719 research outputs found

    An Experimental Microarchitecture for a Superconducting Quantum Processor

    Full text link
    Quantum computers promise to solve certain problems that are intractable for classical computers, such as factoring large numbers and simulating quantum systems. To date, research in quantum computer engineering has focused primarily at opposite ends of the required system stack: devising high-level programming languages and compilers to describe and optimize quantum algorithms, and building reliable low-level quantum hardware. Relatively little attention has been given to using the compiler output to fully control the operations on experimental quantum processors. Bridging this gap, we propose and build a prototype of a flexible control microarchitecture supporting quantum-classical mixed code for a superconducting quantum processor. The microarchitecture is based on three core elements: (i) a codeword-based event control scheme, (ii) queue-based precise event timing control, and (iii) a flexible multilevel instruction decoding mechanism for control. We design a set of quantum microinstructions that allows flexible control of quantum operations with precise timing. We demonstrate the microarchitecture and microinstruction set by performing a standard gate-characterization experiment on a transmon qubit.Comment: 13 pages including reference. 9 figure

    Submicron Systems Architecture: Semiannual Technical Report

    Get PDF
    No abstract available

    The architecture of a video image processor for the space station

    Get PDF
    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals

    Virtual memory

    Get PDF
    Virtual memory was conceived as a way to automate overlaying of program segments. Modern computers have very large main memories, but need automatic solutions to the relocation and protection problems. Virtual memory serves this need as well and is thus useful in computers of all sizes. The history of the idea is traced, showing how it has become a widespread, little noticed feature of computers today

    First steps towards the certification of an ARM simulator using Compcert

    Get PDF
    The simulation of Systems-on-Chip (SoC) is nowadays a hot topic because, beyond providing many debugging facilities, it allows the development of dedicated software before the hardware is available. Low-consumption CPUs such as ARM play a central role in SoC. However, the effectiveness of simulation depends on the faithfulness of the simulator. To this effect, we propose here to prove significant parts of such a simulator, SimSoC. Basically, on one hand, we develop a Coq formal model of the ARM architecture while on the other hand, we consider a version of the simulator including components written in Compcert-C. Then we prove that the simulation of ARM operations, according to Compcert-C formal semantics, conforms to the expected formal model of ARM. Size issues are partly dealt with using automatic generation of significant parts of the Coq model and of SimSoC from the official textual definition of ARM. However, this is still a long-term project. We report here the current stage of our efforts and discuss in particular the use of Compcert-C in this framework.Comment: First International Conference on Certified Programs and Proofs 7086 (2011
    • 

    corecore