8 research outputs found

    Shape deformations based on vector fields

    Get PDF
    This thesis explores applications of vector field processing to shape deformations. We present a novel method to construct divergence-free vector fields which are used to deform shapes by vector field integration (Chapter 2). The resulting deformation is volume-preserving and no self-intersections occur. We add more controllability to this approach by introducing implicit boundaries (Chapter 3), a shape editing method which resembles the well-known boundary constraint modeling metaphor. While the vector fields are originally defined in space, we also present a surface-based version of this approach which allows for more exact boundary selection and deformation control (Chapter 4). We show that vectorfield- based shape deformations can be used to animate elastic motions without complex physical simulations (Chapter 5). We also introduce an alternative approach to exactly preserve the volume of skinned triangle meshes (Chapter 6). This is accomplished by constructing a displacement field on the mesh surface which restores the original volume after deformation. Finally, we demonstrate that shape deformation by vector field integration can also be used to visualize smoke-like streak surfaces in dynamic flow fields (Chapter 7).In dieser Dissertation werden verschiedene Anwendungen der Vektorfeldverarbeitung im Bereich Objektdeformation untersucht. Wir präsentieren eine neuartige Methode zur Konstruktion von divergenzfreien Vektorfeldern, welche mittels Integration zum Deformieren von Objekten verwendet werden (Kapitel 2). Die so entstehende Deformation ist volumenerhaltend und keine Selbstüberschneidungen treten auf. Inspiriert von etablierten, auf Randbedingungen beruhenden Methoden, erweitern wir diese Idee hinsichtlich Kontrollierbarkeit mittels impliziten Abgrenzungen (Kapitel 3). Während die ursprüngliche Konstruktion im Raum definiert ist, präsentieren wir auch eine oberflächenbasierte Version, welche ein genaueres Festlegen der Abgrenzungen und bessere Kontrolle ermöglicht (Kapitel 4). Wir zeigen, dass vektorfeldbasierte Deformationen auch zur Animation von elastischen Bewegungen benutzt werden können, ohne dass komplexe Simulationen nötig sind (Kapitel 5). Des weiteren zeigen wir eine alternative Möglichkeit, mit der man das Volumen von Dreiecksnetzen erhalten kann, welche mittels Skelett-Animation deformiert werden (Kapitel 6). Dies erreichen wir durch ein Deformationsfeld auf der Oberfläche, das das ursprüngliche Volumen wieder hergestellt. Wir zeigen außerdem, dass Deformierungen mittels Vektorfeld-Integration auch zur Visualisierung von Rauch in dynamischen Flüssen genutzt werden können(Kapitel 7)

    Métodos matemáticos e computacionais para modelagem e edição de deformações

    Get PDF
    Orientador: Jorge StolfiTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta tese, descrevemos primeiramente o algoritmo ECLES (Editing by Constrained LEast Squares), um método geral para edição interativa de objetos definidos por parâmetros sujeitos a restrições lineares ou afins. Neste método, as restrições e as ações de edição do usuário são combinadas usando mínimos quadrados restritos, ao invés da abordagem mais comum de elementos finitos. Usamos aritmética exata para detectar e eliminar redundâncias no conjunto de restrições e evitar falhas devido a erros de arredondamento. O algoritmo ECLES tem diversas aplicações. Entre elas, podemos citar a edição de deformações spline com continuidade C¹. Nesta tese, descrevemos um método interativo de edição de deformações do plano, o algoritmo 2DSD (2D Spline Deformation). As deformações são definidas por splines de grau 5 sobre uma malha triangular arbitrária. Estas deformações são editadas alterando-se as posições dos pontos de controle da malha. O algoritmo ECLES é usado em cada ação de edição do usuário para detectar, de forma robusta e eficiente, o conjunto de restrições de continuidade C¹ que são relevantes, garantindo que não existam redundâncias. Em seguida, como os parâmetros são modificados pelo usuário, o ECLES é chamado para calcular as novas posições dos pontos de controle satisfazendo as restrições e as posições especificadas pelo usuário. A fim de validar nosso método 2DSD, ele foi utilizado como parte de um editor interativo para deformações do espaço 2.5D, o editor PrisMystic. Este editor foi utilizado, principalmente, para deformar modelos tridimensionais de organismos microscópicos não-rígidos de modo a coincidir com imagens reais de microscopia ótica. Também utilizamos o editor para editar modelos de terrenosAbstract: In this thesis, we present the ECLES algorithm (Editing by Constrained LEast Squares), a general method for interactive editing of objects that are defined by parameters subject to linear or affine constraints. In this method, the constraints and the user editing actions are combined using constrained least squares instead of the usual finite element approach. We use exact integer arithmetic in order to detect and eliminate redundancies in the set of constraints and to avoid failures due to rounding errors. The ECLES algorithm has various applications. Among them, we can cite the editing of C¹-continuous spline deformations. In this thesis, we describe an interactive editing method for deformations of the plane, the 2DSD algorithm (2D Spline Deformation). The deformations are defined by splines of degree 5 on an arbitrary triangular mesh. The deformations are edited by changing the positions of its control points. The ECLES algorithm is first used in each user editing action in order to detect, in a robust and efficient way, the set of relevant constraints of C¹ continuity, ensuring that there are no redundancies. Then, as the parameters are changed by the user, ECLES is called to compute the new positions of the control points satisfying the constraints and the positions specified by the user. To validate our 2DSD algorithm, we used it as part of an interactive editor for 2.5D space deformations, the PrisMystic editor. This editor has been used, mainly, to deform 3D models of non-rigid living microscopic organisms as seen in actual optical microscope images. We also used the editor to edit terrain modelsDoutoradoCiência da ComputaçãoDoutora em Ciência da Computação140780/2013-001-P-04554-2013CNPQCAPE

