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Resumo

Nesta tese, descrevemos primeiramente o algoritmo ECLES (Editing by Constrained LEast
Squares), um método geral para edição interativa de objetos de�nidos por parâmetros
sujeitos a restrições lineares ou a�ns. Neste método, as restrições e as ações de edição
do usuário são combinadas usando mínimos quadrados restritos, ao invés da abordagem
mais comum de elementos �nitos. Usamos aritmética exata para detectar e eliminar
redundâncias no conjunto de restrições e evitar falhas devido a erros de arredondamento.

O algoritmo ECLES tem diversas aplicações. Entre elas, podemos citar a edição de
deformações spline com continuidade C1. Nesta tese, descrevemos um método interativo
de edição de deformações do plano, o algoritmo 2DSD (2D Spline Deformation). As
deformações são de�nidas por splines de grau 5 sobre uma malha triangular arbitrária.
Estas deformações são editadas alterando-se as posições dos pontos de controle da malha.
O algoritmo ECLES é usado em cada ação de edição do usuário para detectar, de forma
robusta e e�ciente, o conjunto de restrições de continuidade C1 que são relevantes, garan-
tindo que não existam redundâncias. Em seguida, como os parâmetros são modi�cados
pelo usuário, o ECLES é chamado para calcular as novas posições dos pontos de controle
satisfazendo as restrições e as posições especi�cadas pelo usuário.

A �m de validar nosso método 2DSD, ele foi utilizado como parte de um editor in-
terativo para deformações do espaço 2.5D, o editor PrisMystic. Este editor foi utilizado,
principalmente, para deformar modelos tridimensionais de organismos microscópicos não-
rígidos de modo a coincidir com imagens reais de microscopia ótica. Também utilizamos
o editor para editar modelos de terrenos.



Abstract

In this thesis, we present the ECLES algorithm (Editing by Constrained LEast Squares),
a general method for interactive editing of objects that are de�ned by parameters subject
to linear or a�ne constraints. In this method, the constraints and the user editing actions
are combined using constrained least squares instead of the usual �nite element approach.
We use exact integer arithmetic in order to detect and eliminate redundancies in the set
of constraints and to avoid failures due to rounding errors.

The ECLES algorithm has various applications. Among them, we can cite the editing
of C1-continuous spline deformations. In this thesis, we describe an interactive editing
method for deformations of the plane, the 2DSD algorithm (2D Spline Deformation).
The deformations are de�ned by splines of degree 5 on an arbitrary triangular mesh.
The deformations are edited by changing the positions of its control points. The ECLES
algorithm is �rst used in each user editing action in order to detect, in a robust and
e�cient way, the set of relevant constraints of C1 continuity, ensuring that there are
no redundancies. Then, as the parameters are changed by the user, ECLES is called
to compute the new positions of the control points satisfying the constraints and the
positions speci�ed by the user.

To validate our 2DSD algorithm, we used it as part of an interactive editor for 2.5D
space deformations, the PrisMystic editor. This editor has been used, mainly, to deform
3D models of non-rigid living microscopic organisms as seen in actual optical microscope
images. We also used the editor to edit terrain models.
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Chapter 1

Introduction

In this thesis, our objective is to develop mathematical and software tools for interactive

editing of parameters of some model or process, subject to linear or a�ne constraints, in

a general, robust, and e�cient way.

This problem occurs in many applications of the areas of computer graphics and image

processing, such as the geometric modeling and deformation, 2D and 3D spline modeling,

image morphing, registration and vectorization, CAD, among others [42, 80, 91, 97]. Other

possible applications include control of industrial process and power grids [19].

In Part I, we develop a general method for solving this problem. In Part II, we

apply this method to the speci�c problem of creating and editing two-dimensional spline

deformations subject to smoothness constraints. In Part III, we describe an editor of 2.5D

space deformations for three-dimensional solid modeling using the method of Part II.

1.1 Part I: The ECLES Algorithm

In Part I, we consider the abstract numerical problem of interactive editing of parameters

of some model or process, subject to a�ne constraints, in a general way.

We assume that the application has a �nite list of real valued parameters p1, p2, ..., pn
that are subjected to a �nite set of a�ne equality constraints; that is, polynomial equations

of degree 1, like 3p3 − 5p8 = 7.

We assume that, at each editing action, the user speci�es new required values for some

subset A of parameters (the anchors), and desirable but not required �hint� values for

another subset D (the derived parameters). The application is then supposed to adjust the

parameters in D in order to preserve the constraints, the required values for the anchors,

and be as close as possible to the hints. An important feature of ECLES is that the sets

A and D are not �xed, but are speci�ed by the application at each editing action.

To solve the stated problem, we propose a general and robust method, that we call

ECLES (Editing by Constrained LEast Squares). The ECLES algorithm uses linear system

solving with exact integer arithmetic, to detect and eliminate redundancies among the

constraints that are relevant to each editing action and to avoid failures due to rounding.

It uses weighted and constrained least squares to minimize the discrepancy between the

hints and the values for the set D.

19
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1.2 Part II: The 2DSD Algorithm

In Part II, we apply the ECLES algorithm to a speci�c application: the interactive editing

of smooth simplicial spline deformations of the plane. We describe an algorithm for this

application, called 2DSD (2D Spline Deformation).

The deformation is modeled by a spline de�ned on a triangular mesh. The desired

deformation is speci�ed by manipulating the Bézier control points of the spline. Each

editing operation requires the automatic adjustment of several other nearby control points

in order to preserve the smoothness of the spline. The set of adjusted points is determined

at the time of editing through the 2DSD algorithm. We use the ECLES general parameter

editing method in order to compute the new positions of the control points selected under

the condition that the smoothness constraints are satis�ed.

The 2DSD method can be adapted to other applications such as editing 3D spline

surfaces [13, 94], editing 2.5D and 3D space deformation [31], image morphing [42, 53, 63,

91] and registration [73, 80, 97] and interactive image vectorization [92].

The main advantage of splines over other function interpolation methods is that they

allow local control: if we change only one control point, the spline changes only within

the corresponding cell of the mesh and perhaps a few other triangles surrounding it [25].

Simplicial (triangular or tetrahedral) Bézier patches have the advantage over quadrangular

patches since they can be joined with almost arbitrary topology. On the other hand, their

continuity constraints are more complicated.

Since the deformation is applied to a control mesh that deforms space, rather than to

the object mesh directly, the edited deformation can be applied to other models. This

method is independent of the resolution and representation of the object to be deformed.

Another advantage is that the deformed control mesh provides an immediate intuitive

understanding of the general nature of the deformation, and of the scope of each control

parameter.

Unlike radial basis methods [17, 20], the 2DSD description of the deformation remains

simple and of �nite size even after an arbitrarily long sequence of editing operations. At

each point of the domain, except in cell boundaries, the deformation has a simple analytic

formula that allows the e�cient computation of derivatives.

1.3 Part III: The PrisMystic Editor

In Part III, we used the 2DSD algorithm to implement an editor of 2.5D space deforma-

tions [31, 67] to deform three-dimensional models, called PrisMystic editor.

The PrisMystic is an e�ective and user-friendly editor that can be used, for example,

to reproduce deformations of 3D models of non-rigid cells and other organisms viewed

through optical microscopes. See Figure 1.1.

The PrisMystic editor is an evolution and generalization of the editor described in

my Masters dissertation [67]. The improvements include: using the ECLES algorithm,

described in Part I, instead of �oating-point linear algebra packages; a more �exible and

general method for the selection of control points (allowing multiple anchors and more

derived points); and a di�erent goal function for the least squares method. Also, we used
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(a) (b)

(c) (d)

Figure 1.1: (a) The morphology of the protozoan Dileptus anser ; (b) a control mesh surrounding
a 3D model of that protozoan; (c) an actual optical microscope image; and (d)
the control mesh and model deformed so as to match an actual image using our
PrisMystic editor.

the general 2DSD approach, described in Part II, to connect the user interface to the

ECLES solver, described in Part I. With these changes, it would be now relatively easy

to extend the editor to accommodate other a�ne constraints, such as C2 smoothness,

vertical or horizontal alignment, �xed points, etc.

1.4 Contributions

The original contributions of this thesis are:

• a rigorous approach to parameter editing that combines exact integer arithmetic

and weighted and constrained least squares for linear system solving;

• a robust and general algorithm (ECLES) for local editing of parameters with linear

constraints;

• an algorithm (2DSD) for editing smooth two-dimensional spline deformations;

• an editor (PrisMystic) for 2.5D deformation of 3D solid models.

• public C/C++ implementations of ECLES, 2DSD, and PrisMystic including li-

braries for linear system solving using exact integer arithmetics and least squares

optimization [22].

Some of these contributions were presented in conferences [71, 72], and published as

technical reports [70]. The PrisMystic editor is an improved and expanded version of the

editor developed in my Masters dissertation [67, 68, 69]
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Chapter 2

General Parameter Editing

In this chapter, we describe the problem of interactive editing of objects that are de�ned

by parameters subject to linear or a�ne constraints. We present also a discussion about

the solvability condition of the problem, and how the general problem can be reduced to

the relevant parameters and constraints.

2.1 Statement of the problem

The problem of general parameter editing involves a set of variables (the control parame-

ters) of an application subject to a �xed set of linear or a�ne equations (the constraints).

More speci�cally, let p1, p2, . . ., pn be the n control parameters, and p be the vector

of the values of those parameters. We can write the constraints as a matrix equation

Rp = q (2.1)

where R is a constant m×n coe�cient matrix, and q is a vector of m constants (possibly

zero).

For example, a chemical process may have four pumps whose �ow rates p1, p2, p3, and

p4 must always satisfy p1 + p2 = p3 and p4 = p3 + 5, that is

[
1 1 −1 0

0 0 −1 1

]
p1
p2
p3
p4

 =

[
0

5

]
. (2.2)

Any change in one of the four rates must then be simultaneously compensated by a change

in one or both of the other three.

Let P = {1, 2, ..., n} be the set of parameter indices. For each editing action, the user

(or the application) must de�ne two disjoint subsets of P :
• A (anchor): the indices of one or more parameters whose values will be set by the

user;

• D (derived): the indices of zero or more parameters that may be adjusted if necessary

to satisfy the constraints.

23
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We denote by F the set P \ (A ∪ D), the �xed parameters whose values are not to be

changed. For each parameter s ∈ A, the user then speci�es a new value p′s which is

mandatory. For each s ∈ D, a new value p′s is also suggested. The editing algorithm then

computes a new value p′′s for each parameter. If s ∈ A, p′′s will be equal to the given value

p′s. If s ∈ D, p′′s is close to p′s, but not necessarily equal to it. For every s ∈ F the value

does not change, that is, the desired value p′s and �nal value p′′s are equal to the current

value ps.

More generally, each parameter may be an element of some vector space Rd. In that

case, p is an n× d matrix, and q is an m× d matrix. This is the case of the application

considered in Part II. See Figure 2.1.

p0

p′0

p1

p2
p3

p4

(a)

p′0
p′1

p′2 p′3

p4

(b)

p′′0 = p′0

p′′1

p′′2
p′′3

p4

(c)

Figure 2.1: Example of a parameter editing action in a graphical editor as described in Part II.
The �ve parameters are points of R2 (dots). There is one constraint represented
by the gray quadrilateral, that involves its four vertices; namely, the quadrilateral
must always be a parallelogram. The anchor set is A = {0} (open bold dot), and
the derived set is D = {1, 2, 3} (black dots). (a) User-speci�ed change of the anchor
point p0 to p

′
0; (b) desired positions p′1, p

′
2, and p

′
3 of the derived points; and (c) �nal

positions p′′1, p
′′
2, and p

′′
3 of the derived points forced by the constraint.

2.2 Relevant equations and �xed parameters

The constraints that involve parameters of A or D are called relevant constraints. The

indices of these constraints comprise the set E , a subset of R = {1, 2, ...,m}. We de�ne

the set F ′ of �xed relevant parameters as comprising the indices s ∈ F such that ps occurs

in some equation of E . See Figure 2.2.
For any subset Y of P , we will denote by pY the subvector of P whose elements are

all elements ps with s ∈ Y . Similarly, for any subset X ∈ R, we denote by RXY the

sub-matrix of R consisting of the elements Rij with i ∈ X and j ∈ Y .
We can replace the full constraint system (2.1) by the smaller system

RED p
′′
D = qE −REA p′A −REF ′ pF ′ (2.3)

which represents the relevant constraints E . We can write this system as Ax = b, where

A = RED, x = p′′D and b = qE −REA p′A −REF ′ pF ′ .
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

E
R

P

A D F ′

Figure 2.2: Example of the classi�cation of n = 14 parameters P and m = 5 constraints R. The
rectangles represent the constraints of the matrix R. The black dots are the nonzero
elements of R. Note that equations 1 and 3 are not relevant since they do not involve
any parameters of A or D. Note also that the parameters 2, 4, 6, 8, 10, and 11 are
�xed but not relevant.

2.3 Solvability condition

Depending on the choices of A and D, and of the new values p′s, the problem may or may

not have a solution.

We say that a given choice of A and D is strongly solvable if for any parameter vector

p that satis�es all constraints, and any assignment of values for p′A∪F there is a solution

p′′, that satis�es all constraints, with p′′A = p′A and p′′F = p′F . That is, the set D of derived

parameters must be large enough to allow any combination of new values to be assigned

to the control parameters in A, while satisfying all constraints by assigning appropriate

new values to all parameters in D.
We say the problem is weakly solvable if such a solution exists for the particular given

values p′A and the current values of p′F .

2.4 The need for exact computation

The problem of editing parameters with linear constraints may involve redundant equa-

tions, which need to be detected and eliminated to correctly solve the system. For exam-

ple, we may have p1 + 2p2 = 0, p2 + p3 = 5, 2p3 − p1 = 10. Note that the last equation is

a linear combination of the �rst two.

In general, a constraint-solving algorithm cannot assume that the application is toler-

ant to rounding errors. The presence of these errors, in approaches that use �oating-point

arithmetic, can generate numerical instabilities causing failures in the reliable detection

of redundancies.

It is possible to identify and ignore the redundant constraints by using exact arith-

metic to solve the linear systems. For this task, we use the fraction-free LDU factoring,

described in Chapter 4. Figure 2.3 shows an example of application of the 2DSD algo-

rithm, described in Part II of this thesis. In this example, the use of exact arithmetic (the
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ECLES algorithm, described in Chapter 5) removed the rounding errors and numerical

instabilities of the previous �oating-point implementation.

(a) (b)

Figure 2.3: (a) Identifying non-redundant C1 constraints (gray quadrilaterals) in the 2DSD al-
gorithm (see Part II) with �oating-point, and (b) the exact arithmetic. Note that
the �oating-point version discarded one constraint which in fact is not redundant.

Therefore, we assume that the constraint equations have integer coe�cients (rounded by

the application, as appropriate) and the parameter values are approximated by rational

values. For the exact and rational computations, we used the library FLINT (Fast Library

for Number Theory) [36].



Chapter 3

Related Work

There are many systems for interactive editing of objects under linear and a�ne con-

straints [10, 38, 47, 62, 79]. In this chapter, we present an overview about some techniques,

described in the literature, for parameter editing with constraints.

3.1 Constraint-based editing and modeling

Typical constraint-based interactive editors recompute all parameters at each user editing

request, and use penalty terms in order to minimize the changes to non-edited parameters.

The METAFONT font design system, developed by Knuth in 1979 [47], can be viewed

as a precursor of constraint-based parameter editing. It is a programming language where

function parameters may be subjected to linear and a�ne constraints. The language lets

the user specify any subset of independent parameters, automatically solving for the others

when enough parameters have been speci�ed. However, it was not interactive.

In 1985, Nelson [62] described Juno, a constraint-based interactive editor for 2D draw-

ings. Later, an extended version of the editor (Juno-2) was developed by Heydon and

Nelson [38]. With Juno-2, the user can graphically de�ne constraints, which are solved

by a non-linear equation solver combined with some symbolic techniques. The user could

de�ne hints for unknown parameters.

3.2 Finite element basis

For linear and a�ne constraints (which we consider in this thesis), a common approach is

to pre-compute a �nite element basis of parameter change vectors that has small support

and spans the space of all possible changes allowed by the constraints; and then give the

user a separate �knob� for each �nite element.

A typical example is the editing of splines with speci�ed continuity. Each basis ele-

ment has exactly one editable value (typically a Bézier control point or value), the other

Bézier points are then computed from those. This approach was extensively studied by

Schumaker [50] and others [93].

One particular case of the �nite element technique is the B-spline approach [25], where

there is only one control point for each patch, and the resulting spline is automatically

27
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continuous to the maximum possible order. B-splines are well de�ned for tensor (quad-

rangular or hexahedral) type meshes with regular topology [18, 21]; extending them to

irregular and simplicial meshes is possible, but rather complicated [37].

One serious limitation of �nite element technique is that the �nite element basis must

be recomputed every time the space of allowed solutions change; that is, every time the

sets A of anchors and D of derived parameters change.

3.3 Optimization

Since the constraints are usually under-determinate, the �nal solution must be chosen by

optimizing some additional criteria.

