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Virtual memory was conceived as a way to automate overlaying of program segments. Modern
computers have very large main memories, but need automatic solutions to the relocation and
protection problems. Virtual memory serves this need as well and is thus useful in computers of
all sizes. This column traces the history of the idea, showing how it has become a widespread,
little-noticed feature of computers today.
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In the March-April issue, I described how a computer's storage system is

organized as a hierarchy consisting of cache, main memory, and secondary

memory (e.g., disk). The cache and main memory form a subsystem that func-

tions like main memory but attains speeds approaching cache. What happens if

a program and its data are too large for the main memory?

This is not a frivolous question. Every generation of computer users has

been frustrated by insufficient memory. A new line of computers may have suffi-

cient storage for the computations of its predecessor, but new programs will soon

exhaust its capacity. In 1960, a long-range planning committee at MIT dared to

dream of a computer with 1 million words of main memory. In 1985, the Cray-2

was delivered with 256 million words. Computational physicists dream of com-

puters with 1 billion words. Computer architects have done an outstanding job

of enlarging main memories, yet they have never kept up with demand. Only the

shortsighted believe they can.
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A program that does not fit in main memory must be broken into a collec-

tion of blocks, only subsets of which can be in the main memory during phases of

the program's execution. The process of creating a schedule for moving blocks

between main and secondary memory during program phases is called overlay-

ing. Should the overlay sequence be designed manually by a programmer, or

should it be automated?

Designing an overlay sequence for a program can be difficult, even for sim-

ple programs and even when the size of the target memory is known in advance.

Overlaying is an instance of the general scheduling problem, which is itself diffi-

cult. Moreover, detailed technical knowledge of a computer's operating system is

often needed for correct use of commands that transfer information between

main and secondary memory systems. In 1969 David Sayre of IBM reported a

study in which the effort required for manual overlays was significant — about

40% of the total programming time (l).

The difficulty of designing overlay sequences can be illustrated by a simple

program to multiply n xrz matrices, C =AB . A short program can be derived

from the definition

This program, however, assumes that A , B , and C are all simultaneously in

main memory. Suppose the main memory were large enough to hold only one

vector (row or column) from each of A , B , and C ? An overlay strategy might
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load a row of A , then compute a row of C by loading a column of B for each

element; this strategy would add about n (n +2) secondary memory operations

to the program's running time. The program would become not only much

longer but also more difficult to understand.

Because the human cost of designing overlay sequences is so high, it makes

good sense to get the computer to handle the details of overlaying. This fact

was recognized by the designers of the earliest computers. By 1949, the design

group at the University of Manchester had built an auxiliary memory in which

information was stored in fixed-size blocks called pages. By 1959, the Manches-

ter group had built the Atlas computer, in which paging was completely

automated; they called their architecture a one-level store because a single

address space incorporated both levels of the memory hierarchy (2). Four years

later, the B5000 group at Burroughs demonstrated automatic overlaying of small

program segments of various sizes. The same technique is used in some modern

microcomputers, such as the Intel x808x series or the Z8000. By 1968, the Mul-

tics group at MIT had demonstrated automatic overlaying of large segments

that were decomposed separately into pages. This collection of architectures

came to be called virtual memory because it was based on simulating a large

main memory that did not actually exist. I published a survey of the subject in

1970 (8).

The Manchester prototype demonstrated feasibility but did not settle the

question whether overlays should be automatic. Indeed, it inspired a heated
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debate that lasted nearly fifteen years. Skeptics argued that the extra mechan-

ism was not justified because good programmers could outperform a virtual

memory system. They raised many questions that had no immediate answers.

In what follows, I'll discuss these questions the ways in which they were ulti-

mately resolved.

Let's begin with a look at the architecture of paging systems, the simplest

of virtual memories. The main and secondary memories are divided into equal

slots for holding pages of program code or data; the slots of main memory are

called page frames. The page is the unit of transfer between the two levels of

memory. A page can be placed in any empty frame of main memory without

having to relocate anything else. Every page loaded in main memory has a

backup copy in the secondary memory. If a page is modified while in main

memory, it must be copied back to its secondary-memory slot before being

deleted from main memory.