    A Survey of Spatial Deformation from a User-Centered Perspective

    Get PDF
    The spatial deformation methods are a family of modeling and animation techniques for indirectly reshaping an object by warping the surrounding space, with results that are similar to molding a highly malleable substance. They have the virtue of being computationally efficient (and hence interactive) and applicable to a variety of object representations. In this paper we survey the state of the art in spatial deformation. Since manipulating ambient space directly is infeasible, deformations are controlled by tools of varying dimension - points, curves, surfaces and volumes - and it is on this basis that we classify them. Unlike previous surveys that concentrate on providing a single underlying mathematical formalism, we use the user-centered criteria of versatility, ease of use, efficiency and correctness to compare techniques

    On some interactive mesh deformations

    Get PDF
    Techniques devoted to deform 3D models are an important research field in Computer Graphics. They can be used in differentstages: the modelling phase, the animation process and also during some special simulations. Additionally, some applications may require the manipulation of 3D models under certain restrictions to preserve the volume of the modified object. Hence, thepresent PhD Dissertation explores new algorithms to perform flexible, robust and efficient 3D deformations. Apart from this, it also researches on a new methodology to restrict these deformations so that the volume of the manipulated model remains constant. Some of the most used methods to achieve smooth deformations are those included in the Cage-Based Deformation paradigm. Cage-based deformations enclose the model to be deformed in a coarse polyhedron, the cage. Then, they usually rely on Generalized Barycentric Coordinates to relate the model with the vertices, and other geometric elements, of this cage, which are the control points or the deformation handles. Finally, every time that one of these handles is dragged, the model is deformed accordingly. Although this paradigm is simple, elegant and performs efficient deformations, some cage-free space deformation techniques have recently appeared. They increase the flexibility of the deformation handles, which do not need to be connected, and define powerful tools that make the deformation process more versatile and intuitive. In this context, the Dissertation introduces new Generalized Barycentric Coordinate systems specially designed to be used in a cage-free environment. Any user who wants to use the presented schemes only needs to locate a set of control points in the vicinity of the model that he or she wants to deform. These handles can be placed wherever he or she considers mode suitable and the only requirement is that the model has to be enclosed in their convex hull. Up to now, there are few techniques to produce volume-preserving space deformations. However, in recent years there has been a growing interest in performing constrained deformations due to their more realistic and physically plausible results. Our contribution to this research line consists in a deformation framework that preserves the volume of the 3D models by means of its gradient and a control surface to restrict the movement of the handles. Moreover, the proposed methodology is not restricted to the cage-based schemes, but it can also be used in a cage-free environment. Finally, our research can be specially useful for spatial deformations of biological and medical models. This kind of models represent real organs and tissues, which are often soft and lack an internal rigid structure. In addition, they are elastic and incompressible. Any application designed to deal with this group of models and to train or assist doctors must be flexible, robust, efficient and user-friendly. The combination of the proposed cage-free systems with the presented volume-preserving deformation