Systems like METAFONT [47] build the set of derived parameters D incrementally by

adding parameters to it according to certain ad hoc priority rules. For instance, variables

that were most recently included in the set of anchors A of previous actions have lower

priority. Other systems [10, 38, 62] solve for all constraints simultaneously by an iterative

algorithm using the current situation p as a starting guess.

3.3.1 Least squares

To handle under-determinate constraints, we instead use the criterion of least squares

with �rst-degree constraints [66] to �nd the solution p′′D that is closest to the hints p′D.

This technique was used, for instance, by Masuda et al. [57] for surface mesh editing. It

allows editing any control point A = {k} and computes the remaining points in D = P\A
by solving a linear system that combines the criterion of least squares and the constraint

equations.

Our method, described in Chapter 5, di�ers from Masuda's by assuming that the

application provides, at each editing event, a small subset D of parameters that can be

changed. Moreover, we use exact arithmetic to reliably detect inconsistent or redundant

constraints.

Least squares were also used, by Sorkine and Cohen-Or [79] to globally approximate

points given by 3D triangular meshes. However this technique has no concept of splines

and smoothness. The constraints are satis�ed only in the sense of least squares.



Chapter 4

Basic Tools

In this chapter, we describe the method used to solve linear systems with exact integer

arithmetic. This method detects and eliminates redundancies among the constraints of

the problem and avoids failures due to rounding errors. Moreover, we also described the

weighted and constraint least squares to minimize the discrepancy between the desired

and �nal solutions of the system.

4.1 Fraction-free LDU factoring

To exactly solve the linear system in Equation (2.3) whose coe�cients are integers, we

use a fraction-free LDU factoring [43] of a rectangular matrix A (m× n), with rank r. It

consists of �ve integer matrices: ΠR (m×m, a permutation matrix of rows), L (m× r),
D (r × r, diagonal), U (r × n), and ΠC (n × n, a permutation matrix of columns) such

that

A = ΠRLD
−1UΠC. (4.1)

Note that, the matrices ΠR and ΠC can be represented as integer vectors to save space.

The matrices L and U have speci�c structures:

L =

(
L̂

L̃

)
and U =

(
Û Ũ

)
(4.2)

where L̂ is an r × r lower triangular matrix, Û is an r × r upper triangular matrix, both

invertible, and L̃, Ũ are arbitrary integer matrices with sizes (m− r)× r and r× (n− r),
respectively.

For example, the matrix A below has m = 5 rows, n = 4 columns, and rank r = 3:
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A =



4 9 16 29

−1 −6 −19 −16

1 5 15 19

5 6 −1 −12

5 10 15 20


(4.3)

Its fraction-free LDU factoring using full pivoting is



0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1





−1 0 0

1 1 0

4 15 −80

5 24 −164

5 20 −120




−1 0 0

0 −1 0

0 0 −80


−1 

−1 −6 −16 −19

0 1 −3 4

0 0 −80 0




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



As detailed in Chapter 6, the factoring enables the exact solution of the system Ax = b

for any integer vector b, yielding a rational vector x.

4.2 Using the hints

Besides exact system solving, the other main tool that we use is the least squares (quadratic

optimization) method with a�ne constraints. This method is used whenever there is more

than one solution p′′D, to �nd the one that is `closest' to the given hints p′D.

Given a vector x′ = (x′1, ..., x
′
n) of desired values, we want to �nd a vector x′′ =

(x′′1, .., x
′′
n) of values that minimizes the distance between each new value x′′s and the

desired value x′s, while satisfying a set of constraints Ax′′ = b, where A is any m × n

matrix and b is a vector of m elements. More precisely, we want to �nd the vector x′′ that

minimizes the goal function

S(x) =
n∑
s=1

ws(xs − x′s)2 (4.4)

where the coe�cient ws is a weight that indicates the importance of honoring the hint x′s
(the higher the weight value ws is, compared to the other weights, the more the algorithm

will try to make value x′′s close to x
′
s).

This subproblem reduces to solving a linear system that includes the equations Ax = b,

as detailed in Chapter 9.
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4.3 Redundant equations

In many applications, there are often redundant constraints, especially when some of the

parameters are considered �xed. Therefore, one of the subproblems that we need to solve

is to identify and ignore such redundant constraints.

This task is a side e�ect of computing the fraction-free LDU factoring of the matrix

A of the constraint system Ax = b.

If the rank r determined during the factoring is less than m, as in example (4.3), the

system Ax = b has redundant equations, and can be replaced by

Âx = b̂ (4.5)

where Â is an r × n matrix which is the �rst r rows of Π−1R A = LD−1UΠC, that is,

L̂D−1UΠC; and b̂ is an r-element column vector, which is the �rst r rows of Π−1R b. For

the example 4.3, we have

Â =

 −1 0 0

1 1 0

4 15 −80

 −1 0 0

0 −1 0

0 0 −80

−1  −1 −6 −16 −19

0 1 −3 4

0 0 −80 0




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


=

 −1 −6 −19 −16

1 5 15 19

4 9 16 29

 (4.6)

4.4 Multidimensional parameters

As observed in Chapter 2, in some applications each parameter is a vector from some

Cartesian space Rd and each constraint is an a�ne equation on vectors of Rd. For example,

the ECLES algorithm generalizes trivially to this case. The application we consider in

Parts II and III has d = 2.

Then equations (2.1) and (4.5) can be rewritten as RP = Q and AX = B, where P , Q,

X, and B are matrices with d columns. This is the case, in particular, of the application

we consider in Parts II and III. So, in the rest of this thesis, we make this assumption.



Chapter 5

The ECLES Method

In this chapter, we provide a detailed description of our interactive and general param-

eter editing method, that we call ECLES (Editing by Constrained LEast Squares). This

method is suitable for editing any kind of object that is de�ned by parameters subject to

linear or a�ne constraints.

ECLES solves the problem de�ned in Chapter 2 computing a set of values P ′′D for a

given set D of derived parameters, so as to satisfy a set of linear constraints after the user

changes the anchor parameters to given values P ′A, and provides hints P ′D for the derived

ones.

5.1 Simpli�ed description

The ECLES method consists of two procedures, ECLES.Initialize and ECLES.Update.

The ECLES.Initialize procedure, described with more detail in Section 5.2, is called

when the user chooses the sets A and D of parameters to be adjusted through some

editing software (the user interface). The ECLES.Update procedure is then called one or

more times as the user speci�es new values P ′A for the anchors, to modify those parameters

so that all constraints remain satis�ed. See Figure 5.1.

Aplicação

ECLES

ECLES.Initialize

ECLES.Update

A, D, R

Q, P

Q, R, P ′

P ′′
D

A, F ′
, E, ΠR, L, D, U , ΠC, r

Figure 5.1: Interaction model between application and the ECLES algorithm.
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The ECLES.Initialize procedure identi�es the subset E ⊆ R of relevant constraints

and the set F ′ ⊆ F of the �xed relevant parameters. This process reduces the editing

problem to the relevant parameters A ∪ D ∪ F ′ and the relevant constraints E . The

ECLES.Initialize procedure also checks whether there are redundant constraints in the

set E .
Optionally, the procedure also veri�es if the sets A and D, provided by the applica-

tion, satisfy the strong solvability condition of the ECLES. In any case, it returns the

coe�cient matrix of the non-redundant constraints, in factored form, to be used by the

ECLES.Update procedure.

Basically, the ECLES.Update procedure, described with more detail in Section 5.3,

solves the linear system that combines the set of non-redundant relevant constraint, the

speci�ed anchor values P ′A, and the hints P ′D, and computes the derived values P ′′D.

5.2 The ECLES.Initialize procedure

After de�ning the set E , ECLES.Initialize extracts the relevant equations and rewrites

them in the form of the system (2.3).

In general, there may be redundancies in system (2.3). The ECLES.Initialize pro-

cedure computes the fraction-free LDU factoring (described in Section 4.1) of the ma-

trix RED into integer matrices L,D,U , and permutation matrices ΠR and ΠC, such that

RED = ΠRLD
−1UΠC. In the process, it obtains the rank r of RED. The �rst r rows of

Π−1R RED are a set of non-redundant equations. These steps are formalized in Algorithm 1.

Algorithm 1: ECLES.Initialize

Input: A: set of indices of the a anchor parameters;
D: set of indices of the n derived parameters;
R: l × c coe�cient matrix of all constraint equations;
Q: m× j matrix of independent terms of all constraints;
P : n× j matrix of the current values of all parameters;
strong: boolean �ag requesting strong satis�ability;
method: the simpli�cation method of the factoring.

Output: F ′: set of indices of the f relevant �xed parameters;
E : set of indices of the m relevant constraints;
ΠR, L,D, U,ΠC, r: fraction-free LDU factoring of RED.

1 begin
2 (E , F ′) ← ECLES.ExtractRelevant (A, D, R)
3 (ΠR, L, D, U , ΠC, r) ← LinSys.LDUFactor (RED, method)
4 if strong then
5 if not ECLES.CheckStrongSolvabitity (R, E ,A,F ′, Q, P,ΠR, L, r) then
6 error �Strong solvability is not satis�ed!�



CHAPTER 5. THE ECLES METHOD 34

If the strong solvability (see Section 5.2.2) is required, the ECLES.Initialize proce-

dure checks it in step 5. If the solvability condition of the ECLES method is not satis-

�ed, then the ECLES.Update is not called. Otherwise, the information returned by the

ECLES.Initialize procedure will be used by the ECLES.Update procedure in order to

constructs a non-redundant linear system (see Section 5.3).

5.2.1 The ECLES.ExtractRelevant procedure

The ECLES.ExtractRelevant procedure identi�es the equations of R that depend on any

parameter of the sets A or D. The set E of relevant constraints consists of these equations.
Based on the set E , the ECLES.ExtractRelevant procedure de�nes the set F ′ of �xed
relevant parameters. These steps are formalized in Algorithm 2.

Algorithm 2: ECLES.ExtractRelevant

Input: A: set of indices of the a anchor parameters;
D: set of indices of the n derived parameters;
R: l × c coe�cient matrix of all constraint equations.

Output: E : set of indices of the m relevant constraints;
F ′: set of indices of the f relevant �xed parameters.

1 begin
2 for i← 1 to l do
3 if (∃j ∈ {1, . . . , c}), j ∈ A ∪ D then
4 E ← E ∪ {i}

5 for each i ∈ E do
6 for j ← 1 to c do
7 if ((RE)ij 6= 0) and (j /∈ A ∪ D) then
8 F ′ ← F ′ ∪ {j}

5.2.2 The ECLES.CheckStrongSolvabitity procedure

The ECLES.CheckStrongSolvabitity procedure veri�es whether the relevant constraints

can be satis�ed for any assignment of values of the anchor parameters. The mathematical

justi�cation is described in Section 8.2.2. These steps are formalized in Algorithm 3.
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Algorithm 3: ECLES.CheckStrongSolvabitity

Input: R: l × c coe�cient matrix of all constraint equations.;

E : set of indices of the m relevant constraints;

A: set of indices of the a anchor parameters;

F ′: set of indices of the f relevant �xed parameters;

Q: m× j matrix of independent terms of all constraints;;

P : n× j matrix of the current values of all parameters;

ΠR: m×m permutation matrix of rows;

L: m× r lower triangular matrix of integer coe�cients;

r: rank of the matrix RED.

Output: Boolean �ag indicating if the strong solvability condition is satis�ed.

1 begin

2 C ← Π−1R (QE −REF ′PF ′)
3 K ← Π−1R REA

4 (Ĉ, C̃) ← LinSys.SplitRows(C, r)

5 (K̂, K̃) ← LinSys.SplitRows(K, r)

6 X1 ← L̂−1Ĉ

7 X2 ← L̂−1K̂

8 Y1 ← L̃X1

9 Y2 ← L̃X2

10 return Y1 = C̃ and Y2 = K̃

5.3 The ECLES.Update procedure

If strong solvability was not checked in ECLES.Initialize, the ECLES.Update procedure

�rst uses the method, described in Section 5.3.1, to determine if the weak solvability

condition of the linear system (2.3) is satis�ed for the given values P ′A and current values

of PF ′ . That is, if there is a displacement P ′′D of the derived points such that all constraints

in RE are satis�ed. When this condition is not satis�ed, the ECLES.Update procedure

returns a message to the application notifying that the speci�ed anchor parameter values

are not valid. Then, for example, the procedure cancels the editing action and the user

must select new values for the anchors.

Otherwise, if the solvability condition is satis�ed, the values P ′′D of the derived param-

eters are computed by the ECLES.Update procedure, each time the suggested values P ′D
are given by the user interface, by solving the system

ÂP ′′D = B̂ (5.1)

where Â is the �rst r rows of LD−1UΠC and B̂ is the �rst r rows of Π−1R B, obtained from

the ECLES.Initialize.

The ECLES.Update procedure solves the least squares system, equations (9.6) and (9.8),

obtaining the new computed values P ′′D for the derived parameters. This method is de-

scribed with more detail in Section 9.1.
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The steps described in this section are formalized in Algorithm 4.

Algorithm 4: ECLES.Update

Input: A: set of indices of the a anchor parameters;
F ′: set of indices of the f relevant �xed parameters;
E : set of indices of the m relevant constraints;
R: l × c coe�cient matrix of all constraint equations;
Q: m× j matrix of independent terms of all constraints;
ΠR, L,D, U,ΠC, r: fraction-free LDU factoring of RED;
P ′: n× j matrix of the suggested values of all parameters.

Output: P ′′D: n× j matrix of the new values of the n derived parameters.
1 begin
2 B ← QE −REAP ′A −REF ′PF ′
3 (B̂, B̃) ← LinSys.SplitRows(Π−1R B, r)

4 (L̂, L̃) ← LinSys.SplitRows(L, r)

5 if ECLES.CheckWeakSolvabitity(L̂, L̃, B̂, B̃) then

6 P ′′D ← LSQ.Solve (M , L̂, D, U , ΠC, B̂, P
′)

7 else
8 error �Weak solvability is not satis�ed!�

5.3.1 The ECLES.CheckWeakSolvabitity procedure

The ECLES.CheckWeakSolvabitity procedure veri�es whether the relevant constraints

can be satis�ed for given values of the anchor parameters. The mathematical justi�cation

is described in Section 8.2.1. These steps are formalized in Algorithm 5.

Algorithm 5: ECLES.CheckWeakSolvabitity

Input: L̂: r × r lower triangular matrix of integer coe�cients;
L̃: (m− r)× r lower triangular matrix of integer coe�cients;

B̂: r × r matrix of the right-hand side of integer coe�cients;
B̃: (m− r)× r matrix of the right-hand side of integer coe�cients.

Output: Boolean �ag indicating if the weak solvability condition is satis�ed.
1 begin

2 X ← L̂−1B̂

3 Y ← L̃X

4 return Y = B̃



Chapter 6

Fraction-Free LDU Factoring

In this chapter, we describe the technique used to solve linear systems with integer co-

e�cients. We need to exactly solve the system in order to check for linearly dependent

equations. The basic idea has described by Je�rey [43]. We reimplemented his algorithm

with minor di�erences in the pivoting strategy (full pivoting instead of partial pivoting)

column permutation.

6.1 The main algorithm

We now describe the full fraction-free LDU factoring procedure used by ECLES. The

factorization (4.1) can be obtained by adapting the Gauss-Jordan elimination algorithm

to use fraction-free integer arithmetic that uses cross multiplication to avoid fractions.

Namely, we use the pivot value to multiply the target row, instead of dividing the pivot

row. As we shall see, it is important to simplify the matrices during this algorithm by

removing common factors of the coe�cients in each equation.

The factoring is executed by the procedure LinSys.LDUFactor (Algorithm 6) which

factors the matrix A into matrices ΠR, L, D
−1, U and ΠC. Recall that the matrices ΠR and

ΠC can be represented as integer vectors to save space. This procedure is more complicated

than necessary because it allows the user to choose between three simpli�cation methods,

as discussed further on.

The rank r of the matrix is the number of nonzero rows of the triangularized matrix

U . In step 15 of LinSys.LDUFactor, the procedure LinSys.RemoveNullParts discards

all zero rows and columns of the resulting matrices L, D, and U .

The main loop invariant of this algorithm (I1) states that formula (4.1) is valid; that

is, the matrices ΠR, L, D
−1, U and ΠC, in that order, are a factorization of the input

array A. This invariant is true before and after every step.
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Algorithm 6: LinSys.LDUFactor

Input: A: m× n matrix of integers;
method: the simpli�cation method: �None�, �GCD� or �Turner�.

Output: ΠR: m×m row permutation matrix;
L: m× r lower triangular matrix of integer coe�cients;
D: r × r diagonal matrix of integer coe�cients;
U : r × n upper triangular matrix of integer coe�cients;
ΠC: n× n column permutation matrix;
r: rank of the matrix A.

