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Passive and compact heat dissipation systems are and will remain vital for the 

successful operation of modern electronic systems. Oscillating heat pipes (OHPs) have 

been a part of this research area since their inception due to their ability to passively 

manage high heat fluxes. In the current investigation, different designs of tubular, flat 

plate, and multiple layer oscillating heat pipes are studied by using different operating 

parameters to investigate the operating limitations of each design. Furthermore, selective 

laser melting was demonstrated as a new OHP manufacturing technique and was used to 

create a compact multiple layer flat plate OHP. 

A 7-turn tubular oscillating heat pipe (T-OHP) was created and tested 

experimentally with three working fluids (water, acetone, and n-pentane) and different 

orientations (horizontal, vertical top heating, and vertical bottom heating). For vertical, T-

OHP was tested with the condenser at 0, 45 and 90 bend angle from the y-axis 

(achieved by bending the OHP in the adiabatic) in both bottom and top heating modes. 

The results show that T-OHP thermal performance depends on the bend angle, working 



 

 

fluid, and orientation. Another design of L-shape closed loop square microchannel (750 x 

750 microns) copper heat pipe was fabricated from copper to create a thermal connector 

with thermal resistance < 0.09 ˚C/W for electronic boards. The TC-OHP was able to 

manage heat rates up to 250 W. A laser powder bed fusion (L-PBF) additive 

manufacturing (AM) method was employed for fabricating a multi-layered, Ti-6Al-4V 

oscillating heat pipe (ML-OHP). The 50.8 x 38.1 x 15.75 mm3 ML-OHP consisted of 

four inter-connected layers of circular mini-channels, as well an integrated, hermetic-

grade fill port. A series of experiments were conducted to characterize the ML-OHP 

thermal performance by varying power input (up to 50 W), working fluid (water, acetone, 

NovecTM 7200, and n-pentane), and operating orientation (vertical bottom-heating, 

horizontal, and vertical top-heating). The ML-OHP was found to operate effectively for 

all working fluids and orientations investigated, demonstrating that the OHP can function 

in a multi-layered form, and further indicating that one can ‘stack’ multiple, 

interconnected OHPs within flat media for increased thermal management. 
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CHAPTER I 

INTRODUCTION 

1.1 The Oscillating Heat Pipe 

The miniaturization and enhancement of electronics packaging schemes continue 

to challenge the design and engineering of compact heat dissipation systems for thermal 

management [1]. With heat fluxes nearing 1 kW/cm² being realized, conventional, single-

phase thermal management techniques are no longer viable. This has resulted in 

disruptive technology innovations such as near-junction/intra-cooling [2,3] and two-

phase, (far-junction) surface-mounted heat spreaders/sinks [4,5]. With regard to ‘far-

junction’ thermal management, methods are continually sought for effectively spreading 

thermal energy from relatively thin media to maintain near-isothermal surfaces opposite 

to adjoined heat sinks. One such device for high heat flux thermal spreading is the 

thermal ground plane (TGP). The TGP is a surface-mounted, two-phase heat spreader 

that operates passively [3,6,7], relying on capillary structures such as porous/sintered 

media and mini/micro-channels for cyclic fluid pumping. Some examples of TGPs 

include flat heat pipes, vapor chambers, oscillating (or pulsating) heat pipes (OHPs) and 

other hybrid two-phase cooling technologies [5,8–12]. The mounting of a TGP typically 

requires that minimal stress occur at the source-contacting interface to ensure minimal 

damage to heat-dissipating electronics. To this end, the heat source and TGP coefficient 
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of thermal expansion (CTE) are often sought to be ‘matched’ for reducing interfacial 

stresses.  

OHP’s were invented by Akachi in 1990 [13] and have been used as a simple, 

compact, and efficient cooling device for electronics and other industrial applications. 

The OHP, as shown schematically in Figure 1.1, is a partially-filled capillary structure 

that meanders, in a serpentine-fashion, through a heat source (i.e. evaporator) and heat 

sink (i.e. condenser) [14,15]. It can take the form of media-embedded, mini/micro-scale 

channels (i.e. a flat plate OHP a.k.a. FP-OHP) or capillary tubing (i.e. a tubular OHP); 

each requiring a hermetic seal for optimal operation. Upon introduction of a sufficient 

temperature difference or heat flux, the fluid inside the OHP vaporizes and expands 

unevenly along various sections of its evaporator resulting in its ‘start-up’. Vapor 

pressure builds due to sensible heating and results in a non-uniform, oscillatory pressure 

field forming against liquid volumes. The oscillatory fluid motion, combined with phase-

change heat transfer, allows for cyclic, fluid-driven heat transport from the OHP 

evaporator to the condenser. This cyclic phase change is typically evidenced by an OHP 

surface temperature field that oscillates with respect to time [16,17]. The type and 

amount of working fluid, channel/tube dimensions, number of channel/tube turns, 

operating orientation with respect to gravity, and heating/cooling areas are some of the 

many design/operating parameters affecting OHP thermal performance [18,19].  
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Figure 1.1 Schematic of typical liquid/vapor distribution within an oscillating heat 
pipe (OHP) consisting of uniformly-sized evaporator and condenser. 

 

OHP is different from conventional heat pipes in that OHP oscillating flow is 

thermally driven combined with capillary forces [14]. Also, OHP has low pressure drop 

because the internal surface of the channels has no wicking structure. In contrast, the 

process of cooling in conventional heat pipe starts from boiling the working fluid in the 

evaporator, which causes vapor to flow to the condenser; the condensate then flows back 

to evaporator section through the wicking structure. However, the vapor bubbles 

generated inside the OHP evaporator section work as a driving force for the working fluid 

to reach condenser. When vapor bubbles reach condenser, they will condense and return 

back to the evaporator due to differences in pressure with adjacent channels (which can 

be aided by the effect of gravity if properly oriented). The OHP internal diameter is thus 
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crucial for this capillary behavior. The empirically derived critical diameter for sustained 

OHP operation is shown in equation (1.1). 

