
1

Performance Enhancement of Multipath TCP

for Wireless Communications with Multiple

Radio Interfaces

Pingping Dong, Jianxin Wang, Jiawei Huang, Haodong Wang, and Geyong Min

Abstract

Multipath TCP (MPTCP) allows a TCP connection to operate across multiple paths simultaneously

and becomes highly attractive to support the emerging mobile devices with various radio interfaces

and to improve resource utilization as well as connection robustness. The existing multipath congestion

control algorithms, however, are mainly loss-based and prefer the paths with lower drop rates, leading to

severe performance degradation in wireless communication systems where random packet losses occur

frequently. To address this challenge, this paper proposes a new mVeno algorithm, which makes full use

of the congestion information of all the subflows belonging to a TCP connection in order to adaptively

adjust the transmission rate of each subflow. Specifically, mVeno modifies the additive increase phase of

Veno so as to effectively couple all subflows by dynamically varying the congestion window increment

based on the receiving ACKs. The weighted parameter of each subflow for tuning the congestion

P. Dong, J. Wang and J. Huang are with the School of Information Science and Engineering, Central South University,

Changsha, China, 410083. E-mail: {ppdong, jxwang, jiaweihuang}@csu.edu.cn

H. Wang is with the Department of Computer and Information Science, Cleveland, State University, Cleveland, OH, 44115,

USA. E-mail: hwang@cis.csuohio.edu

G. Min is with the Department of Mathematics and Computer Science, University of Exeter, Exeter, EX4 4QF, United

Kingdom. E-mail: g.min@exeter.ac.uk

March 28, 2016 DRAFT

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43098582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

window is determined by distinguishing packet losses caused by random error of wireless links or by

network congestion. To validate the effectiveness of the proposed mVeno algorithm, we not only give

the theoretical proofs, but also implement it in a Linux server and conduct extensive experiments both

in testbed and in real WAN. The performance results demonstrate that mVeno increases the throughput

significantly, achieves load balancing and can keep the fairness with regular TCP compared to the

existing schemes.

Index Terms

Multipath TCP, congestion control, wireless networks, packet loss differentiation, throughput.

I. INTRODUCTION

Nowadays, portable devices, including smart-phones, tablets, and laptops, with multiple wire-

less interfaces such as WiFi and 4G/LTE, are becoming more and more popular [1]–[3]. The

legacy transport protocols, such as Transmission Control Protocol (TCP), traverse one route

using only one access interface and thus shields the user from the multipath features of wireless

networks [4]. To enhance the resource usage while staying robust against link/network failures,

Multipath TCP (MPTCP) [5], has been proposed recently by the Internet Engineering Task Force

(IETF) working group. MPTCP allows a single data stream to be split into multiple subflows

across multiple paths for improving throughput, robustness, and network resource utilization.

MPTCP is a TCP extension and is envisioned to coexist with single-path TCP flows such that

the applications over MPTCP can benefit from the use of available capacity on multiple paths

without degrading the performance of plain TCP applications. MPTCP has received growing

interests from both the academic and industrial communities. For example, MPTCP has already

been implemented in the Siri applications of iPhones and iPads.

For the design of MPTCP, the following three constraints must be satisfied [6], [7]: (i) Per-

formance enhancement: MPTCP should at least perform as a single-path TCP running on the

best path. (ii) Bottleneck fairness: MPTCP should be TCP friendly, i.e., it should fairly share the

March 28, 2016 DRAFT

3

Regular TCP

Multipath TCP

N subflows
...

Fig. 1. A regular TCP and an MPTCP compete shared bottleneck.

bandwidth with the existing single-path TCP on a bottleneck link. (iii) Load balancing: MPTCP

should move the traffic off its most congested paths as much as possible. If MPTCP runs the

independent congestion control on each subflow, the fairness on the bottleneck links cannot be

guaranteed [6], [8]. Take the network scenario shown in Fig. I as an example, where two clients

share the same bottleneck link. If the MPTCP-enabled client uses two subflows, it will obtain

two-thirds bandwidth of the bottleneck, which is unfair because it would have obtained only

half of the shared bottleneck if this client was with regular TCP. To build MPTCP protocols

compatible with the regular TCP, the existing MPTCP congestion control protocols couple the

additive increase function of all the subflows belonging to a multipath flow together by assigning

a weighted parameter of the regular TCP on each path. The parameter controls the increase rate

of the congestion window on receiving new ACKs. The major challenge is how to calculate

the weighted parameter to achieve performance enhancement, bottleneck fairness as well as

load balancing simultaneously [8]–[10]. So far, several MPTCP congestion control algorithms

have been proposed [7], [8], [11], [12]. However, most of these MPTCP congestion algorithms,

such as Linked increase algorithm (LIA) [7], which is the currently adopted MPTCP congestion

algorithms, use packet loss as the indicator to undertake load balancing and congestion control.

This may cause severe performance degradation over wireless networks for two key reasons.

Firstly, these MPTCP algorithms tend to push traffic on the paths with the lower drop rates,

leading to performance degradation when the path with the lower drop probability is not the

March 28, 2016 DRAFT

4

less congested path. This is very common in wireless networks where packet losses are more

likely due to the transmission errors rather than the network congestion. Paasch [13] has also

validated this problem, conducted experiments based on Linux testbed, and revealed that both

COUPLED and OLIA algorithms cannot gain performance enhancement when random error

exists. However, they did not give a solution to cope with the problem.

Secondly, most of the prior MPTCP congestion algorithms are loss based, assuming a relatively

reliable underlying network where packet losses occur mainly because of congestion. However,

wireless networks also suffer from significant packet loss due to bit errors and handoffs [14],

[15]. The existing MPTCP algorithms respond to all losses by invoking congestion control and

avoidance algorithms, causing performance degradation.

To address the above issues and improve the performance of MPTCP over wireless networks,

this paper makes the following contributions:

1) An enhanced MPTCP congestion control algorithm, namely mVeno, is proposed for con-

current multipath transfer. To effectively couple the additive increase phase of each subflow,

mVeno assigns various weights for different subflows and adaptively adjusts them to control

the increment of sending rates of a subflow upon receiving new ACKs, balances the loads

between the subflows, while ensuring fair bandwidth allocation to regular TCP at the shared

bottleneck.

2) A key challenge in the proposed mVeno algorithm is to identify the weights suitable for

different subflows of a TCP connection. To this end, the fluid flow model and the utility

function of mVeno are designed in order to obtain the relationship between the sending rate

and the end-to-end packet loss rate at the network equilibrium state. Theoretical analysis

is then conducted to investigate the suitable weights and achieve the following objectives:

(a) To balance the traffic load distribution among the subflows of a TCP connection by

distinguishing packet losses between random error of wireless links and network congestion

in order to achieve the equivalent loss rate caused by congestion of every subflow; (b)

March 28, 2016 DRAFT

5

To improve throughput and preserving fairness by ensuring that the total throughput of an

mVeno flow is equivalent to that of a Veno flow on its best path.