1 begin
2 ΠR ← Im×m; L← Im×m; D ← Im×m; U ← Am×n; ΠC ← In×n
3 i← 1; j ← n
4 while i ≤ m and i ≤ j do
5 (j,ΠR, L, U,ΠC)← LinSys.Pivot(i, j,m, n,ΠR, L, U,ΠC)
6 if Uii 6= 0 then
7 if i = 1 then
8 (L,D,U)← LinSys.SimplifyURow(i− 1, i, n,m, L,D, U,method)

9 Lii ← LiiUii ; Dii ← DiiUii
10 for t from i+ 1 to m do
11 (L,D,U)← LinSys.EliminateVariable(i, t, n, L,D, U)
12 (L,D,U)← LinSys.SimplifyURow(i, t, n, L,D, U,method)

13 (L,D)← LinSys.SimplifyLColumn(i,m, L,D,method)
14 i← i+ 1

15 r ← i− 1; (L,D,U)← LinSys.RemoveNullParts(L,D,U, r)

A secondary loop invariant (I2) says that the matrices L and U are partially triangulated

and the rank of A is at least i. Speci�cally:

• the �rst i− 1 rows and columns of U are an upper triangular matrix with nonzero

elements in the diagonal;

• the elements in rows i to m and columns 1 to i− 1 and j + 1 to n of U are zero;

• the �rst i − 1 rows and columns of L are a lower triangular matrix with nonzero

elements in the diagonal;

• all elements of the diagonal of D are nonzero;

• the elements in rows 1 to i− 1 and columns i to m of L are zero;

• rows i to m and columns i to m of L are an identity matrix.

Loop invariant I2 is true before step 2 and after step 14, inclusive. See Figure 6.1.

In addition, after step 3 an additional condition holds: the element Uii is nonzero and

elements Ui+1,j to Umj are all zero (invariant I2′).

The factorization is complete when j < i, that is, rows i to m of U are zero.
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Figure 6.1: Invariant I2 of Algorithm 6. The gray parts are nonzero elements.

6.2 Pivoting

The auxiliary procedure LinSys.Pivot swaps the rows and columns of L, D, U (and ΠR,

ΠC) to bring the chosen pivot element Uks to position Uii. It may also reduce j.

Algorithm 7: LinSys.Pivot

Input: i: current row in the factoring process;

j: last column nonzero in matrix U ;

m: number of rows in matrix A;

n: number of columns in matrix A;

ΠR, L, U,ΠC: factoring satisfying invariants I1 and I2.

Output: j: last column nonzero in matrix U ;

ΠR, L, U,ΠC: updated factoring.

1 begin

2 x← i+ 1; y ← i; s← i; t← i;

3 (U,ΠC, j)← LinSys.GatherNonzeroColumns(i, j, U,ΠC)

4 if j < i then

5 return (j,ΠR, L, U,ΠC)

6 pivot← Uii
7 for p from i to m do

8 for q from i to j do

9 if Upq 6= 0 and (pivot = 0 or |Upq| < |pivot|) then
10 pivot← Upq;

11 s← p; t← q

12 if pivot = 0 then

13 j ← i− 1

14 return (j,ΠR, L, U,ΠC)

15 if i 6= t then

16 (U,ΠC)← LinSys.SwapColumns(i, t, U,ΠC)

17 if i 6= s then

18 (ΠR, L,D, U)← LinSys.SwapRows(i, s,ΠR, L,D, U)
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6.3 Variable elimination

The auxiliary procedure LinSys.EliminateVariable modi�es the matrix U so that row

t (> i) does not depend on permuted variable i.

Algorithm 8: LinSys.EliminateVariable

Input: i: current row in the factoring process;
t: next row in the factoring process;
n: number of columns in matrix A;
L,D,U : matrices of the factoring.

Output: L,D,U : updated factoring.
1 begin
2 Lti ← LttUti
3 Dtt ← DttUii
4 for s from i+ 1 to n do
5 Uts ← (Uii Uts)− (Uti Uis)

6 Uti ← 0

On input, invariants I1 and I2′ are valid. On output, row t of U , Lti, and Dtt are modi�ed

so that invariants I1 and I2′ are still valid, and Uti = 0.

6.4 Row and column simpli�cation

The procedure LinSys.SimplifyURow eliminates common factors of the row t of the

matrix U , adjusting L and D so that invariant I1 is preserved. It does not a�ect invariant

I2′. Depending on the method argument, it can use GCD (Greatest Common Divisor)

elimination, or Turner's GCD-free method, or (for comparison purposes) no simpli�cation

at all. See Chapter 7.

Algorithm 9: LinSys.SimplifyURow

Input: i: current row in the factoring process;
t: next row in the factoring process;
n: number of columns in matrix A;
L,D,U : matrices of the factoring;
method: the simpli�cation method: �None�, �GCD� or �Turner�.

Output: L,D,U : updated factoring.
1 begin
2 if method = “GCD′′ then
3 (L,U)← LinSys.SimplifyURowGCD(i, t, n, L, U)

4 else if method = “Turner′′ then
5 (D,U)← LinSys.SimplifyURowTurner(i, t, n,D, U)

If the simpli�cationmethod is �GCD�, the procedure LinSys.SimplifyLColumn eliminates

common factors of the column i of the matrix L, adjusting D so that invariant I1 is
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preserved. See Chapter 7. It does not a�ect invariant I2′. This procedure does nothing

when method is �Turner� or �None�.

Algorithm 10: LinSys.SimplifyLColumn

Input: i: current row in the factoring process;
m: number of rows in matrix A;
L,D: matrices of the factoring;
method: the simpli�cation method: �None�, �GCD� or �Turner�.

Output: L,D: updated factoring.
1 begin
2 if method = “GCD′′ then
3 (L,D)← LinSys.SimplifyLColumnGCD(i,m, L,D)

6.5 Computing cost

The procedure LinSys.LDUFactor (Algorithm 6) executes Θ(m2n) arithmetic operations

for a general m × n matrix of rank m. Multiplication of two t-bit numbers takes time

Θ(t2). Since the bit size of the matrix entries grows like Θ(m) (whether with GCD or

Turner's simpli�cation), the running time of the LinSys.LDUFactor algorithm is Θ(m4n).



Chapter 7

Simpli�cation Techniques for LDU

Factoring

In this chapter, we justify the need for elimination of common factors presenting the

plain fraction-free Gaussian elimination, and describe two simpli�cation methods (GCD

and Turner). We compare both methods according to the bit size growth of the matrix

elements resulting of the fraction-free LDU factoring, described in Chapter 4

7.1 Plain fraction-free Gaussian elimination

The following example [87] shows the execution of the straightforward fraction-free Gauss-

Jordan elimination on a matrix A without elimination of common factors, obtaining the

matrix U . We omit the processing of the L and D matrices and the pivoting step, for

clarity.

A = U =


8 7 4 1

4 6 7 3

6 3 4 6

4 5 8 2

→


8 7 4 1

0 20 40 20

0 −18 8 42

0 12 48 12



→


8 7 4 1

0 20 40 20

0 0 880 1200

0 0 480 0

→


8 7 4 1

0 20 40 20

0 0 880 1200

0 0 0 −576000


A practical problem when using this algorithm is that the bit size of the integers generated

during the elimination grows exponentially with the number of equations [33]. In this

example, the elements of the original matrix U are in signed 3-bit integers (excluding

sign) but the resulting U matrix has 21-bit integers. In general, if the input numbers have

t bits (excluding sign), the �nal matrices will have t · 2r−1 bits, where r is the rank (the

number of non-redundant equations). See Figure 7.1.
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Figure 7.1: Bit size growth in the trivial factorization without simpli�cation for random matrices
as a function of the number of rows m. The vertical axis is the maximum bit size
among all entries observed by factoring 1000 matrices with n = 15 columns and
varying number m of rows, with randomly chosen 10-bit signed integer elements.
Note that the bit size stops growing when m exceeds n. The slight decrease for
m > n is due to the better chances of �nding a small pivot as m increases.

7.2 Simplifying by GCD elimination

The bit size growth of the numbers can be greatly reduced by dividing each computed

row by the GCD of its coe�cients. Therefore, the range growth in subsequent stages of

the elimination is restricted to a level inherent in the problem. The following example [87]

shows the result for on the same matrix U .

U =


8 7 4 1

4 6 7 3

6 3 4 6

4 5 8 2

→


8 7 4 1

0 1 2 1

0 −9 4 21

0 1 4 1

→


8 7 4 1

0 1 2 1

0 0 11 15

0 0 1 0

→


8 7 4 1

0 1 2 1

0 0 11 15

0 0 0 1


In this example the elements of the resulting matrix U can be stored in 5-bit signed

integers. Note that the L matrix must be adjusted too to maintain the invariants. With

this optimization, we observe experimentally that the bit size of the elements in the

matrix U grows linearly with the number of equations (speci�cally, close to t · r), instead
of exponentially.

To obtain a linear growth of the matrices L and D, the columns of the matrix L and

the related elements of the matrix D can be divided by the GCD of its coe�cients. See

Figure 7.2.

These simpli�cations are described by the procedure LinSys.SimplifyURowGCD. This

procedure �nds the largest common factor GCD in row t and divides that factor into that

row, and multiplies it into column t of L.

The procedure LinSys.SimplifyLColumnGCD �nds the GCD common factor between

the column i of the matrix L and the element Dii of the matrix D. Then, it divides the

column i of L and the element Dii by that GCD factor.
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Figure 7.2: Bit size growth with the GCD simpli�cation methods for random matrices as a
function of the number of rows m. The vertical axis is the maximum bit size among
all entries observed by factoring 1000 matrices varying the size m = n of rows and
columns, with randomly chosen 10-bit signed integer elements.

Algorithm 11: LinSys.SimplifyURowGCD

Input: i: current row in the factoring process;
t: row to simplify;
n: number of columns in matrix A;
L,U : factoring matrices.

Output: L,U : updated factoring.
1 begin
2 gcd← Ut,i+1

3 for s from i+ 1 to n and (gcd 6= 1) do
4 gcd← LinSys.CalculateGCD(gcd, Ut,s)

5 if gcd > 1 then
6 for s from i+ 1 to n do
7 Uts ← Uts/gcd

8 Ltt ← Ltt ∗ gcd

Algorithm 12: LinSys.SimplifyLColumnGCD

Input: i: current row in the factoring process;
m: number of rows in matrix A;
L,D: factoring matrices.

Output: L,D: updated factoring.
1 begin
2 gcd← Dii

3 for t from i to m while gcd 6= 1 do
4 gcd← LinSys.CalculateGCD(gcd, Lti)

5 if gcd > 1 then
6 for t from i to m do
7 Dii ← Dii/gcd

8 Lti ← Lti/gcd
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7.3 Turner's GCD-free simpli�cation

In 1968, G. H. Bareiss [4] observed that some common factors in the computed rows are

predictable and can be avoided by using more complex formulas in the elimination step.

Later, in 1995, Peter R. Turner [87] observed that some of these factors can be found

easily. Speci�cally, after elimination of variable i, the diagonal element of row i− 2 of the

partially triangulated matrix divides all the elements of the new rows i, i+ 1, . . . ,m.
The following example shows the execution of the fraction-free Gaussian elimination

with Turner's simpli�cation on the same matrix U .

U =


8 7 4 1

4 6 7 3

6 3 4 6

4 5 8 2

→


8 7 4 1

0 20 40 20

0 −18 8 42

0 12 48 12

 (�rst stage)

→


8 7 4 1

0 20 40 20

0 0 880 1200

0 0 480 0

→


8 7 4 1

0 20 40 20

0 0 110 150

0 0 60 0

 (second stage)

→


8 7 4 1

0 20 40 20

0 0 110 150

0 0 0 −9000

→


8 7 4 1

0 20 40 20

0 0 110 150

0 0 0 −450

 (third stage)

Note that, in the second stage, the pivot U11 = 8 divides all elements of sub-matrix Uij with

i, j ∈ {3, 4}. In this example, the original matrix has 3-bit integer elements, and the computation

can be performed using 16-bit integer arithmetic.

Turner's algorithm has the advantage that the determinant of the original matrix U is au-

tomatically detected as the �nal value of Unn (apart from signed changes, if pivoting is used).

Still, Turner's algorithm reduces the growth in the bit size of elements to linear instead of expo-

nential [4, 33, 87].

A comparison between GCD and Turner's simpli�cation shows that the bit size growth in

the factored matrices is similar in both methods. See Figure 7.3.
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Figure 7.3: Comparison of the bit size growth between the GCD and Turner simpli�cation meth-
ods for random matrices as a function of the number of rows m. The vertical axis
is the maximum bit size among all entries observed by factoring 1000 matrices with
n = 20 columns and varying number m of rows, with randomly chosen 10-bit signed
integer elements.
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The procedure LinSys.SimplifyURowTurner implements the Turner's algorithm to eliminate the

common factors in row t. Note that Turner's simpli�cation does not modify the matrix L.

Algorithm 13: LinSys.SimplifyURowTurner

Input: i: current row in the factoring process;
t: next row in the factoring process;
n: number of columns in matrix A;
D,U : factoring matrices.

Output: D,U : updated factoring.
1 begin
2 if i ≥ 2 then
3 for s← i+ 1 to n do
4 Uts ← Uts/Ui−1,i−1

5 Dtt ← Utt/Ui−1,i−1

However, while Turner's method saves some time by eliminating the computation of the GCD,

it may result slightly in a bit larger numbers, because it fails to eliminate some common factors

that may arise by coincidence � like the factor 20 in row 2 of the example. It also saves time

by not modifying the matrix L. Other authors have identi�ed additional common factors in the

matrices L, D, and U that can be eliminated computing the GCD [58].

Originally, the fraction-free factoring method was de�ned only for square or non-singular

matrices [4, 24, 60, 65, 96]. In this thesis, we follow the presentation of D. J. Je�rey [43] which

can be applied to arbitrary rectangular matrices of any rank r.

7.3.1 Bit size growth for rank de�cient matrices

The previous results hold also for rank-de�cient square matrices: the bit size grows linearly in

the rank r. The factoring of matrices with rank de�cient using the GCD simpli�cation generates

smaller matrix elements. See Figure 7.4. In these tests, each matrix was obtained by multi-

plying two matrices of size 20 × r and r × 20 with random elements in the appropriate range

[−b
√

2t−1/rc · · ·+ b
√

2t−2/rc, where t is the bit size of the �nal matrix elements.
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Figure 7.4: Comparison of the bit size growth between the GCD and Turner simpli�cation meth-
ods for random rank de�cient matrices as a function of the rank r. The vertical axis
is the maximum bit size among all entries observed by factoring 1000 20×20 matrices
varying the de�cient rank r, with 10-bit signed integer elements.
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7.3.2 Bit size growth for random sparse matrices

In this section, we determine the bit size growth for the case when the matrix is sparse, as a

function of its density h of non-zero elements. Figures 7.5 and 7.6 show how the bit size grows as

a function of the number m = n of rows and columns for �xed densities h ≈ 0.10 and h ≈ 0.25.

Figure 7.7 show how the bit size varies with h for a �xed matrix size.
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Figure 7.5: Comparison of the bit size growth between the GCD and Turner simpli�cation meth-
ods for random sparse matrices as a function of the number of rows m. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse
matrices varying the size m = n of rows and columns, with densities h ≈ 0.10 and
10-bit signed integer elements.
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Figure 7.6: Comparison of the bit size growth between the GCD and Turner simpli�cation meth-
ods for random sparse matrices as a function of the number of rows m. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse
matrices varying the size m = n of rows and columns, with densities h ≈ 0.25 and
10-bit signed integer elements.
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Figure 7.7: Comparison of the bit size growth between the GCD and Turner simpli�cation meth-
ods for random sparse matrices as a function of the density h. The vertical axis is
the maximum bit size among all entries observed by factoring 1000 20 × 20 sparse
matrices varying the density h, with 10-bit signed integer elements.

7.3.3 Bit size growth for sparse matrices with de�cient rank

Figures 7.8 and 7.9 show how the bit size grows as a function of rank r for densities h ≈ 0.10

and h ≈ 0.25. Figure 7.10 show how the bit size varies with h for a �xed matrix size.
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Figure 7.8: Comparison of the bit size growth between the GCD and Turner simpli�cation meth-
ods for random rank de�cient sparse matrices as a function of the rank r. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse ma-
trices varying the size m = n of rows and columns and the rank de�cient r, with
densities h ≈ 0.10 and 10-bit signed integer elements.
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Figure 7.9: Comparison of the bit size growth between the GCD and Turner simpli�cation meth-
ods for random rank de�cient sparse matrices as a function of the rank r. The vertical
axis is the maximum bit size among all entries observed by factoring 1000 sparse ma-
trices varying the size m = n of rows and columns and the rank de�cient r, with
densities h ≈ 0.25 and 10-bit signed integer elements.
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Figure 7.10: Comparison of the bit size growth between the GCD and Turner simpli�cation
methods for random rank de�cient sparse matrices as a function of the density h.
The vertical axis is the maximum bit size among all entries observed by factoring
1000 20 × 20 sparse matrices varying the density h and the rank de�cient r, with
10-bit signed integer elements.

7.3.4 Discussion about the results

We can conclude from these tests that sparsity and low rank considerably reduce the running

time of the ECLES.Update algorithm both by reducing the size of the matrices L̂ and Û (to m×r
and r×n instead of m×m and n×n, respectively) and by reducing the bit size of their elements.

