model. 

	  
	  

4.2     Extracting Named Entities and  Concepts 
	  

Extraction step 2a in Figure  2 uses a text analytics API10 to identify names of 
people, organizations and locations,  and to identify relevant terms in an existing 
taxonomy  if one is supplied.  Step  2b uses the Wikipedia  Miner  toolkit  [15] to 
relate  documents to relevant concepts in Wikipedia. 

	  
Named Entities. Names of people, organizations, and locations are concepts that 
can usefully be included  in a taxonomy;  existing  systems  extract such entities 
with  an  accuracy  of 70%–80% [16]. We extract named  entities  from the input 
documents using the text analytics API and convert its response to RDF. Named 
entities are represented by a pw:EntityIdentification relation  between the orig- 
inal ngram and an entity type. The entities are passed to the annotation step to 
disambiguate any matches  to Linked Data  concepts. 

	  
Concepts  from  Related  Taxonomies.  As mentioned  in Section  3, the input can 
include one or more taxonomies from related  domains.  The same text analytics 
API  records any concepts in a related  taxonomy that appear  in the input doc- 
uments,  maps  them  to SKOS,  and  links to the source  document  ngram  via a 
pw:DisambiguationCandidate relation. 

	  
Concepts  from  Wikipedia.  Each  Wikipedia  article  is regarded  as a “concept.” 
Articles describe a single concept, and for (almost) any concept there exists a 
Wikipedia  article.  We use the Wikipedia  Miner  toolkit  to annotate ngrams  in 
the text with  corresponding  Wikipedia  articles.  This  toolkit  allows the num- 
ber of annotations to be controlled, and  disambiguates ngrams  to their correct 
meaning—for  example,  the word  kiwi may  refer to a.o.  a bird,  a fruit,  a per- 
son from NZ, or the NZ national rugby  league team, all of which have distinct 
Wikipedia  entries. The approach  is described  in detail in [15]. 

The user determines what kind of concepts will be included in the taxonomy. 
For example, if no related  taxonomies are available,  only named entities and 
Wikipedia  articles returned by the Wikification  process will be included  in the 
final taxonomy. 

	  
9  See http://tika.apache.org/ and http://lucene.apache.org/solr/ 

10   See http://apidemo.pingar.com 



	  
	  
	  
	  

4.3     Annotating with Linked Data 
	  

Once  entities  such  as  people,  places,  and  organisations have  been  extracted, 
the annotation step  queries  Freebase  [17] and  DBpedia  [18] for corresponding 
concepts (Figure  2, step 3). The queries are based on the entity’s type and label, 
which is the only structured  information available  at  this  stage.  Other  Linked 
Data sources can be consulted in this step, either by querying via a SPARQL 
endpoint,11  which is how we consult DBpedia,  or by accessing the Linked Data 
source directly over the HTTP protocol. 

We define mappings  of our three entity types to Linked Data  concept classes. 
For example, in the case of Freebase,  our entity type “Person” (pw:person) is 
mapped  to http://rdf.freebase.com/ns/people/person,  and  for each extracted 
person entity Freebase  is queried for lexically matching  concepts of the mapped 
type. Several candidate concepts may be selected for each entity (the number  is 
given as a configuration  parameter). These matches  are added as disambiguation 
candidates to every ngram  that corresponds  to the original entity. 

	  
	  

4.4     Disambiguation 
	  

The preceding processing steps use various techniques to determine relevant 
concepts  in  documents.  A direct  consequence  is that a  given  ngram  may  be 
mapped  to more than one concept: a taxonomy term, a Wikipedia  article, a 
Freebase  or a DBpedia  concept. Although the Wikipedia  Miner incorporates its 
own built-in  disambiguation component,  this  merely  ensures  that at  most  one 
Wikipedia  concept  corresponds  to each  ngram.  A second  disambiguation step 
(Figure  2, step 4) determines whether concepts from di↵erent  sources share the 
same meaning  and whether their meaning  is contextually relevant. 

The  disambiguation is performed  for each document,  one ngram  at  a time. 
If an  ngram  has  a single concept  mapping,  it  is considered  unambiguous and 
this concept is added to the final taxonomy. If an ngram has multiple mappings, 
the conflicting concepts are inspected first. Here, we compare the context of the 
ngram with the contexts of each concept, as it is defined in its original source. The 
context of the ngram  is as a set of labels of concepts that co-occur in the same 
document,  whereas  the context  of each concept  is a set  of labels derived  from 
its  associated  concepts,  computed  in a way that depends  on the concept’s  ori- 
gin. In SKOS taxonomies, associated  concepts are determined via skos:broader, 
skos:narrower, and  skos:related relations.  For each associated  concept we col- 
lect  the  skos:prefLabel and  one or more  skos:altLabels.  In  Wikipedia,  these 
labels are sourced from the article’s redirects, its categories,  the articles its ab- 
stract links to, and other  linked articles whose semantic relatedness  [15] exceeds 
a certain  threshold  (we used 0.3, which returns  27 linked  articles  on average). 
In  the case of Freebase  and  DBpedia,  we utilize  the fact  that many  Freebase 
concepts have mappings  to DBpedia,  which in turn are (practically all) mapped 
to Wikipedia  articles.  We  locate  the corresponding  Wikipedia  article  and  use 
the above method to determine the concepts. 

	  
11   A SPARQL endpoint is a web service that implements the W3C  SPARQL protocol 



	  
	  
	  
	  

Once all related  labels have been collected we calculate  the distance between 
every pair  of labels. To account for lexical variation between the labels, we use 
the Dice coe   cient  between  the sets  of bigrams  that represent  the labels.  We 
then  compute  a final similarity  score by averaging  the distance  over the top n 
scoring pairs.  n is chosen as the size of the smaller  set, because  if the concepts 
the sets represent are truly identical, every label in the smaller set should have 
at least one reasonably  similar partner in the other set; larger values of n tend to 
dilute the similarity score when one of the concepts has many weakly associated 
concept labels, which is often the case for Wikipedia  concepts. 

Given  this  similarity  metric,  disambiguation proceeds  as follows. First, we 
choose the concept  with  the greatest  similarity  to the ngram’s  context  to be 
the canonical  concept. (This  assumes  that there is at  least one correct concept 
among  the conflicting  ones.)  Second,  we compare  the similarity  of every other 
candidate concept to the canonical  one and, depending  on its similarity score s, 
list it as an skos:exactMatch (if s > 0.9), an skos:closeMatch (if 0.9     s     0.7), 
or discard  it (if s < 0.7). The thresholds were determined empirically. 

As an example of disambiguation, the ngram oceans matches  three concepts: 
Ocean, Oceanography (both  Wikipedia  articles), and Marine  areas (a taxonomy 
concept).  The  first  is chosen  as  the canonical  concept  because  its  similarity 
with the target document is greatest. Marine  areas is added as skos:closeMatch, 
because its similarity with Ocean is 0.87. However, Oceanography’s similarity falls 
below 0.7, so it is discarded.  As a another example, the ngram logged is matched 
to both Logs (a taxonomy concept) and Deforestation (a Wikipedia  article). Logs 
is semantically connected to another taxonomy concept, which is why it was not 
discarded  by the text analytics API,  but it is discarded  by the disambiguation 
step because it is not su   ciently closely related  to other  concepts that occur in 
the same document. 

	  
	  

4.5     Consolidation 
	  

The  final step  is to unite  all unambiguous and  disambiguated concepts  found 
in documents into a single taxonomy. Each concept lists several URIs under 
skos:exactMatch and (possibly)  skos:closeMatch that define it in other  sources: 
the input taxonomy,  Wikipedia,  Freebase  and  DBpedia.  These  sources already 
organize concepts into hierarchies,  but they di↵er in structure. The challenge is 
to consolidate  these hierarchies  into a single taxonomy. 

	  
	  

Sources of Relations. Taxonomies  from related  domains,  as optional inputs, 
already  define the relations  we seek: skos:broader and skos:narrower. However, 
they  may  cover certain  areas  in more or less detail  than what  we need,  which 
implies that some levels should be flattened while others  are expanded.  Because 
broader and  narrower  are transitive relations,  flattening is straightforward. For 
expansion,  concepts from other  sources are needed. 

Wikipedia   places  its  articles  into  categories.  For  example,  the article  on 
George Washington belongs to 30 categories;  some useful, e.g. Presidents  of the 



	  
	  
	  
	  

US and US Army  generals, and others  that are unlikely to be relevant in a tax- 
onomy, e.g. 1732 births. Some articles have corresponding  categories (e.g., there 
is a category  “George  Washington”), which lead to further  broader  categories. 
Furthermore, names may indicate  multiple relations  (e.g. Politicians  of English 
descent  indicates  that George  Washington is both  a Politician  and  of English 
descent).  Wikipedia  categories  tend to be fine-grained,  and we discard  informa- 
tion to create broader  concepts. We remove years (1980s TV series becomes TV 
series), country and language identifiers (American sitcoms becomes Sitcoms; 
Italian-language  comedy  films  becomes  Comedy  films),  and  verb  and  preposi- 
tional  phrases  that modify  a  head  noun  (Educational   institutions established 
in the 1850s becomes Educational  institutions; Musicians  by country becomes 
Musicians). The entire Wikipedia  category  structure is available  on DBpedia  in 
SKOS format,  which makes it easy to navigate. We query the SPARQL  DBpedia 
endpoint to determine categories  for a given Wikipedia  article. 