3) We implement mVeno both in a testbed and in real WAN and conduct extensive experiments

to validate its effectiveness. The results obtained from thorough comparison with the existing

MPTCP algorithms, namely OLIA [11], wVegas [8], Balia [12] and MPVeno [16] demon-

strate that mVeno can effectively utilize the network resource and significantly increase the

network throughput without loss of fairness.

The rest of the paper is organized as follows. Section II discusses the related work. Section III

presents the analysis model of TCP mVeno, investigates the weighted parameter and presents

the mVeno algorithm. Section IV conducts in-depth analysis of the performance results obtained

from real-word experiments. Finally, Section V concludes the paper.

II. RELATED WORK AND EXISTING PROBLEMS

Many studies have been conducted on transmitting data through multiple paths simultaneous-

ly, like Parallel TCP (pTCP) [17], Concurrent Transfer Multipath (CMT) over stream control

transmission protocol (SCTP) [18], Wireless multipath SCTP (WiMP-SCTP) [19], Westwood

SCTP [20], and Multiple paths TCP (mTCP) [21]. However, most of these schemes are uncoupled

because each subflow performs congestion control independently of other subflows. As described

in Section I, the uncoupled schemes become unfair to competing with single-path traffic in the

general case.

To solve this problem, MPTCP has been proposed by modifying the additive increase during

the congestion avoidance phase, where each subflow increases its congestion window according

to the network condition of all the subflows belonging to a TCP connection. So far, several

congestion control mechanisms have been developed for MPTCP. For example, the congestion

window of each subflow in the fully coupled congestion algorithm (COUPLED) [7] was made

to increase or decrease by considering the status of all subflows. The COUPLED algorithm can

March 28, 2016 DRAFT

6

make a multipath flow shift all its traffic onto the least-congested path. However, when the path

with the highest loss rate is not the most congested link, COUPLED cannot effectively utilize

the network resource, leading to performance degradation. To solve these problems, the Linked

Increases algorithm (MPTCP-LIA) [6], [7] was proposed to satisfy the MPTCP constraints.

MPTCP-LIA can guarantee that the total throughput of an MPTCP flow is at leat equivalent

to that of a TCP flow on its best path. However, it has been proven in [11] that MPTCP-

LIA is non-Pareto optimality, where MPTCP-LIA users could be aggressive towards single-path

users. The MPTCP-OLIA algorithm [11] was proposed to solve the problem by improving the

mechanism of the congestion window increasement. Meanwhile, Peng, Walid and Low [22]

proved that the MPTCP-LIA algorithm is still unfair to single-path TCP and then proposed

a new revision of MPTCP algorithm based on a fluid model. Balia algirithm [12] has been

proposed recently, aiming at striking a good balance among TCP-friendliness, responsiveness,

and window oscillation. However, as described in Section I, these loss-based congestion control

schemes interpret a loss as congestion. They move traffic away from lossy subflows and halve

the congestion window. However, this is not suitable for wireless communications where packet

losses are often caused by random error rather than by network congestion [23], leading to severe

performance degradation over wireless links.

More recently, several MPTCP congestion control algorithms have been proposed for wireless

communications [9], [16]. These algorithms are the extended version of wireless TCP for MPTCP,

like TCP Westwood [24] and TCP Veno [25]. Specifically, MPTCPW [9] is an extension of

Westwood TCP for multipath transfer, based on the analysis model of Westwood TCP as well

as the constraint that MPTCP performance should be equivalent to that of a regular TCP flow

on its best path. MPVeno [16] was derived based on TCP Veno where the increase rule adopts

MPTCP-OLIA design technique. Although these MPTCP mechanisms based on wireless TCP do

not simply halve the congestion window when packet loss events incur, they can not effectively

select the paths in wireless networks with random packet losses as they prefer the paths with

March 28, 2016 DRAFT

7

the lower packet drop rate and the selected path with the lower drop rate may be in a more

congested state. In addition, the authors in [8] developed a delay-based MPTCP congestion

control algorithm named wVegas, which adopts the packet queuing delay as congestion signals

to achieve fine-grained congestion balance. However, it is unable to effectively aggregate the

bandwidth of the subflows.

III. THE PROPOSED MVENO ALGORITHM

The goal of the mVeno algorithm is to couple all the subflows effectively in order to improve

the overall performance over wireless networks by assigning various weighted parameters for

different subflows to control the sending rate of each subflow. In this section, we first describe

the fluid model of mVeno. Then, the derivation of the weighted parameter of each subflow based

on the fluid-flow model is presented. Finally, the mVeno algorithm is designed.

A. Fluid-flow Model

For the multipath transfer, we consider a network shared by a set S = {1, ..., s} of flows.

Each flow s ∈ S consists of a set of subflows Rs, each of which may take a different route.

Every subflow r ∈ Rs maintains its own congestion window ws,r and transmission rate xs,r.

An MPTCP sender stripes packets across these subflows as the space in the subflow windows

become available. Let ys :=
∑

r∈Rs
xs,r be the total rate of flow s.

mVeno is based on TCP Veno for multipath transfer. Specially, mVeno modifies the additive

increase during the congestion avoidance phase by assigning different weights δs,r for different

paths r to effectively couple the subflows.

TCP Veno is based on the idea of congestion monitoring scheme in TCP Vegas and integrates

it into Reno’s congestion avoidance phase. Briefly speaking, Veno calculates the backlog N at

the queue and uses it as an indicator of whether the network is congestive or not. If N ≥ β, the

network is in congestive state. Veno increases the congestion window w(t) by 1/w(t) on every

March 28, 2016 DRAFT

8

other positive acknowledgment and decreases it by half on each packet loss event. Otherwise, if

N < β, it is in the non-congestive state. The congestion window w(t) is increased by 1/w(t)

on every positive acknowledgment and decreased by one-fifth on each packet loss event [25].

The backlog N is given by Eq. (1).

N = (
cwnd

baseRTT
− cwnd

RTT
) ∗ baseRTT (1)

where cwnd is the congestion window size, RTT is the average RTT in the last round and

baseRTT is the minimal RTT that has been measured so far.

mVeno refines Veno’s additive increase algorithms through the distribution of the weighted

parameter δs,r for each subflow. The algorithm is shown in Algorithm 1 in Section III-B and the

implementation is given in Section IV-A. Specifically, upon receiving new ACKs, the congestion

window increment is δs,r rather than 1. In other words, on each subflow, mVeno behaves as

follows: If N ≥ β, mVeno flow s increases the congestion window ws,r(t) on subflow r by

δs,r/ws,r(t) on every other positive acknowledgment and decreases it by half on each packet

loss event. Otherwise, if N < β, the congestion window ws,r(t) is increased by δs,r/ws,r(t)

on every positive acknowledgment and is decreased by one-fifth on each packet loss event. Let

ps,r(t) be the packet drop probability. Putting the increase and decrease rate together, on average,

the source receives ws,r(t)(1 − ps,r(t)) positive acknowledgments per time unit. It receives, on

average, ws,r(t)ps,r(t) negative acknowledgments per time unit [26]. Neglecting the delayed

increase behavior, as the most enhancement of Veno is contributed by the MD (Multiplicative

Decrease) phases at random losses rather than the delayed increase of congestion window at

the additive increase phases [27], we get the fluid models of mVeno and Veno corresponding

to the AIMD mechanisms, in respect of continuous time t as described in Eq. (2) and Eq. (3),

respectively.

