5,240 research outputs found

    Combining case based reasoning with neural networks

    Get PDF
    This paper presents a neural network based technique for mapping problem situations to problem solutions for Case-Based Reasoning (CBR) applications. Both neural networks and CBR are instance-based learning techniques, although neural nets work with numerical data and CBR systems work with symbolic data. This paper discusses how the application scope of both paradigms could be enhanced by the use of hybrid concepts. To make the use of neural networks possible, the problem's situation and solution features are transformed into continuous features, using techniques similar to CBR's definition of similarity metrics. Radial Basis Function (RBF) neural nets are used to create a multivariable, continuous input-output mapping. As the mapping is continuous, this technique also provides generalisation between cases, replacing the domain specific solution adaptation techniques required by conventional CBR. This continuous representation also allows, as in fuzzy logic, an associated membership measure to be output with each symbolic feature, aiding the prioritisation of various possible solutions. A further advantage is that, as the RBF neurons are only active in a limited area of the input space, the solution can be accompanied by local estimates of accuracy, based on the sufficiency of the cases present in that area as well as the results measured during testing. We describe how the application of this technique could be of benefit to the real world problem of sales advisory systems, among others

    Combining case based reasoning with neural networks

    Get PDF
    This paper presents a neural network based technique for mapping problem situations to problem solutions for Case-Based Reasoning (CBR) applications. Both neural networks and CBR are instance-based learning techniques, although neural nets work with numerical data and CBR systems work with symbolic data. This paper discusses how the application scope of both paradigms could be enhanced by the use of hybrid concepts. To make the use of neural networks possible, the problem's situation and solution features are transformed into continuous features, using techniques similar to CBR's definition of similarity metrics. Radial Basis Function (RBF) neural nets are used to create a multivariable, continuous input-output mapping. As the mapping is continuous, this technique also provides generalisation between cases, replacing the domain specific solution adaptation techniques required by conventional CBR. This continuous representation also allows, as in fuzzy logic, an associated membership measure to be output with each symbolic feature, aiding the prioritisation of various possible solutions. A further advantage is that, as the RBF neurons are only active in a limited area of the input space, the solution can be accompanied by local estimates of accuracy, based on the sufficiency of the cases present in that area as well as the results measured during testing. We describe how the application of this technique could be of benefit to the real world problem of sales advisory systems, among others

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Knowledge modelling with the open source tool myCBR

    Get PDF
    Building knowledge intensive Case-Based Reasoning applications requires tools that support this on-going process between domain experts and knowledge engineers. In this paper we will introduce how the open source tool myCBR 3 allows for flexible knowledge elicitation and formalisation form CBR and non CBR experts. We detail on myCBR 3 's versatile approach to similarity modelling and will give an overview of the Knowledge Engineering workbench, providing the tools for the modelling process. We underline our presentation with three case studies of knowledge modelling for technical diagnosis and recommendation systems using myCBR 3

    Agent based mobile negotiation for personalized pricing of last minute theatre tickets

    Get PDF
    This is the post-print version of the final paper published in Expert Systems with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.This paper proposes an agent based mobile negotiation framework for personalized pricing of last minutes theatre tickets whose values are dependent on the time remaining to the performance and the locations of potential customers. In particular, case based reasoning and fuzzy cognitive map techniques are adopted in the negotiation framework to identify the best initial offer zone and adopt multi criteria decision in the scoring function to evaluate offers. The proposed framework is tested via a computer simulation in which personalized pricing policy shows higher market performance than other policies therefore the validity of the proposed negotiation framework.The Ministry of Education, Science and Technology (Korea

    Improving Knowledge Retrieval in Digital Libraries Applying Intelligent Techniques

    Get PDF
    Nowadays an enormous quantity of heterogeneous and distributed information is stored in the digital University. Exploring online collections to find knowledge relevant to a user’s interests is a challenging work. The artificial intelligence and Semantic Web provide a common framework that allows knowledge to be shared and reused in an efficient way. In this work we propose a comprehensive approach for discovering E-learning objects in large digital collections based on analysis of recorded semantic metadata in those objects and the application of expert system technologies. We have used Case Based-Reasoning methodology to develop a prototype for supporting efficient retrieval knowledge from online repositories. We suggest a conceptual architecture for a semantic search engine. OntoUS is a collaborative effort that proposes a new form of interaction between users and digital libraries, where the latter are adapted to users and their surroundings

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Semantic-driven matchmaking of web services using case-based reasoning

    Get PDF
    With the rapid proliferation of Web services as the medium of choice to securely publish application services beyond the firewall, the importance of accurate, yet flexible matchmaking of similar services gains importance both for the human user and for dynamic composition engines. In this paper, we present a novel approach that utilizes the case based reasoning methodology for modelling dynamic Web service discovery and matchmaking. Our framework considers Web services execution experiences in the decision making process and is highly adaptable to the service requester constraints. The framework also utilises OWL semantic descriptions extensively for implementing both the components of the CBR engine and the matchmaking profile of the Web services

    The Effectiveness of Case-Based Reasoning: An Application in Sales Promotions

    Get PDF
    This paper deals with Case-based Reasoning (CBR) as a support technology for sales promotion (SP) decisions. CBR-systems try to mimic analogical reasoning, a form of human reasoning that is likely to occur in weakly-structured problem solving, such as the design of sales promotions. In an empirical study, we find evidence that use of the CBR-system improves the quality of SP-campaign proposals. In terms of the creativity of the proposals, decision-makers who think highly divergent (i.e., who tend to generate many, and diverse ideas in response to a problem) benefit most from prolonged system usage. Creativity, in turn, is positively related to the (practical) usability of a proposal. These results suggest that the CBR-system is most effective when it is used as an idea-generation tool that reinforces the strength of divergent (creative) thinkers. A convergent thinking style, in which case the CBR-system has a compensating role, even has a negative impact on CBR-system usage. Increasing the decision-maker's personal belief in the usefulness of the system, e.g., by training or education, may help to alleviate this reluctance to use the CBR-system.marketing management support systems;sales promotions;case-based reasoning;weakly-structured decision making

    The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification

    Get PDF
    We present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the "quintessential" observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity by learning subspaces, the sets of features that play important roles in the characterization of the prototypes. The prototype and subspace representation provides quantitative benefits in interpretability while preserving classification accuracy. Human subject experiments verify statistically significant improvements to participants' understanding when using explanations produced by BCM, compared to those given by prior art.Comment: Published in Neural Information Processing Systems (NIPS) 2014, Neural Information Processing Systems (NIPS) 201
    corecore