𝑑𝑐 ≤ 2 [
𝜎

(𝜌l−𝜌𝑣)∗𝑔
]

1

2                        (1.1) 

The cyclic phase change of the working fluid inside the encapsulated serpentine 

tubes/channels causes sensible heat transfer, which actually represents the vast majority 

of the total heat transfer in an OHP [14]. 

The heat flux supplied on the evaporator and the heat dissipation from the 

condenser are the boundary conditions driving OHP operation [20]. Working fluid 

motion will not be sustained inside the OHP until a critical ‘start-up’ heat input is 

surpassed (although an initial fluid rearrangement may occur even at very low heat 

inputs). The start-up and oscillation of the working fluid between the OHP heat source 

section (evaporator) and heat sink section (condenser) depends on three forces: surface 

tension, gravity, and oscillation force which come from the pressure fluctuation between 

evaporator and condenser [21]. The parameters, which can affect working fluid motion 

and ultimately OHP performance, can be grouped into three categories: geometrical 

parameters, operational parameters, and physical parameters. 

Furthermore, OHP designs can be grouped into three basic categories: 1) tubular 

oscillating heat pipe (T-OHP), which consists of capillary serpentine tubes as shown in 

Figure 1.1, 2) flat plate oscillating heat pipe (FP-OHP), which consists of micro-channels 

engraved on a metallic plate as shown in Figure 1.3, and 3) multiple layer oscillating heat 

pipe (ML-OHP), which is manufactured using selective laser melting additive 

manufacturing technology as shown in Figure 4.1 [22]. 



 

5 

1.1.1 Tubular Oscillating Heat Pipe 

A tubular oscillating heat pipe (T-OHP) is made from a serpentine capillary tube. 

T-OHP can be shaped into four different main designs: closed end, closed loop, closed 

loop with check valve and open loop as shown in Figure 1.2 [23]. Because of their simple 

geometry, T-OHPs are typically cheaper and easier to manufacture than FP-OHPs or ML-

OHPs. 

 

Figure 1.2 Different design of OHPs: (a) closed end (b) closed-loop (c) closed loop 
with check valve (d) OHP with open ends 

 

1.1.2 Flat Plate Oscillating Heat Pipe 

 Flat plate oscillating heat pipes (FP-OHP) are manufactured by machining 

serpentine-arranged mini/micro-channels into a flat plate and then sealing the machined 

plate with a cover plate as shown in Figure 1.3. Copper, brass, aluminum, or other semi-

conductive materials are typically used as a base plate for the FP-OHP, but any material 

capable of maintaining a hermetic seal can be used. FP-OHPs have larger surface contact 

ratios than T-OHPs due to the inter-channel material, which makes FP-OHP more 

desirable for high heat flux applications. 
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Figure 1.3 Flat plate microchannel oscillating heat pipe  

 

1.1.3 Multi-Layered Oscillating Heat Pipe 

 The number of channel layers is of interest for high heat flux thermal 

management, since this allows the OHP channels to overlap themselves, which creates 

denser channel structures. Traditional OHP designs consist of a channel structure that 

remains in one plane, while multi-layered OHPs (ML-OHPs) consist of a channel that 

meanders through multiple planes. By having a multi-directional channel structure, the 

ML-OHP can be less prone to gravity or orientation dependence and thus provide for a 

wider range of heating/cooling boundary conditions [24]. 

1.2 Parameters Affecting Performance of Oscillating Heat Pipe 

Oscillating heat pipe thermal performance is affected by many parameters, such 

as number of turns, evaporator and condenser design, channel geometry, orientations, 

charging ratio, working fluid, and others. In this study, different parameters were studied 

to find the operating limitations of different OHP designs.  
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1.2.1 Geometrical Parameters 

OHP channels/tubes inner diameter is one of the geometrical parameters which 

affects the performance of OHP. In order for liquid slugs and vapor plugs to develop 

inside T-OHP channels, the inner diameter has to be sufficiently small, e.g. 0.5-3 mm. 

However, OHP theoretical analysis shows that the larger inner diameters could work 

under microgravity [25]. Charoensawan et al. [24] concluded that increasing the inner 

diameter of OHP at a specified temperature gradient between evaporator and condenser 

will increase its performance.  

Sakulchangsatjatai et al. [26] determined that increasing the inner diameter of 

closed loop and closed ends OHP charged with R123 and heated from the top will 

increase the heat flux predicted from the model. For horizontal orientation, many 

investigations have been conducted to determine the parameters which can affect OHP 

performance.  Rittidech et al. [27] experimentally tested closed end loop OHP charged 

with R123 at horizontal orientation and the results show that increasing the inner 

diameter will increase the heat flux. However, using ethanol as a working fluid in the 

heat pipe gave opposite results. Horizontal closed loop OHP thermal resistance decreases 

as the inner diameter increases by using water as a working fluid [28], but thermal 

resistance increases as the inner diameter increases by using ethanol as a working fluid. 

Rittidech et al. [29] used closed loop OHP with check valves and concluded that heat flux 

increases no matter whether water, ethanol or R123 was used as a working fluid.  

Cross-sectional shape of OHP is another geometrical parameter which affects the 

performance of OHP due to the effect of sharp angled corners [30]. Also, the cross-

sectional shape of OHP has an effect on the start-up characteristics of OHP [20]. The 
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thermal resistance of OHP with variable diameters is higher than others with uniform 

diameter[31].  

1.2.2 Effect of Orientation  

 Gravity has a significant effect on OHP heat transfer performance [32], although 

the impact factor of the working fluid inside oscillating heat pipe channels stronger than 

gravity. OHP thermal performance with bottom-heating (i.e. vertical) orientation is 

typically better than horizontal, where gravity helps the working fluid to oscillate by 

returning liquid to the evaporator [33]. Ma and Zhang [34] studied the effect of charging 

ratio and inclination angle on OHP thermal performance. Their results show that 

inclination angle has a significant effect among other variables. However, Yang et 

al.[30,35] concluded that the effect of orientation is insignificant with a decreased tube 

inner diameter where capillary forces are dominate. 