Other potential sources are Freebase,  where categories  are defined by users, 
and  DBpedia,  which  extracts  relations  from Wikipedia  infoboxes.  We plan  to 
use this information in future when consolidating  taxonomies. 

	  
	  

Consolidation Rules. F-STEP consolidates  the taxonomy that has been gen- 
erated  so far  using  a series of rules.  First, direct  relations  are  added  between 
concepts. For each concept with a SKOS taxonomy URI, if its broader  and nar- 
rower concepts match  other  input concepts, we connect these concepts, e.g. Air 
transport  skos:narrower Fear  of flying.  If a concept  has  a Wikipedia  URI  and 
its immediate  Wikipedia  categories match  an existing concept, we connect these 
concepts, e.g. Green  tea skos:narrower Pu-erh  tea. 

Following the intuition that some concepts do not appear  in the documents, 
but may  useful for grouping  others  that do, we iteratively  add  such  concepts. 
For  each  concept  with  a SKOS  taxonomy  URI,  we use a transitive  SPARQL 
query  to check whether  it  can  be connected  by  new intermediate  concepts  to 
other  concepts. If a new concept is found,  it is added  to the taxonomy and  its 
relations  are populated for all further concepts. For example,  this rule connects 
concepts like Music and Punk  rock via a new concept Music genres, whereupon 
a further relation  is added  between Music genres and Punk  rock. 

Next,  the Wikipedia  categories  are  examined  to identify  those  of interest. 
The document collection itself is used to quantify the degree of interest: cat- 
egories whose various children co-occur in many documents tend to be more 
relevant. Specifically, a category’s “quality” is computed by iterating over its 
children  and  checking  how many  documents  contain  them.  If this  score,  nor- 
malized  by the total number  of comparisons  made,  exceeds a given threshold, 
the category  is added  to the output taxonomy.  This  helps eliminate  categories 
that combine too many concepts (e.g. Living people in a news article) or that do 
not  group  co-occurring  concepts, and  singles out useful categories  instead (e.g. 
Seven Summits might connect Mont Blanc, Puncak Jaya, Aconcagua, and Mount 
Everest).  Next, we retrieve broader  categories  for these newly added  categories 
and check whether their names match  existing concepts, allowing us to add new 



	  
	  
	  
	  

relations.  One could continue up the Wikipedia  category  tree, but the resulting 
categories  are less satisfactory. For example,  Music  belongs to Sound,  which in 
turn belongs to Hearing,  but the relation  between  Music  and  Hearing is asso- 
ciative  rather than hierarchical. In fact, unlike conventional SKOS taxonomies, 
the Wikipedia  category  structure is not,  in general, transitive. 

Parentheses following some Wikipedia  article names indicate  possible group- 
ings for a concept,  e.g. Madonna  (entertainer) is placed  under  Entertainers, if 
such  a concept  exists.  We also match  each  category  name’s  last  word  against 
existing  concept  names,  but choose only the most  frequent  concepts  to reduce 
errors introduced by this crude technique. 

We group  all named  entities  that are found  in Freebase  using the Freebase 
categories,  and  all those  found  in DBpedia  using the corresponding  Wikipedia 
categories. The remainder  are grouped by their type, e.g. John Doe under Person. 

These techniques tend to produce  forests of small subtrees, because general 
concepts rarely appear  in documents. We check whether useful general terms can 
be found in a related taxonomy, and also examine the small upper-level taxonomy 
that a user may provide, as mentioned in Section 1. For example, a media website 
may divide news into Business,  Technology, Sport and Entertainment, with more 
specific areas  underneath, e.g. Celebrities,  Film,  Music—a  two-level  taxonomy 
of broad  categories.  For  each input concept  we retrieve  its  broadest  concept— 
the one below the root—and  add it, skipping intermediate levels. This rule adds 
relations  like Cooperation  skos:broader Business  and industry. 

	  
	  

Pruning Heuristics.  Prunning can make a taxonomy more usable, and elimi- 
nate  redundancies. First, following [4], who extract a taxonomy from WordNet, 
we elide parent–child  links  for single children.  If a concept  has  a single child 
that itself has one or more children,  we remove the child and  point its children 
directly to its parent. 

Second,  we eliminate  multiple  inheritance  that repeats  information in the 
same taxonomy subtree, which originates  from redundancy in the Wikipedia 
category  structure.  We  identify  cases  where  either  relations   or  concepts  can 
be removed without compromising the tree’s informativeness. Figure 3 shows 
examples.  In (a)  the two-parent  concept  Manchester  United  FC is reduced  to 
a single parent by removing  a node that does not  otherwise  contribute  to the 
structure.  In (b)  the two-parent  concept  Tax  is reduced  to a single parent by 
removing a small redundant subtree. In (c) a common parent of the two-parent 
concepts The  Notorious  B.I.G. and Tupac Shakur is pruned. 

	  
	  

5    Evaluation and  Discussion 
	  

Domain-specific taxonomies (and ontologies) are typically evaluated by (a) com- 
paring  them to manually-built taxonomies, (b) evaluating the accuracy  of their 
concepts and relations,  and (c) soliciting feedback from experts in the field. This 
section evaluates  our system’s ability to generate  a taxonomy from a news col- 
lection. We give an overview of the dataset used, compare the dimensions of the 



	  
	  
	  
	  

 
	  

Fig. 3.  Pruning concepts and  relations to deal with multiple inheritance 
	  
	  

taxonomy generated  with other  taxonomies, assess its coverage by comparing  it 
with a hand-built taxonomy for the domain, and determine the accuracy  of both 
its concepts and its relations  with respect to human  judgement. 

	  
	  

5.1     The  Domain 
	  

Fairfax  Media  is a large  media  organization that  publishes  hundreds  of news 
articles daily. Currently, these are stored in a database, organized  and retrieved 
according to manually  assigned metadata. Manual assignment is time-consuming 
and error-prone, and automatically generated  metadata, organized hierarchically 
for rapid  access to news on a particular topic or in a general field, would be of 
great  benefit. 

We collected 2000 news articles (4.3MB of uncompressed  text) from Decem- 
ber 2011, averaging  around  300 words each. We used the UK Integrated Public 
Service Sector vocabulary  (http://doc.esd.org.uk/IPSV/2.00.html) as an 
input taxonomy. A taxonomy was extracted using the method described  in Sec- 
tion 4 and can be viewed at http://bit.ly/f-step. It contains 10,150 concepts 
and 12,700 relations  and is comparable  in size to a manually-constructed taxon- 
omy for news, the New York Times taxonomy (data.nytimes.com), which lists 
10,400 People, Organizations, Locations  and  Descriptors.  The  average  depth of 
the tree is 2.6, with some branches  being 10 levels deep. Each  concept appears 
in an  average  of 2 news articles.  The  most  frequent,  New Zealand,  appears  as 
metadata for 387 articles;  the most  topical,  Christmas, is associated  with  127 
articles. About 400 concepts were added during the consolidation  phase to group 
other  concepts, and do not appear  as metadata. 

	  
	  

5.2     Coverage Comparison 
	  

To investigate the coverage of the automatically-generated taxonomy, we com- 
pared it with one comprising 458 concepts that Fairfax librarians had constructed 
manually  to cover all existing and future news articles. Interestingly, this taxon- 
omy was never completed, most likely because of the labor involved. Omissions 



	  
	  
	  
	  

tend to be narrower  concepts like individual  sports, movie genres, music events, 
names of celebrities, and geographic locations.  In order to evaluate  our new tax- 
onomy in terms of recall, we checked which of the 458 manually  assigned concepts 
have labels that match  labels in the new taxonomy (considering  both  preferred 
or alternative  labels in both  cases).  There  were a total of 271 such “true  posi- 
tives,” yielding a recall of 59%. However, not all the manually  assigned concepts 
are actually mentioned in the document set used to generate  our taxonomy, and 
are therefore,  by definition,  irrelevant  to it. We used Solr to seek concepts  for 
which at  least  one preferred  or alternative  label appears  in the document  set, 
which reduced  the original  458 concepts to 298 that are actually  mentioned in 
the documents. Re-calculating the recall yields a figure of 75% (224 out of 298). 

Inspection shows that some of the missing concepts are present but with dif- 
ferent labels—instead of Drunk, the automatically generated  taxonomy includes 
Drinking  alcohol and  Alcohol use and abuse. Others are present in a more spe- 
cific form—instead of Ethics it lists Ethical advertising  and Development  ethics. 
Nevertheless, some important concepts are missing—for example,  Immigration, 
Laptop and Hospitality. 

