646 research outputs found

    Toward optimised skeletons for heterogeneous parallel architecture with performance cost model

    Get PDF
    High performance architectures are increasingly heterogeneous with shared and distributed memory components, and accelerators like GPUs. Programming such architectures is complicated and performance portability is a major issue as the architectures evolve. This thesis explores the potential for algorithmic skeletons integrating a dynamically parametrised static cost model, to deliver portable performance for mostly regular data parallel programs on heterogeneous archi- tectures. The rst contribution of this thesis is to address the challenges of program- ming heterogeneous architectures by providing two skeleton-based programming libraries: i.e. HWSkel for heterogeneous multicore clusters and GPU-HWSkel that enables GPUs to be exploited as general purpose multi-processor devices. Both libraries provide heterogeneous data parallel algorithmic skeletons including hMap, hMapAll, hReduce, hMapReduce, and hMapReduceAll. The second contribution is the development of cost models for workload dis- tribution. First, we construct an architectural cost model (CM1) to optimise overall processing time for HWSkel heterogeneous skeletons on a heterogeneous system composed of networks of arbitrary numbers of nodes, each with an ar- bitrary number of cores sharing arbitrary amounts of memory. The cost model characterises the components of the architecture by the number of cores, clock speed, and crucially the size of the L2 cache. Second, we extend the HWSkel cost model (CM1) to account for GPU performance. The extended cost model (CM2) is used in the GPU-HWSkel library to automatically nd a good distribution for both a single heterogeneous multicore/GPU node, and clusters of heteroge- neous multicore/GPU nodes. Experiments are carried out on three heterogeneous multicore clusters, four heterogeneous multicore/GPU clusters, and three single heterogeneous multicore/GPU nodes. The results of experimental evaluations for four data parallel benchmarks, i.e. sumEuler, Image matching, Fibonacci, and Matrix Multiplication, show that our combined heterogeneous skeletons and cost models can make good use of resources in heterogeneous systems. Moreover using cores together with a GPU in the same host can deliver good performance either on a single node or on multiple node architectures

    Acceleration of Spiking Neural Networks on Multicore Architectures

    Get PDF
    The human cortex is the seat of learning and cognition. Biological scale implementations of cortical models have the potential to provide significantly more power problem solving capabilities than traditional computing algorithms. The large scale implementation and design of these models has attracted significant attention recently. High performance implementations of the models are needed to enable such large scale designs. This thesis examines the acceleration of the spiking neural network class of cortical models on several modern multicore processors. These include the Izhikevich, Wilson, Morris-Lecar, and Hodgkin-Huxley models. The architectures examined are the STI Cell, Sun UltraSPARC T2+, and Intel Xeon E5345. Results indicate that these modern multicore processors can provide significant speed-ups and thus are useful in developing large scale cortical models. The models are then implemented on a 50 TeraFLOPS 336 node PlayStation 3 cluster. Results indicate that the models scale well on this cluster and can emulate 108 neurons and 1010 synapses. These numbers are comparable to the large scale cortical model implementation studies performed by IBM using the Blue Gene/L supercomputer. This study indicates that a cluster of PlayStation 3s can provide an economical, yet powerful, platform for simulating large scale biological models