1.2.3 Effect of working fluid 

OHP capillary structure has to be filled partially with a working fluid in the range 

between 20-80% [19]. The working fluid is the foundation of OHP, where it works to 

transport heat from evaporator to condenser section. Working fluid selection depends on 

its surface tension, liquid and vapor densities, and the range of operating temperatures, 

where OHP critical inner diameter is a function of those parameters as shown in Equation 

2.1. Some working fluids have high surface tension, which works to increase OHP 

critical diameter and pressure drop in the tube. Fluids with low latent heat work to 

evaporate liquids quickly at certain temperature, increase vapor pressure, and finally 

improve OHP thermal performance. Specific heat of liquids also important for OHP 
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performance, where it acts to increase sensible heat transferred [19]. Shear stresses 

reduce for working fluids with low viscosity [19]. Density and surface tension of a 

working fluid affect channel size of OHP for micro gravity [36,25]. Taft et al. [37] 

verified that surface tension, density and latent heat of vaporization of working fluid have 

a direct effect on the OHP start-up. By studying the effect of using acetone, n-pentane 

and Novec 7200 working fluids on the performance of multi-layer Ti-6Al-4V additive 

manufactured OHP, it will be shown in this work that working fluid has an important 

effect on OHP start-up and thermal efficiency. 

1.2.4 Number of Turns 

The number of turns has a direct effect on the heat transfer characteristics 

occurring in OHP between evaporator and condenser, with many studies being conducted 

to determine the optimum number of turns for various OHP designs. Sakulchangsatjatai 

et al. [26] concluded that the optimum number of turns for closed loop and closed end 

loop OHP must be more than 40 turns. The number of turns also has a relation with the 

operating time of OHP, where the average operating time of OHP increase as number of 

turn increase [38]. Charoensawan et al. [24] concluded that the critical number of turns 

depends on working fluid properties and tube inner diameter. In another research, 

Charoensawan and Terdtoon [28] found that the critical number of turns depends on 

evaporator temperature. Also, they concluded that the optimum performance of 

horizontal closed loop OHP occurs at 26 turns, which was the maximum number of turns 

used in the experiment. 
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1.3 The Objectives of This Study 

The dissertation has three primary objectives: 1) a better understanding of the 

factors affecting the heat transport capability of the OHP in order to increase the 

efficiency; 2) develop an efficient OHP capable of working as a thermal connector for 

printed circuit boards; and 3) create simple, compact and efficient flat plate multiple layer 

oscillating heat pipe using selective laser melting. The following chapters encapsulate the 

research efforts focused on these objectives in a discrete manner. 

Chapter II focuses on the thermal performance of a 7-turn tubular OHP, which 

was tested experimentally at horizontal and vertical orientations. OHPs can play an 

important role in heat dissipation for electronics, and in these applications, there is 

seldom a linear path between the heat source and sink. Thus, it is important to explore 

OHP behavior when the evaporator and condenser are not in the same plane. The tubular 

oscillating heat pipe (T-OHP) was tested for vertical orientation with the condenser at a 

0, 45 and 90 angle from the y-axis (achieved by bending the OHP in its adiabatic 

regions) in both bottom and top heating modes. At each angle, the OHP was tested with 

three working fluids water, acetone, and n-pentane. Power input was changed to record 

the starting point of oscillating, steady state, and the power where the maximum OHP 

temperature reached 100 C. It was found that OHP works with vertical bottom heating 

and horizontal orientations for all bend angles but does not give the same performance 

with top heating. OHP performance at 90 angle bottom heating was better than other 

bend angles in all orientations. Furthermore, OHP performance was better with water 

working fluid than acetone and n-pentane for 45 and 90 angles, while acetone 

performed better at 0 angle. 
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Chapter III presents an L-shaped, closed-loop, square microchannel (750 x 750 

microns) pulsating heat pipe that was fabricated from copper to make a thermal connector 

for electronic boards. The thermal connector was able to manage heat rates up to 250 W. 

Also, it included design features such as: i) easy removal and ii) a locking mechanism to 

secure the faces of the connector against the slotted water block. The experimental tests 

showed that the heat pipe thermal connector outperformed the solid copper control by 

maintaining a surface temperature 16 ℃ lower than the control at 250 W power input. 

The thermal resistance of the thermal connector decreased as heating power input 

increased to a minimum of 0.09 W/℃ at 100 W. 

Chapter IV demonstrates using Selective Laser Melting (SLM), a type of additive 

manufacturing (AM) process, to fabricate a multi-layered oscillating heat pipe (ML-

OHP) from titanium alloy (Ti-6Al-4V). The 50.8 x 38.1 x 15.75 mm3, closed-loop OHP 

consisted of four inter-connected layers of circular mini-channels (1.52 mm). In order to 

discern the effect of the multiple layers on the thermal performance of the OHP, a series 

of experiments were conducted while varying the working fluid (water, acetone, Novec, 

and n-pentane – all at 70% fill ratios) and operating orientation (vertical bottom-heating, 

horizontal and vertical top-heating).  The ML-OHP evaporator size was found to depend 

on the layer-wise heat penetration, which subsequently depends on power input and the 

ML-OHP design and material selection. Using neutron radiography, electron scanning 

microscopy, and surface metrology, the ML-OHP channel structure was characterized 

and found to possess sintered Ti-6Al-4V powder along its periphery. The sintered 

channel surface, although a byproduct of the L-PBF manufacturing process, would have 

behaved as a secondary wicking structure for enhanced capillary pumping and wall/fluid 
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heat transfer within the OHP. With the newfound capabilities of AM, many high heat flux 

thermal management devices, specifically those that employ mini- or micro-channels, can 

be ‘re-invented’ to possess embedded channels with a typical geometries, arrangements 

and surface conditions.  
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CHAPTER II 

OSCILLATING HEAT PIPE PERFORMANCE AT DIFFERENT BEND ANGLES, 

ORIENTATIONS AND WORKING FLUIDS 

2.1 Introduction 

Utilizing a simple, compact and, efficient heat dissipation system is the target of 

all electronic designs. In this chapter, a 7-turn tubular OHP was shaped and tested 

experimentally to find the OHP thermal performance with various bend angles, 

orientations, and working fluids. The OHP was tested for horizontal and vertical 

orientations. For vertical orientation, OHP was tested at 0, 45 and 90 condenser bend 

angle from y-axis as shown in Figure 2.1 (b). Water, acetone, and n-pentane were used at 

each bend angle. Horizontal orientation was tested with acetone working fluid at 0, 45, 

90 and 135 bend angle. A T-OHP design was used as it is easy to manufacture and 

generate the bend angles between tests while maintained hermiticity. Furthermore, there 

is much existing research that investigates other T-OHP parameters. 

