6 research outputs found

    Responsive multipath TCP in SDN-based datacenters

    Get PDF
    Conference Theme: Smart City & Smart WorldA basic need in datacenter networks is to provide high throughput for large flows such as the massive shuffle traffic flows in a MapReduce application. Multipath TCP (MPTCP) has been investigated as an effective approach toward this goal, by spreading one TCP flow onto multiple paths. However, the current MPTCP implementation has two major limitations: (1) a fixed number of subflows are used without reacting to the actual traffic condition; (2) the routing of subflows of a multipath TCP connection relies heavily on the ECMP-based random hashing. The former may lead to a waste of both the server and network resources, while the latter can cause throughput degradation when multiple subflows collide on the same path. This paper proposes a responsive MPTCP system to resolve the two limitations simultaneously. Our system employs a centralized controller for intelligent subflow route calculation and a monitor running on each server for actively adjusting the number of subflows. Working in synergy, the two modules enable MPTCP flows to respond to the traffic conditions and pursue high throughput on the fly, at very low computation and messaging overhead. NS3-based experiments show that our system achieves satisfactory throughput with less resource overhead, or better throughput at similar amounts of overhead, as compared to common alternatives.published_or_final_versio

    Performance Enhancement of Multipath TCP for Wireless Communications with Multiple Radio Interfaces

    Get PDF
    ArticleMultipath TCP (MPTCP) allows a TCP connection to operate across multiple paths simultaneously and becomes highly attractive to support the emerging mobile devices with various radio interfaces and to improve resource utilization as well as connection robustness. The existing multipath congestion control algorithms, however, are mainly loss-based and prefer the paths with lower drop rates, leading to severe performance degradation in wireless communication systems where random packet losses occur frequently. To address this challenge, this paper proposes a new mVeno algorithm, which makes full use of the congestion information of all the subflows belonging to a TCP connection in order to adaptively adjust the transmission rate of each subflow. Specifically, mVeno modifies the additive increase phase of Veno so as to effectively couple all subflows by dynamically varying the congestion window increment based on the receiving ACKs. The weighted parameter of each subflow for tuning the congestio

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial
    corecore