    The fast multipole method at exascale

    Get PDF
    This thesis presents a top to bottom analysis on designing and implementing fast algorithms for current and future systems. We present new analysis, algorithmic techniques, and implementations of the Fast Multipole Method (FMM) for solving N- body problems. We target the FMM because it is broadly applicable to a variety of scientific particle simulations used to study electromagnetic, fluid, and gravitational phenomena, among others. Importantly, the FMM has asymptotically optimal time complexity with guaranteed approximation accuracy. As such, it is among the most attractive solutions for scalable particle simulation on future extreme scale systems. We specifically address two key challenges. The first challenge is how to engineer fast code for today’s platforms. We present the first in-depth study of multicore op- timizations and tuning for FMM, along with a systematic approach for transforming a conventionally-parallelized FMM into a highly-tuned one. We introduce novel opti- mizations that significantly improve the within-node scalability of the FMM, thereby enabling high-performance in the face of multicore and manycore systems. The second challenge is how to understand scalability on future systems. We present a new algorithmic complexity analysis of the FMM that considers both intra- and inter- node communication costs. Using these models, we present results for choosing the optimal algorithmic tuning parameter. This analysis also yields the surprising prediction that although the FMM is largely compute-bound today, and therefore highly scalable on current systems, the trajectory of processor architecture designs, if there are no significant changes could cause it to become communication-bound as early as the year 2015. This prediction suggests the utility of our analysis approach, which directly relates algorithmic and architectural characteristics, for enabling a new kind of highlevel algorithm-architecture co-design. To demonstrate the scientific significance of FMM, we present two applications namely, direct simulation of blood which is a multi-scale multi-physics problem and large-scale biomolecular electrostatics. MoBo (Moving Boundaries) is the infrastruc- ture for the direct numerical simulation of blood. It comprises of two key algorithmic components of which FMM is one. We were able to simulate blood flow using Stoke- sian dynamics on 200,000 cores of Jaguar, a peta-flop system and achieve a sustained performance of 0.7 Petaflop/s. The second application we propose as future work in this thesis is biomolecular electrostatics where we solve for the electrical potential using the boundary-integral formulation discretized with boundary element methods (BEM). The computational kernel in solving the large linear system is dense matrix vector multiply which we propose can be calculated using our scalable FMM. We propose to begin with the two dielectric problem where the electrostatic field is cal- culated using two continuum dielectric medium, the solvent and the molecule. This is only a first step to solving biologically challenging problems which have more than two dielectric medium, ion-exclusion layers, and solvent filled cavities. Finally, given the difficulty in producing high-performance scalable code, productivity is a key concern. Recently, numerical algorithms are being redesigned to take advantage of the architectural features of emerging multicore processors. These new classes of algorithms express fine-grained asynchronous parallelism and hence reduce the cost of synchronization. We performed the first extensive performance study of a recently proposed parallel programming model, called Concurrent Collections (CnC). In CnC, the programmer expresses her computation in terms of application-specific operations, partially-ordered by semantic scheduling constraints. The CnC model is well-suited to expressing asynchronous-parallel algorithms, so we evaluate CnC using two dense linear algebra algorithms in this style for execution on state-of-the-art mul- ticore systems. Our implementations in CnC was able to match and in some cases even exceed competing vendor-tuned and domain specific library codes. We combine these two distinct research efforts by expressing FMM in CnC, our approach tries to marry performance with productivity that will be critical on future systems. Looking forward, we would like to extend this to distributed memory machines, specifically implement FMM in the new distributed CnC, distCnC to express fine-grained paral- lelism which would require significant effort in alternative models.Ph.D