	  
	  

5.3     Accuracy of Concepts 
	  

Fifteen human  judges were used to evaluate  the precision of the concepts present 
in the taxonomy generated  from the documents. Each judge was presented with 
the text of a document and the taxonomy concepts associated  with it, and asked 
to provide  yes/no decisions on whether the document refers to each term. Five 
documents  were chosen and  given to all judges; a further  300 documents  were 
distributed equally between the judges. 

Looking first  at  the five common  documents,  the system  extracted  5 to 30 
concepts from each, with an average of 16. Three judges gave low scores, agreeing 
with only 74%, 86% and 90% of the concepts respectively, averaged  over the five 
documents. The remaining  12 each agreed with virtually all—more than 97%— 
of the concepts identified by the system. The overall precision for automatic 
identification of concepts, averaged  over all 15 judges, was 95.2%. 

Before these figures were calculated  the data  was massaged slightly to remove 
an anomaly.  It turned out that the system identified  for each article the name 
of the newspaper  in which it was published  (e.g. Taranaki Daily News), but  the 
human  judges disagreed with one another on whether that should be counted as 
a valid concept for the article. A decision was taken to exclude the name of the 
newspaper  from the first line of the article. 

Turning  now to the 300 documents that were examined by one judge each, the 
system identified a total of 3,347 concepts. Of these, 383 were judged incorrect, 
yielding an overall precision of 88.6%. (In 15 cases the judge was unwilling to give 
a yes/no answer; these were counted as incorrect.) Table 1 shows the source of the 
errors. Note that any given concept may originate in more than one source, which 
explains  the discrepancy  in the total of the Errors  column  (393, not  383). The 
most accurate concepts are ones that describe people. The most error-prone  ones 
emanate  from the input taxonomy, 26% of which are incorrect. This  taxonomy 



	  
	  
	  
	  

Table 1.  Sources  of error  in concept identification 
	  

Type Number Errors Rate 
People 1145 37 3.2% 
Organizations 496 51 10.3% 
Locations 988 114 11.5% 
Wikipedia named  entities 832 71 8.5% 
Wikipedia other  entities 99 16 16.4% 
Taxonomy 868 229 26.4% 
DBPedia 868 81 8.1% 
Freebase 135 12 8.9% 
Overall 3447 393 11.4% 

	  
	  
	  

describes  rather general  concepts,  which  introduces  more  ambiguity  than the 
other  sources. 

	  
	  

5.4     Accuracy of Relations 
	  

The  same fifteen  judges were used to evaluate  the precision  of the hierarchical 
relations  present  in the taxonomy.  Each  judge  received  100 concept  pairs  and 
was asked  for a yes/no decision as to whether  that relation  makes  sense—i.e., 
whether  the first  concept  really  is narrower  than the second.  A total of 750 
relations  were examined,  each adjudicated by two di↵erent judges. 

The  overall precision  figure was 90%—that  is, of the 1500 decisions, judges 
expressed  disagreement in 150 cases. The  interannotator agreement, calculated 
as the number  of relationships that both  judges agreed  on expressed  as a pro- 
portion of all relationships, was 87%. 

An examination of where  the two  judges  made  di↵erent  decisions revealed 
that some were too  strict, or simply  wrong  (for  example,  Acid  @ base chem- 
istry,  Leeds @ North  Yorkshire, History  of Israel @ Israel, where @ means “has 
parent”). Indeed,  it appears  that, according  to some judges, polio is not  an in- 
fectious disease and Sweden is not in Scandinavia!  It is interesting to analyze the 
clear errors,  discarding  cases where the judges  conflicted.  Of the 25 situations 
where both  judges agreed that the system was incorrect, ten pairs were related 
but not  in a strict hierarchical  sense (e.g., Babies 6@ school children),  four 
were due to an overly simplistic technique that we use to identify the head of a 
phrase (e.g. Daily Mail 6@ Mail),  two could have (and  should  have)  been 
avoided  (e.g. League 6@ League),  and nine were clearly incorrect and 
correspond to bugs that deserve further investigation (e.g. Carter  Observatory 
6@ City). 

	  
	  

6    Conclusions 
	  

This  paper  has  presented  a new approach  to analyzing  documents  and  gener- 
ating  taxonomies focused on their content. It combines existing tools with new 



	  
	  
	  
	  

techniques for disambiguating concepts originating  from various sources and con- 
solidating them into a single hierarchy.  A highlight of the scheme is that it can be 
easily extended. The use of RDF  technology and modeling makes coupling and 
reconfiguring the individual  components easy and flexible. The result, an SKOS 
taxonomy  that is linked  to both  the documents  and  Linked  Data  sources,  is a 
powerful  knowledge  organization structure  that can  serve many  tasks:  brows- 
ing documents, fueling facetted search  refinements, question answering,  finding 
similar documents, or simply analyzing  one’s document collection. 

The  evaluation has shown that in one particular  scenario  in the domain  of 
news, the taxonomy  that is generated  is comparable  to manually  built  exem- 
plars  in the dimensions  of the hierarchical  structure  and  in its  coverage of the 
relevant concepts. Recall of 75% was achieved  with respect to a manually  gen- 
erated  taxonomy for the same domain,  and inspection showed that some of the 
apparently missing concepts are present but with di↵erent—and arguably  more 
precise—labels.  With respect to multiple human  judgements on five documents, 
the accuracy  of concepts exceeded 95%; the figure decreased  to 89% on a larger 
dataset of 300 documents. The accuracy  of relations  was measured  at 90% with 
respect  to human  judgement,  but this  is diluted  by  human  error.  Analysis  of 
cases where two  judges  agreed  that the system  was incorrect  revealed  that at 
least  half were anomalies  that could easily be rectified  in a future  version.  Fi- 
nally, although we still plan to perform an evaluation in an application context, 
initial feedback from professionals in the news domain is promising. Some profes- 
sionals expect to tweak the taxonomy manually  by renaming  some top concepts, 
removing  some irrelevant  relations,  or even re-grouping  parts of the hierarchy, 
and we have designed a user interface that supports this. 

Compared  to the e↵ort  required  to come up  with  a taxonomy  manually,  a 
cardinal  advantage of the automated system is speed. Given 10,000 news articles, 
corresponding  to one week’s output of Fairfax  Media, a fully-fledged taxonomy 
is generated  in hours. Another  advantage is that the taxonomy focuses on what 
actually appears  in the documents. Only relevant concepts and relations  are 
included,  and relations  are created  based on salience in the documents (e.g. oc- 
currence counts) rather than background knowledge. Finally,  because Wikipedia 
and Freebase are updated daily by human editors, the taxonomy that is produced 
is current, which is important for ever-changing  domains  such as news. 

Finally,  the approach  is applicable  to any  domain.  Every  knowledge-based 
organization deals with mountains of documents. Taxonomies  are considered  a 
very useful document management tool, but uptake has been been slow due to 
the e↵ort involved in building  and  maintaining them. The  scheme described  in 
this paper  reduces that cost significantly. 
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Abstract

We introduce Peripheral Diversity (PD) as a
knowledge-based approach to achieve multi-
lingual Word Sense Disambiguation (WSD).
PD exploits the frequency and diverse use
of word senses in semantic subgraphs de-
rived from larger sense inventories such as
BabelNet, Wikipedia, and WordNet in order
to achieve WSD. PD’s f -measure scores for
SemEval 2013 Task 12 outperform the Most
Frequent Sense (MFS) baseline for two of
the five languages: English, French, German,
Italian, and Spanish. Despite PD remain-
ing under-developed and under-explored, it
demonstrates that it is robust, competitive, and
encourages development.

1 Introduction

By reading out aloud “A minute is a minute divi-
sion of time” (Nelson, 1976), we can easily make
the distinction between the two senses of the homo-
graph minute. For a machine this is a complex task
known as Word Sense Disambiguation (WSD). Task
12 of SemEval 2013 (Navigli et al., 2013) calls for a
language-independent solution to WSD that utilises
a multilingual sense inventory.

Supervised approaches to WSD have dominated
for some time now (Màrquez et al., 2007). Homo-
graphs such as minute are effortlessly disambiguated
and more polysemous words such as bar or line
can also be disambiguated with reasonable compe-
tence (Agirre and Edmonds, 2007). However our ap-
proach is purely knowledge-based and employs se-
mantic graphs. This allows us to avoid the notorious

predicament Gale et al. (1992) name the information
bottleneck, in which supervised approaches fail to be
portable across alternative languages and domains
if the annotated corpora do not exist. Conversely,
knowledge-based approaches for WSD are usually
applicable to all words in unrestricted text (Mihal-
cea, 2007). It is this innate scalability that moti-
vates us to pursue knowledge-based approaches. Re-
gardless of whether sense inventories can maintain
knowledge-richness as they grow, their continued re-
finement by contributors is directly beneficial.

Knowledge-based approaches that employ se-
mantic graphs increasingly rival leading supervised
approaches to WSD. They can beat a Random or
LESK (Lesk, 1986) baseline (see Mihalcea (2005),
Navigli and Lapata (2007), Sinha and Mihalcea
(2007), Navigli and Lapata (2010)) and can com-
pete with or even beat the Most Frequent Sense
(MFS) baseline in certain contexts which is by no
means an easy task (see Navigli et al. (2007), Eneko
Agirre and Aitor Soroa (2009), Navigli and Ponzetto
(2012a)).