The last factor is quite signi�cant if full GCD simpli�cation is used instead of the Turner method,

even though the two are nearly equivalent for dense full-rank matrices.



Chapter 8

Solving Exact Linear Systems

In this chapter, we describe the technique used to solve linear systems with integer coe�cients

in factored form [43], obtained from the fraction-free LDU factoring algorithm, described in

Chapter 6.

8.1 Solving the system

We assume in general that the linear system to be solved is

AP = B (8.1)

where P is an unknown array of n rational numbers, and B is a known vector of m integers.

Substituting formulas (4.1) and (4.2) into system (8.1), we have

ΠR

(
L̂

L̃

)
D−1

(
Û Ũ

)
ΠCP = B. (8.2)

Letting X = ΠCP , Y = UX and, B̂ and B̃ be the �rst r and last m − r elements of Π−1R B,

respectively, Equation (8.2) becomes (
L̂

L̃

)
D−1Y =

(
B̂

B̃

)
. (8.3)

We can split the system (8.3) into two systems

L̂D−1Y = B̂ and L̃D−1Y = B̃. (8.4)

Since L̂D−1 is an r × r invertible matrix, we can solve the �rst system for Y

Y = DL̂−1B̂. (8.5)

The matrix DL̂−1 turns out to be integer [43], therefore Y is a array of integers.

50



CHAPTER 8. SOLVING EXACT LINEAR SYSTEMS 51

To solve the system (8.2), we can �nd X by solving

(
Û Ũ

)(X̂
X̃

)
= Y (8.6)

that is, by solving

ÛX̂ = Y − ŨX̃ (8.7)

where X̃ can be chosen arbitrarily. Setting X̃ = 0, we get

X̂ = Û−1Y. (8.8)

Then we can get the solution P by

P = Π−1C X. (8.9)

The matrix Û−1 is not integer, therefore the computation (8.8) must be done with rational

arithmetic, and X̂ is a vector of rational numbers.

The steps for solving the system are formalized in Algorithm 14. The rank r and the matrices

ΠR, L, D, U and ΠR are received of the LinSys.LDUFactor procedure.

Algorithm 14: LinSys.Solve

Input: L̂: r × r lower triangular matrix of integer coe�cients;
D: r × r diagonal matrix of integer coe�cients;
Û : r × r upper triangular matrix of integer coe�cients;
ΠC: n× n permutation matrix of columns;
B̂: n× j matrix of the right-hand side of integer coe�cients.

Output: P : n× j matrix of coordinates of the new values of the n parameters.
1 begin

2 Y ← DL̂−1B̂

3 X̂ ← Û−1Y

4 X̃ ← 0

5 X ← LinSys.JoinRows(X̂, X̃)
6 P ← Π−1C X
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8.2 Checking consistency

The second system L̃D−1Y = B̃ in Equation (8.4) is non-empty only if the rank r of A is less

than the number of rows m, in which case either some constraints are redundant, or there are

incompatible constraints.

8.2.1 Weak solvability

To verify whether the original system (8.1) is consistent, for the given right-hand-side matrix B,

it is necessary and su�cient to check if the bottom half of the Equation (8.3) is satis�ed with

this value Y , that is

L̃L̂−1B̂ = B̃. (8.10)

8.2.2 Strong solvability

Strong solvability means that the system (8.1) can be solved assignment P ′j to the anchor pa-

rameters. Recall that B = QE −REA P ′A −REF ′ PF ′ then

Π−1R B = Π−1R (QE −REF ′ PF ′)−Π−1R REA P
′
A. (8.11)

We can rewrite the matrix Π−1R B as

Π−1R B = C −KP ′A

where C = Π−1R (QE −REF ′ PF ′) and K = Π−1R REA.

The matrices Π−1R B, C and K can be split as(
B̂

B̃

)
=

(
Ĉ

C̃

)
−

(
K̂

K̃

)
P ′A (8.12)

where B̂, Ĉ, and K̂ are the r �rst rows of the matrices Π−1R B, C, and K. Then, we have two

equations

B̂ = Ĉ − K̂P ′A and B̃ = C̃ − K̃P ′A. (8.13)

Substituting B̂ and B̃ in the Equation (8.10), we have

L̃L̂−1(Ĉ − K̂P ′A) = C̃ − K̃P ′A
L̃L̂−1Ĉ − C̃ = (L̃L̂−1K̂ − K̃)P ′A. (8.14)

So, to verify whether the original system (8.1) is consistent for any B, it is necessary and su�cient

to check if

L̃L̂−1Ĉ = C̃ (8.15)

L̃L̂−1K̂ = K̃. (8.16)



CHAPTER 8. SOLVING EXACT LINEAR SYSTEMS 53

8.3 An example

Considering the system AP = B, where A is the matrix of the example (4.3), and B the following

integer vector.

A =


4 9 16 29

−1 −6 −19 −16

1 5 15 19

5 6 −1 −12

5 10 15 20

 and B =


142

42

40

−128

50

 . (8.17)

We have the following fraction-free LDU factoring matrices, described in Chapter 4.



0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1





−1 0 0

1 1 0

4 15 −80

5 24 −164

5 20 −120




−1 0 0

0 −1 0

0 0 −80


−1 

−1 −6 −16 −19

0 1 −3 4

0 0 −80 0




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

The system (8.3) can be obtained using the factoring matrices. Then, we have the system


−1 0 0

1 1 0

4 15 −80

5 24 −164

5 20 −120


 −1 0 0

0 −1 0

0 0 −80


−1

Y =


0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1



−1 
142

42

40

−128

50



−1 0 0

1 1 0

4 15 −80

5 24 −164

5 20 −120


 −1 0 0

0 −1 0

0 0 −80


−1

Y =


42

40

142

−128

50

 . (8.18)

Checking the solvability condition (8.10), we have that the original system A is consistent

[
5 24 −164

5 20 −120

] −1 0 0

1 1 0

4 15 −80


−1  42

40

142

 =

[
−128

50

]
[
−128

50

]
=

[
−128

50

]
. (8.19)

Solving the �rst system (8.5) for Y , we have

Y =

 −1 0 0

0 −1 0

0 0 −80


 −1 0 0

1 1 0

4 15 −80


−1  42

40

142

 =

 42

−82

−920

 . (8.20)
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Solving the second system (8.8) for X̂, we have

X̂ =

 −1 −6 −16

0 1 −3

0 0 −80


−1  42

−82

−920

 =

 59

−95/2

23/2

 . (8.21)

Setting X̃ = 0, and solving of Equation (8.9) for P , we have

P =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


−1 

59

−95/2

23/2

0

 =


59

−95/2

23/2

0

 . (8.22)

The parameter vector P may be converted from rational to �oating-point. For example, con-

verting the rational solution P in Equation (8.22), we have

P =


59

−95/2

23/2

0

 =


59

−47.5

11.5

0

 . (8.23)



Chapter 9

Solving the Least Squares Problem

In this chapter, we describe the quadratic optimization (least squares) method [66] with a�ne

constraints. This method is used whenever there is more than one solution, to �nd values of P ′′D
that are �close� the given hints P ′D.

We combine the least squares optimization with the fraction-free LDU factoring, in order to

obtain a best solution for the problem of interactive editing of parameters with constraints.

9.1 Constrained least squares

We now describe in detail the procedure LSQ.Solve used by ECLES.Update, described in Sec-

tion 5.3. It receives the fraction-free LDU factoring of the m × n constraint matrix A, the

right-hand side vector B and the hints P ′ for the n unknowns. If r = n, there is a single solution

which is computed by solving the constraint system (2.3) AX = B as described in Section 8.1.

Otherwise, if r < n, the system has many solutions and the procedure has to minimize the

goal function S de�ned by Equation (4.4) while satisfying the constraints (4.5), as described in

Chapter 4.

At the maximum point, the gradient ∇S of the goal function S must be perpendicular to the

solution set of the non-redundant constraints. The gradient consists of the derivatives

∂S

∂Ps
(P ) = 2ws(Ps − P ′s) (9.1)

for s = 1, 2, . . . , n. To be perpendicular to the constraint solution space, the gradient ∇S(P ′′)

must satisfy

∂S

∂Ps
(P ′′) = −

n∑
k=1

ΛkÂks (9.2)

where each variable Λk is an indeterminate real coe�cient, the Lagrange multiplier [64] of the

constraint expressed by row k of the system (4.5). From (9.1) and (9.2) we get

2wsP
′′
s +

n∑
k=1

ΛkÂks = 2wsP
′
s. (9.3)
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Equation (9.3) can also be written in matrix form

MP ′′ + Â>Λ = MP ′ (9.4)

where M is the n× n invertible diagonal matrix with Mss = 2ws; Â
> is the transpose of Â; and

Λ is an array with the Lagrange multipliers Λ1, ...,Λm.

We can combine Equation (9.4) with the constraints (4.5) obtaining the least squares linear

system

MP ′′ = MP ′ − Â>Λ

ÂP ′′ = B̂. (9.5)

System (9.5) can be solved in two steps; namely, since ÂM−1Â> is r × r invertible matrix, we

can solve the �rst system for Λ

ÂM−1Â>Λ = ÂP ′ − B̂. (9.6)

Then we can compute P ′′ by solving

MP ′′ = MP ′ − Â>Λ. (9.7)

That is,

P ′′ = P ′ −M−1Â>Λ. (9.8)

These steps are formalized in Algorithm 15.

Algorithm 15: LSQ.Solve

Input: M : n× n matrix of weight;
L̂: r × r lower triangular matrix of integer coe�cients;
D: r × r diagonal matrix of integer coe�cients;
U : r × n upper triangular matrix of integer coe�cients;
ΠC: n× n permutation matrix of columns;
B̂: r × j matrix of the right-hand side of integer coe�cients;
P ′: n× j matrix of coordinates of the suggested values of the parameters.

Output: P ′′: n× j matrix of coordinates of the new values of the parameters.
1 begin
2 if r = n then

3 (Û , Ũ) ← LinSys.SplitColumns(U, r)

4 P ′′D ← LinSys.Solve (L̂, D, Û , ΠC, B̂)

5 else

6 Â← L̂D−1UΠC

7 Λ← (ÂM−1Â>)−1(ÂP ′ − B̂)
8 P ′′ ← P ′ −M−1Â>Λ
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9.2 An example

Considering the system AP = B, where A is the matrix of the example (4.3), and B the following

integer vector.

A =


4 9 16 29

−1 −6 −19 −16

1 5 15 19

5 6 −1 −12

5 10 15 20

 and B =


142

42

40

−128

50

 . (9.9)

The matrices Â and B̂ are

Â =

 −1 −6 −19 −16

1 5 15 19

4 9 16 29

 and B̂ =

 42

40

142

 . (9.10)

Considering the matrices M and P ′ following

M =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 and P ′ =


1

1

1

1

 . (9.11)

We solve the system (9.5) in two steps. First, solving the Equation (9.6) for Λ

Λ =

 327 −310 −413

−310 306 420

−413 420 597


−1  −1 −6 −19 −16

1 5 15 19

4 9 16 29




1

1

1

1

−
 42

40

142

 =

 −123/20

−23/4

−7/20

 . (9.12)

To �nd P ′′, we solve the Equation (9.8)

P ′′ =


1

1

1

1




2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2


−1 

−1 1 4

−6 5 9

−19 15 16

−16 19 29


 −123/20

−23/4

−7/20

 =


3/2

−3/2

−23/2

23/2

 . (9.13)

Converting the rational solution P ′′ (9.13) obtained by least squares, we have

P ′′ =


3/2

−3/2

−23/2

23/2

 =


1.5

−1.5

−11.5

11.5

 . (9.14)

Note that, unlike the solution obtained in Section 8.3, the least squares solution is close to the

vector P ′.



Part II

The 2DSD Algorithm
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Chapter 10

Interactive Editing of 2D Spline

Deformations

In this chapter, we describe the problem of interactive editing of 2D spline deformations that are

de�ned by Bézier control points subject to smoothness constraints.

10.1 Statement of the problem

10.1.1 Deformations

Let Ω be some region of R2, the domain. A deformation is a function φ from Ω to Ω. We consider

here deformations that are polynomial splines de�ned on a triangular mesh that covers Ω. See

Chapter 12. As de�ned in Section 12.2, the deformation is determined by a set of Bézier control

points that are subject to various continuity constraints.

A deformation is applied to an object (image, 3D model, etc.) by mapping each point p of

the latter to the point φ(p), and assigning to this point the same properties (color, texture, etc)

that p had.

For many applications, such as solid modeling and image morphing, the deformation must

be smooth, that is, its derivatives must be continuous. Otherwise, it will introduce corners or

creases in embedded smooth objects. See Figure 10.1.

(a) (b)

Figure 10.1: A comparison between space deformations (a) without and (b) with C1 continuity.
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10.1.2 Meshes and splines

A t-dimensional mesh T is a partition of some domain Ω ⊆ Rd into simple parts (or cells) with

pairwise disjoint interiors. We de�ne a (polynomial) spline function on a mesh T with domain

Ω as a function f : Ω → R such that the restriction fu of f to each part u of the mesh is a

polynomial on the coordinates of the argument.

In this thesis, only polynomial spline deformations are considered. Both coordinates of the

spline φ(p) are polynomial spline functions on the same mesh T , the reference mesh.

10.2 User interface

As described in Chapter 14, the spline to be edited is de�ned by a set of Bézier control points

which belong to the Bézier patches associated with the faces of the reference mesh. The user is

expected to edit the deformation by moving those control points (e.g. with the mouse).

A typical implementation of the 2DSD algorithm is described in Part III. Generally, we

assume that, in each operation, the user �rst chooses the operation type (translation, rotation,

etc), the anchor set A, and an initial set D of derived points (that may be enlarged by the

application in order to ensure solvability). Then, the user drags the anchor points with the

mouse. For each new placement of the anchors the editor adjusts the deformation and applies it

to the object being deformed.

For example, in a local soft translation all the anchor points are translated by the same

displacement vector v. The derived points D are automatically updated in order to maintain the

smoothness of the deformation. If there are enough degrees of freedom, the displacement of the

derived points decreases gradually in the their distance from the set A. See Figures 10.2.

(a) (b)

Figure 10.2: A soft translation with 2 anchor points (black open dots) and derived points (black
dots) (a) and the result of displacing the anchor points by the vector v (b).

Other operations (local soft rotation, local soft scaling, etc.) are described in Part III.



Chapter 11

Related Work

In this chapter, we present a literature review about methods for deformations of two-dimensional

models and interpolation techniques. We focus, speci�cally, on techniques that use 2D control

meshes to de�ne the deformation.

2D deformations have many speci�c applications, and therefore there is no single approach

that is optimal for all of them.

Two-dimensional deformation techniques such as radial basis functions and free-form defor-

mations have been extensively studied in the context of image morphing and registration. These

techniques have been surveyed by Wolberg [91] and, more recently, by Islam et al. [42]. Zitova

and Flusser [97] and Sotiras et al. [80] provide reviews of image registration methods, including

2D deformation techniques.

Smooth space deformations also have been extensively studied in the context of three-

dimensional shape editing. See Chapter 16.

Many existing space deformation methods provide continuity (C0) but not smoothness (C1).

The few existing techniques for C1 deformation either provide little control (like B-splines which

are practical only with a regular grid mesh); or are hard to edit because they have a very large

number of free parameters with non-intuitive e�ects and constraints; or yield deformations whose

representations become increasingly complex as they are edited.

11.1 Non-spline methods

Some mesh-based space deformation methods attempt to obtain C1 smoothness by the use of

non-polynomial interpolating functions, which are determined only by the control mesh vertices

and/or faces. Some techniques are:

• Mean value coordinates: this interpolation technique was one early approach, it is

in�nitely smooth almost everywhere, but is not C1 at the vertices of the control mesh [29,

30, 40, 45, 52].

• Harmonic coordinates: this interpolation is smooth everywhere, but does not have

closed formulas, and is expensive to compute numerically [44].

• Green coordinates: this technique is one of the most recent approaches to interpolation.

It has closed formulas, but is still expensive to compute. It also yields quasi-conformal

deformations, which partially preserves the shape of the deformed objects. [54, 78].
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• Radial basis functions: another popular approach to non-spline modeling uses a linear

combination of radial basis functions [17, 20]. Each time the deformation is edited, one

radial element is added to its description and its coe�cient is manipulated directly by

the user. This approach is very �exible, but has the drawback that the complexity of the

deformation increases without bound as editing goes on. It is also di�cult to ensure that

the deformation remains one-to-one, without �fold-over�.

11.2 Spline methods

Many deformation modeling methods use polynomial splines, that is, piecewise-de�ned functions

where each piece is a polynomial on the domain coordinates, developed by Paul de Casteljau

and Pierre Bézier [25].

Barr [5], and Sederberg and Parry [74] were the pioneers in the development of a space defor-

mation method using splines as interpolation technique, namely free-form deformation (FFD).

Due to its advantages, the FFD approach has been widely investigated allowing several extensions

and variations [15, 31, 56].

Spline-based deformation editors for modeling of 3D objects generally use a control mesh

consisting of either hexahedra [51, 74] or tetrahedra [8, 41, 95] de�ned by Bézier control points.