March 28, 2016 DRAFT

9

dws,r(t)

dt
=

ws,r(t)

Ts,r

(
(1− ps,r(t))δs,r

ws,r(t)
− Es,r[ηi]ps,r(t)ws,r(t)) (2)

dw(t)

dt
=

w(t)

T
(
1− p(t)

w(t)
− E[ηi]p(t)w(t)) (3)

where Es,r[ηi] and E[ηi] are the average decrease factor, w(t) and ws,r(t) are the congestion

window size at time t, p(t) and ps,r(t) are the packet drop rate, T and Ts,r are the equilibrium

round-trip time which can be assumed as a constant [26]. The average decrease factor is calculated

as (taking E[ηi] as an example) E[ηi] =
1
5
∗ P (N < β) + 1

2
∗ P (N ≥ β), where P (N < β) is

the probability that N is less than β and can be expressed as [27]:

P (N < β) = P (cwnd < β∗RTT
RTT−baseRTT

) = min(1, β∗RTT
(RTT−baseRTT)∗Wmax

) (4)

Thus,

E[ηi] = max(
1

n
,
1

2
− (

1

2
− 1

n
) ∗ β ∗RTT

(RTT − baseRTT) ∗W max
) (5)

where Wmax is the maximum congestion window size during the transmission.

B. mVeno Algorithm

In this subsection, based on the fluid model of mVeno, we first employ the network dual utility

model to couple subflows to achieve load balancing between paths.

As the fixed point of the fluid-flow model defines an implicit relation between the equilibrium

rate and the end-to-end congestion measure [26]. Thus, for TCP Veno, we can obtain the

relationship between the equilibrium rate x (defined by x = w
T

) and packet loss rate p as

described in Eq. (6), by setting Eq. (3) to zero.

p =
1

1 + E[ηi]x2T 2
=: f(x) (6)

March 28, 2016 DRAFT

10

The utility function is calculated as [26]

U(x) =

∫
f(x)dx, x ≥ 0 (7)

Thus, we can obtain the utility function of Veno:

U(x) =
1

T
√
E[ηi]

tan−1(T
√

E[ηi])x (8)

Clearly, U(xs) is increasing, strictly concave and twice continuously differentiable in the

nonnegative domain.

Based on the utility function of Veno for single-path user in Eq. (8), we construct the utility

function of mVeno as follows [8], [28]:

Us(ys) =
1

Ts

√
Es[ηi]

tan−1(Ts

√
Es[ηi])ys (9)

To satisfy the fairness constraints as validated in Section III-C, Ts is the maximum value of

the average RTT of all subflows belonging the multipath TCP flow s. Es[ηi] is the minimum

value of decrease factor of the multipath TCP flow s.

The derivative of the above utility function is:

U ′(ys) =
1

1 + Es[ηi]T 2
s y

2
s

(10)

U ′(ys) can be interpreted as the expected congestion extent [26], as though flow s transferred

data at the rate ys along a virtual single path whose RTT is Ts and whose capacity is the sum

of all the paths used by flow s.

Meanwhile, from the subflow’s perspective, at the equilibrium point, Eq. (2) shows the re-

lationship between the sending rate xs,r and the packet loss probability ps,r for each subflow

r ∈ Rs:

(1− ps,r)δs,r
xs,rTs,r

= Es,r[ηi]ps,rxs,rTs,r (11)

March 28, 2016 DRAFT

11

It has been proven that effectively achieving load balancing between subflows means that every

subflow should strive to equalize the extent of congestion that it perceives on all its available

paths [8]. Traditionally, the packet dropping probability ps,r/U ′(ys) is assumed to quantify the

congestion extent of networks. However, in lossy wireless networks, the packet loss is often

induced by noise, link error, or reasons other than network congestion. Thus, we propose that

the traffic distribution between subflows should satisfy the constraint that the packet dropping

probability caused by congestion on each subflow should be equivalent with distinguishing packet

losses between random error of wireless links and network congestion in wireless networks.

Based on the proposal, we can obtain Eq. (12) where the loss rate caused by congestion on any

subflow equals the expected congestion extent.

Ps,r(N > β) ∗ ps,r = Ps(N > β) ∗ U′(ys) (12)

Comboning Eqs. (10), (11), (12), we can derive that:

δs,r =
Ps(N > β)Es,r[ηi]w

2
s,r

Ps,r(N > β)(1 + Es[ηi]T 2
s y

2
s)− Ps(N > β)

(13)

According to the calculated weighted parameter δs,r for each subflow r, we design the

algorithm of mVeno as shown in Algorithm 1.

In this Algorithm, β is assigned as the default value of 3 [29], [30] that is consistent with the

current Linux implementation, and the initial weighted parameter for each subflow is set 1/M

where M is the number of subflows. The weighted parameter δs,r is adjusted once per RTT round

as shown in the Linkpara Adjust() process (Lines 19-21) according to Eq. (13). Meanwhile,

as shown in Eq. (13), the calculation of δs,r involves several variables, namely, baseRTTs,r,

diffs,r, Wmax
s,r , Ts,r and xs,r for subflow r, baseRTT , Wmax

s , Ts and ys for MPTCP flow s.

These parameters are calculated and updated based on the measurement during the last round

in order to quickly respond to the changes of network conditions as depicted in Lines 6-13. The

March 28, 2016 DRAFT

12

Algorithm 1: The mVeno Algorithm

1 Initialization at t = 0

2 for each r ∈ Rs do

3 δs,r = 1/M ;

4 βs,r = 3;

5 Upon receiving a new ack on subflow r:

/* perform per-round-operations */

6 Ts,r ←
∑

r sampledRTTs,r/sampledNums,r;

7 baseRTTs,r ← min{sampledRTTs,r};

8 baseRTT ← min{baseRTTs,r};

9 diffs,r ← cwnds,r ∗ (Ts,r − baseRTTs,r)/Ts,r;

10 xs,r ← cwnds,r/Ts,r;

11 ys =
∑

r∈Rs
xs,r;

12 Ts =
∑

r∈Rs
sampledRTTs,r∑

r∈Rs
sampledNums,r

;

13 Calculate Es[ηi] and Es,r[ηi] according to Eq. (5);

14 Linkpara Adjust();

/* perform per-ack-operations */

15 if diffs,r < β then

16 ws,r ← ws,r + δs,r/ws,r;

17 else

18 ws,r ← ws,r + δs,r/(m ∗ ws,r);

19 Linkpara Adjust():

20 for each r ∈ Rs do

21 δs,r =
Ps(N>β)Es,r[ηi]T

2
s,rx

2
s,r

Ps,r(N>β)(1+Es[ηi]T 2
s y

2
s)−Ps(N>β)

;

March 28, 2016 DRAFT

13

instant rate xs,r of subflow r is updated by dividing cwnds,r by Ts,r. cwnds,r is the average

value of the congestion windows size of the sampled packets on subflow r. Ts,r is the average

RTT measured on subflow r of the corresponding packets in the current round. Ts is the average

RTT of all the sampled packets from all the subflows and ys is the sum of the rate xs,r for each

subflow r belonging to s. baseRTTs,r and Wmax
s,r are the minimum of all RTT measurements

and the maximum of all congestion window size seen on the path r. baseRTT and Wmax
s are

the corresponding values of all the subflows. Based on these parameters, Es[ηi] and Es,r[ηi] are

calculated according to Eq. (5) and finally the weighted parameter δs,r can be obtained.