2 Methodology

PD is a framework for knowledge-based WSD ap-
proaches that employ semantic graphs. However be-
fore we can elaborate we must first cover the funda-
mental resources it is built upon.

2.1 Fundamental Resource Definitions
2.1.1 Lemma Sequences

At a glance across the text of any language, we ab-
sorb meaning and new information through its lexi-
cal composition. Depending on the length of text



we are reading, we could interpret it as one of many
structural subsequences of writing such as a para-
graph, excerpt, quote, verse, sentence, among many
others. LetW = (wa, ..., wb) be this subsequence of
words, which we will utilise as a sliding window for
PD. Again let W = (w1, ..., wm) be the larger body
of text of length m, such as a book, newspaper, or
corpus of text, that our sliding window of length b−a
moves through.

In SemEval Task 12 on Multilingual Word Sense
Disambiguation all words are lemmatised, which is
the process of unifying the different inflected forms
of a word so they can be analysed as a consolidated
lemma (or headword). Therefore words (or lexemes)
such as runs and ran are all mapped to their unifying
lemma run1.

To express this, let `w : W → L be a many-
to-one mapping from the sequence of words W to
the sequence of lemmas L, in which (wa, ..., wb) 7→
(`wa , ..., `wb

) = (`a, ..., `b). To give an example
from the test data set2, the word sequenceW = (And,
it, ’s, nothing, that, runs, afoul, of, ethics, rules,
.) maps to the lemma sequence L = (and, it, be,
nothing, that, run, afoul, of, ethic, rule, .). In or-
der to complete this SemEval task we disambiguate
a large sequence of lemmas L = (`1, ..., `m), via our
lemma-based sliding window L = (`a, ..., `b).

2.1.2 Synsets
Each lemma `i ∈ L may refer up to k senses in

S(`i) = {si,1, si,2, ..., si,k} = S . Furthermore each
sense si,j ∈ S maps to a set of unique concepts in
the human lexicon. To clarify let us consider one
of the earliest examples of modern ambiguity taken
from Bar-Hillel’s (1960) critique of Machine Trans-
lation: W = (The, box, was, in, the, pen, .). The
sense of pen could be either a) a certain writing uten-
sil or b) an enclosure where small children can play,
therefore {senclosure, sutensil} ⊂ S(`pen) = S. Humans
can easily resolve the ambiguity between the pos-
sible senses of pen by accessing their own internal
lexicon and knowledge of the world they have built
up over time.

In the same vein, when accessing sense invento-
ries such as BabelNet, WordNet (Fellbaum, 1998),

1While all words are lemmatised, this task strictly focuses
on the WSD of noun phrases.

2This is sentence d010.s014 in the English test data set.

and Wikipedia which are discrete representations of
the human lexicon, we refer to each sense si,j ∈ S
as a synset. Depending on the sense inventory the
synset belongs to, it may contain alternative or trans-
lated lexicalisations, glosses, links to other semantic
resources, among a collection of semantically de-
fined relations to other synsets.

2.1.3 Subgraphs
PD makes use of subgraphs derived from a di-

rected graph G = (V, E) that can be crafted from
a sense inventory, such as BabelNet, WordNet, or
Wikipedia. We construct subgraphs using the Babel-
Net API which accesses BabelNet3 and Babel synset
paths4 indexed into Apache Lucene5 to ensure speed
of subgraph construction. This process is described
in Navigli and Ponzetto (2012a) and demonstrated
in Navigli and Ponzetto (2012b). Our formalisation
of subgraphs is adapted into our own notation from
the original papers of Navigli and Lapata (2007) and
Navigli and Lapata (2010). We refer the reader to
these listed sources if they desire an extensive ex-
planation of our subgraph construction as we have
built PD on top of the same code base therefore we
do not deviate from it.

For a given lemma sequence L = (`i, ..., `n) and
directed graph G = (V, E) we construct our sub-
graph GL = (VL, EL) in two steps:

1. Initialize VL :=
⋃n

i=1 S(`i) and EL := ∅.

2. For each node v ∈ VL, we perform a depth-
first search (DFS) of G, such that, every time
we encounter a node v′ ∈ VL (v′ 6= v) along a
path v, v1, ..., vk, v′ of length ≤ L in G, we add
all intermediate nodes and edges on the path
from v to v′, i.e., VL := VL ∪ {v1, ..., vk} and
EL := EL ∪ {{v, v1}, ..., {vk, v′}}.

2.2 Interpretation of Problem

For the lemmatisation of any word wi 7→ `i :
wi ∈ W, `i ∈ L, we must estimate the most ap-
propriate synset si,∗ ∈ S(`i) = {si,1, si,2, ..., si,k}.
Our system associates a PD score φ(si,j) for each

3BabelNet 1.1.1 API & Sense Inventory - http://lcl.
uniroma1.it/babelnet/download.jsp

4BabelNet 1.0.1 Paths - http://lcl.uniroma1.it/
babelnet/data/babelnet_paths.tar.bz2

5Apache Lucene - http://lucene.apache.org



si,j ∈ S(`i) by taking GL as input. We estimate
si,∗, the most appropriate sense for `i, by ŝi,∗ =
argmaxsi,j∈S(`i) φ(si,j). It’s worth noting here that
GL ensures the estimation of ŝi,∗ is not an indepen-
dent scoring rule, since GL embodies the context sur-
rounding `i via our sliding lemma-based window L.

2.3 Peripheral Diversity Framework
PD is built on the following two ideas that are ex-
plained in the following subsections:

1. For a subgraph derived from one lone lemma
`i, in which no other lemmas can provide con-
text, the synset si,j ∈ G`i that has the largest
and most semantically diverse set of peripheral
synset nodes is assumed to be the MFS for `i.

2. For a larger subgraph derived from a sliding
lemma window L, in which other lemmas can
provide context, the synset si,j ∈ GL that ob-
serves the largest increase in size and semantic
diversity of its peripheral synset nodes is esti-
mated to be si,∗, the most appropriate synset for
lemma `i.

Therefore PD is merely a framework that exploits
these two assumptions. Now we will go through the
process of estimating si,∗ for a given lemma `i.

2.3.1 Pairwise Semantic Dissimilarity
First, for each synset si,j ∈ S, we need to acquire

a set of its peripheral synsets. We do this by travel-
ling a depth of up to d (stopping if the path ends),
then adding the synset we reach to our set of periph-
eral synsets P≤d = {sj,1, sj,2, ..., sj,k′}.

Next for every pair of synsets v and v′ that are
not direct neighbours in P≤d such that v 6= v′,
we calculate their Pairwise Semantic Dissimilarity
(PSD) δ(v, v′) which we require for a synset’s
PD score. To generate our results for this task we
have used the complement to Cosine Similarity,
commonly known as the Cosine Distance as our
PSD measure:

δ(v, v′) =




1−

(
|O(v)∩O(v′)|√
|O(v)|

√
|O(v′)|

)
, if |O(v)||O(v′)| 6= 0

1, otherwise,

where O(v) is the outgoing (out-neighbouring)
synsets for v ∈ P≤d, and |O(v)| denotes the number
of elements in O(v).

2.3.2 Peripheral Diversity Score

Once we have PSD scores for every permitted
pairing of v and v′, we have a number of ways to
generate our φ(si,j) values. To generate our results
for this task, we chose to score synsets on the sum
of their minimum PSD values, which is expressed
formally below:
φ(si,j) =

∑

v∈P≤d(si,j)

min
v′ 6=v

v′∈P≤d(si,j)

δ(v, v′)

The idea is that this summing over the peripheral
synsets in P≤d(si,j) accounts for how frequently
synset si,j is used, then each increment in size is
weighted by a peripheral synset’s minimum PSD
across all synsets in P≤d(si,j). Therefore periph-
eral set size and semantic diversity are rewarded
simultaneously by φ. To conclude, the final esti-
mated synset sequence for a given lemma sequence
(`1, ..., `m) based on φ is (ŝ1,∗, ŝ2,∗, ..., ŝm,∗).

2.3.3 Strategies, Parameters, & Filters

Wikipedia’s Did You Mean? We account for de-
viations and errors in spelling to ensure lemmas
have the best chance of being mapped to a synset.
Absent synsets in subgraph GL will naturally de-
grade system output. Therefore if `i 7→ ∅,
we make an HTTP call to Wikipedia’s Did you
mean? and parse the response for any alternative
spellings. For example in the test data set6 the
misspelt lemma: “feu de la rampe” is corrected to
“feux de la rampe”.

Custom Back-off Strategy As back-off strate-
gies7 have proved useful in (Navigli and Ponzetto,
2012a) and (Navigli et al., 2007), we designed our
own back-off strategy. In the event our system pro-
vides a null result, the Babel synset si,j ∈ S(`i) =
S with the most senses associated with it will be
chosen with preference to its region in BabelNet
such that WIKIWN �WN �WIKI.

6Found in sentence d001.s002.t005 in the French test
data set.