    PERFORMANCE ANALYSIS AND FITNESS OF GPGPU AND MULTICORE ARCHITECTURES FOR SCIENTIFIC APPLICATIONS

    Get PDF
    Recent trends in computing architecture development have focused on exploiting task- and data-level parallelism from applications. Major hardware vendors are experimenting with novel parallel architectures, such as the Many Integrated Core (MIC) from Intel that integrates 50 or more x86 processors on a single chip, the Accelerated Processing Unit from AMD that integrates a multicore x86 processor with a graphical processing unit (GPU), and many other initiatives from other hardware vendors that are underway. Therefore, various types of architectures are available to developers for accelerating an application. A performance model that predicts the suitability of the architecture for accelerating an application would be very helpful prior to implementation. Thus, in this research, a Fitness model that ranks the potential performance of accelerators for an application is proposed. Then the Fitness model is extended using statistical multiple regression to model both the runtime performance of accelerators and the impact of programming models on accelerator performance with high degree of accuracy. We have validated both performance models for all the case studies. The error rate of these models, calculated using the experimental performance data, is tolerable in the high-performance computing field. In this research, to develop and validate the two performance models we have also analyzed the performance of several multicore CPUs and GPGPU architectures and the corresponding programming models using multiple case studies. The first case study used in this research is a matrix-matrix multiplication algorithm. By varying the size of the matrix from a small size to a very large size, the performance of the multicore and GPGPU architectures are studied. The second case study used in this research is a biological spiking neural network (SNN), implemented with four neuron models that have varying requirements for communication and computation making them useful for performance analysis of the hardware platforms. We report and analyze the performance variation of the four popular accelerators (Intel Xeon, AMD Opteron, Nvidia Fermi, and IBM PS3) and four advanced CPU architectures (Intel 32 core, AMD 32 core, IBM 16 core, and SUN 32 core) with problem size (matrix and network size) scaling, available optimization techniques and execution configuration. This thorough analysis provides insight regarding how the performance of an accelerator is affected by problem size, optimization techniques, and accelerator configuration. We have analyzed the performance impact of four popular multicore parallel programming models, POSIX-threading, Open Multi-Processing (OpenMP), Open Computing Language (OpenCL), and Concurrency Runtime on an Intel i7 multicore architecture; and, two GPGPU programming models, Compute Unified Device Architecture (CUDA) and OpenCL, on a NVIDIA GPGPU. With the broad study conducted using a wide range of application complexity, multiple optimizations, and varying problem size, it was found that according to their achievable performance, the programming models for the x86 processor cannot be ranked across all applications, whereas the programming models for GPGPU can be ranked conclusively. We also have qualitatively and quantitatively ranked all the six programming models in terms of their perceived programming effort. The results and analysis in this research indicate and are supported by the proposed performance models that for a given hardware system, the best performance for an application is obtained with a proper match of programming model and architecture

    Effective data parallel computing on multicore processors

    Get PDF
    The rise of chip multiprocessing or the integration of multiple general purpose processing cores on a single chip (multicores), has impacted all computing platforms including high performance, servers, desktops, mobile, and embedded processors. Programmers can no longer expect continued increases in software performance without developing parallel, memory hierarchy friendly software that can effectively exploit the chip level multiprocessing paradigm of multicores. The goal of this dissertation is to demonstrate a design process for data parallel problems that starts with a sequential algorithm and ends with a high performance implementation on a multicore platform. Our design process combines theoretical algorithm analysis with practical optimization techniques. Our target multicores are quad-core processors from Intel and the eight-SPE IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation methods in science and engineering problems and are characterized by unit-stride (MM, LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main contributions of this dissertation include a cache- and space-efficient algorithm model, integrated data pre-fetching and caching strategies, and in-core optimization techniques. Our multicore efficient implementations of the above described applications outperform nai¨ve parallel implementations by at least 2x and scales well with problem size and with the number of processing cores

    Parallel computing 2011, ParCo 2011: book of abstracts

    Get PDF
    This book contains the abstracts of the presentations at the conference Parallel Computing 2011, 30 August - 2 September 2011, Ghent, Belgiu

    Acceleration of Large-Scale Electronic Structure Simulations with Heterogeneous Parallel Computing

    Get PDF
    Large-scale electronic structure simulations coupled to an empirical modeling approach are critical as they present a robust way to predict various quantum phenomena in realistically sized nanoscale structures that are hard to be handled with density functional theory. For tight-binding (TB) simulations of electronic structures that normally involve multimillion atomic systems for a direct comparison to experimentally realizable nanoscale materials and devices, we show that graphical processing unit (GPU) devices help in saving computing costs in terms of time and energy consumption. With a short introduction of the major numerical method adopted for TB simulations of electronic structures, this work presents a detailed description for the strategies to drive performance enhancement with GPU devices against traditional clusters of multicore processors. While this work only uses TB electronic structure simulations for benchmark tests, it can be also utilized as a practical guideline to enhance performance of numerical operations that involve large-scale sparse matrices
    corecore