According to the updated δs,r , mVeno modifies TCP Veno’s additive increase algorithm of the

steady-state congestion avoidance phase so as to achieve throughput enhancement, load balancing

and bottleneck fairness simultaneously.

C. Algorithm Analysis

In this subsection, we discuss the three properties of mVeno algorithm, namely, throughput

enhancement, load balancing and bottleneck fairness.

(1) Throughput enhancement: mVeno algorithm can achieve throughput enhancement such

that the congestion window size for a path r of mVeno is larger than that of LIA, under the

same network scenarios.

When analyzing this property, we first derive the expression of the congestion window of each

subflow. Then a comparison of the window size of the two algorithms is shown in Fig. 2.

Based on Eq. (2), at the equilibrium point, we can obtain a simple loss-throughput formula

for mVeno as shown in Eq. (14) where 1− ps,r ≈ 1 is adopted as that in [6].

ws,r ≈

√
δs,r

Es,r[ηi]ps,r
(14)

As analyzed in [27], the congestion window size at the equilibrium state of TCP Veno is:

March 28, 2016 DRAFT

14

ŵs,r =

√
1

Es,r[ηi]p̂s,r
(15)

Following the similar derivation process of the congestion window size for LIA in Ref. [11],

by substituting Eq. (15) into Eq. (13) and then by substituting Eq. (13) into Eq. (14), we obtain

Eq. (16).

ws,r ≈
1

ps,r
∗ 1√

Es,r[ηi]
∗
√

Ps(N > β)

Ps,r(N > β)(1 + Es[ηi](
∑

r

√
1/Es,r[ηi]ps,r)

2
)− Ps(N > β)

(16)

As analyzed in [11], the congestion window size for flow s on a path r of LIA is given by:

ws,r =
1

ps,r
∗
maxr

√
2/ps,r

/
rtts,r∑

r 1/(rtts,rps,r)
(17)

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
10

15

20

25

30

35

40

45

50

C
on

ge
st

io
n

w
in

do
w

 s
iz

e

Random loss rate

 mVeno
 LIA

Fig. 2. The congestion window size versus the random loss rates.

Fig. 2 depicts the window sizes of mVeno versus LIA according to Eq. (16) and Eq. (17),

respectively. In this figure, we consider an MPTCP flow consisting of two subflows, which have

the same network configuration. The congestion loss rate is kept at 0.01% and the random loss

rate varies from 0% to 0.05%. The loss rate of subflow r is calculated as ps,r = 1−(1−xs,r)(1−

ys,r) where xs,r is the congestion loss rate and ys,r is the corresponding random loss rate. In the

mVeno algorithm, the parameter Ps,r(N > β) is calculated as xs,r/ps,r, which is the estimation

March 28, 2016 DRAFT

15

of the probability that the loss is caused by congestion [25]. As shown in the figure, due to the

packet loss differentiating mechanism, mVeno can achieve a larger congestion window size.

(2) Load balancing: mVeno algorithm can achieve load balancing such that every subflow has

almost the same congestion extent.

To investigate the load balancing property, we first present the theoretical proof and then give

a network instance.

Proof: Since δs,r controls the bandwidth obtained by flow s on path r, we analyze whether

it can effectively achieve congestion balance or not in this theorem. As described above, if

Ps,r(N > β) ∗ ps,r > Ps(N > β) ∗ U′(ys), δs,r(t) should be decreased so as to partially offload

the traffic. That is, δs,r(t+ 1) should be smaller than δs,r(t).

From Eq. (11), we can derive that

ps,r =
δs,r

δs,r + Es,r[ηi]w2
s,r(t)

(18)

Substituting Eq. (18) and Eq. (10) into Ps,r(N > β) ∗ qs,r > Ps(N > β) ∗ U′(ys) yields

δs,rPs,r(N>β)

δs,r+Es,r[ηi]w2
s,r(t)

> Ps(N>β)
1+Es[ηi]T 2

s y
2
s

Thus δs,r(t) >
Ps(N>β)Es,r[ηi]w

2
s,r(t)

Ps,r(N>β)(1+Es[ηi]T 2
s y

2
s)−Ps(N>β)

= δs,r(t+ 1) holds. 2

0.0000 0.0002 0.0004 0.0006 0.0008
0.0

0.2

0.4

0.6

0.8

1.0

Ja
in

 F
ai

rn
es

s I
nd

ex

Difference between the random loss rates of the subflows.

 mVeno
 LIA

Fig. 3. Matlab validation of the load balancing property of the mVeno algorithm where the loss rate is fixed at 0.01%, the

random loss rate of one subflow is fixed at 0.01%, while that of the other subflow changes from 0.01% to 0.1% with a step of

0.01%.

March 28, 2016 DRAFT

16

To present the property more clearly, we construct a scenario that the subflows have the

same congestion loss rate and different random loss rates. In such a network configuration, the

throughput difference between each subflow with mVeno should be less than that of LIA. The

Jain Fairness Index metric is adopted to represent the difference between subflows. The results

are shown in Fig. 3. As described in this figure, with the increment of the difference between

the random loss rates of the subflows, the Jain Fairness Index decreases. Benefitting from the

packet loss distinguishing mechanism when choosing paths, mVeno can utilize the path with high

random loss rate more efficiently and performs better, which is consistent with the experimental

results shown in Section IV.

(3) Bottleneck fairness: mVeno algorithm is TCP friendly when the single-path TCP exists on

a bottleneck link.

To validate the bottleneck fairness of mVeno when competing with regular TCP, we prove

that the window increment on each subflow flow r is less than a single-path TCP flow would.