Rittidech and Wannapakne [39] found that solar collector efficiency reached 62% 

by using 3 mm ID closed end loop copper circular tube oscillating heat pipe charged with 

R134a at 50%. Meena et al. [40] concluded that using closed loop OHP with check 

valves charged with R134a at 50% in air preheater increase heat transfer rate and 

effectiveness. Rittidech et al. [29] experimentally tested a 40 turn circular copper tube 

closed loop oscillating heat pipe charged with three working fluid (water, ethanol, and 
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R134a) at 90 inclination angle to the horizontal. It was found that the heat flux increased 

with an increase of the ratio of check valves and decreased with the increase of aspect 

ratio. Charoensawan and Terdtoon [28] studied experimentally the effect of increasing 

number of turns (5, 11, 16, and 26), using two working fluids (distilled water and 

absolute acetone) with three filling ratios (30, 50, and 80%) on the performance of a 

horizontal closed loop copper tube OHP. They concluded that the best performance 

occurred at the maximum number of turns. Wannapakhe et al. [41] found that the heat 

transfer rate of a 40-turn copper closed loop OHP with a check valve at different 

inclination angle (0, 20, 40, 60, 80 and 90) was better by using silver nanofluid in 

comparison with pure water. Also, the best concentration of silver nanofluid was 0.5%. 

Lin et al. [42] studied the effect of silver nanofluid on thermal performance of closed 

loop OHP at variable filling ratios (20, 40, 60 and 80%) and different heating power (5 to 

85 W in 10 W increments). They concluded that midterm values of 40% and 60% of 

filling ratio were better and the best is 60%. Maydanik et al. [43] did an experimental 

study to determine the efficiency of a 17- turn copper closed loop oscillating heat pipe 

(CL-OHP) with three variable heating orientations (90, 0, and -90) and three working 

fluids (water, methanol, and R141b). They concluded that the top heating would not start 

up the CL-OHP. Chen et al. [44] developed a mathematical model to predict the thermal 

performance of a closed loop OHP charged with deionized water at 90 orientation. The 

effect of three sections on vapor condensation was precisely distinguished by the model. 

Line et al. [45] fabricated a polydimethylsiloxane OHP, which was tested with two 

different working fluids (methanol and ethanol) in vertical and horizontal orientations. 

The results showed that OHP in the vertical orientation worked better with methanol but 
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did not work properly with horizontal orientation. Qu and Ma [20] designed a glass OHP 

with circular channels charged with variable working fluids (water, methanol, ethanol, 

and acetone) at 90 orientation to predict the factors that can affect heat pipe 

performance. They found that start-up performance could be improved by using rougher 

surface, controlling vapor bubble type, and selecting right working fluid. Lin et al. [46] 

studied the effect of using three different working fluids (FS-39E microcapsule fluid, 

pure water, and ethanol) with different percentages of filling ratio (40-80%) and variable 

power input (0-80 W) on copper circular channel OHP start-up and thermal performance. 

The results showed that the start-up of OHP was dependent on the liquid filling ratio, 

thermal driving force, and working fluid. Yang et al. [35] studied the thermal 

performance and thermal resistance of two different inner diameters (1 and 2 mm) closed 

loop OHP at three orientations (90, 0, and -90) charged with R134a. The OHP worked 

successfully with both inner diameters but thermal resistance for di = 2 mm was lower 

than di = 1 mm by 10%. 

2.2 Oscillating Heat Pipe Prototype Design and Experimental Setup 

A 7-turn oscillating heat pipe was fabricated from copper tubing (C12200 alloy) 

with di = 3.25 mm and do = 4.8 mm, as shown in Figure 2.1. The heat pipe was divided 

into three sections: evaporator, condenser and adiabatic. The heat pipe was evacuated to 

less than 100 Pa before it was charged with working fluid (water, n-pentane, or acetone) 

at 70 % filling ratio (+/- 2%). The charging tube was pneumatically crimped directly after 

charging to create a hermetic seal. 
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Figure 2.1 Tubular OHP (a) with thermocouple arrangement, heating and cooling 
blocks (b) bend angle 

Pairs of cooling and heating aluminum blocks were made with grooves machined 

into their mating surfaces that matched the OHP tubes (2.4 mm radius). Before the blocks 

were fastened to OHP copper tubing, these grooves were coated with a thin layer of 

thermal paste (Omegatherm 201) to reduce the thermal contact resistance between 

aluminum blocks and copper tubing. The placement of the heating and cooling blocks 

created three OHP sections: evaporator, adiabatic, and condenser. The evaporator (i.e. 

heating block) and condenser (i.e. cooling block) sections had a length of 25 and 32 mm, 

respectively, while the distance between evaporator and condenser was fixed to be 75 

mm. The total length of the OHP was 177 mm. The two aluminum cooling blocks were 

connected to a water circulator (PolyScience AD15R-30-A11B) to provide a 20 oC 

cooling water, and two cartridge heaters 190 mm in length were placed inside aluminum 

heating blocks to heat the OHP using a variable autotransformer (Staco Energy), i.e. 
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variac, to control the power input. The variac connected with a digital multimeter (DMM) 

to measure the voltage output of the variac. Power calculations were based on cartridge 

heater resistance using P=V2/R. The whole OHP test assembly was then wrapped in a 

fiberglass insulation to reduce heat losses to the atmosphere. In this experiment, heat 

losses were neglected in all calculations and it is assumed that all power supplied by the 

heater absorbed by the heat pipe and transited to the water blocks. However, some heat 

loss from the OHP existed and increased as the power increased. Based on the insulation 

surface temperature the percentage value of heat losses from the OHP at high power were 

estimated to be ≤5%. A schematic of the experimental setup is shown in Figure 2.2. 