As we shall see in Part III, one can also use prismatic elements [67].

In the two-dimensional context, most spline-based deformation techniques use quadrangu-

lar or triangular patches. Some applications include morphing [53, 63], registration [73], and

vectorization [92]. Simplicial (triangular or tetrahedral) Bézier patches have the advantage over

quadrangular patches since they can be joined with almost arbitrary topology. On the other

hand, their continuity constraints are more complicated.

Compared to non-spline methods, splines generally use more control points, but can use

a control mesh with fewer cells. An important advantage of the spline approach is that the

complexity of the deformation is independent of its editing history. Namely, the number of

patches and control points is �xed by the choice of the control mesh. Moreover, the existence

of a simple analytic expression for the deformation around a point is an important advantage in

many applications that require derivatives of the deformation.



Chapter 12

Triangular Splines Deformation

In this chapter, we review the theory of Bézier splines de�ned on simplicial meshes, whose cells

are geometric t-dimensional simplices (intervals, triangles, tetrahedra, etc.). We consider here

speci�cally the case t = 2, that is Ω ⊆ R2, so the cells are triangles.

12.1 Triangular Bézier splines

As is well known [50], any polynomial f from R2 to R can be conveniently expressed as a linear

combination of the Bernstein-Bézier simplicial polynomials relative to any simplex u. Let p be

a point of R2, and β0, β1 and β2 be the barycentric coordinates of p relative to the vertices of a

triangle u. Let d ∈ N be a degree, and i, j and k be non-negative integers such that i+j+k = d.

Then the two-dimensional Bernstein-Bézier polynomial of degree d with indices i, j, and k is

de�ned as

Bu
ijk(p) = Bijk(β0, β1, β2) =

d!

i!j!k!
βi0β

j
1β

k
2 . (12.1)

There are (d+ 1)(d+ 2)/2 Bernstein-Bézier polynomials (and hence Bézier coe�cients) for each

triangle. The set of all polynomials Bijk with i+j+k = d is a basis for the bivariate polynomials

of total degree at most d de�ned on R2. That is, every such polynomial can be written uniquely

as

f(p) =
∑

i+j+k=d

cijkB
u
ijk(p) (12.2)

for all p ∈ R2. The coe�cients cijk are called the Bézier coe�cients of f relative to the triangle

u [50]. The Equation (12.2) says that f(p) is a linear combination of the control coe�cients cijk.

In fact, for any point p in R2, and any simplex u, it can be shown that∑
i+j+k=d

Bu
ijk(p) = 1. (12.3)

Therefore f(p) is actually an a�ne combination of the cijk. Moreover, for any point p in the

simplex u, the values of the polynomials Bu
ijk(p) lie between 0 and 1. Therefore these values

form a partition of unity and f(p) is a convex combination of the cijk.

Each coe�cient cijk can be associated to a nominal position uijk in the triangle u, whose

barycentric coordinates are, by de�nition, (i/d, j/d, k/d) relative to u. See Figure 12.1.
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u500 = u0

u410 u401

u320 u311
u302

u230 u221 u212
u203

u140 u131 u122 u113
u104

u1 = u050
u041 u032 u023 u014

u005 = u2

Figure 12.1: Nominal positions uijk (dots) of the Bézier coe�cients cijk for the Bernstein-Bézier
Bu
ijk of degree 5 relative to a triangle, and the local Bézier control net (solid and

dashed lines).

The triangular grid de�ned by those points and the edges, shown in Figure 12.1, will be called

the local Bézier control net of the triangle; the union of all those local nets is the global Bézier

control net.

12.2 Using splines to model deformations

A deformation of a region Ω ⊆ Rn can be de�ned as a function φ : Ω → Rn. A convenient

way of modeling such functions is to let each coordinate of φ(x) be a spline function φr(x), with

0 ≤ r ≤ n; all these splines being of the same degree and de�ned on the same mesh T . We call

such function a spline deformation. The function φ deforms T , the reference mesh, into a new

mesh φ(T ) with curved boundaries, the deformed reference mesh. See Figure 12.2.

(a) (b)

Figure 12.2: A deformation of R2 of the (a) reference mesh T in the (b) deformed reference mesh
φ(T ).

The Bernstein-Bézier polynomial representation can be used to describe the deformation φ. For

n = 2, let u be a triangle of T and φu be the part of φ with domain u. For each coordinate r

(0 for x or 1 for y), the Bézier coe�cient cuijk;r of φ
u
r can be viewed as coordinate r of a point

quijk, the Bézier control point of φ
u with indices i, j and k. The function φu can be modi�ed by

moving the points quijk. See Figure 12.3.
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(a) (b)

Figure 12.3: (b) Bézier control points quijk of a degree 3 patch φu from Ω → R2 and; (a) their
nominal positions uijk on the domain triangle u. The curved triangle on the right
is the image of u under the deformation φu.

Note that the control points quijk are distinct from their nominal positions uijk. They are also

distinct from the images φu(uijk) of those nominal positions, except at the corners. That is,

φu(ud00) = qud00, φ
u(u0d0) = qu0d0 and φu(u00d) = qu00d, but otherwise φ

u(uijk) 6= qijk in general.

12.2.1 Continuity constraints

Generally, we say that a deformation φ : Ω→ R2 is continuous to order r (Cr) if each coordinate

of φ is continuous to order r. This is called parametric continuity which is distinct from the

geometric continuity (Gr) sometimes used in computer graphics [25]. The latter is not appropriate

here since the parametrization of the deformed mesh φ(T ) is relevant, not just its shape.

Ensuring C0 continuity

A spline function has C0 continuity when there are no discontinuities across cell boundaries. For

a spline function f de�ned on a triangulation T , the C0 condition can be easily expressed in

terms of the Bézier coe�cients.

Let u and v be two adjacent triangles of T with Bézier coe�cients cuijk and cvi′j′k′ . It is well

known that the condition for f to be continuous across the common edge of u and v is that

cuijk = cvi′j′k′ for all i, j, k, i′, j′, k′ such that the nominal positions coincide, that is, such that

uijk = vi′j′k′ . Similarly, a deformation φ : Ω → R2 de�ned by spline is C0-continuous across an

edge if have quijk = qvi′j′k′ whenever uijk = vi′j′k′ . See Figure 12.4.
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(a) (b)

Figure 12.4: (a) Nominal positions and (b) Bézier control points of a deformation φ of degree 3
which satisfy C0 continuity constraints.

Ensuring C1 continuity

We say that a function is smooth when it has at least C1 continuity. A polynomial spline is

always smooth in the interior of any cell. Thus the spline is smooth along the edge between

two adjacent cells u and v if the �rst derivatives of the corresponding polynomials fu and fv

in any direction coincide at any point on that boundary. For simplicial polynomial splines, this

requirement translates into a set of linear constraints on the Bézier coe�cients of fu and fv.

Speci�cally, f has C1 continuity along that common edge if and only if

cv0jk = cu0jk (12.4)

cv1jk = β0c
u
1,j,k + β1c

u
0,j+1,k + β2c

u
0,j,k+1 (12.5)

for all j, k such that j+ k = d− 1, where β0, β1 and β2 are barycentric coordinates of v0 relative

to u0, u1 and u2 [50].

For a spline deformation φ : Ω → R2, the C1 continuity is given by analogous conditions to

equations in (12.4) and (12.5) over the Bézier control points qtijk instead of the coe�cients ctijk.

Namely, the deformation φ is continuous across the shared edge if and only if

qv0jk = qu0jk (12.6)

qv1jk = β0q
u
1,j,k + β1q

u
0,j+1,k + β2q

u
0,j,k+1. (12.7)

We call Equation (12.7) the quadrilateral condition. It says that the quadrilateral formed by the

control points qv1jk, q
u
1jk, q

u
0,j+1,k, q

u
0,j,k+1 must be an a�ne image of the quadrilateral formed by

their nominal positions. See Figure 12.5.
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(a) (b)

Figure 12.5: (a) Nominal positions and (b) Bézier control points of a deformation φ of degree 3
which satisfy C1 continuity constraints (the gray diamonds).

12.3 Local control

The theory of C1-continuous 2D splines with triangular cells has been extensively studied, for

example, by Schumaker [50]. It is known that there is a minimum degree d of the interpolating

spline that allows local editing of the spline while maintaining its smoothness [34, 93]. If the

degree d is too low, the constraints are interconnected in such a way that the required changes

propagate from triangle to triangle over all the reference mesh T , so that local control is not

possible.

In particular, for triangle meshes in R2, the smallest degree that allows local control with C1

continuity is d = 5, which we use in the examples that follow. In this case, each triangle has 21

Bézier control points as shown in Figure 12.6.

Figure 12.6: A reference mesh T for a spline deformation of degree 5, showing the Bézier control
points and the quadrilateral conditions.

Let n be the number of parts and l be the number of edges in the free border of the mesh, it can

be proved (by induction on n) that a simplicial spline of that size has 25
2 n+O(l) distinct control

points and 13
2 n+O(l) degrees of freedom; that is, about 25

13 = 1.9 control points for each degree

of freedom.

In comparison, a quadrangular bicubic tensor spline of degree 3 (the smallest degree that

provides local control and C1 continuity) with n patches has 9n+O(l) control points and 4n+O(l)

degrees of freedom; that is, about 9/4 = 2.25 control points for each degree of freedom. Therefore,

despite requiring a higher degree than tensor splines to obtain locality, the triangular spline

deformation needs fewer control points to achieve the same �exibility.



Chapter 13

Spline Representation

In this chapter, we de�ne the representation and the data structure to store the reference mesh T ,

the spline deformation on that mesh, and its continuity constraints. This de�nition is important

to ensure the consistency of data stored in the structure, which are basis for the 2DSD algorithm.

This data structure was used in the previous version of our editor [67].

13.1 Notation

13.1.1 Labeling and orientation of the edges

For each oriented edge e of the reference mesh T , we denote by le and re its source and destination

vertices, respectively. Moreover, we denote by ue the adjacent triangle to the left of edge e, and

ve the adjacent triangle to the right of edge e. The notation pe and ne are the other vertices

of those triangles. See Figure 13.1. Note that, if we consider the same edge in the opposite

direction, the labels are swapped in pairs ue with ve, le with re, and pe with ne.

e

ue

ve

pe

le re

ne

Figure 13.1: Labels of the triangles of the reference mesh T that shared the oriented edge e, and
their vertices.

68



CHAPTER 13. SPLINE REPRESENTATION 69

13.1.2 Labeling and orientation of the quadrilateral conditions

There are d quadrilateral conditions Qe0, Q
e
1, . . . , Q

e
d−1 for each oriented edge e of the reference

mesh T , numbered according to the direction of the edge e. For each quadrilateral condition, we

denote lei , r
e
i , p

e
i , and n

e
i the four Bézier control points of that condition, as shown in Figure 13.2.

We say that lei and r
e
i are left and right medial members; and pei and n

e
i are previous and next

extreme members of the quadrilateral condition i, respectively.

ue

ve

le re

pe0

le0 re0

ne
0

pe1

le1 re1

ne
1

pe2

le2 re2

ne
2

pe3

le3 re3

ne
3

pe4

le4 re4

ne
4

Figure 13.2: Labels of the Bézier control points that form the quadrilateral conditions on the
shared edge e of the reference mesh T , for degree d = 5.

If e′ is the edge e taking in the opposite direction, then condition Qei coincides with Q
e′
d−i−1, p

e
i

with ne
′
d−i−1, and l

e
i with r

e′
d−i−1.

13.2 Data structure

13.2.1 Representation of the reference mesh

The reference triangulation T is represented in our editor by the set of its vertices, the set of its

edges, and the set of its faces. So, there are three structures to represent a triangulation:

• Point: has the coordinates x and y on the triangulation T .

• Edge: has the pointers l and r to the source and destination vertices of the edge, respec-

tively. The orientation of the edge is chosen arbitrarily.

• Face: has the pointers p0, p1, and p2 to its vertices and e0, e1, and e2 to its edges. The

vertices and edges are numbered in counter clockwise orientation from a arbitrary vertex.

So that p0, p1, and p2 are the source vertices of e0, e1, and e2, respectively.
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13.2.2 Representation of the spline

The spline deformation φ is represented by a data structure with three record types:

• ControlPoint: represents a Bézier control point of the spline φ. It has the current coor-

dinates x, y, z in R3, and an integer type that indicates its position on a triangle of the

reference mesh T . Note that two or more control points, that must be identi�ed to obtain

C1 continuity, are represented by a single record of type ControlPoint.

• BezierTriangle: represents a triangle of the reference mesh T in one particular orienta-

tion. It has a pointer f to the corresponding face of the T , and a vector Cp of pointers to

its (d + 1)(d + 2)/2 control points qfijk. These points are stored in lexicographic order of

the indices ijk.

• BezierEdge: represents a edge of the reference mesh T shared by two triangles. It has

a pointer e to the corresponding record of type Edge; and two pointers p and n, to the

Point record of the other two vertices of the triangles that share the edge, according to

Figure 13.1. It also has pointers to the two records of the type BezierTriangle u and v,

and a vector Qc[0...d-1] of pointers to the d records of the type Quadrilateral that

represent the C1 continuity constraints related to this edge. See Section 13.2.3.

13.2.3 Representation of the C1 constraints

Each quadrilateral condition is represented by a record of the type:

• Quadrilateral: has a four pointers p, l, n and r, to the four ControlPoint record

a�ected by the quadrilateral condition. It also has an integer orientation that indicates

the orientation of the quadrilateral with respect to the direction of the shared edge (0 -

same direction; 1 - opposite direction).

The quadrilateral condition is stored only once in the data structure, that is, it is stored in the

attribute Qc[i] of each shared edge e, either the quadrilateral Qei or the quadrilateral Q
e′
d−i−1,

where e′ is the edge e in the opposite direction.

The orientation of the quadrilaterals Qe
′
0 and Qe

′
1 or Qe

′
d−1 and Q

e′
d−2 must be opposite to the

orientation of the BezierEdge record because it is necessary to ensure that the quadrilaterals

around a vertex have consistent orientations. See Figure 13.3.

Figure 13.3: A spline with consistent orientation of the quadrilaterals around the vertices.
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The other quadrilaterals Qei with (2 ≤ i ≤ d− 3) can be oriented arbitrarily. In Figure 13.4 the

quadrilateral Qc[2] = Qe2, that is, it has the same orientation of the edge e.

ue

ve

le re

Qe
0

Q[0]

pe0

le0 re0

ne
0

Qe
1

Q[1]

pe1

le1 re1

ne
1

Qe
2

Q[2]

pe2

le2 re2

ne
2

Qe′
1

Q[3]

ne′
1

re
′

1 le
′

1

pe
′

1

Qe′
0

Q[4]

ne′
0

re
′

0 le
′

0

pe
′

0

Figure 13.4: Labels of the control points to obtain a consistent orientation of the quadrilaterals
around the vertices.



Chapter 14

The 2DSD Editing Algorithm

The editing of smooth 2D spline deformations can be considered a special case of the general

problem of editing a set of parameters with linear or a�ne constraints. In this chapter, we

describe the 2DSD algorithm for this problem using the ECLES general algorithm, described in

Chapter 5.

Each constraint can be expressed by a linear equation with integer coe�cients, if the coor-

dinates of the vertices of the reference mesh T are rational. Therefore, we can use the ECLES

general parameter editing method, as part of our interactive algorithm for editing of 2D spline

deformations, in order to adjust the control points preserving the C1 continuity of the spline

while trying to obey the changes indicated by the user.

14.1 The user interaction model

In Part III, we describe in detail a typical local editing action, as seen by the user of the editor.

Here the focus is on the back stage of the editor, namely the interaction of the user interface with

the 2DSD algorithm. Figure 14.1 shows the interaction model between the user, the application's

user interface, our interactive algorithm 2DSD, and the ECLES general method.

User

User Interface

UI.Select

UI.Translate

UI.Display

2DSD

2DSD.Select

2DSD.Translate

ECLES

ECLES.Initialize

ECLES.Update

A, S

~v

A, D, P

A, D, R

Q, P

Q, R, P ′

P ′′
D

A, D, θ A, F ′
, E, ΠR, L, D, U , ΠC, r

Figure 14.1: Control �ow for a typical editing action (soft translation).

The interaction process has two steps: the �rst occurs once in each editing action when the user

chooses the control points to be adjusted; and the second step occurs one or more times when

the user modi�es the position of those control points, e.g. by dragging them with the mouse.

To simplify, only one editing operation is shown (translation of the anchor points described in

Section 18.5.1). Other operations, such as rotation and scaling of the anchor points can be

implemented in similar ways.
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Initially, through appropriate gestures of the user interface, the user selects a set of anchors

(A) and a set of initial derived control points (S). These sets are transmitted by the interface

method (UI.Select) to the �rst part of the 2DSD algorithm, the 2DSD.Select procedure (see

Section 14.2). This procedure chooses the �nal derived control points (set D) based on the

user-selected set S, and computes the relative magnitude θs of the desired displacement for each

control point ps.

Then, the sets A and D of control points and the coe�cient matrix of constraints R are given

to ECLES.Initialize (see Section 5.2). This procedure constructs the coe�cient matrix of the

linear system, in factored form (ΠR, L, D, U , ΠC), and computes the true rank r of that matrix.