A processor refers to memory by a standard interface consisting of an

address register (A ), a data register (D ), a read control line (R ), and a write

control line ( W ). To read from the memory, the processor copies an address

into A and sends a signal on R ; it waits one memory cycle time for the memory

to place the contents of the target location into D ; it then copies D to another

register. The write operation is similar: the processor puts an address in A and

data in D ; it signals on W ; it waits one memory cycle for the memory to depo-

sit the data into the target location.
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A paging system adds more structure inside the memory without changing

the standard interface. The memory controller divides the address register into

two parts, A =(H ,L ): the high order bits H are interpreted as a page number

and the low order bits L as a line number (byte number) within the page. For

example, if A contains 16 bits and L 7 bits, the address space contains 216

(64K) bytes, each page contains 27 (128) bytes, and there are 29 (512) pages.

The memory controller contains a page table T that associates page numbers

with frame numbers. Thus T [H] = F records that page H is stored in frame F .

The actual hardware address B of the target byte is obtained by replacing the

page bits of A with the frame bits: B =( T [H ],L ). The time to form the

address B can be made very small compared to the memory cycle time by hold-

ing the page table in a local, very high speed memory. With paging, program

components can be scattered randomly through the memory without disturbing

the apparent contiguity of the address space seen by the processor.

In practice, the page table is not stored in the memory controller. It is kept

in main memory, and the memory controller contains a small, fast cache that

holds images of the most recently used page-table entries. This configuration

reduces the amount of local memory in the controller, which typically runs at a

speed loss under 2%.

Pages can be marked as readable or writable (or both) by storing access bits

in page table entries. The memory controller translates H to F only if T [H}

allows the requested operation (R or W ).
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How do we deal with the fact that only some of a program's pages can be

physically present in main memory? We augment each entry in the page table

with an extra bit, called a present bit, denoted by p . If p [H ] = 1, page H is

present in the main memory and if p [H ]=0, page H is missing. The operating

system maintains another table, denoted S , recording the locations of all pages

in the secondary memory; thus S [H ] is the secondary-memory address of page

H . The procedure by which a missing page is moved into main memory can be

illustrated by an example. Suppose page 5 is assigned slot 12358 of the secon-

dary memory and is missing from the main memory. Then S [5] = 12358 and

p [5]=0. To move page 5 into the main memory, we select some empty frame,

say 72, and copy the contents of slot 12358 into it. Finally we set T [5]=72 and

p [5] = 1. Now the memory controller will find page 5 when the processor refers

to it.

After enough page faults — that is, requests for missing pages — the pro-

gram will fill all available frames with pages. How are frames made available for

reuse? A rule called a replacement policy determines a frame containing a least

useful page; if that page has been modified since being loaded, it must be copied

back out to the secondary memory before the frame can be marked as empty.

To assist the replacement policy, the page-table entries must contain bits telling

whether a page has been modified or used.

The steps involved in moving a missing page into main memory are too

complicated to build into the hardware or microcode of the memory controller.
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Instead, they are contained in a special program of the operating system called a

page-fault handler. The memory controller treats an attempted reference to a

missing page as a fault that must be corrected by this program. The memory

controller's page-fault signal is sent to the processor, where the interrupt

hardware takes control and causes the processor to begin executing the instruc-

tions of the page-fault handler, which is, of course, always loaded in memory.

On completion of its duties, the handler returns control to the program that

encountered the fault. With the page present, the interrupted instruction can be

retried with success.

Let's recapitulate. The paging system consists of five main components:

hardware in the memory controller that maps page numbers of processor-

generated addresses into frame numbers and verifies permission for read or write

access; page-tables, one for each program, that can be stored in the memory con-

troller; a page-fault routine, triggered when the memory controller requests a

missing page; a secondary-memory table accessible to the page-fault routine; and

a replacement policy. The high ratio of secondary- to main-memory access time,

typically on the order of 10 memory cycles or higher, makes the performance of

this system depend heavily on the replacement policy. Because at least 105

memory cycles will elapse before a page fault can be resolved, mistakes by this

policy are expensive.