 

Figure 2.2 Tubular OHP in top heating mode connected with heating, cooling blocks, 
water bath, DMM, and variac. 

Fifteen T-type thermocouples were attached to the outside wall of OHP tubes to 

obtain temperature data, which was collected using National Instruments cDAQ-9178 

data acquisition (DAQ) system using NI-9213 temperature model. LabVIEW Signal 
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Express 2016 was used as the interface program to read and record the data collected by 

the DAQ. Power input was changed to record the starting point of oscillating, steady 

state, and the power at which the OHP reached 100 C. The same experimental test 

procedure was repeated for both top and bottom heating orientation at OHP bend angles 

from 0° to 135° with 45° increments (see Figure 2.1b), where OHP bended by fixing the 

heat pipe with a bench vise then bend it carefully using shaft. 

2.3 Results and Discussion 

The bent tube oscillating heat pipe (BT-OHP) thermal performance can be 

quantified by calculating its thermal resistance. Thermal resistance was calculated by 

taking the average temperature difference between the evaporator (using T3, T6, and T9 in 

Figure 2.2) and condenser (T1, T4, and T7) and dividing by the power input to the heater, 

P, as shown in Equation 2.2. 

ψeff =
(Tevap−Tcond)

P
 (2.2) 

Figure 2.3 shows BT-OHP performance with three different working fluids 

(water, acetone, and n-pentane) and three different bend angles (0, 45, and 90). BT-

OHP thermal performance increases as bend angle increase, where the surface 

temperature of the OHP charged with water reaches 100 ℃ at ~300 W power input at a 

0 bend angle, 600 W at 45 bend angle, and 750 W at 90 bend angle. This observation 

is attributed to the condenser performing better as the bend angle increases since the 

gravity effect for the condenser section decreases as the orientation changes from vertical 

to horizontal. Also, the bend angle between the evaporator and condenser introduces a 

pressure drop that affects the oscillating flow coming from the evaporator and increases 
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the period of time for the working fluid to remain within the condenser. The bend angle 

works to decrease the perturbation in the condenser. 

The BT-OHP performs better with acetone at 0 and water at 45 and 90 bend 

angles. Working fluid properties such as surface tension, latent heat of fusion, specific 

heat and viscosity have a direct effect on the performance of an OHP [19]. Low latent 

heat and viscosity of acetone make the oscillating velocity of liquid slug faster than water 

which has high latent heat and viscosity [19]. Working fluids with large specific heat like 

water start to be more effective than other working fluid parameters as bend angle 

increase, where bend angle work to damp the fluid oscillation velocity. 

 

Figure 2.3 Power vs. Thermal resistance comparison between three working fluids 
(water, acetone, and n-pentane) with bottom heating orientation) at specific 
bend angle: (a) 0 (b) 45 (c) 90. 
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Figure 2.4 shows the thermal performance of BT-OHP charged with acetone at 

different bend angles (0, 45, 90, and 135) and different orientations (vertical bottom 

heating, vertical top heating and horizontal). BT-OHP thermal resistance was plotted with 

variable power input at 0, 45, 90, and 135 bend angles. From 0 to 90, OHP 

performance with bottom heating orientation was better than top heating and horizontal. 

However, BT-OHP with 135 bend angle performed better in horizontal orientation than 

bottom and top orientations. Gravity improves the performance of any heat pipe 

operating while in the bottom heating configuration. For top heating, the performance of 

BT-OHP was lower than bottom and horizontal. That the working fluid dries out quickly 

more than other orientations. Whereas the surface temperature reached 100℃ at only 50 

W power input while with bottom heating, it reached 525 W and 275 W for vertical 

bottom heating and horizontal orientations, respectively. 
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Figure 2.4 Power vs. Thermal resistance comparison between OHP bend angles for 
acetone working fluid at certain orientation: (a) Bottom heating (b) Top 
heating (c) Horizontal. 
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CHAPTER III 

THERMAL CONNECTOR OSCILLATING HEAT PIPE  

3.1 Introduction 

Ever since the advent of integrated circuits, the challenges of electronic cooling 

have steadily increased. The high power densities of modern electronic designs result in 

high heat fluxes that can tax the capabilities of conventional forced convection cooling 

techniques. Electronic packages with complex designs can require novel thermal 

connectors to successfully transfer heat from the electronic components to system level 

cooling structures (e.g. forced air or liquid cooling) [1].  Mechanically, thermal 

connectors require some features to defend against vibration or thermal expansion 

compromising the contact between the connector and the heat source (which would 

increase the thermal resistance between the connector and source). Thus, the connector 

requires both a method of heat transport and a clamping mechanism for successful 

thermal mitigation. 

3.1.1 Thermal Connectors 

The earlier research on thermal connectors typically focused on the mechanical 

retaining mechanism[47 - 52]. Thermal issues may have been ignored in these earlier 

works due to the relatively low levels of generated heat of contemporary electronics. 