7In the event the WSD technique fails to provide an answer,
a back-off strategy provides one for the system to output.



Input Parameters We set our sliding window
length (b− a) to encompass 5 sentences at a time, in
which the step size is also 5 sentences. For subgraph
construction the maximum lengthL = 2. Finally we
set our peripheral search depth d = 3.

Filters For the purposes of reproducibility only
we briefly mention two filters we apply to our sub-
graphs that ship with the BabelNet API. We re-
move WordNet contributed domain relations with
the ILLEGAL POINTERS filter and apply the
SENSE SHIFTS filter. For more information on
these filters we suggest the reader consult the Ba-
belNet API documentation.

3 Results & Discussion

3.1 Results of SemEval Submission

Language DAEBAK! MFSBaseline +/-
DE German 59.10 68.60 -9.50
EN English 60.40 65.60 -5.20
ES Spanish 60.00 64.40 -4.40
FR French 53.80 50.10 +3.70
IT Italian 61.30 57.20 +4.10

Mean 58.92 61.18 -2.26

Table 1: DAEBAK! vs MFS Baseline on BabelNet

As can be seen in Table 1, the results of our single
submission were varied and competitive. The worst
result was for German in which our system fell be-
hind the MFS baseline by a margin of 9.50. Again
for French and Italian we exceeded the MFS base-
line by a margin of 3.70 and 4.10 respectively. Our
Daebak back-off strategy contributed anywhere be-
tween 1.12% (for French) to 2.70% (for Spanish) in
our results, which means our system outputs a re-
sult without the need for a back-off strategy at least
97.30% of the time. Overall our system was slightly
outperformed by the MFS baseline by a margin of
2.26. Overall PD demonstrated to be robust across
a range of European languages. With these prelimi-
nary results this surely warrants further investigation
of what can be achieved with PD.

3.2 Exploratory Results
The authors observed some inconsistencies in the
task answer keys across different languages as Ta-
ble 2 illustrates. For each Babel synset ID found in

the answer key, we record where its original source
synsets are from, be it Wikipedia (WIKI), WordNet
(WN), or both (WIKIWN).

Language WIKI WN WIKIWN
DE German 43.42% 5.02% 51.55%
EN English 10.36% 32.11% 57.53%
ES Spanish 30.65% 5.40% 63.94%
FR French 40.81% 6.55% 52.64%
IT Italian 38.80% 7.33% 53.87%

Table 2: BabelNet Answer Key Breakdown

This is not a critical observation but rather an
empirical enlightenment on the varied mechanics
of different languages and the amount of devel-
opment/translation effort that has gone into the
contributing subparts of BabelNet: Wikipedia and
WordNet. The heterogeneity of hybrid sense inven-
tories such as BabelNet creates new obstacles for
WSD, as seen in (Medelyan et al., 2013) it is dif-
ficult to create a disambiguation policy in this con-
text. Future work we would like to undertake would
be to investigate the heterogeneous nature of Babel-
Net and how this affects various WSD methods.

4 Conclusion & Future Directions

To conclude PD has demonstrated in its early stages
that it can perform well and even outperform the
MFS baselines in certain experimental contexts.
Furthermore it leaves a lot left to be explored in
terms of what this approach is capable of via ad-
justing subgraph filters, strategies, and input param-
eters across both heterogeneous and homogeneous
semantic graphs.
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Abstract

We introduce an iterative approach to
subgraph-based Word Sense Disambigua-
tion (WSD). Inspired by the Sudoku puz-
zle, it significantly improves the precision
and recall of disambiguation. We describe
how conventional subgraph-based WSD
treats the two steps of (1) subgraph con-
struction and (2) disambiguation via graph
centrality measures as ordered and atomic.
Consequently, researchers tend to focus on
improving either of these two steps indi-
vidually, overlooking the fact that these
steps can complement each other if they
are allowed to interact in an iterative man-
ner. We tested our iterative approach
against the conventional approach for a
range of well-known graph centrality mea-
sures and subgraph types, at the sentence
and document level. The results demon-
strated that an average performing WSD
system which embraces the iterative ap-
proach, can easily compete with state-of-
the-art. This alone warrants further inves-
tigation.

1 Introduction

Explicit WSD is a two-step process of analysing a
word’s contextual use then deducing its intended
sense. When Kilgarriff (1998) established SEN-
SEVAL, the collaborative framework and forum to
evaluate WSD, unsupervised systems performed
poorly in comparison to their supervised counter-
parts (Palmer et al., 2001; Snyder and Palmer,
2004). A review of the literature shows there

This work is licensed under a Creative Commons At-
tribution 4.0 International Licence. Page numbers and pro-
ceedings footer are added by the organisers. Licence de-
tails: http://creativecommons.org/licenses/
by/4.0/

has been a healthy rivalry between the two, in
which proponents of unsupervised WSD have long
sought to vindicate its potential since two decades
ago (Yarowsky, 1995) to even more recent times
(Ponzetto and Navigli, 2010).

As Pedersen (2007) rightly states, supervised
systems are bound by their training data, and
therefore are limited in portability and flexibility
in the face of new domains, changing applications,
or different languages. This knowledge acquisi-
tion bottleneck, coined by Gale et al. (1992), can
be alleviated by unsupervised systems that exploit
the portability and flexibility of Lexical Knowl-
edge Bases (LKBs). As of 2007, SENSEVAL be-
came SEMEVAL, offering a more diverse range of
semantic tasks. Unsupervised knowledge-based
WSD has since had its performance evaluated in
terms of granularity (Navigli et al., 2007), domain
(Agirre et al., 2010), and cross/multi-linguality
(Lefever and Hoste, 2010; Lefever and Hoste,
2013; Navigli et al., 2013). Results from these
tasks have demonstrated unsupervised systems are
now a competitive and robust alternative to super-
vised systems, especially given the ever changing
task-orientated settings WSD is evaluated in.

One such class of unsupervised knowledge-
based WSD systems that we seek to improve
in this paper constructs semantic subgraphs from
LKBs, and then runs graph-based centrality mea-
sures such as PageRank (Brin and Page, 1998)
over them to finally select the senses (as nodes)
ranked as the most relevant. This class is known
as subgraph-based WSD, characterised over the
last decade by performing the two key steps of (1)
subgraph construction and (2) disambiguation via
graph centrality measures, in an ordered atomic
sequence. We refer to this characteristic as the
conventional approach to subgraph-based WSD.
We propose an iterative approach to subgraph-
based WSD that allows for interaction between
the two major steps in an incremental manner



and demonstrate its effectiveness across a range
of graph-based centrality measures and subgraph
construction methods at the sentence and docu-
ment levels of disambiguation.

2 The Conventional Subgraph Approach

The conventional approach to subgraph WSD
firstly benefits from some preprocessing, in which
words in a sequenceW , are mapped to their lem-
matisations1 in a set L, such that (w1, ..., wm) 7→
{`1, ..., `m}. This facilitates better lexical align-
ment with the LKB to be exploited. Let this LKB
be a large semantic graph G = (S, E), such that
S is a set of vertices representing all known word
senses, and E be a set of edges defining seman-
tic relationships that exist between senses. Now
given we wish to disambiguate `i ∈ L, let R(`i)
be a function that Retrieves from G, all the senses,
{si,1, si,2, ..., si,k}, that `i could refer to, noting
that i is an anchor to the original word wi.

2.1 Step 1: Subgraph Construction

For unsupervised subgraph-based WSD, the key
publications that have advanced the field broadly
construct subgraph, GL, as either a union of sub-
tree paths, shortest paths, or local edges2. First
we initialise GL, by setting SL :=

⋃n
i=1R(`i) and

EL := ∅. Next we add edges to EL, depending on
the desired subgraph type, by adding either the:

(a) Subtree paths of up to length L, via a Depth-
First Search (DFS) of G. In brief, for each
sense sa ∈ SL, if a new sense sb ∈ SL,
i.e. sb 6= sa, is encountered along a path
Pa→b = {{sa, s}, ..., {s′, sb}} with path-
length |Pa→b| ≤ L, then add Pa→b to GL.
[cf. Navigli and Velardi (2005), Navigli and
Lapata (2007), or Navigli and Lapata (2010)]

(b) Shortest paths, via a Breadth-First Search
(BFS) of G. In brief, for each sense pair
sa, sb ∈ SL, find the shortest path Pa→b =
{{sa, s}, ..., {s′, sb}}; if such a path Pa→b ex-
ists and (optionally) |Pa→b| ≤ L, then add
Pa→b to GL [cf. Agirre and Soroa (2008),
Agirre and Soroa (2009), or Gutiérrez et al.
(2013)]

1For a detailed explanation of the processes leading up to
lemmatisation (and beyond), see Navigli (2009, p12)

2‘Local’ describes the local context, typically this is the 2
or 3 words either side of a word, see Yarowsky (1993)

(c) Local edges up to a local distance D. In brief,
for each sense pair sa, sb ∈ SL, if the distance
in the text |b − a| between the corresponding
words wa and wb satisfies |b − a| ≤ D, then
add edge {sa, sb} to GL (preferably with edge-
weights). [cf. Mihalcea (2005) or Sinha and
Mihalcea (2007)] (Note that this subgraph is a
hybrid, because only its vertices belong to G)

In practice, subgraph edges may be directed,
weighted, collapsed, or filtered. However to keep
the distinctions between subgraph types simple,
we do not include this in our formalisation.

