4,251 research outputs found

    Design Configurations and Operating Limitations of an Oscillating Heat Pipe

    Get PDF
    Passive and compact heat dissipation systems are and will remain vital for the successful operation of modern electronic systems. Oscillating heat pipes (OHPs) have been a part of this research area since their inception due to their ability to passively manage high heat fluxes. In the current investigation, different designs of tubular, flat plate, and multiple layer oscillating heat pipes are studied by using different operating parameters to investigate the operating limitations of each design. Furthermore, selective laser melting was demonstrated as a new OHP manufacturing technique and was used to create a compact multiple layer flat plate OHP. A 7-turn tubular oscillating heat pipe (T-OHP) was created and tested experimentally with three working fluids (water, acetone, and n-pentane) and different orientations (horizontal, vertical top heating, and vertical bottom heating). For vertical, T-OHP was tested with the condenser at 0°, 45° and 90° bend angle from the y-axis (achieved by bending the OHP in the adiabatic) in both bottom and top heating modes. The results show that T-OHP thermal performance depends on the bend angle, working fluid, and orientation. Another design of L-shape closed loop square microchannel (750 x 750 microns) copper heat pipe was fabricated from copper to create a thermal connector with thermal resistance \u3c 0.09 ˚C/W for electronic boards. The TC-OHP was able to manage heat rates up to 250 W. A laser powder bed fusion (L-PBF) additive manufacturing (AM) method was employed for fabricating a multi-layered, Ti-6Al-4V oscillating heat pipe (ML-OHP). The 50.8 x 38.1 x 15.75 mm3 ML-OHP consisted of four inter-connected layers of circular mini-channels, as well an integrated, hermetic-grade fill port. A series of experiments were conducted to characterize the ML-OHP thermal performance by varying power input (up to 50 W), working fluid (water, acetone, NovecTM 7200, and n-pentane), and operating orientation (vertical bottom-heating, horizontal, and vertical top-heating). The ML-OHP was found to operate effectively for all working fluids and orientations investigated, demonstrating that the OHP can function in a multi-layered form, and further indicating that one can ‘stack’ multiple, interconnected OHPs within flat media for increased thermal management

    Heat Transfer in Minichannels and Microchannels CPU Cooling Systems

    Get PDF

    Innovative Thermal Management Systems for Autonomous Vehicles — Design, Model, and Test

    Get PDF
    Emphasis on reducing fossil fuel consumption and greenhouse gas emissions, besides the demand for autonomy in vehicles, made governments and automotive industries move towards electrification. The integration of an electric motor with battery packs and on-board electronics has created new thermal challenges due to the heat loads\u27 operating conditions, design configurations, and heat generation rates. This paradigm shift necessitates an innovative thermal management system that can accommodate low, moderate, and high heat dissipations with minimal electrical or mechanical power requirements. This dissertation proposes an advanced hybrid cooling system featuring passive and active cooling solutions in a thermal bus configuration. The main purpose is to maintain the heat loads’ operating temperatures with zero to minimum power requirements and improved packaging, durability, and reliability. In many operating instances, a passive approach may be adequate to remove heat from the thermal source (e.g., electric motor) while a heavy load would demand both the passive and active cooling systems operate together for reduced electric power consumption. Further, in the event of a failure (e.g., coolant hose leak, radiator tube leak) in the conventional system, the passive system offers a redundant operating mode for continued operation at reduced loads. Besides, the minimization of required convective heat transfer (e.g., ram air effect) about the components for supplemental cooling enables creative vehicle component placement options and optimizations. Throughout this research, several cooling system architectures are introduced for electric vehicle thermal management. Each design is followed by a mathematical model that evaluates the steady-state and transient thermal responses of the integrated heat load(s) and the developed cooling system. The designs and the mathematical models are then validated through a series of thermal tests for a variety of driving cycles. Then, the cooling system design configuration is optimized using the validated mathematical model for a particular application. The nonlinear optimization study demonstrates that a 50\% mass reduction could be achieved for a continuous 12kW heat-dissipating demand while the electric motor operating temperature has remained below 65 centigrade degrees. Next, several real-time controllers are designed to engage the active cooling system for precise, stable, and predictable temperature regulation of the electric motor and reduced power consumption. A complete experimental setup compares the controllers in the laboratory’s environment. The experimental results indicate that the nonlinear model predictive control reduces the fan power consumption by 73% for a 5% increase in the pump power usage compared to classical control for a specific 60-minute driving cycle. In conclusion, the conducted experimental and numerical studies demonstrate that the proposed hybrid cooling strategy is an effective solution for the next generation of electrified civilian and combat ground vehicles. It significantly reduces the reliance on fossil fuels and increases vehicle range and safety while offering a silent mode of operation. Future work is to implement the developed hybrid cooling system on an actual electric vehicle, validate the design, and identify challenges on the road

