516 research outputs found

    Exploiting Asynchrony in Multi-agent Con-sensus to Change the Agreement Point

    Get PDF
    Reaching agreement by consensus is fundamental to the operation of distributed systems, such as sensor networks, social networks or multi-robot networks. In real systems, the resource limitations available to individual agents and communication delays typically result in asynchronous control models of discreet time for consensus. In this paper, we model the problem where a set of agents arrive at a consensus on the value of a variable of interest, being guided by one of them

    The Impact of RDMA on Agreement

    Full text link
    Remote Direct Memory Access (RDMA) is becoming widely available in data centers. This technology allows a process to directly read and write the memory of a remote host, with a mechanism to control access permissions. In this paper, we study the fundamental power of these capabilities. We consider the well-known problem of achieving consensus despite failures, and find that RDMA can improve the inherent trade-off in distributed computing between failure resilience and performance. Specifically, we show that RDMA allows algorithms that simultaneously achieve high resilience and high performance, while traditional algorithms had to choose one or another. With Byzantine failures, we give an algorithm that only requires n2fP+1n \geq 2f_P + 1 processes (where fPf_P is the maximum number of faulty processes) and decides in two (network) delays in common executions. With crash failures, we give an algorithm that only requires nfP+1n \geq f_P + 1 processes and also decides in two delays. Both algorithms tolerate a minority of memory failures inherent to RDMA, and they provide safety in asynchronous systems and liveness with standard additional assumptions.Comment: Full version of PODC'19 paper, strengthened broadcast algorith

    Emergence of Consensus in a Multi-Robot Network: from Abstract Models to Empirical Validation

    Get PDF
    Consensus dynamics in decentralised multiagent systems are subject to intense studies, and several different models have been proposed and analysed. Among these, the naming game stands out for its simplicity and applicability to a wide range of phenomena and applications, from semiotics to engineering. Despite the wide range of studies available, the implementation of theoretical models in real distributed systems is not always straightforward, as the physical platform imposes several constraints that may have a bearing on the consensus dynamics. In this paper, we investigate the effects of an implementation of the naming game for the kilobot robotic platform, in which we consider concurrent execution of games and physical interferences. Consensus dynamics are analysed in the light of the continuously evolving communication network created by the robots, highlighting how the different regimes crucially depend on the robot density and on their ability to spread widely in the experimental arena. We find that physical interferences reduce the benefits resulting from robot mobility in terms of consensus time, but also result in lower cognitive load for individual agents

    Online Distributed Learning over Random Networks

    Full text link
    The recent deployment of multi-agent systems in a wide range of scenarios has enabled the solution of learning problems in a distributed fashion. In this context, agents are tasked with collecting local data and then cooperatively train a model, without directly sharing the data. While distributed learning offers the advantage of preserving agents' privacy, it also poses several challenges in terms of designing and analyzing suitable algorithms. This work focuses specifically on the following challenges motivated by practical implementation: (i) online learning, where the local data change over time; (ii) asynchronous agent computations; (iii) unreliable and limited communications; and (iv) inexact local computations. To tackle these challenges, we introduce the Distributed Operator Theoretical (DOT) version of the Alternating Direction Method of Multipliers (ADMM), which we call the DOT-ADMM Algorithm. We prove that it converges with a linear rate for a large class of convex learning problems (e.g., linear and logistic regression problems) toward a bounded neighborhood of the optimal time-varying solution, and characterize how the neighborhood depends on~(i)–(iv)\text{(i)--(iv)}. We corroborate the theoretical analysis with numerical simulations comparing the DOT-ADMM Algorithm with other state-of-the-art algorithms, showing that only the proposed algorithm exhibits robustness to (i)--(iv)

    Distributed Robotic Systems in the Edge-Cloud Continuum with ROS 2: a Review on Novel Architectures and Technology Readiness

    Full text link
    Robotic systems are more connected, networked, and distributed than ever. New architectures that comply with the \textit{de facto} robotics middleware standard, ROS\,2, have recently emerged to fill the gap in terms of hybrid systems deployed from edge to cloud. This paper reviews new architectures and technologies that enable containerized robotic applications to seamlessly run at the edge or in the cloud. We also overview systems that include solutions from extension to ROS\,2 tooling to the integration of Kubernetes and ROS\,2. Another important trend is robot learning, and how new simulators and cloud simulations are enabling, e.g., large-scale reinforcement learning or distributed federated learning solutions. This has also enabled deeper integration of continuous interaction and continuous deployment (CI/CD) pipelines for robotic systems development, going beyond standard software unit tests with simulated tests to build and validate code automatically. We discuss the current technology readiness and list the potential new application scenarios that are becoming available. Finally, we discuss the current challenges in distributed robotic systems and list open research questions in the field

    Engineering Resilient Collective Adaptive Systems by Self-Stabilisation

    Get PDF
    Collective adaptive systems are an emerging class of networked computational systems, particularly suited in application domains such as smart cities, complex sensor networks, and the Internet of Things. These systems tend to feature large scale, heterogeneity of communication model (including opportunistic peer-to-peer wireless interaction), and require inherent self-adaptiveness properties to address unforeseen changes in operating conditions. In this context, it is extremely difficult (if not seemingly intractable) to engineer reusable pieces of distributed behaviour so as to make them provably correct and smoothly composable. Building on the field calculus, a computational model (and associated toolchain) capturing the notion of aggregate network-level computation, we address this problem with an engineering methodology coupling formal theory and computer simulation. On the one hand, functional properties are addressed by identifying the largest-to-date field calculus fragment generating self-stabilising behaviour, guaranteed to eventually attain a correct and stable final state despite any transient perturbation in state or topology, and including highly reusable building blocks for information spreading, aggregation, and time evolution. On the other hand, dynamical properties are addressed by simulation, empirically evaluating the different performances that can be obtained by switching between implementations of building blocks with provably equivalent functional properties. Overall, our methodology sheds light on how to identify core building blocks of collective behaviour, and how to select implementations that improve system performance while leaving overall system function and resiliency properties unchanged.Comment: To appear on ACM Transactions on Modeling and Computer Simulatio

    Macroscopic Noisy Bounded Confidence Models with Distributed Radical Opinions

    Get PDF
    In this article, we study the nonlinear Fokker-Planck (FP) equation that arises as a mean-field (macroscopic) approximation of bounded confidence opinion dynamics, where opinions are influenced by environmental noises and opinions of radicals (stubborn individuals). The distribution of radical opinions serves as an infinite-dimensional exogenous input to the FP equation, visibly influencing the steady opinion profile. We establish mathematical properties of the FP equation. In particular, we (i) show the well-posedness of the dynamic equation, (ii) provide existence result accompanied by a quantitative global estimate for the corresponding stationary solution, and (iii) establish an explicit lower bound on the noise level that guarantees exponential convergence of the dynamics to stationary state. Combining the results in (ii) and (iii) readily yields the input-output stability of the system for sufficiently large noises. Next, using Fourier analysis, the structure of opinion clusters under the uniform initial distribution is examined. Specifically, two numerical schemes for identification of order-disorder transition and characterization of initial clustering behavior are provided. The results of analysis are validated through several numerical simulations of the continuum-agent model (partial differential equation) and the corresponding discrete-agent model (interacting stochastic differential equations) for a particular distribution of radicals
    corecore