Proof: As analyzed in the previous literatures, an MPTCP flow can achieve fairness when the

congestion window increment on each subflow flow r is less than the increment of a single-path

TCP flow on the same link. In other words, δs,r should be less than 1. As a result,

1−
Ps(N > β)Es,r[ηi]T

2
s,rx

2
s,r

Ps,r(N > β)(1 + Es[ηi]T 2
s y

2
s)− Ps(N > β)

≥ 0 (19)

Ps,r(N>β)−Ps(N>β)+0.3Ps,r(N>β)Ps(N>β)(T 2
s y

2
s−T 2

s,rx
2
s,r)

Ps,r(N>β)(1+(0.3Ps(N>β)+0.2)T 2
s y

2
s)−Ps(N>β)

+
0.2Ps,r(N>β)T 2

s y
2
s−0.2Ps(N>β)T 2

s,rx
2
s,r

Ps,r(N>β)(1+(0.3Ps(N>β)+0.2)T 2
s y

2
s)−Ps(N>β)

≥ 0
(20)

Substituting E[ηi] =
1
5
∗ (1 − P (N ≥ β)) + 1

2
∗ P (N ≥ β) into Eq. (19). We can obtain

Eq. (20). It is clear that when Ps(N > β) adopts the minimum and Ts adopts the maximum

value, Eq. (20) always holds. This ensures that the mVeno flow can take no more capacity on

either path than a single-path TCP flow would.

2

March 28, 2016 DRAFT

17

IV. PERFORMANCE EVALUATION

In this section, we validate the proposed mVeno algorithm by performing the extensive

experiments on our testbed as well as in a real WAN network and comparing its performance

results with other four existing algorithms: wVegas [8], Balia [12], OLIA [11] and MPVeno [16].

We implemented mVeno and MPVeno in our Linux Server. The other three algorithms have been

included in MultiPath TCP v0.9.

A. Implementation of mVeno

To conduct the experiments, we implemented mVeno and MPVeno as separate Linux models

with kernel version 4.1 of Ubuntu 14.04 operation system. Similar to COUPLED or OLIA, we

mainly focus on the congestion control dynamics of MPTCP. After the kernel version 2.6.13,

Linux supports pluggable congestion control algorithms and the modular structure is imple-

mented. Thus, to implement the mVeno algorithm, we first initialize the tcp congestion ops

structure, which is a collection of the description for different pluggable congestion control

algorithms, and then make a call to the tcp register congestion control to register the new

congestion control mechanism. The congestion control mechanisms described in Algorithm 1

are implemented in the mptcp mveno cong avoid() function. In mVeno, the Veno’s additive

increase phase is refined with the weighted parameter δs,r. As the Linux implementation of TCP

Veno is well known, we mainly focus on the implementation of calculation of the coordination

parameter δs,r as described in Eq. (13).

mVeno congestion control couples different subflows with different δs,r for the increase phase.

As described in Section III-B, the parameters, like Ts,r, xs,r, Es,r, Ts, ys and Es are needed for

the calculation of δs,r. mVeno uses a RTT round as the control interval on each subflow so as

to quickly respond to the changes in the extent of network congestion.

As the congestion window and the RTT are already defined in the Linux kernel as tp →

snd cwnd and rtt us, respectively, and can be available to a regular TCP user, the average

March 28, 2016 DRAFT

18

RTT Ts,r can be calculated by dividing the sum of rtt us by the count of the sampled packets

of subflow r. Consequently, the sending rate xs,r can be updated by dividing the average value

of tp→ snd cwnd by Ts,r. Similarly, other parameters for subflow r can be also obtained step

by step as analyzed in Section III-B. Besides, to calculate the parameters of the MPTCP flow,

such as Ts and ys, the function mptcp for each sk needs to be used to obtain variable values,

such as xx,r and Ts,r, from each subflow.

Based on these precalculated parameters, δs,r is adjusted at the end of each round as shown in

Eq. (13). As the Linux kernel only handles fixed-point calculations, we need to scale the divisions,

to reduce the error due to integer-underflow. In the next round, the recalculated parameters are

assigned and updated to make AIMD congestion control on new ACKs or packet loss events.

B. Testbed Construction and Experimental methodology

The deployed experiment testbed consists of three file servers, two computers with WANem

and three clients. Both the clients and the servers are running on Linux ubuntu 14.01 OS with

kernel version 4.10. All of these computers are connected to a Gigabit switch. These components

logically constitute three network topologies shown in Fig. 4, Fig. 10 and Fig. 13, by means of

different routing configurations that are the typical topologies widely used in the existing studies

[9], [12], [13], [16].

All nodes are running on Dell T1500, equipped with the Intel Xeon E5620 (2.4GHz/12M), 16

GB RAM, a 600 GB Hard Disk and multiple Gigabit Ethernet interfaces. In the testbed, each

MPTCP flow is composed of two subflows as this is a common scenario (e.g., a client having

two access networks like WiFi/4G) [13] and has been widely used in the previous studies [12],

[13]. The network metrics such as loss rate, delay and bandwidth are controlled by WANem.

A wide range of network environments are considered: the round-trip time is in the range from

20ms to 400ms, packet loss rate is changed from 0.1% to 5% and the bottleneck bandwidth also

varies from 2Mbps to 20Mbps.

March 28, 2016 DRAFT

19

GNU Wget is used to generate TCP data traffic by retrieving binary documents through HTTP.

The document sizes vary from 1MB to 8MB. All the experimental data is captured at the clients

using tcpdump and then is analyzed with wireshark. The goodput is calculated as the ratio of

the file size to the elapsed time for loading the whole document.

Our experiments are divided into four parts. First, we compare goodput enhancement of mVeno

algorithm and prior algorithms. Second, we compare the congestion balance of each algorithm in

a heterogeneous environment where two subflows have different network configurations. Third,

we show the TCP friendliness of every algorithm when sharing the same bottleneck link with

regular TCP flows. Finally, the performance in real WAN environment is presented.

C. Throughput

We study the goodput enhancement of the aforementioned five algorithms with the topology

shown in Fig. 4. In the experiments, the number of the competing MPTCP flows is 10 and

each MPTCP flow consists of two subflows. Both the subflows are set with the same network

configuration. The results are depicted from Fig. 5 to Fig. 8. As shown in Fig. 5, the algorithms

have a similar behavior with different file sizes. Considering that these algorithms mainly apply to

the AIMD part of the congestion avoidance phase, we mainly focus on the steady-state goodput.

Thus, in the following experiments, we take the 8MB file as an example.

MPTCPN

p1 T1 c1

p2 T2 c2

Fig. 4. Network for Linux-based experiments on goodput with 10 MPTCP flows. Each MPTCP flow maintains two subflows.

According to the experimental results, we can see that mVeno performs best, followed by

MPVeno, wVegas, Balia and OLIA. The reason lies in that distinguishing the cause of the

March 28, 2016 DRAFT

20

1M 4M 8M
0

50

100

150

200

250

300

M
P

TC
P

 th
ro

ug
hp

ut
(k

bp
s)

.

Object size.

 mVeno
 MPVeno
 wVegas
 Balia
 OLIA

Fig. 5. Obtained goodput with varying binary document sizes. Parameters: T1 = T2 = 100ms, c1 = c2 = 8Mbps and p1 = p2

= 2%.

20 100 200 400

40

80

120

160

200

240

M
P

TC
P

 G
oo

dp
ut

(K
B

ps
).

RTT(ms)

 mVeno
 MPVeno
 Balia
 Wvegas
 OLIA

Fig. 6. Obtained goodput with varying RTTs. Parameters: c1 = c2 = 8Mb/s and p1 = p2 = 0.1%.

packet loss helps mVeno and MPVeno to avoid half reduction of congestion window caused

by random link error. wVegas is a RTT based congestion control, which can also survive the

random loss rates.