framework satisfiesLes deformacions de models 3D s'utilitzen en diverses etapes de la generació de continguts digitals: durant la fase de modelatge, durant el procés d'animació i en alguns tipus de simulacions. A més a més, hi ha aplicacions que necessiten que la manipulació dels models 3D es faci tenint en compte certes restriccions que permeten la conservació del volum de l'objecte modificat. Tot plegat fa que les tècniques de deformació 3D siguin un camp d'estudi molt important dins del món dels Gràfics. Per aquesta raó, aquesta Tesi Doctoral estudia nous algorismes que permetin realitzar deformacions 3D de manera flexible, robusta i eficient i que, a més a més, permetin conservar el volum dels objectes modificats. Un dels paradigmes més utilitzats per tal de realitzar deformacions suaus és el conegut amb el nom de Deformacions Basades en un Poliedre Englobant. Aquesta família de mètodes embolcalla el model que es vol deformar, normalment representat com una malla de triangles, dins d'un poliedre simple, amb poques cares. Un cop fet això, estableix un sistema de Coordenades Baricèntriques Generalitzades per tal de definir els vèrtexs del model a partir dels vèrtexs del poliedre englobant, els quals s'anomenen punts de control o controls de la deformació. D'aquesta manera, cada cop que s'arrossega o es modifica un d'aquests punts de control, el model que es troba dins del poliedre englobant es deforma segons el sistema de coordenades que s'ha definit. Tot i que aquest paradigma és simple, elegant i eficient, des de fa ja uns anys han començat a aparèixer noves tècniques que no necessiten el poliedre englobant per tal de realitzar la deformació. El seu principal objectiu és augmentar la flexibilitat dels controls de la deformació i definir eines que facin que el procés de deformació sigui més versàtil i intuïtiu. Tenint en compte aquest factor, aquesta Tesi també estudia sistemes de Coordenades Baricèntriques Generalitzades dissenyats per realitzar deformacions sense la necessitat de definir el poliedre englobant. D'aquesta manera, qualsevol usuari que vulgui utilitzar els mètodes que es presenten en aquesta Dissertació només s'ha d'encarregar de definir un conjunt de punts de control al voltant del model que vol deformar, podent-los posar allí on consideri més oportú segons la deformació que vulgui obtenir. L'únic requeriment necessari és que el model ha de quedar dins de l'envolupant convexa d'aquests punts de control. Actualment existeixen pocs mètodes que realitzin deformacions 3D amb preservació del volum. No obstant això, d'un temps ençà ha augmentat l'interès per realitzar deformacions subjectes a certes restriccions que fan que el resultat sigui més realista i físicament versemblant. La contribució d'aquesta Tesi dins d'aquesta línia de recerca consisteix en un sistema de deformació que preserva el volum dels objectes 3D gràcies a còmput del seu gradient i a una superfície de control que restringeix el moviment dels punts de control. Aquest mètode es pot aplicar tant als sistemes de deformació que necessiten un poliedre englobant com als que no el necessiten. Finalment, i ja per acabar, la recerca realitzada pot ser especialment útil per tal de realitzar deformacions de models mèdics i biològics. Aquests tipus de models poden representar òrgans i teixits reals, els quals, normalment, són tous, mancats d'una estructura rígida interna, elàstics i incompressibles. Qualsevol aplicació dissenyada per treballar amb aquest tipus de models i per entrenar i donar assistència a usuaris mèdics hauria de ser flexible, robusta, eficient i fàcil d'utilitzar. La combinació dels mètodes de deformació proposats conjuntament amb el sistema de preservació de volum satisfà totes aquestes condicions. Per aquesta raó es creu que les contribucions realitzades poden esdevenir eines importants per produir deformacions mèdiques.Postprint (published version

    Interactive freeform editing techniques for large-scale, multiresolution level set models