Wenz [53] investigated a coating material having properties of high thermal conductivity 

and low coefficient of friction between the heat sink strips on the edge of the board and 
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the frame member. Pesek [54] invented a wedge technique to protect the PCB from 

vibration and dissipate heat generated from the board to the chassis. Yousif and 

Kolbrekken [55] proposed a wedgelock and oil based ferrofluid interface material to 

reduce the thermal resistance between electronic board and cold block. The results show 

that using ferrofluid material is better than wedgelock. Rank and Whalen [56] invented a 

hydraulic thermal clamp includes a series of internal hollows along a screw to pass 

through carried by a jackscrew, this device works to fix the board and dissipate heat 

generated.  Reilly et al. [57] designed a wedgelock of aluminum triangular pieces to 

provide a locking force and transfer heat from the board to the cooling plate. The Defense 

of Advanced Research Projects Agency (DARPA) and the office of Naval Research 

hosted a competition for the years between 2012 to 2015 promote the advancement of 

thermal connector technology. The competition design has aluminum heating plate 

provided with a heater and aluminum cooling block with longitudinal channel connected 

with water circulator. The purpose of the competition is to get a thermal connector having 

the capability of applying a clamping force on the hot plate with the cooling block and 

works to reduce the thermal resistance between them. Through a series of progressively 

more difficult challenges, the initial field of designs was down-selected to four prototypes 

that were then externally tested by industry experts. Georgia Tech developed a hydraulic 

thermal connector provided with a screw which works to apply a force on the honey 

working fluid inside the copper series and exert a pressure on the piston due to its volume 

change occurs in the honey [58]. The University of Missouri Columbia used direct laser 

centering to fabricate two wedges thermal connector. Also, they were created a stainless-

steel pulsating heat pipe thermal connector using direct metal sintering [58]. National 
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Tsinghua University proposed a thermal connector with front and rear wedges [58]. The 

University of Maryland delivered two pieces wedge with an end screw, in which end 

screws push two wedges laterally for clamping purposes [58]. The University of 

California-Merced designed a three wedge device which works to provide the clamping 

force [58].  

3.1.2 Features of Thermal Connector Oscillating Heat Pipe  

The oscillating (or pulsating) heat pipe (OHP), as shown conceptually in Figure 

1.1, utilizes temperature-actuated, oscillating flow for thermal management in a variety of 

applications. When a temperature difference is imposed across the length of the 

serpentine OHP channels, non-uniform vapor expansion in the evaporator (i.e. area of 

heat reception) increases until, after a sufficient driving temperature difference is 

achieved, the quasiperiodic motion of the internal vapor and condensate occurs. This 

oscillating pressure field provides the mechanism for the replenishment of vapor in the 

condenser (heat sink location) in order to sustain its cyclic operation without a wick 

structure. Relative to other heat pipes, the OHP can be miniaturized and costs less to 

manufacture. The OHP tube/channel structure has a capillary dimension (~ 1 mm) to 

form stable liquid plugs during operation. 

The OHP working fluid is selected based on the power range of the described 

application; oscillations should start at bottom of the range and evaporator dry out (i.e. 

OHP operational limit) should not interfere at top of range. Qu and Ma [20] presented an 

equation for the start-up heat transfer of an OHP, 𝑞min, which incorporates vapor bubble 

growth due to nucleate boiling: 
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𝑞min ≈
𝑘𝑙𝑇𝑣𝐴𝑐,ℎ

𝑟𝑖 ln[𝑟𝑖 (𝑟𝑖−𝛿𝑙)⁄ ]
(1 {1 −

𝑅𝑇𝑣

ℎ𝑙𝑣
ln [1 +

2𝜎

𝑝𝑣𝑅𝑇𝑣𝑟𝑛
]}⁄ − 1) 𝐴𝑐,ℎ (3.1) 

Where 𝑟𝑖 is the internal radius of the OHP mini-channel and𝐴𝑐,ℎ is the cross-

sectional area of the mini-channels in the evaporator. Based on Equation 3.1, a number of 

working fluid and material properties are of interest for minimizing the start-up heat input 

of the OHP. The liquid thermal conductivity, 𝑘𝑙, and latent heat of vaporization, ℎ𝑓𝑔, 

should be minimized, and the surface roughness of the internal channels (depth of 

nucleation sites), 𝑟𝑛, should be maximized. The start-up heat input equation dictates 

working fluid selection, filling ratio and material roughness. Equation (3.1) led to Novec 

7200 (3M) being selected as the working fluid since it has a low latent heat of 

vaporization and high vapor pressure. 

 A 2-piece, Oscillating heat pipe thermal connector (TC-OHP) was manufactured 

by machining a closed-loop square microchannel (750 x 750 microns) into a copper 

substrate. The goal of the TC-OHP prototype was to design a thermal connector with 

thermal resistance < 0.09 ˚C/W for electronic boards. The milled channel is reminiscent 

of traditional FP-OHPs, however, the channel structure of the TC-OHP was L-shaped, 

not planar like other FP-OHPs. This design shift required the development of a new 

brazing technique. The thermal performance of the TC-OHP is shown to be superior to 

that of the solid copper control thermal connector. Furthermore, this work demonstrates 

the feasibility of a new OHP form factor applicable to small scale or geometrically 

complex thermal management issues.  
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3.2 Thermal Connector Prototype 

3.2.1 Design and Manufacturing 

The thermal connector, shown unsealed in Figure 3.1, is CNC machined from 

solid blocks of copper alloy 110. The connector consists of two opposing wedge-shaped 

sections: the primary section containing the intricate micro-tube pulsating heat pipe filled 

with a working fluid and sealed by brazed cover plates, and the secondary portion to 

function as the wedge. A steel shaft is threaded into the thickest portion of the main 

section of the TC-OHP and extends lengthwise along the TC-OHP. A slot and hole in the 

secondary portion (visible in Figure 3.1) allow the steel rod to act as a connecting rod to 

hold the two parts together. The wedging action is performed by tightening a nut on the 

unsecured end of the connecting rod, forcing the secondary portion of the TC-OHP 

inward.  

Combined dimensions of the two copper sections include a nominal length of 150 

mm, height of 12.7 mm, and a nominal width of 6.35 mm when fit together. The 

connecting rod is a 3.175 mm diameter, 4-40 threaded steel rod. The length and width of 

the assembly will change as the fastener on the connecting rod is tightened.  