Moreover, mVeno also outperforms MPVeno. The reason is as follows. It is known that, Veno

compares the backlog at the queue N with the threshold named β to decide whether the network

is congestive or not. Specifically, if N > β, the network is said to have evolved into congestive

state. Packet loss in the congestive state is considered as congestion loss and the source reduces its

congestion window by half on every packet loss. Otherwise, packet loss is considered as random

loss and the congestion widow is reduced by 1/5. In the MPVeno algorithm, the threshold β is

March 28, 2016 DRAFT

21

2M 4M 8M 20M

40

80

120

160

M
P

TC
P

 G
oo

dp
ut

(K
B

ps
).

Bandwidth(bps)

 mVeno
 MPVeno
 Balia
 Wvegas
 OLIA

Fig. 7. Obtained goodput with varying bandwidth. Parameters: T1 = T2 = 100ms and p1 = p2 = 2%.

0.1% 1% 2% 5%

40

80

120

160

200

M
P

TC
P

 G
oo

dp
ut

(K
B

ps
).

Loss rate

 mVeno
 MPVeno
 Balia
 Wvegas
 OLIA

Fig. 8. Obtained goodput with varying loss rate. Parameters: T1 = T2 = 400ms and c1 = c2 = 20Mbps.

limited to (xs,r/ys)∗β to achieve bottleneck fairness, where xs,r is the rate of subflow r and ys is

the sum of the rates of all subflows. Obviously, (xs,r/ys)∗β is less than β. The smaller threshold

value implies the increasing chance that MPVeno interprets a packet loss as a congestion. Thus,

compared to mVeno, MPVeno is more likely to reduce the congestion window ws,r by ws,r/2,

causing the degraded performance.

As MPTCP allows subflows to change during the lifetime of the connection for various reasons,

we then consider the environment where one subflow disappears at 60s. Specifically, 60s after

the start of the test, we close one of the subflow by taking down the corresponding network

interface card with the system command ifconfig. In the experiment, the loss rate, RTT and

March 28, 2016 DRAFT

22

mVeno MPVeno Balia wVegas OLIA
0

10

20

30

G
oo

dp
ut

 (K
B

ps
)

Fig. 9. The average goodput gain (KBps) of the MPTCP flows when one subflow disappears at 60s by configuring the network

interface card down. The loss rate, RTT and bandwidth are set as 1%, 200ms and 2Mbps, respectively.

bandwidth are set as 1%, 200ms and 2Mbps, respectively. With this configuration, the MPTCP

connection can last long enough (about 300s) for the test. The obtained goodput is shown in

Fig. 9. The five algorithms reveal a similar behavior as the scenario of two subflows always

existing, except that wVegas gains higher goodput than MPVeno does.

D. Load balancing

We adopt the topology shown in Fig. 10 to evaluate the effectiveness of mVeno in terms of load

balancing. In the experiments, we consider one MPTCP flow and construct diverse configurations

to investigate the capability of shifting traffic from the congested path of each algorithm, where

the RTT or loss rate on the lightly loaded path is larger than that on the congested one. We use

TCP Reno flows as the background traffic and vary the number of flows to generate different

traffic loads on each subflow.

In the first set of experiments, the bandwidth and RTT of the two links are set to be the same

value of 4Mb and 100ms, The packet loss rate of Link 1 and Link 2 is 2% and 1%, respectively.

Besides, 11 TCP Reno flows also run on Link 2 to compete with subflow2, constituting a more

congested link.

The aggregated data is depicted in Fig. 11. As shown in the figure, with the mVeno algorithm,

March 28, 2016 DRAFT

23

MPTCP

TCP

MPTCP

TCP

N1

M2

TCP

M1

TCP

p1 T1 c1

p2 T2 c2

Link 1

Link 2

Fig. 10. Network for Linux-based experiments on load balancing.

subflow2 on the more congested Link 2 can obtain nearly the same goodput as that of regular TCP.

Subflow1 of the mVeno flow on the less congested Link 1 achieves the highest goodput among

the five MPTCP algorithms. Meanwhile, the goodput of regular TCP with mVeno algorithm is

no less than that of other algorithms. These results again validate that mVeno can choose the

paths effectively and can achieve a higher network utilization. It is worth noting that the obtained

goodput of subflow2 is slightly larger than that of the regular TCP on the same link. The reason

lies in that mVeno is based on Veno while the background regular TCP is Reno.

TCP Reno Subflow2 Subflow1
0

40

80

120

160

G
oo

dp
ut

 (K
B

ps
).

 mVeno
 MPVeno
 Balia
 wVegas
 OLIA

Fig. 11. The goodput gain (KBps) of regular TCP and each subflow with topology shown in Fig. 10. The RTT and bandwidth

of the two links are 100ms and 4Mbps. The loss rates of Link 1 and Link 2 are 2% and 1%, respectively. 11 TCP Reno flows

also run on Link 2.

Furthermore, we also carried out experiments that the loss rate is the same while the RTT

and bandwidth are different. The link capacity and propagation delay of Links 1 and 2 are

March 28, 2016 DRAFT

24

1 2 3
0

50

100

150

200

250

300

350

M
P

TC
P

 G
oo

dp
ut

(K
B

ps
)

Scenario number

 mVeno
 MPVeno
 Balia
 wVegas
 OLIA

Fig. 12. Obtained goodput of MPTCP flows with the adverse network configurations. Scenario 1: with the link capacity and

propagation delay 100ms and 4Mbps, the loss rate of Link 1 and Link 2 2% and 1%, respectively and 11 Reno flows on Link

2. Scenario 2: with the link capacity and propagation delay of Link 1 and 2 (6Mbps, 160ms) and (10Mbps, 40ms), loss rate

0.1%, 3 Reno flows on Link 1 and 8 Reno flows on Link 2. Scenario 3: with the link capacity and propagation delay of Link

1 and 2 (6Mbps, 160ms) and (10Mbps, 40ms), loss rate 1%, 3 Reno flows on Link 1 and 8 Reno flows on Link 2.

set (6Mbps, 160ms) and (10Mbps, 40ms), respectively. To generate heavy load on Link 1 and

light load on Link 2, there are eight TCP Reno flows on Link 1, and three flows on Link 2.

We considered two scenarios where the loss rate is 0.1% and 1%, respectively. The results are

shown in Fig. 12. Consistent with the analysis of the results in Fig. 11, mVeno can achieve load

balancing and obtain the higher goodput.

E. Fairness on Bottleneck Links

As described in the previous subsections, mVeno can achieve the higher network goodput.

We will investigate in this subsection that the performance enhancement is not at the cost of

fairness. The network topology for our fairness experiment is shown in Fig. 13, where 10 two-

path MPTCP flows and 10 regular single-path TCP flows compete for the same bottleneck link.