    Get PDF
    Level set methods provide a volumetric implicit surface representation with automatic smooth blending properties and no self-intersections. They can handle arbitrary topology changes easily, and the volumetric implicit representation does not require the surface to be re-adjusted after extreme deformations. Even though they have found some use in movie productions and some medical applications, level set models are not highly utilized in either special effects industry or medical science. Lack of interactive modeling tools makes working with level set models difficult for people in these application areas.This dissertation describes techniques and algorithms for interactive freeform editing of large-scale, multiresolution level set models. Algorithms are developed to map intuitive user interactions into level set speed functions producing specific, desired surface movements. Data structures for efficient representation of very high resolution volume datasets and associated algorithms for rapid access and processing of the information within the data structures are explained. A hierarchical, multiresolution representation of level set models that allows for rapid decomposition and reconstruction of the complete full-resolution model is created for an editing framework that allows level-of-detail editing. We have developed a framework that identifies surface details prior to editing and introduces them back afterwards. Combining these two features provides a detail-preserving level set editing capability that may be used for multi-resolution modeling and texture transfer. Given the complex data structures that are required to represent large-scale, multiresolution level set models and the compute-intensive numerical methods to evaluate them, optimization techniques and algorithms have been developed to evaluate and display the dynamic isosurface embedded in the volumetric data.Ph.D., Computer Science -- Drexel University, 201

    Explicit Control of Vector Field Based Shape Deformations

    No full text

    Explicit control of vector field based shape deformations

    No full text
    Vector Field Based Shape Deformations (VFSD) have been introduced as an efficient method to deform shapes in a volume-preserving foldover-free manner. However, mainly simple implicitly defined shapes like spheres or cylinders have been explored as deformation tools by now. In contrast, boundary constraint modeling approaches enable the user to exactly define the support of the deformation on the surface. We present an approach to explicitly control VFSD: a scalar function together with two thresholds is placed directly on the shape to mark regions of full, zero, and blended deformation. The resulting deformation is volumepreserving and free of local self-intersections. In addition, the full deformation is steered by a 3D parametric curve and a parametric twisting function. This way our deformations appear to be a generalization of the boundary constraint modeling metaphor. We apply our approach in different scenarios. A parallelization of the computation on the GPU allows for editing high-resolution meshes at interactive speed.