The pulsating heat pipe consists of 13 micro-channel loops on the evaporator side 

(visible in Figure 3.1) and 12 micro-channel loops with a “return” channel on the 

condenser side. The channels on the evaporator side have a hydraulic diameter of 

approximately 0.76 mm while the channels on the condenser side have a diameter of 1.01 

mm. The changing diameter encourages fluid flow as fluid expands within the evaporator 

and is forced into the higher volume condenser. 
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Due to the angled design of the TC-OHP, a novel brazing method had to be 

devised. An angled brazing chassis was developed so both the evaporating and 

condensing sections of the TC-OHP could be brazed simultaneously. The bottom of the 

chassis holds the TC-OHP in place while a second part is placed on top of the TC-OHP 

allowing the additional weight to be applied to the assembly to ensure proper contact for 

brazing. These components can be seen in Figure 3.2. 

 

Figure 3.1 Two-piece thermal connector with embedded oscillating heat pipe 
(unsealed) 
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Figure 3.2 Brazing Chassis with Test Connector 

 

To prepare the TC-OHP for brazing, the surfaces of the primary portion and the 

cover plates that were to be brazed were prepared by softly sanding. The connector, the 

cover plates, and the braze foil were then thoroughly cleaned by being submerged in a 

bath of cleaning solution to cleanse the surface of any impurities and oxidation. The 

brazing chassis, with the connector, braze foil, and cover plates in place was then placed 

within a controlled atmosphere brazing furnace. For this application, the brazing furnace 

was continuously purged with argon to ensure no oxidation of the connector occurred 

during the brazing process. 

3.2.2 Prototype Strengths and Weaknesses 

The simple 3 piece design makes the OHP an attractive choice as a thermal 

connector. It is easily installed and removed using basic hand tools. However, the delicate 

nature of the copper sheet that seals the OHP is a concern if the assembly were to be 
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deformed or otherwise damaged. If the sheet was to rupture, the hermetic seal would be 

lost resulting in the OHP ceasing to function. The performance of the thermal connector 

would then be solely dependent of the thermal conduction of copper. Furthermore, the 

TC-OHP requires complete contact with the bottom of the channel in which it is inserted 

for the OHP to fully reject heat from the condenser. Any air gap will form an insulating 

layer effectively increasing overall thermal resistance. 

3.3 Experimental Setup and Procedure 

The experimental setup consists of a machined aluminum block to function as a 

cold thermal sink (the cold block). This block features multiple channels through which 

temperature controlled water is circulated and 12.7 mm square channels for testing the 

TC-OHP (see Figure 3.3). Heat is supplied by a resistive heater mounted in the center of 

an aluminum plate which will loosely simulate a PCB. Power input to the resistive heater 

is controlled by a Variac and measured by a digital multi-meter (DMM). 

 

Figure 3.3 Thermal Connector Setup with The Cooling and Heating Blocks 
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The aluminum plate and the TC-OHP are fully inserted into one of the slots in the 

cold block such that the evaporator portion of the OHP is against the plate and the 

condensing portion is in full contact with the bottom of the slot. Multiple thermocouples 

are attached to the aluminum plate, the cold block, and the TC-OHP to accurately analyze 

the thermal performance of the system. The data is collected using a National Instruments 

Data Acquisition System (DAQ) and compiled in Microsoft Excel. Visual results 

displayed through Simulink Express provide real-time insight to the behavior of the 

system, as well as oscillation of the heat pipe mechanism of the thermal connector. The 

full experimental setup is illustrated in Figure 3.4. 

 

Figure 3.4 Experimental setup for characterizing the TC-OHP 

Prior to insertion into the slot, the heat pipe was full evacuated using a vacuum 

pump and charged with Novec 7200 to a fill ratio of 70%. This was determined by 

calculating the internal volume of the TC-OHP and carefully weighing it during the 

charging process. 
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Throughout testing, 20°C cooling water was supplied continuously through the 

cold block. The tests were initiated when the entire insulated test assembly reached 

equilibrium with the circulated water. The experimental setup was then stepped through 

pre-determined inputs ranging from 0-250 watts by controlling the voltage to the heating 

plate using a Variac. The voltage needed to provide the specified power levels was found 

using Ohm’s Power Law and the resistance of the heater which was measured to be 47 

ohm. Steady state data was recorded at 25, 100, 150, 200, and 250 watts for 30 seconds at 

each interval. 

OHP thermal performance was calculated by taking the average temperature 

difference between the evaporator and the condenser and dividing it by the power input. 

The test was repeated three times with proper contact between the condensing section of 

the TC-OHP and the bottom of the slot in the cold block and two times without ensuring 

proper contact to demonstrate the effects of improper insertion. These results are shown 

in Tables 3.1 and 3.2.  
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Table 3.1 OHP thermal resistance for a proper and improper insertion of the TC-
OHP.  

 Proper Insert Improper Insert 

Power OHP1 OHP2 OHP3 OHP4 OHP5 

25 0.07078 0.083467 0.067768 0.124475 0.11685 

100 0.08559 0.088696 0.082527 0.127624 0.120652 

150 0.08479 0.087791 0.082721 0.120832 0.114679 

200 0.08371 0.084765 0.081037 0.113836 0.109272 

250 0.08272 0.086249 0.07954 0.110407 0.108329 

Table 3.2 Control thermal resistance for a proper and improper insert between hot 
and cold blocks 

 Proper Insert Improper Insert 

Power Control 1 Control 2 Control 3 

25 0.107762 0.14079 0.143927 

100 0.119448 0.14738 0.151072 

150 0.117595 0.14597 0.151216 

200 0.116127 0.14687 0.147336 

250 0.114992 0.14707 0.145431 

3.4 Results and Discussion 

Following the process detailed above, the results show that 16°C temperature 

difference was measured between the connector and the control when operating at 250W. 

The steady state temperatures can be seen below in Figure 3.5. 
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Figure 3.5 Steady state temperature distribution vs. power input comparison between 
heat pipe thermal connector and control. 

It can be seen from Figure 3.5 that the connector performs increasingly better than 

the control with higher power inputs. To further analyze the initial data, the thermal 

resistance was calculated as follows for each power level: 

ψ =
Tss,avg−Twater

Power
 (3.3) 

The result of this analysis is shown in Figure 3.6. These results demonstrate that 

the thermal resistance of the connector is an order of magnitude lower than the control. 