2.2 Step 2: Disambiguation

To disambiguate each lemma `i ∈ L, its cor-
responding senses, R(`i) = {si,1, si,2, ..., si,k},
are scored by a graph-based centrality measure φ,
over subgraph GL, to estimate the most appropri-
ate sense, ŝi,∗ = arg maxsi,j∈R(`i) φ(si,j). The
estimated sense ŝi,∗ is then assigned to word wi.

2.3 Algorithm for Conventional Approach

With both steps formalised, we can now illus-
trate the conventional subgraph approach in Algo-
rithm 1. Let L be taken as input, and let the disam-
biguation resultsD = {ŝ1,∗, ..., ŝm,∗} be produced
as output to assign toW = (w1, ..., wm).

Algorithm 1: Conventional Approach
Input: L
Output: D
D ← ∅;
GL ← ConstructSubGraph (L);
foreach `i ∈ L do

ŝi,∗ ← arg maxsi,j∈R(`i) φ(si,j);
put ŝi,∗ in D;

To begin with, D is initialised as an empty set
and ConstructSubGraph(L) constructs one
of the three subgraphs described in section 2.1.
Next for each `i ∈ L, by running a graph based
centrality measure φ over GL, the most appropriate
sense ŝi,∗ is estimated, and placed in set D. Effec-
tively, L is a context window based on document
or sentence size, therefore this algorithm is run
for each context window division. Note that Al-
gorithm 1 would require a little extra complexity
to handle local edge subgraphs, due to its context
window needing to satisfy L = {`i−D, ..., `i+D}.
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Figure 1: Iterative Solving of Sudoku Grids

3 The Iterative Subgraph Approach

3.1 What is Iterative WSD?

The key observation to make about the conven-
tional approach in Algorithm 1, is for input L,
constructing subgraph GL and performing disam-
biguation are two ordered atomic steps. Notice
that there is no iteration between them, because
the first step of subgraph construction is never re-
visited for each L. For the conventional process
to be iterative, then for `a, `b ∈ L a previous dis-
ambiguation of `a, would need to influence a con-
secutive disambiguation of `b, through an iterative
re-construction of GL between each disambigua-
tion. This key difference illustrated by Figure 2, is
the level of iterative WSD we aspire to.

L GL φ Dconstruct disambiguate assign

(a) Conventional Approach

L GL φ Dconstruct

disambiguate

assign

reconstruct

(b) Interactively Iterative Approach

Figure 2: The Key Difference In Approach

It is important to note, the term iterative can al-
ready be found in WSD literature, therefore we
take the opportunity here to make a distinction.
Firstly, a graph based centrality measure φ may
be iterative, such as PageRank (Brin and Page,
1998) or Hyperlink-Induced Topic Search (HITS)
(Kleinberg, 1999). In the experiments by Mihal-
cea (2005) in which PageRank was run over local
edge subgraphs (as described in 2.1 (c)), it is easy
to perceive the WSD process itself as iterative.

Iteration can again be taken further, as observed
with Personalised PageRank in which Agirre and
Soroa (2009) apply the idea of biasing values in
the random surfing vector, v, (see (Haveliwala,
2003)). For their run labelled “Ppr_w2w”, in or-
der to avoid senses anchored to the same lemma
assisting each other’s φ score, the random surfing
vector v is iteratively updated as `i changes, to en-
sure context senses sa,j ∈ v such that a 6= i are
the only senses that receive probability mass.

L GL φ Dconstruct disambiguate

update

assign

Figure 3: Atomically Iterative Approach

In summary, iteration in the literature either de-
scribes φ as being iterative or being iteratively ad-
justed, both of which are contained in the disam-
biguation step alone as shown in Figure 3. This is
iteration at the atomic level and should not be con-
flated with the interactive level of iteration that we
propose as seen in Figure 2 (b).

3.2 Iteratively Solving a Sudoku Grid

In Figures 1 (a), (b), and (c), we observe the solv-
ing of a Sudoku puzzle, in which the numbers
from 1 to 9 must be assigned only once to each
column, row, and 3x3 square. Each time a number
is assigned and the Sudoku grid is updated, this
is an iteration. For example, in the south west
square of grid (a) (i.e. Figure 1 (a)) unknown
cells can be assigned {1, 4, 7, 8}. Given that 1
has already been assigned to the 7th row and the
1st and 2nd columns, this singles it down to one
cell it can be assigned to. The iteration of grid



• m b1 •
• m • • •
a1 • a2

• • m •
• m • m

•
• •

m b2
• • •

(a) x2 Bi-semous Eliminations

• m b1 •
m • • •

• a2 •
• m c2

c1 • m • m

• • •
• • • •

m c3
• • • •

(b) x1 Tri-semous Elimination

• m b1 •
m • • •

• • • a2 •
d1 m c2

• • • m • m

• •
• • • • •
m d2 d3 •

• • • • d4

(c) (ρmax)-semous Completion

Figure 4: Iterative Disambiguating of Subgraphs

(a), now makes possible the iteration of grid (b) to
eliminate the number 8 as the only possibility for
its assigned cell. This iterative process continues
until we reach the completed puzzle in grid (c).
Therefore in WSD terminology, with each cell we
disambiguate, a new grid is constructed, in which
knowledge is passed on to each consecutive itera-
tion.

Continuing with this line of thought, each un-
solved cell is ambiguous, with a degree of pol-
ysemy ρ, such that ρmax ≤ 9. Again, the ini-
tial Sudoku grid has pre-solved cells, of which are
monosemous. This brings us to another key ob-
servation. Typically in Sudoku, it is necessary to
solve the least polysemous cells first, before you
can solve the more polysemous cells with a cer-
tainty. As the conventional approach exhibits no
Sudoku-like iteration, cells are solved without re-
gard to the ρ value of the cell, or any interactive
exploitation of previously solved cells.

3.3 Iteratively Constructing a Subgraph

In our ‘Sudoku style’ approach, we propose dis-
ambiguating each `i in order of increasing poly-
semy ρ, iteratively reconstructing subgraph GL to
reflect 1) previous disambiguations and 2) the ρ
value of lemmas being disambiguated in the cur-
rent iteration. This is illustrated in Figures 4 (a),
(b), and (c) above.

Let m-labelled vertices describe monosemous
lemmas. In graph (a) (i.e. Figure 4) we observe
two bi-semous lemmas, a and b, in which our ar-
bitrary graph-based centrality measure φ has se-
lected the second sense of a (i.e. a2) and the first
sense of b (i.e. b1) to be placed in D. For the next
iteration, you will notice the alternative senses for
a and b are removed from GL for the disambigua-
tion of tri-semous lemma c. The second sense of

lemma cmanages to be selected by φwith the help
of the previous disambiguation of lemma a. This
interactive and iterative process continues until we
reach the most polysemous lemma, which in our
example is d with ρmax = 4 in graph (c).

3.4 Algorithm for Iterative Approach
We can formally describe what is happening in
Figure 4 with Algorithm 2. Effectively, this is a
recreation of Algorithm 1, which highlights the
differences in the conventional and iterative ap-
proach.

Algorithm 2: Iterative Approach
Input: L
Output: D
D ← GetMonosemous (L);
A ← ∅;
for ρ← 2 to ρmax do
A ← AddPolysemous (L, ρ);
GL ← ConstructSubGraph (A,D);
foreach `i ∈ A do

ŝi,∗ ← arg maxsi,j∈R(`i) φ(si,j);
if ŝi,∗ exists then

remove `i from A;
put ŝi,∗ in D;

Firstly, as it reads GetMonosemous(L)
places all the senses of the monosemous lemmas
into the set of disambiguated lemmas D. This is
the equivalent of copying out an unsolved Sudoku
grid onto a piece of paper and adding in all the
initial hint numbers. Next the set A which holds
all ambiguous lemmas of polysemy ≤ ρ is ini-
tialised as an empty set. Now we are ready to
iterate through values of ρ, beginning from the
first iteration, by adding all bi-semous lemmas to



Awith the function AddPolysemous(L, ρ), no-
tice ρ places a restriction on the degree of poly-
semy a lemma `i ∈ L can have before being added
to A.

We are now ready to create the first subgraph GL
with function ConstructSubGraph(A,D).
This previously used function in Algorithm 1, is
now modified to take the ambiguous lemmas of
polysemy ≤ ρ in set A and previously disam-
biguated lemma senses in set D. The resulting
graph has a limited degree of polysemy and is con-
structed based on previous disambiguations.

From this point on the given graph centrality
measure φ is run over GL. For the lemmas that
are disambiguated, they are removed from A and
the selected sense is added toD. For those lemmas
that are not (i.e. ŝi,∗ does not exist3) they remain in
A to be involved in reattempted disambiguations
in consecutive iterations. As more lemmas are dis-
ambiguated, it is more likely that previously diffi-
cult to disambiguate lemmas become much easier
to solve, just like at the end of a Sudoku puzzle it
gets easier as you get closer to completing it.