14.1.1 Soft translation

In soft translation, the user displaces all the anchors by the some vector v. See Figure 14.2.

(a) (b) (c)

Figure 14.2: Translating of two anchor points. (a) Anchor points (set A) speci�ed by the user;
(b) initial derived points (set S) selected by the user; and (c) derived points (set
D) speci�ed by the 2DSD.ExpandDerived.

The suggested translation θsv for a derived point ps decreases in magnitude as one goes away

from the anchor points.

The second part of our algorithm is executed when the user speci�es (e.g. by dragging

with the mouse) a change in the anchor points, represented by some list v of change arguments,

summarized by a displacement vector v, in Figure 14.1. This data is passed by the corresponding

interface method (UI.Translate) to the second part of the 2DSD algorithm, the 2DSD.Translate

procedure (see Section 14.3). This procedure computes the new positions P ′A of the anchors and

the suggested positions P ′D for the derived control points. The 2DSD.Translate then passes

those informations to ECLES.Update (see Section 5.3), that computes the new positions P ′′D of

the derived control points satisfying the constraints. Then 2DSD.Translate updates the current

position P of the control points in A and D, and gives that information to the user interface for

visual feedback - namely, to display the e�ects of the change on the deformed mesh and/or the

deformed object. See Figure 14.3.

The 2DSD ensures (by rounding, if necessary) that the vector v has rational coordinates.

The suggested displacements θsv to the derived points can be computed with �oating point and

then rounded. The choice of D (see Section 14.2.1) ensures that the constraints can always be

solved, for any choice of A and vector v. Note that if P
′
A = PA+ θsv any constraint that involve

only points of A are satis�ed by P ′A if and only if they are satis�ed by PA. More generally, this

is true if P
′
A is an exact image of PA by an a�ne map.
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(a) (b)

Figure 14.3: Translating of two anchor points. (a) Anchor points A (black open dots), derived
points D (black dots), and non-redundant relevant constraints speci�ed by ECLES;
and (b) control points updated.

The ECLES.Update procedure then computes the new positions P ′′D of the derived points satisfying

the constraints. Then, 2DSD.Translate updates the current position Ps of each control point

s ∈ (A∪D), and gives that information to the user interface to display the e�ects of the change

on the deformed mesh and/or the deformed object.

14.1.2 Soft rotation and scaling

Other editing operations can be easily added to 2DSD, by adding a new procedure for each

operation. Our prototype editor (see Chapter 18) also supports the operations of local soft

rotation and local soft scaling of one or more anchor points. See Figure 14.4.

(a) (b)

Figure 14.4: Examples of (a) rotation and (b) scaling of one anchor point.

For the soft rotation (see Section 18.5.2), the user de�nes an arbitrary angle α and center c ∈ R2.

The suggested angle α′s of each derived point s will be θsα. In soft scaling (see Section 18.5.3),

the user de�nes a center c and a scale factor γ. The suggest scaling for each derived point s will

be γθs .

The new positions p′s of the anchors are computed in �oating point (they are usually ir-

rational) and then rounded to rationals with suitable precision. As a result, they are not a
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linear map of the original positions ps. If there are four or more anchors, the new anchor posi-

tions may violate some constraints. Therefore, for this operation, ECLES.Initialize calls the

ECLES.CheckStrongSolvabitity procedure to check the strong solvability condition in equa-

tion 2.3, and, if it is not satis�ed, fails and noti�es the application. Then, 2DSD.Select returns

a message to the user, asking her to select a di�erent (usually smaller) set of anchor points.

14.2 The 2DSD.Select procedure

The 2DSD.Select procedure is described in Algorithm 16.

Algorithm 16: 2DSD.Select

Data: A,S: set of anchor and initial derived points;
G: the control graph;
R: l × c coe�cient matrix of all constraint equations;
Q: n× j matrix of independent terms of the constraints;
P : n× j matrix of coordinates of the current positions of the control points.

Result: D,F ′: sets of derived and relevant �xed points;
E : set of relevant constraints;
θ: relative magnitude to the displacement of point;
ΠR, L, D, U , ΠC, r: fraction-free LDU factoring of RED.

1 begin
2 D ← 2DSD.ExpandDerived (A, S, G)
3 θ ← 2DSD.ComputeRelMagnitude (A, D, G)
4 (F ′, E ,ΠR, L,D, U,ΠC, r) ← ECLES.Initialize (A,D, R, Q, P , true, Turner)

The 2DSD.Select procedure expands the initial set S of derived points to the set D using the

2DSD.ExpandDerived procedure, in step 2 (see Section 14.2.1).

In step 3, the 2DSD.Select procedure uses 2DSD.ComputeRelMagnitude (see Section 14.2.2)

to compute a real coe�cient θs for each control point ps relative to the displacement of the anchor

points, which will be used by 2DSD.Translate (see Section 14.3) to compute the positions P ′s.

Finally, in step 4, 2DSD.Select calls the ECLES.Initialize procedure, described in Sec-

tion 5.2, to identify the relevant and non-redundant C1 continuity constraints for the editing

action, and to obtain a collection of matrices ΠR, L, D, U , ΠC and the rank r needed for the

ECLES.Update procedure, described in Section 5.3.
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14.2.1 The 2DSD.ExpandDerived procedure

The 2DSD.ExpandDerived procedure is used in step 2 of 2DSD.Select to determine a superset

D of the speci�ed derived points S in order to ensure the ECLES solvability condition.

Initially, 2DSD.ExpandDerived sets D ← S. Then, for each s ∈ (A∪D), the algorithm �nds

all quadrilateral conditions that involve the control point ps; and then adds the indices of zero

or more control points that enter into these conditions to the set D. The process is iterated until

all points in A ∪ D have been examined. When d ≥ 5, the �nal set of derived control points D
can be con�ned to the triangles that own the control points in (A ∪ S) and only a few adjacent

triangles.

For the purpose of this step, each Bézier control point ps = quijk is classi�ed into six types

according to its nominal position uijk in the triangle u. See Figure 14.5.

corner

edge
edge corner

inner corner
inner edge
interior

Type Description

corner i = d or j = d or k = d.
edge corner i = 0 and (j = 1 or k = 1) or

j = 0 and (i = 1 or k = 1) or
k = 0 and (i = 1 or j = 1).

edge none other above and (i = 0 or j = 0 or k = 0).
inner corner i = j = 1 or i = k = 1 or j = k = 1.
inner edge none other above and (i = 1 or j = 1 or k = 1).
interior i ≥ 2 and j ≥ 2 and k ≥ 2.

Figure 14.5: Classi�cation of the control points of a Bézier patch of degree 6.

The type of the point p determines the set of quadrilateral constraints that apply to that point

and the additional points inserted in the set D. A point p of type interior does not take part in

any quadrilateral condition, so it does not contribute to the set D. A point p of any other type

contributes the additional derived points according to rules are shown in Figure 14.6.

When applying these rules, the algorithm skips any control points that would lie on non-

existing triangles, and any quadrilateral conditions that would depend on them. These rules

ensure that there is at least one derived point for each quadrilateral involved in the editing

action. The set D obtained ensures the strong solvability condition of the ECLES.

The relevant quadrilateral constraints determined by the A and D points may include redun-

dant equations. This happens, for example, when A∪D includes a corner or edge corner point

of an interior vertex.
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Type: corner

p

p

Type: edge corner

p

p

Type: edge

p

p

Type: inner corner

p

p

Type: inner edge

p

Figure 14.6: Relevant continuity constraints (gray diamonds) and derived points added to D
(solid dots) depending on the type of the control point ps with s ∈ A ∪ D (open
dot). For each type, the left �gure shows a typical situation where the point ps is
su�ciently far from the triangulation's border. The right �gure shows a situation
near the border where some of those control points and constraints are missing.
These diagrams are generalized to vertices of arbitrary degree in the obvious way.
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14.2.2 The 2DSD.ComputeRelMagnitude procedure

The 2DSD.ComputeRelMagnitude procedure computes the value θs, which de�nes the relative

magnitude of the desired displacement of each point ps, that is, how much the suggested position

P ′s is a�ected by the speci�ed displacement v of the anchor points. The value θs is a number

between 0 and 1 given by the formula

θs =
δ′′s

δ′s + δ′′s
(14.1)

where δ′s is the distance between the point ps and the nearest anchor point; and δ′′s is the

distance between the point ps and the nearest �xed point. Both δ′s and δ
′′
s are graph-theoretical

distances measured on the global Bézier control net G. The distances are computed by Dijkstra's

algorithm [16]. The value θs computed for anchor points is 1, and for �xed points is 0.

14.3 The 2DSD.Translate procedure

The 2DSD.Translate procedure is called by the user interface to implement soft translation, every

time the anchor points are moved by the user to a new position. It is described in Algorithm 17.

Algorithm 17: 2DSD.Translate

Data: v: displacement applied to the anchor points;
Q: independent terms of the constraints;
A,D,F ′: set of anchor, derived and relevant �xed points;
θ: relative magnitude to the displacement of points;
ΠR, L, D, U , ΠC, r: matrices and rank r returned by ECLES.Initialize;
P : matrix of coordinates of the current positions of the control points.

Result: P : updated matrix of coordinates of the control points.
1 begin
2 for each s ∈ P do P ′s ← Ps + θsv
3 P ′′D ←ECLES.Update (A, F ′, E , R, Q, ΠR, L, D, U , ΠC, r, P

′)
4 for each s ∈ D do Ps ← P ′′s
5 for each s ∈ A do Ps ← P ′s

In step 2, the 2DSD.Translate procedure computes the suggested positions P ′s of each con-

trol point s using the value θs. Then, in step 3, the new positions P ′′D of the derived points

are computed by the ECLES.Update procedure (see Section 5.3). Finally, in steps 4 and 5,

2DSD.Translate sets the �nal position Ps of each control point.
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14.4 An example

Suppose that the set A is the point p = qu032 between the triangles u (right) and v (left), shown

in Figure 14.7, and S = ∅.

Figure 14.7: Editing point qu032 with the derived points qv122, q
u
122, q

v
131, q

u
131.

According to Figure 14.6, the algorithm will select the four derived control points D = {qv122,
qu122, q

v
131, q

u
131} (large black dots in Figure 14.7). Based on these points and on the anchor point

qu032, ECLES.Initialize identi�es two relevant constraints, which are included in the set E :

−(β0 + β1 + β2)q
v
122 + (β0)q

u
122 + (β1)q

u
032 + (β2)q

u
023 = 0 (14.2)

−(β0 + β1 + β2)q
v
131 + (β0)q

u
131 + (β1)q

u
041 + (β2)q

u
032 = 0 (14.3)

where β0, β1, and β2 are the barycentric coordinates of v0 relative to u0, u1, and u2. The set F ′

has the two points: qu023 = qv023 and qu041 = qv041.

The matrix form of equations (14.2) and (14.3) of the example in Figure 14.7 is[
−β 0 β0 0

0 −β 0 β0

]
P
′′
D = −

[
β1
β2

]
P
′
A −

[
β2 0

0 β1

]
PF ′ (14.4)

where the constant matrix QE is zero.

In the example in Figure 14.7, the equations are linearly independent and the system is

indeterminate. Therefore, the new positions P ′′D are computed by ECLES.Update which solves

the system (14.4) using the least squares criterion.



Part III

The PrisMystic Editor
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Chapter 15

Goals and Motivation

In this chapter, we describe the goals and motivation for the interactive editor of deformations

for 3D models that we developed, called PrisMystic.

15.1 Goals

The original motivation for developing the PrisMystic editor was to help the analysis of images

of organisms and organic structures. Speci�cally, the editor was used to deform 3D models of

those organisms to match the images of real specimens obtained by optical microscopes. See

Figure 15.1.

(a) (b) (c)

Figure 15.1: (a) An actual microscope image of the protozoan C. elegans; (b) 2D view; and (c)
3D view of a deformed model obtained with PrisMystic, matching the image (a).

Although the models for this application are three-dimensional, the deformations are essentially

two-dimensional with little change in depth, because the third dimension cannot be easily per-

ceived through a microscope.

This editor can also be used for models of other mostly planar biological structures, such

as blood cells or neurons grown on a �at surface. As it turns out, the editor is also to edit 2D

deformations of other non-biological objects, such as editing terrains (see Section 19.2).
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15.2 Relation to the Masters version

The PrisMystic editor is an improved version of the editor previously described in my Masters

dissertation [67]. This editor uses a 2.5D space deformation technique (see Section 17.3) also

previously proposed.

The improvements include: using the ECLES algorithm, described in Part I, instead of

�oating-point linear algebra packages; a more �exible and general method for the selection of

control points (allowing multiple anchors); and a di�erent goal function for the least squares

method. Also, we used the general 2DSD approach, described in Part II, to connect the user

interface to the ECLES solver, described in Part I.

With these changes, it would be now relatively easy to extend the editor to accommodate

other a�ne constraints, such as C2 smoothness, vertical or horizontal alignment, �xed points,

among others.



Chapter 16

Related work

The literature presents some approaches to deformations of three-dimensional models. We focus,

speci�cally, on space deformation methods that use volumetric meshes as a control tool to deform

the space surrounding the 3D model. In this approach, the deformation of the control mesh is

transfered to the embedded model using interpolation techniques.

16.1 Deformation of 3D models

There are many approaches for modeling of 3D objects, which can be classi�ed in Physics-based

or geometry-based methods. The goal of the Physics-based deformation methods is to simulate

the physical behavior of objects under internal and external forces. Realistic simulations require

the use of these methods. However, they are not adequate for interactive applications or real-

time simulations due to the high computational cost [61]. In this thesis, we did not consider

using these approaches since they would require accurate physical models of the interior of the

models. For example, the model of a microorganism should include information of elasticity and

viscosity of tissues, which is unlikely to be available, even for the best-studied organisms.

The geometric methods are simpler, faster, and relatively easier to implement. Moreover, they

allow arbitrary deformations without regard to the laws of physics [6]. The challenge of these

methods is to produce deformations that are close to reality, and simultaneously to maintain

the initial characteristics of the objects, such as smoothness of their surface. The geometric

approaches can be classi�ed in surface or space deformation methods.

The surface deformation methods assume that the object is represented by its external sur-

face. The parameters or vertices of this surface are manipulated directly by the user. Usually,

these methods are used when the deformation must preserve details of the surface of the object.

Linear techniques produce good results for small deformations [13]. However for large defor-

mations, they can generate unwanted artifacts due to linearization errors, which leads to the

popularization of the nonlinear techniques [94].

The space deformation methods allow the user modi�es the object mesh indirectly by de-

forming the space surrounding it [31]. These methods can have fewer parameters than the object

mesh itself, reducing the editing work of the deformation. Usually, they are used in interactive

applications where the model has thousands of vertices. In these applications, the surface defor-

mation techniques are impractical due to the large number of parameters to be manipulated by

the user, and because it is di�cult to maintain the smoothness of the surface. Another advan-

tage of space deformation methods is that the modeling of the deformation is independent of the

model's representation.
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16.2 Space deformations

Smooth space deformations have been extensively studied in the context of three-dimensional

shape editing. A survey focusing on interactivity is presented by Gain and Bechmann [31]. They

classify the space deformation methods according to the dimension of the control objects used to

de�ne the deformation:

• Point-based deformations (0D): the user handles control points which are freely po-

sitioned on the space surrounding the model. Each control point has a region of in�u-

ence within which the movement of the point causes displacements of the model's points.

Some methods of this class are: Constraint-based Deformation [3], Directly Manipulated

FFD [31], Dirichlet FFD [31], and Simple Radial Deformation [1, 2, 11, 49].

• Curve-based deformations (1D): the user handles one or more curves or control axes for

local or global deformations of the model. Examples of such methods are: Regular Global

Deformations [31], Generalized de Casteljau Deformation [31], Axial Deformation [31],

Wires [31], Bender [31], and Skinning Frameworks [5, 55];

• Surface-based deformations (2D): the user handles one or more control surfaces for

local or global deformations of the model. Some of these methods are: Parametric Patch

Tools [26, 27], Star-convex Tools [23], Triangular Meshes [45, 48], and Field-based Tools [88,

89];

• Volume-based deformations (3D): the user handles a coarse mesh surrounding the

model. Sederberg and Parry [74] introduced the space deformation approaches using vol-

umetric meshes formed by hexahedra: the Bézier Free-Form Deformation (FFD). Then,

other methods were developed: FFD with Local Control [39, 51] and FFD with Arbitrary

Topology Grid [8, 15, 41, 56, 95].

Space deformation editors that use three-dimensional control meshes seem better suited to arbi-

trary smooth deformations. The deformed control mesh provides an immediate intuitive under-

standing of the general nature of the deformation, and of the scope of each control parameter. In

particular, it becomes easier to notice and avoid singularities in the deformation (places where

the deformation is not injective, meaning that space is being folded over itself). For these reasons,

we have opted for a 3D (or �2.5D�) control method in this work.