    A User-editable C 1-continuous 2.5d Space Deformation Method For 3d Models

    No full text
    Shape deformation methods are important in such fields as geometric modeling and computer animation. In biology, modeling of shape, growth, movement and pathologies of living microscopic organisms or cells require smooth deformations, which are essentially 2D with little change in depth. In this paper, we present a 2.5D space deformation method. The 3D model is modified by deforming an enclosing control grid of prisms. Spline interpolation is used to satisfy the smoothness requirement. We implemented this method in an editor which makes it possible to define and modify the deformation with the mouse in a user-friendly way. The experimental results show that the method is simple and effective. © 2011 Elsevier B.V.281159173Angelidis, A., Cani, M.-P., Wyvill, G., King, S., Swirling-sweepers: Constant-volume modeling (2006) Graphical Models, 68 (4), pp. 324-332. , DOI 10.1016/j.gmod.2005.11.001, PII S1524070306000038Angelidis, A., Wyvill, G., Cani, M.-P., Sweepers: Swept user-defined tools for modeling by deformation (2004) SMI 04: Proceedings of the Shape Modeling International 2004, pp. 63-73Aubert, F., Bechmann, D., Volume-preserving space deformation (1997) Computers and Graphics (Pergamon), 21 (5), pp. 625-639. , PII S009784939700040XBarr, A.H., Global and local deformations of solid primitives (1984) SIGGRAPH Comput. Graph., 18, pp. 21-30Bechmann, D., Bertrand, Y., Thery, S., Continuous free form deformation (1997) COMPUGRAPHICS 96: Proceedings of the Fifth International Conference on Computational Graphics and Visualization Techniques on Visualization and Graphics on the World Wide Web, pp. 1715-1725Botsch, M., Kobbelt, L., Real-time shape editing using radial basis functions (2005) Computer Graphics Forum, 24 (3), pp. 611-621. , DOI 10.1111/j.1467-8659.2005.00886.xBotsch, M., Sorkine, O., On linear variational surface deformation methods (2008) IEEE Transactions on Visualization and Computer Graphics, 14 (1), pp. 213-230. , DOI 10.1109/TVCG.2007.1054Coquillart, S., Extended free-form deformation: A sculpturing tool for 3d geometric modeling (1990) SIGGRAPH 90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187-196Decaudin, P., Geometric deformation by merging a 3D-object with a simple shape (1996) GI 96: Proceedings of the Conference on Graphics Interface 96, pp. 55-60Farin, G., (2002) Curves and Surfaces for CAGD: A Practical Guide, , 5th edition Morgan Kaufmann Publishers Inc. San Francisco, CA, USAFerry, D.L., (2011) Vidcaps from the Lake Near Mud Lake, , http://wolfbat359.com/crpvc.html, Accessed on May 27Floater, M.S., Mean value coordinates (2003) Comput. Aided Geom. Des., 20, pp. 19-27Floater, M.S., Kos, G., Reimers, M., Mean value coordinates in 3D (2005) Computer Aided Geometric Design, 22 (SPEC. ISS.), pp. 623-631. , DOI 10.1016/j.cagd.2005.06.004, PII S0167839605000725Gain, J., Bechmann, D., A survey of spatial deformation from a user-centered perspective (2008) AMC Trans. Graph., 27, pp. 1-21Goldstein, B., The Goldstein Lab, , http://www.bio.unc.edu/Faculty/Goldstein/lab/, Accessed on May 27, 2011Halderman, J.A., Worm Patterns, , http://www.youtube.com/watch?v=7WOxyVvMp8s, Accessed on May 27, 2011Hirota, G., Maheshwari, R., Lin, M.C., Fast volume-preserving free form deformation using multi-level optimization (1999) SMA 99: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, pp. 234-245Huang, J., L. Chen, Bao, H., Efficient mesh deformation using tetrahedron control mesh (2008) SPM 08: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 241-247Joshi, P., Meyer, M., Derose, T., Green, B., Sanocki, T., Harmonic coordinates for character articulation (2007) ACM Trans. Graph., 26Ju, T., Schaefer, S., Warren, J., Mean value coordinates for closed triangular meshes (2005) ACM Trans. Graph., 24, pp. 561-566Kojekine, N., V. Savchenko, Hagiwara, I., Real-time 3D deformations by means of compactly supported radial basis functions (2002) Proceedings of Eurographics 2002 (Short Papers), pp. 35-43Lai, M.-J., Schumaker, L.L., (2007) Spline Functions on Triangulations, , Cambridge University Press New York, NY, USALamousin, H.J., Waggenspack Jr., W.N., NURBS-based free-form deformations (1994) IEEE Comput. Graph. Appl., 14, pp. 59-65Langer, T., Belyaev, A., Seidel, H.-P., Spherical barycentric coordinates (2006) Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 06, pp. 81-88Lipman, Y., Levin, D., Cohen-Or, D., Green coordinates (2008) ACM Trans. Graph., 27, pp. 781-7810Llamas, I., Powell, A., Rossignac, J., Shaw, C.D., Bender: A virtual ribbon for deforming 3D shapes in biomedical and styling applications (2005) ACM Symposium on Solid Modeling and Applications, SM, pp. 89-99. , DOI 10.1145/1060244.1060255, Proceedings SPM 2005 - ACM Symposium on Solid and Physical ModelingMacCracken, R., Joy, K.I., Free-form deformations with lattices of arbitrary topology (1996) SIGGRAPH 96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 181-188Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M., Physically based deformable models in computer graphics (2006) Computer Graphics Forum, 25 (4), pp. 809-836. , DOI 10.1111/j.1467-8659.2006.01000.xSederberg, T.W., Parry, S.R., Free-form deformation of solid geometric models (1986) SIGGRAPH Comput. Graph., 20, pp. 151-160The Blender Foundation, , http://www.blender.org, Blender Accessed on May 27, 2011Von Funck, W., Theisel, H., Seidel, H.-P., Vector field based shape deformations (2006) ACM Transactions on Graphics, 25 (3), pp. 1118-1125. , DOI 10.1145/1141911.1142002, ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH 2006Von Funck, W., Theisel, H., Seidel, H.-P., Explicit control of vector field based shape deformations (2007) PG 07: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, pp. 291-300Xu, W.-W., Zhou, K., Gradient domain mesh deformation: A survey (2009) J. Comput. Sci. Technol., 24, pp. 6-18Zhao, Y., Liu, X., Xiao, C., Peng, Q., A unified shape editing framework based on tetrahedral control mesh (2009) Comput. Animat. Virtual Worlds, 20, pp. 301-31
    corecore