4 Evaluations

In our evaluations we set out to understand a num-
ber of aspects. The first evaluation is a proof of
concept, to understand whether an iterative ap-
proach to subgraph WSD can in fact achieve better
performance than the conventional approach. The
second set of experiments seeks to understand how
the iterative approach works and the performance
benefits and penalties of implementing the itera-
tive approach. Finally the third experiment is an
elementary attempt at optimising the iterative ap-
proach to defeat the MFS baseline.

4.1 LKB & Dataset

For an evaluation, we have chosen the multi-
lingual LKB known as BabelNet (Navigli and
Ponzetto, 2012a). It weaves together several other
LKBs, most notably WordNet (Fellbaum, 1998)
and Wikipedia. It also can be easily accessed with
the BabelNet API, of which we have built our code
base around. All experiments are conducted on
the most recent SemEval WSD dataset, of which
is the SemEval 2013 Task 12 Multilingual WSD
(English) data set.

3This can happen if `i does not map to any senses, or
alternatively all the senses that are mapped to are filtered out
of the subgraph before disambiguation (explained later).

4.2 Graph Centrality Measures Evaluated
To demonstrate the effectiveness of our iterative
approach, we selected a range of WSD graph-
based centrality measures often experimented with
in the literature. Firstly φ does not need to be a
complicated measure, this is demonstrated by the
success of ranking senses by their number of in-
coming and outgoing edges. Even though it is very
simple, it performs surprisingly well against others
for both In-Degree (Navigli and Lapata, 2007) and
Out-Degree (Navigli and Ponzetto, 2012a)

Next we employ graph centrality measures
that are primarily used to disambiguate the se-
mantic web, such as PageRank (Brin and Page,
1998), HITS Kleinberg (1999), and a personalised
PageRank (Haveliwala, 2003); which have since
been applied to WSD by Mihalcea (2005), Navigli
and Lapata (2007), and Agirre and Soroa (2009)
respectively. We also include Betweeness Central-
ity (Freeman, 1979) which is taken from the anal-
ysis of social networks.

These methods are well known and applied
across many disciplines, therefore we will leave it
to the reader to follow up on the specifics of these
graph centrality measures. However we do ex-
plicitly define our last measure, Sum Inverse Path
Length (Navigli and Ponzetto, 2012a; Navigli and
Ponzetto, 2012b) in Equation (1) which was de-
signed with WSD in mind, thus is less well known.

φ(s) =
∑

p∈Ps→c

1

e|p|−1
(1)

This measure scores a sense by summing up the
scores of all paths that connect to other senses in
GL (i.e. senses that are not intermediate nodes, but
have a mapping back to a lemma in the context
window L). In the words of Navigli and Ponzetto
(2012a), Ps→c is the set of paths connecting s
to other senses of context words, with |p| as the
number of edges in the path p and each path is
scored with the exponential inverse decay of the
path length.

4.3 Experiment 1: Proof of Concept
4.3.1 Experiment 1: Setup
For this experiment we simply set out to see how
the iterative approach performed compared to the
conventional approach in a range of experimental
conditions. Directed and unweighted subgraphs
were used, namely subtree paths and shortest paths
subgraphs with L = 2. To address the issue of



GL φ Conventional Doc Iterative Doc Improvement
P R F P R F ∆P ∆R ∆F

Su
bT

re
e

Pa
th

s
In-Degree 61.70 55.51 58.44 65.39 63.74 64.55 +3.69 +8.23 +6.11
Out-Degree 54.23 48.78 51.36 57.70 56.23 56.96 +3.47 +7.45 +5.59
Betweenness Centrality 59.29 53.34 56.15 63.43 61.82 62.61 +4.14 +8.48 +6.46
Sum Inverse Path Length 56.58 50.90 53.59 58.86 57.37 58.11 +2.28 +6.47 +4.51
HITS(hub) 54.69 49.20 51.80 59.71 58.20 58.95 +5.03 +9.00 +7.15
HITS(authority) 57.45 51.68 54.41 61.62 60.06 60.83 +4.18 +8.38 +6.42
PageRank 60.09 54.06 56.92 64.07 62.44 63.24 +3.97 +8.38 +6.33

Sh
or

te
st

Pa
th

s

In-Degree 63.06 56.08 59.36 65.36 63.06 64.19 +2.30 +6.98 +4.83
Out-Degree 57.07 50.75 53.72 61.14 58.92 60.01 +4.07 +8.17 +6.29
Betweenness Centrality 60.33 53.65 56.79 65.52 63.22 64.35 +5.20 +9.57 +7.56
Sum Inverse Path Length 57.53 51.16 54.16 61.19 58.98 60.06 +3.66 +7.81 +5.90
HITS(hub) 57.48 51.11 54.11 62.14 59.96 61.03 +4.67 +8.85 +6.92
HITS(authority) 60.91 54.16 57.34 63.54 61.30 62.40 +2.63 +7.14 +5.06
PageRank 60.33 53.65 56.79 64.83 62.55 63.67 +4.50 +8.90 +6.87

Table 1: Improvements of using the Iterative Approach at the Document Level

GL φ Conventional Sent Iterative Sent Improvement
P R F P R F ∆P ∆R ∆F

Su
bT

re
e

Pa
th

s

In-Degree 60.83 50.70 55.30 61.80 56.23 58.88 +0.96 +5.54 +3.58
Out-Degree 56.18 46.82 51.07 59.64 54.11 56.74 +3.46 +7.29 +5.67
Betweenness Centrality 59.40 49.51 54.01 61.66 56.08 58.74 +2.26 +6.57 +4.73
Sum Inverse Path Length 56.67 47.23 51.52 59.45 54.01 56.60 +2.78 +6.78 +5.08
HITS(hub) 55.49 46.25 50.45 59.51 54.06 56.65 +4.02 +7.81 +6.20
HITS(authority) 56.80 47.34 51.64 60.30 54.84 57.44 +3.50 +7.50 +5.80
PageRank 59.71 49.77 54.29 60.56 55.04 57.67 +0.84 +5.28 +3.38

Sh
or

te
st

Pa
th

s

In-Degree 58.13 32.75 41.89 63.79 42.11 50.73 +5.66 +9.36 +8.84
Out-Degree 54.64 30.78 39.38 61.79 40.66 49.05 +7.15 +9.88 +9.67
Betweenness Centrality 57.94 32.64 41.76 64.11 42.32 50.98 +6.17 +9.68 +9.22
Sum Inverse Path Length 55.65 31.35 40.11 62.39 41.02 49.50 +6.74 +9.67 +9.39
HITS(hub) 56.11 31.61 40.44 62.74 41.28 49.80 +6.63 +9.67 +9.36
HITS(authority) 55.74 31.40 40.17 62.75 41.39 49.88 +7.01 +9.98 +9.70
PageRank 56.84 32.02 40.97 63.17 41.70 50.23 +6.33 +9.67 +9.27

Table 2: Improvements of using the Iterative Approach at the Sentence Level

senses anchored to the same lemma assisting each
other’s φ score (as discussed in Section 3.1), the
SENSE_SHIFTS filter that is provided by the Ba-
belNet API was also applied. This filter removes
any path Pa→b such that sa, sb ∈ R(`i). Disam-
biguation was attempted at the document and sen-
tence level, making use of the eight well-known
graph centrality measures listed in section 4.2. For
this experiment no means of optimisation were ap-
plied. Therefore Personalised PageRank was not
used, and traditional PageRank took on a uniform
random surfing vector. Default values of 0.85 and
30 for damping factor and maximum iterations
were set respectively.

4.3.2 Experiment 1: Observations
First and foremost, it is clear from Table 1 and 2
that the iterative approach outperforms the con-
ventional approach, regardless of the subgraph

used, level of disambiguation, or the graph central-
ity measure employed. Since no graph centrality
measure or subgraph were optimised, let this ex-
periment prove that the iterative approach has the
potential to improve any WSD system that imple-
ments it.

At the document level for both subgraphs the F-
Scores were very close to the Most Frequent Sense
(MFS) baseline for this task of 66.50. It is noto-
riously hard to beat and only one team (Gutiérrez
et al., 2013) managed to beat it for this task. For
all subtree subgraphs, we observe that In-Degree is
clearly the best choice of centrality measure, while
HITS (hub) enjoys the most improvement. We
also observe that applying the iterative approach
to Betweenness Centrality on shortest paths is a
great combination at both the document and sen-
tence level, most probably due to the measure be-
ing based on shortest paths. Furthermore it is



worth noting, the results at the sentence level for
all graph centrality measures on shortest path sub-
graphs are quite poor, but highly improved, this
is likely to our restriction of L = 2 causing the
subgraphs to be much sparser and broken up into
many components.