As shown in Figs. 6-8, the goodput gain of mVeno increases with the increase of RTT and

bandwidth. Thus, we can predict that if mVeno can achieve TCP fairness in this high bandwidth

and large delay environment, mVeno should be always TCP friendly. Fig. 14 shows the Jain

Fairness Index where the RTT is 400ms and bandwidth is 20Mbps. According to the figure, we

March 28, 2016 DRAFT

25

p T c

Fig. 13. Network for Linux-based experiments on fairness with 10 MPTCP flows and 10 TCP flows.

0.1% 1% 2% 5% --
0.0

0.2

0.4

0.6

0.8

1.0

Ja
in

 fa
irn

es
s

in
de

x.

Loss rate.

 mVeno
 MPVeno
 Balia
 Wvegas
 OLIA

Fig. 14. Jain Fairness Index performance.Parameters: T = 400ms and c= 20Mbps.

can obtain that Balia and wVegas are the most friendly, followed by OLIA and MPVeno. In

addition, mVeno performs worst. The results are unexpectedly. However, making more detailed

analysis of aggregated data, we found another thing. Taking the loss rate 0.1% scenario as an

example, the results shown in Fig. 15 reveal that the average TCP goodput of mVeno is no lower

than that of other MPTCP algorithms while the MPTCP throughput of mVeno is much greater

than other algorithms. This indicates that the goodput enhancement of mVeno is achieved by

network utilization and not stealing the resource of regular TCP.

F. Real WAN

The real-world traces are collected from an operational WAN. The MPTCP server is located at

Central South University, where the Internet is connect through Hunan Netcom, China. The client

is installed with two wireless usb cards. One is connected to an AP and the other is connected

March 28, 2016 DRAFT

26

MPTCP TCP TOTAL
0

50

100

150

200

250

300

G
oo

dp
ut

 (K
B

ps
)

 mVeno
 MPVeno
 Balia
 Wvegas
 OLIA

Fig. 15. The average goodput gain (KBps) of the MPTCP flows and regular TCP flows corresponding Jain Fairness Index

shown in Fig. 14. The results show that algorithm mVeno has a lower Jain Fairness Index, the regular TCP throughput gain of

mVeno is not lower than that of other MPTCP algorithms.

to a 4G router. The RTT and loss rate of WIFI link are 25ms and 3.5%-5%, while those of the

4G link are 20ms and 0%, respectively. As the network environment of the real-world is much

more complex than the emulation environment. To keep a relative stable network environment,

the experiments are executed at a fixed time of a day. The real world experiments last for one

week as each data point is obtained by computing the average value of the results from at least

ten rounds of executions.

16k 64k 8MB
0.0

0.5

1.0

1.5

2.0

G
oo

dp
ut

(M
B

ps
)

Binary document size.

 mVeno
 MPVeno
 Balia
 wVegas
 OLIA
 LIA

Fig. 16. Evolution in real traces.

The results are depicted in Fig. 16. When the file size is small, say 16KB or 64KB, the

March 28, 2016 DRAFT

27

obtained goodput of each algorithm differentiates slightly. For the 8MB file, the figure reveals

that mVeno performs best, LIA and Balia come the second, followed by OLIA, MPVeno and

wVegas.

WIFI LTE

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

Th
ro

ug
hp

ut
 (M

bp
s)

.

 mVeno
 MPVeno
 Balia
 wVegas
 OLIA
 LIA

Fig. 17. Obtained throughput(Mbps) of both WIFI and 4G link in real WLAN traces. It is to note that we use throughput

instead of goodput in the figure as the throughput are analyzed with the Statistics–Summary command of wireshark without

filtering the retransmissions.

According to the analysis data shown in Fig. 17, except for wVegas, mVeno achieves the

higher throughput on the WIFI link because the packet loss differentiation mechanism is applied

both in the congestion avoid phase and in the load balancing. Balia and LIA also show a good

performance in this experiment. As OLIA and MPVeno adopt the same weights parameters, they

have a similar behavior, where the Veno based MPVeno performs better owing to the gains of

the Veno algorithm in wireless networks. The poor performance of wVegas in this experiment

mainly lies in that wVegas takes load balance based on RTT. As both the WIFI link and the

LTE link have the similar RTT, compared to other algorithms, wVegas shifts too much traffic

on the poor WIFI link and thus obtains the lower throughput.

V. CONCLUSIONS

In the paper, we have proposed an enhanced MPTCP congestion control algorithm over

wireless networks. mVeno refines Veno’s additive increase algorithm by assigning different

March 28, 2016 DRAFT

28

weighted parameters for different paths to couple all the subflows of a TCP connection. Based on

the AIMD algorithm of mVeno in the steady-state congestion avoidance phase, we have developed

the fluid model of mVeno, and then derived the weighted parameter with the goal of satisfying the

MPTCP constraints, namely, performance enhancement, load balancing and bottleneck fairness

simultaneously. We analyzed the properties of mVeno theoretically and implemented mVeno

in the Linux server. The results obtained from extensive testbed experiments as well real WAN

environment demonstrate that mVeno outperforms the existing schemes. Future investigations will

focus on exploring an improved MPTCP algorithm for HTTP like short flows and a balanced

trade-off between power consumption and use of multiple paths for mobile devices.

REFERENCES

[1] A. Makhlouf and M. Hamdi, “Practical rate adaptation for very high throughput wlans,” IEEE Transactions on Wireless

Communications, vol. 12, no. 2, pp. 908–916, February 2013.

[2] B. Makki and T. Eriksson, “On the performance of mimo-arq systems with channel state information at the receiver,” IEEE

Transactions on Communications, vol. 62, no. 5, pp. 1588–1603, May 2014.

[3] M. Ismail, A. Gamage, W. Zhuang, X. Shen, E. Serpedin, and K. Qaraqe, “Uplink decentralized joint bandwidth and power

allocation for energy-efficient operation in a heterogeneous wireless medium,” IEEE Transactions on Communications,

vol. 63, no. 4, pp. 1483–1495, April 2015.

[4] X. Zhang, Z. Tan, S. Xu, and C. Tao, “Utility maximization based on cross-layer design for multi-service in macro-femto

heterogeneous networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 11, pp. 5607–5619, November

2013.

[5] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions for multipath operation with multiple addresses,”

RFC 6824, Internet Engineering Task Force, 2013.

[6] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design, implementation and evaluation of congestion control for

multipath TCP,” in Proc. of the 8th USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2011.

[7] C. Raiciu, M. Handly, and D. Wischik, “Coupled congestion control for multipath transport protocols,” RFC 6356, Internet

Engineering Task Force, 2011.

[8] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath TCP,” in Proc. of the 20th IEEE International

Conference on Network Protocols (ICNP), 2012, pp. 1–10.

[9] T. A. Le, C. seon Hong, and E.-N. Huh, “Coordinated TCP Westwood congestion control for multiple paths over wireless

networks,” in Proc. of the 26th International Conference on Information Networking (ICOIN), 2012, pp. 92–96.