    Energy Efficient Two-Phase Cooling for Concentrated Photovoltaic Arrays

    Get PDF
    Concentrated sunlight focused on the aperture of a photovoltaic solar cell, coupled with high efficiency, triple junction cells can produce much greater power densities than traditional 1 sun photovoltaic cells. However, the large concentration ratios will lead to very high cell temperatures if not efficiently cooled by a thermal management system. Two phase, flow boiling is an attractive cooling option for such CPV arrays. In this work, two phase flow boiling in mini/microchannels and micro pin fin arrays will be explored as a possible CPV cooling technique. The most energy efficient microchannel design is chosen based on a least-material, least-energy analysis. Heat transfer and pressure drop obtained in micro pin fins will be compared to data in the recent literature and new correlations for heat transfer coefficient and pressure drop will be presented. The work concludes with an energy efficiency comparison of micro pin fins with geometrically similar microchannel geometry

    A Critical Review of Experimental Investigations about Convective Heat Transfer Characteristics of Nanofluids under Turbulent and Laminar Regimes with a Focus on the Experimental Setup

    Get PDF
    In this study, several experimental investigations on the effects of nanofluids on the con- vective heat transfer coefficient in laminar and turbulent conditions were analyzed. The aim of this work is to provide an overview of the thermal performance achieved with the use of nanofluids in various experimental systems. This review covers both forced and natural convection phenomena, with a focus on the different experimental setups used to carry out the experimental campaigns. When possible, a comparison was performed between different experimental campaigns to provide an analysis of the possible common points and differences. A significant increase in the convective heat transfer coefficient was found by using nanofluids instead of traditional heat transfer fluids, in general, even with big data dispersion from one case to another that depended on boundary condi- tions and the particular experimental setup. In particular, a general trend shows that once a critic value of the Reynolds number or nanoparticle concentrations is reached, the heat transfer perfor- mance of the nanofluid decreases or has no appreciable improvement. As a research field still under development, nanofluids are expected to achieve even higher performance and their use will be crucial in many industrial and civil sectors to increase energy efficiency and, thus, mitigate the en- vironmental impact

    Heat sinks based on liquid metal for power electronics cooling applications

    Get PDF
    PhD ThesisPower semiconductor devices are key components for efficient power conversion in a wide range of industrial applications. The continuous trend toward increasing the power capability and decreasing the chip area of the semiconductors results in the generation of high heat fluxes, due to the power losses. Also, power electronics are one of the most common components of the power converter to fail, as a result of the thermomechanical stress within the structure of power module caused by large junction temperature swings (∆Tj). Effective and efficient thermal management systems should therefore be employed to dissipate the excess heat to the ambient environment and reduce the thermomechanical stress. Liquid metals received little attention as heat transport agents thus far, in spite of their excellent thermophysical properties. Also, their high electrical conductivity allows for driving them with a magnetohydrodynamics (MHD) pump, which is a reliable and low–power device. Hence, a thermal management system based on Ga68In22Sn10 liquid metal coolant is able to remove high heat fluxes, requires low operating power and provides high reliability; all desirable attributes for modern power electronic applications. This thesis focuses on the design and development of a cooling system based on liquid metal for conventional insulated–gate bipolar transistors (IGBTs), which are the most widely used power electronic switches for medium–to–high power conversion applications. The proposed heat sink is attached to the IGBT power module and liquid metal is impinged directly against the baseplate with the use of an integrated MHD pump, thus eliminating the need for thermal interface material (TIM). Moreover, an adaptive thermal management method based on liquid metal flow control is presented that is able to significantly reduce ∆Tj . Also in this thesis, the design and development of a liquid metal heat sink for press–pack IGBTs (PPIs) is proposed. Traditionally, water is used for cooling PPIs in high–power applications. However, ionised particles are developed in the cooling system that contribute to the corrosion of the piping system. Therefore, the use of a thermal management system based on liquid metal increases the heat dissipation capability without corroding the cooling structure. Analytical work is performed on the design of both heat sinks and the implementation of the temperature control method. The thermal performance of both heat sinks, as well as the adaptive heat sink control, are experimentally validated

    Thermoelectric Cooling

    Get PDF
    In this chapter, design and analysis study of thermoelectric cooling systems are described. Thermoelectric (TE) cooling technology has many advantages over the conventional vapor-compression cooling systems. These include: they are more compacted devices with less maintenance necessities, have lower levels of vibration and noise, and have a more precise control over the temperature. These advantages have encouraged the development of new applications in the market. It is likely to use TE modules for cooling the indoor air and hence compete with conventional air-conditioning systems. These systems can include both cooling and heating of the conditioned space. In order to improve the performance of the TE cooling systems, the hot side of the TE should be directly connected to efficient heat exchangers for dissipation of the excessive heat. Finally, TE cooling systems can be supplied directly by photovoltaic to produce the required power to run these cooling systems
    • 

    corecore