The success of an automatic paging system rests squarely on one question:

in the absence of prior knowledge of the algorithm of a program, can practical
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replacement policies keep the fault probability at least as low as it would be if a

programmer designed the overlay sequence manually? A considerable number of

studies in the 1960s and early 1970s tried to devise replacement policies for real

programs. The earliest focused on policies for a fixed amount of space in main

memory; later studies took up the question of variable allocation under multipro-

gramming.

The general principle for optimal management of memory is implied by a

formula called the space-time law: a = M/A, where a is the average memory

space-time per program, M is the total memory available to all programs, and A

is the number of programs completed per second (throughput of the system).

The space-time of a program is the area beneath the curve of n (t ), the number

of pages the program has loaded at time t . For a given amount of memory, the

space-time law implies that throughput is at a maximum if and only if the aver-

age space-time per program is at a minimum. (The law is easy to derive. Note

that A=c / T , where c is the number of programs completed by the system in an

interval of length T . Then the total space-time over programs completed in T

can be written in two equivalent ways: the number of programs multipled by the

space-time per program, c a. and the amount of memory multiplied by the time,

MT .)

For memory that is fixed in size, space-time is at a minimum when faults

are; the optimal policy is simply to replace the page that will not be used again

for the longest time. Practical policies, however, cannot see into the future, and
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thus no single replacement policy can minimize space-time for every program.

The best hope is a policy that minimizes space-time over ensembles of programs.

Which policies meet this requirement is most easily determined by experiment.

A wide variety of candidates have been evaluated, including selecting a page at

random, selecting the page resident in memory longest, and selecting the page

least recently used (LRU). Policies such as the first and second that exploit no

usage information are cheap but perform poorly. Policies such as the third that

do exploit usage bits in the page table generally do better. The LRU policy has

emerged over many studies as the most robust.

The LRU policy does well because of a general law of program behavior

called locality. According to this law, a program's execution time (measured in

memory references) is divided into natural phases; the address space is divided

naturally into segments; and during each phase there is a specific "locality set"

of segments that must be loaded in main memory. Programs with long phases

have a high degree of locality. For a program with strong locality, a measure-

ment of segments used during a short interval will yield an accurate estimate of

the segments likely to be needed in the immediate future. The LRU policy does

well on programs with strong locality because the pages of the current locality

set will almost certainly be among the most recently used.

David Sayre's landmark study concluded that programs conform to the

principle of locality; simple policies like LRU perform well on programs with

good locality; and the degree of locality in a program is affected by a
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programmer's awareness of the principle (1). Sayre criticized earlier studies,

which had tested only programs written for computers without virtual memory.

Intended to be fully loaded prior to execution, such programs were unlikely to

exhibit strong locality. The correct experiment, he asserted, compares two pro-

gramming processes. Process A leads from a problem statement to a program

containing a handcrafted overlay sequence for a conventional machine. Process

B leads from a problem statement to a program organized with the principle of

locality in mind.

In an experiment consisting of five problems, Sayre's group ran program A

on a machine with the virtual memory turned off, and then ran program B on

the same machine with the virtual memory turned on. They found that the vir-

tual memory versions ran slightly longer in real time (about 20%) than the con-

ventional memory versions; produced slightly less page traffic (about 4%); and

required significantly less programming effort — about 15% of the work time was

spent organizing algorithms for better locality, as compared to 40% for designing

an overlay sequence. The apparent speed advantage of manual overlaying arose

because the programmer could overlap page transfers with computation, whereas

the virtual memory initiated page transfers on demand only. Because the virtual

memory versions generated fewer page transfers, this advantage disappears in

multiprogrammed systems. Sayre's study showed virtual memory to be the

winner and laid to rest questions about its efficacy.
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Parallel to the investigations of the overlay problem were investigations of

multiprogramming, a method of simultaneously loading several programs into

main memory. Multiprogramming raised two new questions, involving reloca-

tion — how can program components be moved to different places in main

memory as they are reloaded? — and protection — how can programs be isolated

from one another? Virtual memory offers easy answers because each program

has its own page table. Relocation is automatic in the address mapper; isolation

is automatic because a program can refer only to the pages in its own page table.