March 28, 2016 DRAFT

29

[10] Y. Cao, M. Xu, X. Fu, and E. Dong, “Explicit multipath congestion control for data center networks,” in Proc. of the 9th

ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2013, pp. 73–84.

[11] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not pareto-optimal: Performance issues and a possible

solution,” IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1651–1665, 2013.

[12] Q. Peng, A. Walid, J. Hwang, and S. Low, “Multipath TCP: Analysis, design, and implementation,” Networking, IEEE/ACM

Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[13] C. Paasch, “Improving multipath TCP,” Ph.D. dissertation, UCLouvain / ICTEAM / EPL, 2014.

[14] W. Liao, C.-J. Kao, and C.-H. Chien, “Improving tcp performance in mobile networks,” IEEE Transactions on

Communications, vol. 53, no. 4, pp. 569–571, April 2005.

[15] M. Trivellato and N. Benvenuto, “State control in networked control systems under packet drops and limited transmission

bandwidth,” IEEE Transactions on Communications, vol. 58, no. 2, pp. 611–622, February 2010.

[16] T.-A. Le, “Improving the performance of multipath congestion control over wireless networks,” in Proc. of the IEEE

International Conference on Advanced Technologies for Communications (ATC), 2013, pp. 60–65.

[17] H.-Y. Hsieh and R. Sivakumar, “pTCP: an end-to-end transport layer protocol for striped connections,” in Proc. of the 10th

IEEE International Conference on Network Protocols (ICNP), 2002, pp. 24–33.

[18] J. Iyengar, P. Amer, and R. Stewart, “Concurrent multipath transfer using SCTP multihoming over independent end-to-end

paths,” IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 951–964, 2006.

[19] C.-M. Huang and C.-H. Tsai, “WiMP-SCTP: Multi-path transmission using stream control transmission protocol (SCTP)

in wireless networks,” in Proc. of the 21st IEEE International Conference on Advanced Information Networking and

Applications Workshops (AINAW), 2007, pp. 209–214.

[20] C. Casetti and W. Gaiotto, “Westwood SCTP: load balancing over multipaths using bandwidth-aware source scheduling,”

in Proc. of the 60th IEEE Vehicular Technology Conference (VTC), 2004, pp. 3025–3029.

[21] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang, “A transport layer approach for improving end-to-end

performance and robustness using redundant paths,” in Proc. of the USENIX Annual Technical Conference (ATC), 2004.

[22] Q. Peng, A. Walid, and S. H. Low, “Multipath TCP algorithms: Theory and design,” ACM SIGMETRICS Performance

Evaluation Review, vol. 41, no. 1, pp. 305–316, 2013.

[23] J. Oliveira, H. Salgado, and M. Rodrigues, “A new mse channel estimator optimized for nonlinearly distorted faded ofdm

signals with applications to radio over fiber,” IEEE Transactions on Communications, vol. 62, no. 8, pp. 2977–2985, Aug

2014.

[24] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP Westwood: End-to-end congestion control for

wired/wireless networks,” Wireless Networks, vol. 8, no. 5, pp. 467–479, Sep. 2002.

[25] C. P. Fu and S. Liew, “TCP Veno: TCP enhancement for transmission over wireless access networks,” IEEE Journal on

Selected Areas in Communications, vol. 21, no. 2, pp. 216–228, 2003.

March 28, 2016 DRAFT

30

[26] S. Low, “A duality model of TCP and queue management algorithms,” IEEE/ACM Transaction Networking, vol. 11, no. 4,

pp. 525–536, 2003.

[27] K. Zhang and C. P. Fu, “Fluid-based analysis of TCP Veno with RED,” in Proc.of the IEEE Global Telecommunications

Conference (GLOBECOM), 2006, pp. 1–5.

[28] P. Vo, A. Le, and C. Hong, “The successive approximation approach for multi-path utility maximization problem,” in Proc.

of the IEEE International Conference on Communications (ICC), 2012, pp. 1255–1259.

[29] B. Zhou, C. P. Fu, C. Lau, and C. H. Foh, “An enhancement of TFRC over wireless networks,” in Proc. of IEEE Wireless

Communications and Networking Conference (WCNC), 2007, pp. 3019–3024.

[30] Q. Pang, S. Liew, C. P. Fu, W. Wang, and V. Li, “Performance study of TCP Veno over WLAN and RED router,” in

Proc.of the IEEE Global Telecommunications Conference (GLOBECOM), vol. 6, 2003, pp. 3237–3241.

Pingping Dong received her B.S., M.S. and Ph.D degree in Communications Engineering from Central

South University, P. R. China. Currently she is a teacher in the Department of Computer Education, Hunan

Normal University, Changsha, P.R. China. Her research interests are focused on protocol optimization and

protocol design in wide area networks (WANs) and wireless local area networks (WLANs).

Jianxin Wang received his B.S. and M.S. degree in Computer Science from Central South University of

Technology, P. R. China, and his PhD degree in Computer Science from Central South University. Cur-

rently,he is the vice dean and a professor in School of Information Science and Engineering, Central South

University, Changsha, Hunan, P.R. China. He is currently serving as the executive editor of International

Journal of Bioinformatics Research and Applications and serving in the editorial board of International

Journal of Data Mining and Bioinformatics. He has also served as the program committee member for many international

conferences. He was a program committee co-chair for the 7th, 8th, and 10th International Symposium on Bioinformatics

Research and Applications (ISBRA 2011, ISBRA2012 and ISBRA2014). His current research interests include algorithm analysis

and optimization, parameterized algorithm, bioinformatics and computer network. He has published more than 200 papers in

various International journals and refereed conferences. He is a senior member of the IEEE.

March 28, 2016 DRAFT

31

Jiawei Huang obtained his PhD (2008) and Masters degrees (2004) from the School of Information

Science and Engineering at Central South University. He also received his Bachelors (1999) degree from

the School of Computer Science at Hunan University. He is now an associate professor in the School of

Information Science and Engineering at Central South University, China. His research interests include

performance modeling, analysis, and optimization for wireless networks and data center networks.

Haodong Wang is an Assistant Professor of Computer and Information Science at Cleveland State

University. He received his Ph. D in Computer Science at College of William and Mary in Aug 2009. He

also holds his Master of Science in Electrical Engineering from Penn State University, University Park,

PA, and Bachelor of Engineering in Electronic Engineering from Tsinghua University, Beijing, China.

Before joining Cleveland State University, He was an Assistant Professor in the Department of Math and

Computer Science at Virginia State University.

Geyong Min is a Professor of High Performance Computing and Networking in the Department of

Mathematics and Computer Science within the College of Engineering, Mathematics and Physical Sci-

ences at the University of Exeter, United Kingdom. He received the PhD degree in Computing Science

from the University of Glasgow, United Kingdom, in 2003, and the B.Sc. degree in Computer Science

from Huazhong University of Science and Technology, China, in 1995. His research interests include

Future Internet, Computer Networks, Wireless Communications, Multimedia Systems, Information Security, High Performance

Computing, Ubiquitous Computing, Modelling and Performance Engineering.

March 28, 2016 DRAFT

