9 research outputs found

    Fingertip force control with embedded fiber Bragg grating sensors

    Full text link
    Abstract—We describe the dynamic testing and control results obtained with an exoskeletal robot finger with embedded fiber optical sensors. The finger is inspired by the designs of arthropod limbs, with integral strain sensilla concentrated near the joints. The use of fiber Bragg gratings (FBGs) allows for embedded sensors with high strain sensitivity and immunity to electromagnetic interference. The embedded sensors are useful for contact detection and for control of forces during fine manipulation. The application to force control requires precise and high-bandwidth measurement of contact forces. We present a nonlinear force control approach that combines signals from an optical interrogator and conventional joint angle sensors to achieve accurate tracking of desired contact forces. I

    Lungs cancer nodules detection from ct scan images with convolutional neural networks

    Get PDF
    Lungs cancer is a life-taking disease and is causing a problem around the world for a long time. The only plausible solution for this type of disease is the early detection of the disease because at preliminary stages it can be treated or cured. With the recent medical advancements, Computerized Tomography (CT) scan is the best technique out there to get the images of internal body organs. Sometimes, even experienced doctors are not able to identify cancer just by looking at the CT scan. During the past few years, a lot of research work is devoted to achieve the task for lung cancer detection but they failed to achieve accuracy. The main objective of this piece of this research was to find an appropriate method for classification of nodules and non-nodules. For classification, the dataset was taken from Japanese Society of Radiological Technology (JSRT) with 247 three-dimensional images. The images were preprocessed into gray-scale images. The lung cancer detection model was built using Convolutional Neural Networks (CNN). The model was able to achieve an accuracy of 88% with lowest loss rate of 0.21% and was found better than other highly complex methods for classification

    Delicate manipulation of irregularly-shaped rigid objects in a stiff, fragile environment

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1998.Includes bibliographical references (leaves 85-88).by Joseph Andrew Calzaretta.S.M

    Kraftsensorlose Manipulator Kraftsteuerung zur Abtastung unbekannter, harter Oberflächen

    Get PDF
    Die vorliegende Arbeit zeigt ein Verfahren zur kraftgesteuerten Kontaktierung unbekannter harter Freiformflächen mit einem Standard–6DOF-Industriemanipulator (z.B. Manutec R2). Die bisher entwickelten Verfahren auf dem Gebiet der Manipulatorkraftregelung waren auf teure, fragile, mehrdimensionale Kraft-/Momentensensoren am Manipulator-Endeffektor angewiesen, die bei dem in dieser Arbeit entwickelten Ansatz der sensorlosen Kraft-/Geschwindigkeitsregelung überflüssig werden. Die Einstellung der gewünschten Kontaktkraft zu der unbekannten Umgebung erfolgt ausschließlich über eine robuste, beobachtergestützte Regelung der Motorströme der Gelenkantriebe. In freien Bewegungsphasen garantierte eine kaskadierte Kraft-/Geschwindigkeitsregelung vordefinierte Heranfahrgeschwindigkeiten an die unbekannte Kontaktoberfläche. Hierdurch eröffnen sich vollkommen neue Einsatzszenarien für die kraftkontrollierte Kontaktierung und Bearbeitung unbekannter Oberflächen oder Werkstücke beliebiger Härte und Steifigkeit

    Force-controlled Transcranial Magnetic Stimulation (TMS) robotic system

    Get PDF
    The use of robots to assist neurologists in Transcranial Magnetic Stimulation (TMS) has the potential to improve the long term outcome of brain stimulation. Although extensive research has been carried out on TMS robotic system, no single study exists which adequately take into account the control of interaction of contact force between the robot and subject’s head. Thus, the introduction of force feedback control is considered as a desirable feature, and is particularly important when using an autonomous robot manipulator. In this study, a force-controlled TMS robotic system has been developed, which consists of a 6 degree of freedom (DOF) articulated robot arm, a force/torque sensor system to measure contact force and real-time PC based control system. A variant of the external force control scheme was successfully implemented to carry out the simultaneous force and position control in real-time. A number of engineering challenges are addressed to develop a viable system for TMS application; simultaneous real-time force and position tracking on subject’s head, unknown/varies environment stiffness and motion compensation to counter the force-controlled instability problems, and safe automated robotic system. Simulation of a single axis force-controlled robotic system has been carried out, which includes a task of maintaining contact on simulated subject’s head. The results provide a good agreement with parallel experimental tests, which leads to further improvement to the robot force control. An Adaptive Neuro-Fuzzy Force Controller has been developed to provide stable and robust force control on unknown environment stiffness and motion. The potential of the proposed method has been further illustrated and verified through a comprehensive series of experiments. This work also lays important foundations for long term related research, particularly in the development of real-time medical robotic system and new techniques of force control mainly for human-robot interaction. KEY WORDS: Transcranial Magnetic Stimulation, Robotic System, Real-time System, External Force Control Scheme, Adaptive Neuro-Fuzzy Force ControllerEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Force-controlled Transcranial Magnetic Stimulation (TMS) robotic system

    Get PDF
    The use of robots to assist neurologists in Transcranial Magnetic Stimulation (TMS) has the potential to improve the long term outcome of brain stimulation. Although extensive research has been carried out on TMS robotic system, no single study exists which adequately take into account the control of interaction of contact force between the robot and subject’s head. Thus, the introduction of force feedback control is considered as a desirable feature, and is particularly important when using an autonomous robot manipulator. In this study, a force-controlled TMS robotic system has been developed, which consists of a 6 degree of freedom (DOF) articulated robot arm, a force/torque sensor system to measure contact force and real-time PC based control system. A variant of the external force control scheme was successfully implemented to carry out the simultaneous force and position control in real-time. A number of engineering challenges are addressed to develop a viable system for TMS application; simultaneous real-time force and position tracking on subject’s head, unknown/varies environment stiffness and motion compensation to counter the force-controlled instability problems, and safe automated robotic system. Simulation of a single axis force-controlled robotic system has been carried out, which includes a task of maintaining contact on simulated subject’s head. The results provide a good agreement with parallel experimental tests, which leads to further improvement to the robot force control. An Adaptive Neuro-Fuzzy Force Controller has been developed to provide stable and robust force control on unknown environment stiffness and motion. The potential of the proposed method has been further illustrated and verified through a comprehensive series of experiments. This work also lays important foundations for long term related research, particularly in the development of real-time medical robotic system and new techniques of force control mainly for human-robot interaction. KEY WORDS: Transcranial Magnetic Stimulation, Robotic System, Real-time System, External Force Control Scheme, Adaptive Neuro-Fuzzy Force ControllerEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Experiments in Contact Control

    No full text
    corecore