We also provide here an example from the data
set in which the incorrect disambiguation of the
lemma cup via the conventional approach was
corrected by the iterative approach. This example
is the seventh sentence in the eleventh document
(d011.s007). Each word’s degree of polysemy
is denoted in square brackets.

“Spanish [1]football players playing in the All-Star
[4]League and in powerful [12]clubs of the [2]Premier
League of [9]England are during the [5]year very ac-
tive in [4]league and local [8]cup [7]competitions and
there are high-level [25]shocks in the [10]European
Cups and [2]European Champions League.”

The potential graph constructed from this sen-
tence is illustrated in Figure 5 as a shortest paths
subgraph. The darker edges portray the subgraph
iteratively constructed up to a polysemy ρ ≤ 8
(in order to disambiguate cup), whereas the lighter
edges portray the greater subgraph constructed if
the conventional approach is employed. Note that
although the lemma cup has eight senses, only
three are shown due to the application of the previ-
ously mentioned SENSE_SHIFTS filter. The re-
maining five senses of cup were filtered out since
they were not able to link to a sense up to L = 2
hops away that is anchored to an alterative lemma.

• cup#1 - A small open container usually used for
drinking; usually has a handle.

• cup#7 - The hole (or metal container in the hole)
on a golf green.

• cup#8 - A large metal vessel with two handles that
is awarded as a trophy to the winner of a competi-
tion.

Given the context, the eighth sense of cup is the
correct sense, the type we know as a trophy. For
the conventional approach, if φ is a centrality mea-
sure of Out-Degree then the eighth sense of cup is
easily chosen by having one extra outgoing edge
than the other two senses for cup. Yet if φ is a cen-
trality measure of In-Degree or Betweenness Cen-
trality, all three senses of cup now have the same
score, zero. Therefore in our results the first sense
is chosen which is incorrect. On the other hand, if

[8]cup#1

handle#1

[12]golf_club#2

[4]league#2

association#1

[12]club#2

[7]contest#1

tournament#1

[4]league#1

[12]baseball_club#1

baseball_league#1

[9]England#1

Australia#1

[5]year#1

[8]cup#7

golf#1

[8]cup#8

monopoly#1

[7]competition#1

match#2

sport#1

[7]competition#3

Figure 5: Conventional vs Iterative Subgraph

the subgraph was constructed iteratively with dis-
ambiguation results providing feedback to consec-
utive constructions, this could have been avoided.
The shortest paths cup#1→handle#1→golf_club#2
and cup#7→golf#1→golf_club#2 only exist because
the sense golf_club#2 (anchored to the more poly-
semous lemma club) is present, if it was not then
the SENSE_SHIFTS filter would have removed
these alternative senses. This demonstrates that if
the senses of more polysemous lemmas are intro-
duced into the subgraph too soon, they can inter-
fere rather than help with disambiguation.

Secondly with each disambiguation at lower
levels of polysemy, a more stable context is con-
structed to perform the disambiguation of much
more polysemous lemmas later. Therefore in Fig-
ure 5 an iteratively constructed subgraph with cup
already disambiguated, would mean the other two
senses of cup would no longer be present. This en-
sures that club#2 (the correct answer) would have
a much stronger chance of being selected than
golf_club#2, which would have only one incoming
edge from handle#1. Note the conventional ap-
proach would lend golf_club#2 one extra incoming
edge than club#2 has, which could be problematic
if φ is a centrality measure of In-Degree.
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Figure 6: For each of the 13 documents, performance (F-Score) is plotted against time to disambiguate,
for GL = Shortest Paths. The squares (PageRank) and circles (Betweenness Centrality) plot the conven-
tional approach. The arrows show the effect caused by applying the iterative approach, with the arrow
head marking its F-Score and time to disambiguate.

4.4 Experiment 2: Performance

4.4.1 Experiment 2: Setup

An obvious caveat of the iterative approach is that
it requires the construction of several subgraphs
as ρ increases, which of course will require extra
computation and time which is a penalty for the
improved precision and recall. We decided to in-
vestigate the extent to which this happens. We se-
lected Betweenness Centrality and PageRank from
Experiment 1, in which both use shortest path sub-
graphs at the document level. This is because a)
they acquired good results at the document level
and b) with only 13 documents there are less data
points on the plots making it easier to read as op-
posed to the hundreds of sentences.

4.4.2 Experiment 2: Observations

Firstly from Figures 6(a) and (b) we see that
there is a substantial improvement in F-Score
for almost all documents, except for two for φ =
Betweenness Centrality and one for φ = PageR-
ank. With some exceptions, for most documents
the increased amount of time to disambiguate is
not unreasonable. For this experiment, applying
the iterative approach to Betweenness Centrality
resulted in a mean 231% increase in processing
time, from 3.54 to 11.73 seconds to acquire a
mean F-Score improvement of +8.85. Again for
PageRank, a mean increase of 343% in processing
time, from 1.95 to 8.64 seconds to acquire a
F-Score improvement of +7.16 was observed.

We wanted to investigate why in some cases, the
iterative approach can produce poorer results than
the conventional approach. We looked at aspects
of the subgraphs such as order, size, density, and
number of components. Eventually we came to
the conclusion that, just like in a Sudoku puzzle, if
there are not enough hints to start with, the possi-
bility of finishing the puzzle becomes slim.

Therefore we suspected that if there were not
enough monosemous lemmas, to construct the ini-
tial GL, then the effectiveness of the iterative ap-
proach could be negated. It turns out, as observed
in Figures 7(a) and (b) on the following page that
this does effect the outcome. On the horizontal
axis, document monosemy represents the percent-
age of lemmas in a document, not counting dupli-
cates, that are monosemous. The vertical axis on
the other hand represents the difference in F-Score
between the conventional and iterative approach.
Through a simple linear regression of the scatter
plot, we observe an increased effectiveness of the
iterative approach. This observation is important,
because a WSD system may decide on which ap-
proach to use based on a document’s monosemy.

With m representing document monosemy, and
∆F representing the change in F-Score induced
by the iterative approach, the slopes observed in
Figures 7(a) and (b) are denoted by Equations (2)
and (3) respectively.

∆F = 0.53m− 0.11 (2)

∆F = 0.60m− 3.07 (3)
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Figure 7: Both PageRank (squares) and Betweenness Centrality (circles) are plotted. Each data plot
represents the change in F-Score when the iterative approach replaces the conventional approach with
respect to the monosemy of the document.

4.5 Experiment 3: A Little Optimisation

Briefly, we made an effort into optimising the iter-
ative approach with subtree subgraphs, and com-
pared these results with systems from SemEval
2013 Task 12 (Navigli et al., 2013) in Table 3.

Team System P R F

UMCC-DLSI Run-2+ 68.50 68.50 68.50
UMCC-DLSI Run-3+ 68.00 68.00 68.00
UMCC-DLSI Run-1+ 67.70 67.70 67.70
SUDOKU It-PPR[M]+ 67.62 67.51 67.56

MACHINE MFS 66.50 66.50 66.50
SUDOKU It-PPR[M] 67.20 65.49 66.33
SUDOKU It-PR[U] 64.07 62.44 63.24
SUDOKU It-PD 63.58 61.41 62.47
DAEBAK! PD+ 60.47 60.37 60.42
GETALP BN-1+ 58.30 58.30 58.30
SUDOKU PR[U] 60.09 54.06 56.91
GETALP BN-2+ 56.80 56.80 56.80

Table 3: Comparison to SemEval 2013 Task 12

Firstly, we were able to marginally improve our
original result as team DAEBAK! (Manion and
Sainudiin, 2013), by applying the iterative ap-
proach to our Peripheral Diversity centrality mea-
sure (It-PD). Next we tried Personalised PageRank
(It-PPR[M]) with a surfing vector biased towards
only Monosemous senses. We also included reg-
ular PageRank (It-/PR[U]) with a Uniform surfing
vector as a reference point. It-PPR[M] almost de-
feated the MFS baseline of 66.50, but lacked re-
call. To rectify this, the MFS baseline was used as
a back-off strategy (It-PPR[M]+)4, which then led

4Note that plus+ implies the use of a back-off strategy.

to us beating the MFS baseline. As for the other
teams, GETALP (Schwab et al., 2013) made use
of an Ant Colony algorithm, while UMCC-DLSI
(Gutiérrez et al., 2013) also made use of PPR,
except they based the surfing vector on SemCor
(Miller et al., 1993) sense frequencies, set L = 5
for shortest paths subgraphs, and disambiguated
using resources external to BabelNet. Since their
implementation of PPR beats ours, it would be
interesting to see how effective the iterative ap-
proach could be on their results.

5 Conclusion & Future Work

In this paper we have shown that the iterative ap-
proach can substantially improve the results of
regular subgraph-based WSD, even to the point
of defeating the MFS baseline without doing any-
thing complicated. This is regardless of the sub-
graph, graph centrality measure, or level of disam-
biguation. This research can still be extended fur-
ther, and we encourage other researchers to rethink
their own approaches to unsupervised knowledge-
based WSD, particularly in regards to the interac-
tion of subgraphs and centrality measures.

Resources

Codebase and resources are at first author’s home-
page: http://www.stevemanion.com.
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