Most 3D space deformation methods described in the literature use either hexahedral [51, 74]

or tetrahedral [8, 41, 95] control meshes de�ned by Bézier control points. Other works use

prismatic elements [12, 67], including the method described in this thesis. We have opted using

a control mesh of triangular prisms with vertical walls. So, our deformation method is 2.5D

according to the classi�cation of Gain and Bechmann [31].

16.3 Interpolation techniques

Interpolation techniques are used to transfer the deformation of the control mesh to the embedded

model in the deformed space. Some space deformation methods use non-spline interpolating

functions, which are determined by the control mesh vertices and/or faces only, in order to

obtain smooth deformations (see Section 11.1).

Another interpolation technique widely adopted in graphical applications, that provide local

control and smooth deformations are the spline functions [25], de�ned in Chapter 12. Barr [5],
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and Sederberg and Parry [74] were the pioneers in the development of a space deformation

method using splines as interpolation technique, namely Free-Form Deformation (FFD). Due to

its advantages, the FFD approach has been widely investigated allowing several extensions and

variations [15, 31, 56].

16.4 Spline interpolation

The splines functions can also be used to maintain the continuity and smoothness of the control

mesh and of the inner 3D model[8, 67, 74]. Simplicial Bézier patches have the advantage over

quadrangular ones since they can be joined with almost arbitrary topology. On the other hand,

their continuity constraints are more complicated.

However, the requirement of C1 continuity makes this approach very hard to edit because

of the large number of control parameters. For example, with a tetrahedral mesh, the degree

of the interpolating spline must be at least 5 to allow localized editing of the mesh. Therefore,

to specify each tetrahedron in the mesh the user must specify the position of 56 control points

(56 × 3 (x, y, z) = 168 real parameters) [8]. With an hexahedral mesh one can have C1 splines

of degree 3, however each cell requires 64 control points (192 parameters) [31].

With so many control points, it becomes di�cult to identify and select the ones that must

be edited to achieve a desired e�ect. Furthermore, the editing software must automatically move

many additional control points in order to satisfy the C1 continuity constraints, increasing the

user's confusion. Complex user interfaces, with high-level abstractions, have been developed to

address this problem [8, 31], but they do not solve it completely.

Compared to these methods, meshes with prismatic cells require only 42 control points per

cell. All these points are outside the control mesh, and its coordinates are more restricted so

that there are only 84 free real parameters (21× 2 (x, y) + 42× 1 (z)). Moreover, the necessary

editing interface is much simpler than other 3D control meshes because these coordinates can be

separately edited. So, the user needs to edit at most 21 control points per cell, at a time. See

Table 16.1.

Degree Number of points Inner points Real parameters

Tetrahedron 5 56 yes 56 × 3(x,y,z) = 168
Hexahedron 3 64 yes 64 × 3(x,y,z) = 192
Prism 5 42 no 21 × 2(x,y) + 42 × 1(z) = 84

Table 16.1: Comparison among cells of meshes consisting of tetrahedra, hexahedra, and prisms.

For our application, we believe that our 2.5D method provides a reasonable balance between

control mesh size, naturalness of editing, and computation speed.



Chapter 17

Overview of the editor

In this chapter, we describe an overview of PrisMystic editor and its deformation paradigm, that

is, the 2.5D space deformation approach [67, 68].

17.1 The 3D model

We assume that the organism to be deformed is given as a dense triangular model mesh M with

tens of thousands of triangles, which is read from a �le in the Wavefront format (.obj). See

Figure 17.1.

Figure 17.1: The 3D model mesh M of a Dragon [82], represented by a triangular mesh.

Note that the space deformation approach allows other representations of the model, and not

just triangular meshes. The PrisMystic editor also supports point cloud models. See Figure 17.2.

Figure 17.2: The 3D model mesh M of a Dragon [82], represented by a point cloud.
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17.2 The 3D reference mesh

To use the PrisMystic editor, the user must provide a 3D reference mesh P around the object

consisting of a single layer of triangular prisms with �at top and bottom faces, parallel to the

xy plane, and vertical walls. The projection of the 3D reference mesh on the xy plane is the 2D

reference mesh T of Part II. The projection of P and its projection on the z axis is an interval

[a, b]. See Figure 17.3.

Figure 17.3: A 3D model mesh M surrounded by a 3D reference mesh P , and the corresponding
2D reference mesh T .

17.2.1 De�ning the barycentric coordinates

In order to compute the deformed image ψ(p) of a point p of the object, the program �nds the

prism U of P that contains it and computes the barycentric coordinates β0, β1 and β2 of p with

respect to the triangle u of the 2D reference mesh T corresponding to the prism U . The program

also computes the vertical position of p relative to both triangular faces u0 and u1 of U , that is,

the two numbers α0 = (b− z)/(b− a) and α1 = (z − a)/(b− a). See Figure 17.4.

Figure 17.4: Barycentric coordinates α0, α1, β0, β1 and β2 of a point p of the 3D model mesh
M , related to the prism U of the 3D reference mesh P .
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If the object is de�ned by mesh M of triangles, the deformation is applied only to the vertices

of the mesh assigning that the triangles remain �at. This the resulting mesh M is not exactly

the deformation ψ(M) applied to the original object. However, if M is su�ciently �ne, the

discrepancy between M and ψ(M) can be negligible.

17.3 Deformation paradigm

The deformations allowed by our editor consist of 2D spline deformations of the x and y co-

ordinates combined with (x, y)-dependent 1D stretching maps of the z coordinates. All three

functions are de�ned on a same reference mesh T in R2.

In many applications, the viewing conditions are such that the organism is almost viewed

from the same angle (always sideways, or always from the top), so that these �2.5D� deformations

are su�cient. If the organism can be viewed from di�erent angles, then the model should be

appropriately rotated before being loaded into PrisMystic.

More precisely the deformation is a function ψ from P to R3 that consists of a two-dimensional

deformation φ : T → R2, and two spline functions σ0 : T → R and σ1 : T → R, all with the same

degree d,

ψ(p) = (ψ(p).x;ψ(p).y;ψ(p).z), (17.1)

where p = (x, y, z) ∈ R3 and

ψ(x, y, z).x = φ(x, y).x

ψ(x, y, z).y = φ(x, y).y

ψ(x, y, z).z = α0(x, y)σ0(x, y) + α1(x, y)σ1(x, y).

Note that, for each position p inside of P , the coordinate z of the point ψ(p) varies between

σ0(x, y) and σ1(x, y).

The deformation function ψ then takes the reference mesh P to the 3D deformed reference

mesh ψ(P ), which consists of a set of prisms with vertical walls, whose top and bottom faces

are curved triangles forming two spline surfaces. The deformed model mesh ψ(M) is another

triangular mesh with the same topology of M , obtained by mapping all vertices of M through

the function ψ. See Figure 17.5.

Figure 17.5: A deformed reference mesh ψ(P ) surrounding a deformed model mesh ψ(M).
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17.4 Editing the deformation

The splines σ0, σ1 and φ, described in Section 17.3, are de�ned by their Bézier control points.

The user can modify the deformation by moving the control points with the mouse. Considering

splines with degree d = 5, each function has pieces de�ned by (d+1)(d+2)/2 = 21 Bézier control

points, according to Chapter 12.

The editor has separate modes for adjusting the (x, y) deformation (a spline mapping φ :

R2 → R2) and the top and bottom surfaces (two spline functions σ0, σ1 : R2 → R). The

algorithm 2DSD, described in Part II, is used by the editor to edit these three functions.

The user can select one of three editing modes available in the editor: xy-mode, z0-mode and

z1-mode. In the xy-mode, the user has a view of the top of the deformed reference mesh ψ(P ),

that is, the 2D deformed reference mesh φ(T ). Thus, the user can only modify the coordinates

x and y of each control point quijk of φ. See Figure 17.6.

Figure 17.6: View of the deformed reference mesh ψ(P ) in the xy-mode, showing the control
points and the global Bézier control net G (dotted line) on the deformed reference
mesh φ(T ).

In the z0-mode and z1-mode, the user can edit the coe�cients cuijk;r of the splines σ0 or σ1,

respectively. In these modes, the user has an oblique view of the deformed reference mesh

ψ(P ). For each triangle u ∈ T and each set of indices i, j and k with i + j + k = d, there are

two coe�cients: cuijk;0, for the bottom surface; and cuijk;1, for the top surface (as described in

Section 12.2). Therefore, there are 2(d + 1)(d + 2)/2 = (d + 1)(d + 2) control points, for each

prism of P but only the coordinate z0 or z1 can be modi�ed by the user. Each one of the two

splines σ0 and σ1 is edited independently, by moving the point with the mouse along the vertical

line that contains it. See Figure 17.7.

(a) (b)

Figure 17.7: View of the deformed reference mesh ψ(P ) in the z0-mode (a) and z1-mode (b),
showing the control points of the splines σ0 and σ1, respectively.
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17.5 Ensuring the spline continuity

As observed in Section 12.2.1, the C0 continuity condition is ensured because only one control

point is available for two or more nominal positions that coincide, that is, nominal positions on

the shared edges or vertices by two or more triangles in T .

The C1 continuity constraints are represented by quadrilateral conditions, as shown in Fig-

ure 12.6. When the user edits one or more control points (anchors), the program uses the 2DSD

algorithm to determine one or more additional control points that must be modi�ed in order to

ensure the C1 continuity, and to apply the necessary adjustments as the anchors are moved by

the user, as described in Part II.



Chapter 18

Editing Paradigm

In this chapter, we present the user interface of the PrisMystic editor and its main controls. We

also describe the editing paradigm used by the editor that allows the view and editing in distinct

modes: xy-mode, z0-mode, and z1-mode.

18.1 PrisMystic user interface

The user interface of the PrisMystic editor has a main editing window, a menu bar, and two

control windows. See Figure 18.1.

Figure 18.1: The user interface of the PrisMystic editor in the initialization mode.

The main window is used for editing and visualization of the deformations. Various options and

parameters of the editor are selected in the windows Editor Settings (see Section 18.1.1) and

Editing Control (see Section 18.1.2).
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The PrisMystic has �ve distinct editor mode:

1. Initialization;

2. 3D viewing;

3. Editing the deformation spline φ in xy plane;

4. Editing the deformation spline σ0 in z axis;

5. Editing the deformation spline σ1 in z axis.

When started the editor is in the initialization mode and the other modes are disabled, as shown

in Figure 18.1.

18.1.1 Editor Settings window

The possible settings for the PrisMystic editor include items which are to be shown in the main

editing window, and the available constraints. See Figure 18.2.

Figure 18.2: The options of the Editor Settings window of the PrisMystic editor.

Among the available options, the user can choose to display in the main editing window the

model mesh, and/or the reference mesh, and/or the target image to be matched (displayed in

the background).

When the reference mesh is displayed, the user can choose to display any combination of:

• Bézier control points of the deformed reference mesh;

• Derived control points D;

• Global Bézier control net;

• Constraints on the control points (for example, the C1 continuity constraints);

• Non-redundant relevant constraints de�ned during the editing of a deformation.

The current set of anchors A, is always displayed. The user can also choose between enforcing

only (that is, no constraints on the control point) C0, or the C1 continuity constraints as described

in Section 12.2.1.
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18.1.2 Editing Control window

The Editing Control window lets the user choose between view and editing modes (xy, z0, and

z1), and controls the view mode. Moreover, the user can select the type of editing operation to

be applied to the anchor points: translation, rotation, or scaling. See Figure 18.3.

Figure 18.3: The options of the Editing Control window of the PrisMystic editor.

In both view and editing mode, it is possible display any object available in the Show group of

the Editor Settings. See Figure 18.2.

18.2 Initialization mode

When the editor is initialized all its options are disabled, except the menu options. See Fig-

ure 18.1. In the menu bar, there are options to load the model mesh (it can be a 2D or 3D

mesh), the reference mesh of prisms, and a target image that is to be matched, if necessary.

There are also options to clear these three objects, and to save the model and the reference mesh

displayed in the main editing window.

The model and the reference mesh are loaded from �les in Wavefront format .obj, which

contain lists of vertices and faces of a triangular mesh. The reference mesh P �le should contain

a 2D mesh of triangles, that is the top face of P , whose vertices should have the z coordinate

z = b, for some positive number b. The bottom face of P is assumed to be the same triangulation,

with z coordinate a = −b (see Section 17.2).

From this information, the editor builds the global Bézier control net, de�nes the Bézier

control points, and locates the vertices of the model mesh M relative to the reference mesh P

(see Section 17.2). Then, the editor enables the editing xy-mode by default.

18.3 View mode

The view mode is enabled by selecting View among the available modes in the Editing Control

window. See Figure 18.3.

The default setting of the editor view mode displays the model and the reference mesh of

prisms. The view mode also allows the user to rotate the objects, displayed in main editing

window, in any direction through the sliders X, Y and Z. See Figure 18.3.

Figure 18.4 shows the PrisMystic editor in the view mode, displaying the deformed reference

mesh ψ(P ) and the deformed 3D model mesh ψ(M).
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Figure 18.4: The view mode of the PrisMystic editor.

18.4 Point selection sub-mode

The xy, z0, and z1 editing modes have a selection sub-mode, in which the user selects the set A
of anchor points of the editing action, and the set S of initial derived points.

By default of this sub-mode, the user sees the model mesh, the reference mesh, and its control

points. The selection sub-mode is enabled in all editing modes, and the editor maintains the

view according to the selected editing mode: xy-mode, z0-mode, and z1-mode. As a shortcut, if

the editor is in any of the editing modes, and there are no anchors selected, clicking one control

point makes it the only anchor and sets the set S to empty.

18.4.1 Anchor selection

When the checkbox Anchors is checked, the user can choose a set A of anchor points by clicking

on them, with the mouse. To move the anchor, the user needs to uncheck the Anchors option.

See Figure 18.5(a)

18.4.2 Neighborhood selection

The user can choose the radius of the Neighborhood δmax in the editing region, through a numeric

widget. See Figure 18.3. The initial set S of derived points is then set to all points at maximum

distance δmax from the anchors, in the global Bézier control net G.

For example, Figure 18.5(b) shows the initial derived points S selected in the maximum

neighborhood de�ned by the user.



CHAPTER 18. EDITING PARADIGM 95

(a) (b)

Figure 18.5: The PrisMystic editor highlighting (a) the selected anchor points, and (b) the initial
derived points with δmax = 3, in the xy-mode.

When the checkbox All is checked, the numeric widget is disabled, and the maximum distance is

de�ned automatically as the greatest possible (δmax = +∞). So, all control points are automat-

ically included in the set S, except the anchor point clicked by the user. This function allows

that the operation applied to the anchor point to be reproduced at all control points, that is, it

is useful to apply global translation, rotation and scaling. See Figure 18.6.

(a) (b)

Figure 18.6: The PrisMystic editor highlighting (a) the initial derived points, and (b) the scaling
operation applied to all control points.

When the user exits the selection sub-mode and clicks on any one anchor point to drag it, the

initial derived set S is automatically selected by the interface. Then, it is augmented with the

extra control points needed for solvability, obtaining the set D of derived points (see Section 14.1).

18.5 Editing xy-deformation

In the editing xy-mode, the user is presented with a top view of the reference mesh of prisms, that

is, the 2D deformed reference mesh T and the Bézier control points. See Figure 18.7. The user

can modify the coordinates x and y of the control points by selecting one operation (translation,

rotation, or scaling), and dragging any one anchor point with the mouse.
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Figure 18.7: The editing xy-mode of the PrisMystic editor.

18.5.1 Local soft translation

In the xy-mode of our editor, the local soft translation is the default editing operation. The user

de�nes a displacement ~v for any one anchor points by clicking on one of the anchor points and

dragging it to a new position, with the mouse. The same displacement will be applied to all

anchors. Then, the new positions of the derived points is computed by 2DSD algorithm. See

Figure 18.8.

(a) (b)

Figure 18.8: (a) Before and (b) after a soft translation of two anchor points (black open dots)
with δmax = 4, showing the derived points D (black dots), and the C1 continuity
constraints (quadrilaterals).
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18.5.2 Local soft rotation

Another editing operation available in xy-mode is the local soft rotation of the anchor points

around a user-chosen center point. The user de�nes a center c in the xy plane by clicking on

the desired position in the main editing window, with the right button of the mouse. Then, the

user chooses an angle α by clicking on any one of the anchor points and dragging it to a new

position, with the mouse. A guide line between the center c and the new position is displayed

during the dragging. The same rotation angle α around c is applied to all other anchors. Then,

the new positions of the derived points is computed by 2DSD algorithm. See Figure 18.9.

(a) (b)

Figure 18.9: (a) Before and (b) after a soft rotation of one anchor point (black open dot) with
δmax = 8 around the center c, showing the derived points D (black dots), and the
C1 continuity constraints (quadrilaterals).

18.5.3 Local soft scaling

The local soft scaling operation also available in the xy-mode, expands or contracts the anchor

points relative to a user-chosen center point. As in the rotation operation, the user de�nes a

center c in the xy plane by clicking on the desired position in the main editing window, with

the right button of the mouse. Then, the user chooses a scale factor γ by clicking on one of the

anchor points and dragging it to a new position with the mouse. A guide line between the center

c and the new position is displayed during the dragging. The same scale factor γ around c is

applied to all other anchors. Then, the new positions of the derived points are computed by the

2DSD algorithm. See Figure 18.10.