Multiprogramming also brought unexpected performance problems.

Designers in the 1960s believed that, as the number of programs (N) sharing

memory increased, the replacement policy would gradually reduce the space

assigned to each program and the system throughput would rise asymptotically

to a saturation level. Real systems do not work this way. A critical load N0 is

reached, beyond which throughput drops sharply. This phenomenon is called

thrashing. The explanation is that as N increases, the space available to an

individual program decreases to the point that finally the program's locality sets

can no longer be accommodated. This causes a sharp rise in the program's

page-fault rate, transforming the secondary memory into a system bottleneck.

(In this respect, multiprogramming resembles life: people commonly complain of

having so many tasks that they spend all their time shuffling papers and" no time

doing real work.) To prevent thrashing, memory policies for multiprogramming

must guarantee each program a minimum amount of space and must contain a
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load control.

The locality model of program behavior leads naturally to an ideal memory

policy, called the working-set policy, that meets both these requirements. I pro-

posed the idea in 1967 and reviewed its consequences in 1980 (4). A program's

working set at a given time is defined as the pages used in a fixed, backward-

looking window. If the window is the proper size, the working set will be a reli-

able estimate of the program's locality set most of the time. It turns out that

most programs are insensitive to the value of window size; often, one value can

be found that will cause most programs in the system to operate within 10% of

their space-time minima. Therefore, if the memory policy guarantees each pro-

gram space for its working set, the system can operate within a few percent of

the optimum defined by the space-time law. Moreover, the working-set policy

contains an implicit load control: as soon as memory is full of working sets, no

more programs can be activated.

Once the community reached a consensus that virtual memory works by

taking advantage of locality, there still remained the question, how can we

guarantee that programs have strong locality in the first place? Can we do

better than Sayre, who merely told programmers about the idea of locality? A

considerable effort was made in the early 1970s to restructure programs, cluster-

ing segments into pages so that the usage patterns exhibited strong locality.

These experiments sought an allocation of segments to pages that does not mask

the inherent locality of the program.
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The experiments were based on a simple principle. A matrix [at; ] of affini-

ties says that, if segments i and j were assigned to the same page, the program

would experience a,. fewer page faults than it would if each segment had its own

page. The most successful methods involved measuring affinities by running the

program through a simulator of the replacement policy, determining a,; as the

number of faults to segment j that occurred when t was already resident in

memory under that policy. These methods could reduce the rate of page faults

by factors as high as 10 compared to unreorganized compiler output. It should

be noted that restructuring methods are irrelevant in systems whose page size is

relatively small.

Another group of methods employs directives inserted into program code by

a compiler. Prepaging directives, which request loading a page in advance of its

first use in a phase, lower space-time by reducing real-time delays for page faults.

Prereplacement directives, which request removal of a page after its last use in a

phase, lower space-time by reducing the number of pages in memory.

Unfortunately, all these methods are expensive. Like other improvements of

code, they are useful only for large programs that are run often enough to justify

the cost. Many programs in most systems are small enough to fit in the main

memory. Restructuring them would not be effective.

The collective efforts of several hundred researchers and computer architects

during the 1960s and early 1970s have led to the widespread use of virtual

memory today. Virtual memory is useful in systems of all sizes: it has become a
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common feature of the architectures of many large and medium-sized computers

and is finding its way into microcomputers. It is an ironic side effect of this

development that, while they reduce the need for overlaying, very large main

memories increase the need for relocation and protection.
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