(a) (b)

Figure 18.10: (a) Before and (b) after a soft scaling of one anchor point (black open dot) with
δmax = 6 around the center c, showing the derived points D (black dots), and the
C1 continuity constraints (quadrilaterals).
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18.6 Editing z-deformation

In the editing modes z0-mode and z1-mode, the user is presented with a oblique view of the

deformed reference mesh ψ(P ).

In the z1-mode, the control points of the top spline σ1 of ψ(P ) is displayed. For the user's

convenience, the view is automatically rotated 180◦ so that the spline σ0 appears on top. See

Figure 18.11.

(a) (b)

Figure 18.11: The editing modes, (a) z1-mode and (b) z0-mode, of the PrisMystic editor.

In z0-mode or z1-mode the user can modify the z coordinate of the selected anchor points by

dragging, with the mouse, any one anchor point up or down along the vertical line that passes

through it. The same z displacement is applied to all anchors. The 2DSD algorithm then

computes the vertical displacements for the derived points. See Figure 18.12.

(a) (b)

Figure 18.12: (a) Before and (b) after the editing of one anchor point with δmax = 3 in z1-mode,
showing the control points and the derived points. The relevant constraints and
the global Bézier control net G of the reference mesh are also shown in (a).

By default, the set of anchors A contain only the point clicked with the mouse, and the set

of initial derived points S is empty. Optionally, the user can select larger sets A and S (see

Section 18.4).



Chapter 19

Examples

In this chapter, we present images of the obtained results using the PrisMystic editor to deform

models. We test the 2.5D space deformation method, described in this part of the thesis, which

uses the 2DSD algorithm, described in Part II.

19.1 Deformation of organism models

Our experiments tested the suitability of the developed algorithms, using the PrisMystic editor

to reproduce some deformations of organisms which were observed in actual images.

We used examples of three microorganisms in the experiments: the nematode worm Caenorhab-

ditis elegans, and the protozoa Dileptus anser and Lacrymaria olor. We also used the organism

star�sh Asterias rubens. The organism models were created based on its morphology. See left

column in Figure 19.1.

The models of the organisms were generated using the Blender editor [83]. The model is

a dense triangular mesh consisting of tens of thousands of triangles, showing a typical resting

shape of the organism. For each model was appropriately de�ned a �le in the Wavefront format

(.obj), which contains the coordinates x, y, and z of the vertices of the reference mesh T , and

the three vertices of each triangular face. See middle column in Figure 19.1. From the load of

this �le, the PrisMystic editor automatically generates the reference mesh P adequate for each

model. See right column in Figure 19.1.

Table 19.1 summarizes the parameters of the model and the reference meshes used for each

organism.

C. elegans D. anser L. olor Star�sh

Number of vertices on M 10425 18967 10425 10242

Number of faces on M 20830 37930 20830 20480

Number of vertices of T 8 9 10 11

Number of faces of T 6 7 8 10

Number of edges of T 13 15 17 20

Number of shared edges of T 5 6 7 10

Number of constraints on φ(T ) 25 30 35 50

Number of control points of φ(T ) 96 111 126 151

Table 19.1: Parameters of the model mesh M and the reference mesh T for the organisms used
in the tests.
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(a) C. elegans [9]. (b) (c)

(d) D. anser [77]. (e) (f)

(g) L. olor [81]. (h) (i)

(j) A. rubens [76]. (k) (l)

Figure 19.1: Morphology of the organism (left). The 2D view (middle) and 3D view (right) of
the reference mesh, and the organism models in a typical resting shape.

19.1.1 Results

In this section, we present some actual images of the considered organisms, in various poses and

deformations. These images were obtained in the Internet.

We used the PrisMystic editor to interactively deform the 3D model of each organism in order

to match it with the images. The actual images, the 2D and 3D views of the obtained results

are shown in Figures 19.2 to 19.5. After acquiring some experience with the editor, editing each

example could last no more than 10 minutes [22].
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(a) [32]. (b) (c)

(d) [46]. (e) (f)

(g) [59]. (h) (i)

(j) [7]. (k) (l)

(m) [35]. (n) (o)

Figure 19.2: Actual microscope images of the nematode C. elegans (left); 2D view (middle); and
3D view (right) of the deformed models.
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(a) [85]. (b) (c)

(d) [85]. (e) (f)

(g) [85]. (h) (i)

(j) [28]. (k) (l)

(m) [85]. (n) (o)

Figure 19.3: Actual microscope images of the protozoan Dileptus anser (left); 2D view (middle);
and 3D view (right) of the deformed models.
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(a) [86]. (b) (c)

(d) [86]. (e) (f)

(g) [86]. (h) (i)

(j) [86]. (k) (l)

(m) [86]. (n) (o)

Figure 19.4: Actual microscope images of the Lacrymaria olor (left); 2D view (middle); and 3D
view (right) of the deformed models.
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(a) [14] (b) (c)

(d) [90] (e) (f)

(g) [75] (h) (i)

Figure 19.5: Actual images of the star�sh Asterias rubens (left); 2D view (middle); and 3D view
(right) of the deformed models.
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19.2 Deformation of terrain models

The PrisMystic can also be used to create and deform digital terrains. An interesting feature

of PrisMystic is that it allows displacing features such as hills and rivers horizontally as well

as displacing the surface vertically. It can be useful therefore to edit terrains to be used as

displacement maps in 3D rendering or relief patterns in numerically controlled machining and

3D printing.

We apply 2.5D deformations in terrain surfaces to z-deformations provided by our editor.

See Figure 19.6. The Blender editor was used to help visualizing the deformed terrain. See

Figure 19.7. Table 19.2 summarizes the parameters of the model and the reference meshes used

in this test.

Terrain

Number of vertices on M 1089

Number of faces on M 2048

Number of vertices of T 9

Number of faces of T 8

Number of edges of T 16

Number of shared edges of T 8

Number of constraints on φ(T ) 121

Number of control points of φ(T ) 40

Table 19.2: Parameters of the model mesh M and the reference mesh T used in the test.

(a) (b) (c)

Figure 19.6: (a) 2D view and (b) 3D view of the model of a digital terrain and its reference mesh;
and (c) 2D view of the deformed model using the PrisMystic editor.

(a) (b)

Figure 19.7: 3D view in Blender editor [83] of the deformed model shown in Figure 19.6.



Chapter 20

Conclusion and Future Work

In Part I, we developed a general method for interactive editing of parameters subject to linear

or a�ne constraints. In Part II, we applied this method to the speci�c problem of creating and

editing two-dimensional spline deformations subject to smoothness constraints. In Part III, we

described an editor of 2.5D space deformations for three-dimensional solid modeling using the

method of Part II.

20.1 Part I

In Part I of this thesis, we described the general ECLES method for interactive editing of param-

eters subject to linear or a�ne constraints. We use exact integer arithmetic in order to detect

and eliminate redundancies among constraints and avoid rounding failures.

In the ECLES algorithm, the constraints and the user editing actions are combined using

weighted constrained least squares, instead of the usual �nite element approach, thus providing

more �exible control to the user.

One aspect that needs more discussion and tools is the conversion of parameters from �oating

point to rational values, rounded so as to satisfy the constraints.

20.2 Part II

In Part II of this thesis, we described a general modeling technique for interactive editing of

C1-continuous two-dimensional deformations using triangular elements with Bézier control nets.

The method described, the 2DSD algorithm, supports splines of degree 5 or higher and allows

convenient editing of the deformation while preserving the C1 continuity of the surface.

We use the integer-based ECLES general method, described in Part I, to combine the user

editing actions and the continuity constraints in a reliable and e�cient way, avoiding the fatal

failures that could arise from �oating-point rounding errors.

One direction for future work is the consideration of new a�ne geometric and physical con-

straints such as C2 continuity. Another direction for future work is the use of rational rotation

matrices for soft rotation. This would allow replacing the strong solvability requirements by

weak solvability, so that multiple anchors can be rotated.
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20.3 Part III

In Part III of this thesis, we described the PrisMystic editor, an interactive editor for the defor-

mation of 3D models. This editor uses a 2.5D space deformation technique and is an improved

version of the editor previously described [67]. One of the main improvements is the use of the

algorithm 2DSD, described in Part II, as part of the 2.5D space deformation method.

The PrisMystic editor can also be used to create and deform digital terrains. In this direction,

the user interface can be improved to provide a better editing and viewing of the terrain surface.

The PrisMystic editor can be improved in many ways: one easy improvement would be the

addition of colors to the model meshes. With this improvement, one could use it for image

morphing by converting the original image into a �ne mesh of colored triangles all on the xy

plane.

A more ambitious project would be to develop an editor with similar interface for 3D deforma-

tions, using 3D simplicial splines de�ned on a mesh of tetrahedra, with C1 continuity constraints.

This editor would use the same general ECLES algorithm, but would require a 3DSD module

analogous to 2DSD.
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Appendix A

Implementation

In this appendix, we describe the structure of the implemented libraries: LinSys (Linear System),

LSQ (Least Squares), ECLES (Editing by Constrained Least Squares), and 2DSD (2D Spline

Deformation).

We use the programming language C/C++ to implement the libraries and the PrisMystic

editor. The interface of PrisMystic was implemented using the graphics libraries Qt GUI and

Qt OpenGL of the framework Qt [84]. We also use functions and data structures of the library

FLINT (Fast Library for Number Theory) [36] to work with integer and rational arithmetic.

The implementation and instructions for running the PrisMystic editor, as well as the �les

of the libraries are available at http://www.ic.unicamp.br/~erodrigues.

A.1 The LinSys library

LinSys is a C/C++ library of functions for solving linear systems using integer and rational

arithmetic. This library uses the following record type:

typedef struct factoring_t {

int m;

int n;

int r;

int Pr[ ];

fmpz_mat_t L;

fmpz_mat_t D;

fmpz_mat_t U;

int Pc[ ];

} factoring_t

The components of this record are the factors of a matrix A (m × n) of rank r, as de�ned

in Chapter 4. Namely, the row permutation matrix ΠR (m ×m), represented as a vector of m

indices; the lower triangular factor L (m×r); the diagonal matrix D (r×r); the upper triangular
factor U (r × n); and the column permutation matrix ΠC (n × n), represented as a vector of n

indices. The L, D, and U �elds are FLINT integer matrices (fmpz_mat_t). Some computations

use FLINT rational matrices (fmpq_mat_t).
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A.1.1 Fraction-free matrix factoring

The fraction-free LDU factoring is obtained through the LinSys.LDUFactor procedure (Algo-

rithm 6), described in Chapter 6. This algorithm is implemented by the LDUFactor() procedure

of the library LinSys.h:

factoring_t LDUFactor(int m, int n, fmpz_mat_t A, int method)

which receives the m × n original matrix A to be factored, of the system Ax = B; and the

simpli�cation method (GCD or Turner) that must be used, as described in Chapter 7. The

procedure returns a record of type factoring_t with the factoring of the coe�cient matrix A.

A.1.2 Solving linear system

The exact linear system solution is obtained through the LinSys.Solve procedure (Algorithm 14),

described in Chapter 8. This algorithm is implemented by the solve() procedure of the library

LinSys.h:

fmpq_mat_t *solve(int t, factoring_t fact, fmpz_mat_t B)

which receives the constraints AP ′′D = B in the form of the record fact with the factoring of

the coe�cient matrix A, and the right-hand-side matrix B (n × t). The procedure returns the

computed matrix P ′′D (n× t) which is the solution of the linear system.

A.2 The LSQ library

LSQ is a C/C++ library of functions for solving the linear systems using the least squares crite-

rion. The implementation uses the LSQ.Solve procedure (Algorithm 15), described in Chapter 9,

except for one further optimizations. The weight matrixM = 2∗W is omitted sinceW is an iden-

tity matrix in PrisMystic editor. This algorithm is implemented by the solveLSQ() procedure

of the library LSQ.h:

fmpq_mat_t *solveLSQ(int t, factoring_t fact, fmpz_mat_t B, fmpq_mat_t P1)

which receives the constraints AP ′′D = B in the form of the record fact with the factoring of

the coe�cient matrix A, the right-hand-side matrix B (n× t), and the hints matrix P ′D (n× t).
The procedure returns the computed matrix P ′′D (n× t) which is the solution of the least squares

linear system.

A.3 The ECLES library

ECLES is a C/C++ library of functions for general editing of parameters subject to linear or

a�ne constraints. This library uses the following record type:

typedef struct set_t {

int a;

int A[ ];

} set_t
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A.3.1 Initializing

The implementation uses the ECLES.Initialize procedure (Algorithm 1), described in Chap-

ter 5. This algorithm is implemented by the initialize() procedure of the library ECLES.h:

bool initialize(int t, set_t A[ ], set_t D[ ], int l, int c, fmpz_mat_t R,

fmpz_mat_t Q, fmpq_mat_t P, bool strong, int method, factoring_t fact,

int *F, int *E)

which receives the sets A and D of indices of the a anchors and of the n derived parameters,

respectively; the coe�cient matrix R (l × c), and the matrix Q (m× t) of independent terms of

all constraints; the matrix of the current values P (n× t); a boolean �ag indicating if the strong

solvability condition must be checked; and a integer indicating the simpli�cation method used

during the factoring. The procedure returns the record fact with the factoring of the coe�cient

matrix RED; a pointer to the set F ′ of indices of the relevant �xed parameters; and the set E of

indices of the non-redundant relevant constraints de�ned by the procedure.

A.3.2 Updating

The updating was implemented using the ECLES.Update procedure (Algorithm 4), described in

Chapter 5. This algorithm is implemented by the update() procedure of the library ECLES.h:

bool *update(int t, set_t A[ ], set_t F[ ], set_t E[ ], fmpz_mat_t R,

fmpz_mat_t Q, factoring_t fact, fmpq_mat_t P1, fmpq_mat_t P2)

which receives the sets A, F ′, and E ; the coe�cient matrix R (l×c), and the matrix Q (m× t) of
independent terms of all constraints; the record fact with the factoring of the coe�cient matrix

RED; and the hints matrix P ′D (n× t). The procedure returns the computed matrix P ′′D (n× t).

A.4 The 2DSD library

2DSD is a C/C++ library of functions for general editing of two-dimensional spline deformations.

A.4.1 Editing the deformation

The implementation uses the 2DSD.Select procedure (Algorithm 16), described in Chapter 14.

This algorithm is implemented by the select() procedure of the library 2DSD.h:

bool select(int t, set_t A[ ], set_t S[ ], fmpz_mat_t R, fmpz_mat_t Q,

fmpq_mat_t P, factoring_t fact, int *D, int *F, double *T[ ])

which receives the sets A and S; the coe�cient matrix R (l × c) of all constraints; the matrix

Q (m × t) of independent terms of all constraints; and the matrix P (n × t) of coordinates of
the current positions of the control points. The procedure returns the record fact with the

factoring of the coe�cient matrix RED; a pointer to the sets D′ and F ′ of indices of the derived
and relevant �xed parameters; and a pointer to the vector T of the values θ of each control point.
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A.4.2 Deforming the spline

The implementation of the translation uses the 2DSD.Translate procedure (Algorithm 17), de-

scribed in Chapter 14. Rotation and scaling also were implemented using the same idea such

as described in Section 14.1.2. These algorithms are implemented by the translate(), the

rotate(), and the scale() procedures of the library 2DSD.h:

bool translate(int v[ ], int t, set_t A[ ], set_t D[ ], set_t F[ ],

double T[ ], fmpz_mat_t Q, factoring_t fact, fmpq_mat_t P,

fmpq_mat_t P2)

which receives the vector v of the displacement applied to the anchor points; the sets A, D, and
F ′; the vector T of the values θ of each control point; the matrix Q (m × t) of independent

terms of all constraints; the record fact with the factoring of the coe�cient matrix RED; and

the matrix P (n× t) of coordinates of the current positions of the control points. The procedure
returns the computed matrix P ′′D (n× t);

bool rotate(double c[ ], double ang, int t, set_t A[ ], set_t D[ ],

set_t F[ ], double T[ ], fmpz_mat_t Q, factoring_t fact, fmpq_mat_t P,

fmpq_mat_t P2)

which receives the center point c and the angle ang of the rotation; the sets A, D, and F ′; the
vector T of the values θ of each control point; the matrix Q (m× t) of independent terms of all

constraints; the record fact with the factoring of the coe�cient matrix RED; and the matrix P

(n × t) of coordinates of the current positions of the control points. The procedure returns the
computed matrix P ′′D (n× t);

bool scale(double c[ ], double sf, int t, set_t A[ ], set_t D[ ],

set_t F[ ], double T[ ], fmpz_mat_t Q, factoring_t fact, fmpq_mat_t P,

fmpq_mat_t P2)

which receives the center point c and the scale factor sf of the scaling; the sets A, D, and F ′;
the vector T of the values θ of each control point; the matrix Q (m× t) of independent terms of

all constraints; the record fact with the factoring of the coe�cient matrix RED; and the matrix

P (n × t) of coordinates of the current positions of the control points. The procedure returns

the computed matrix P ′′D (n× t).
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