Furthermore, the thermal resistance of the connector decreases as temperature increases 

due to ever increasing activity in the OHP. 
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Figure 3.6 Thermal resistance vs. power input comparison between oscillating heat 
pipe thermal connector and control. 

The connector uses the bottom of the channel as cooling for the evaporator region 

of the OHP. It was discovered that if the connector is not well inserted into the channel, 

sub-optimal thermal resistance will occur. It is theorized that a small air pocket under the 

evaporator region acts as an insulating layer against OHP’s operation. 

Two tests were run with the OHP improperly inserted into the channel. No special 

care was taken to ensure that it was well seated against the bottom. These tests resulted in 

higher thermal resistances than had previously been measured. The connecter was tapped 

down into the channel after the wedge was secured in place. 

Similar tests were conducted on the control. Two tests were run with improper 

insertion, and one test was run while guaranteeing a proper fit to the bottom of the 

channel, as well as forcing the wedge in place until the material began to yield. 
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Several observations can be made from the results of these tests. In Figure 3.7, the 

comparison between the thermal resistance of the improper insertion of the connector and 

the improper insertion of the control can be seen. 

 

Figure 3.7 Worst Case Thermal Resistance. 

This can be considered as the worst case scenario for both devices. The connector 

will not operate ideally as it does not have solid contact with the bottom of the channel, 

and the control cannot take full advantage of the bottom surface for conduction. Despite 

this being the worst case scenario, the connector performs from 11.6% to 26.3% better 

than a similarly inserted control. 

In Figure 3.8, the best case scenario for both devices is displayed. The tests shown 

here ensure the devices are pressed against the bottom of the channel as well as held 

securely in place by the wedge. 
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Figure 3.8 Best Case Thermal Resistance. 

In this scenario, the connector is firmly seated against the bottom surface allowing 

proper operation of the condenser region. In this orientation, the connector has 22.5% to 

37.1% lower thermal resistance than the control. 

It is clear that in both scenarios that the OHP enhanced connector performs better 

than the control in similar conditions. It is worth noting that, at its worst, the connector 

performs as proper as the connector at its best as shown in Figure 3.9. 
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Figure 3.9 Worst Case Connector vs Best Case Control. 

It can be inferred from this comparison that the connector will at worst behave as 

a solid piece of copper that is operating under ideal conditions
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CHAPTER IV 

MULTI-LAYERED OSCILLATING HEAT PIPE ADDITIVELY MANUFACTURED 

FROM Ti-6Al-4V POWDER 

4.1 Introduction 

The importance of passive and compact heat dissipation systems continues as 

electronic components continue to miniaturize and become more powerful. Flat heat 

pipes, or vapor chambers, and other sintered media and mini-channel technology, are 

some of the early passive devices used for cooling thermal systems [60-62]. For the high 

heat flux thermal management problem, surface-mounted but both have limit ability to 

dissipate high heat fluxes [63]. In 1990, the first oscillating heat pipe (OHP) was 

introduced. Unlike a vapor chamber, the OHP can dissipate high heat fluxes without dry 

out [18,19, 24,64-67]. Working fluid, filling ratio, OHP orientation, operating 

temperature, number of channel turns, heating/cooling area, and channel dimensions are 

the main parameters of the OHP thermal performance [18]. The oscillating heat pipe can 

be constructed from serpentine tubes or a flat plate with a closed-loop, meandering mini- 

or micro-sized channel (ML-OHP). The working fluid of the oscillating heat pipe is key 

to achieving high effective thermal conductivities by transporting the heat from 

evaporator to condenser through both sensible and latent heat. 

The working fluid selected for the OHP must demonstrate wicking behavior as 

governed by the OHP channel/tube hydraulic radius, rH, and operating environment (e.g. 
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gravity). Conditions for capillarity, and thus effective OHP operation, can be estimated 

via the Bond number, Bo, i.e.: 

 Bo =
𝑟H

2∆𝜌lv𝑔

𝜎
≲ Boc (4.1) 

where 𝜎 is the liquid-to-vapor surface tension, ∆𝜌lv is the difference in density 

between the liquid and vapor phases, and Boc is the critical Bond number for capillarity 

and can range between 0.8 – 1.0 [15,36]. 

The thermophysical and rheological properties of the utilized working fluid 

dictate OHP thermal performance. A fluid’s surface tension strongly influences 

evaporation heat transfer [68], as well as the pressure gradient along the OHP flow path 

[19]. Fluids with a lower latent heat of vaporization and dynamic viscosity tend to 

provide for slower flow speeds, moderate heat transfer, and lower OHP start-up powers 

[19,20,24]. A fluid’s specific heat capacity influences its single-phase heat transfer during 

oscillatory, forced convection within an operating OHP. Since the majority of OHP heat 

transfer is typically sensible [69], the specific heat capacity and thermal conductivity are 

thus important thermal properties of the working fluid. A fluid with a vapor pressure 

highly sensitive to temperature is desirable for increasing an OHP’s pumping capability – 

which is needed for assisting its start-up and consistent operation [19]. Taft et al. [70] 

demonstrated that the latent heat of vaporization, surface tension, and density of working 

fluids play an important role in OHP start-up and that viscous fluids provide more 

dampened temperature oscillations during OHP operation. Both the surface tension and 

density of a working fluid can affect OHP channel sizing for various micro-to-macro 

gravity environments (i.e. the Bo is gravity dependent) [25,36]. In general, fluids with 

low dynamic viscosity and latent heat of vaporization reduce the heat input required for 
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OHP start-up by minimizing channel pressure drop [19,70]. Fluids with a smaller latent 

heat of vaporization can improve OHP performance by providing higher oscillating 

velocities (caused via higher vapor pressure). 

Since OHP operation depends on the dominance of surface tension forces for 

ensuring capillary flow, the magnitude and direction of gravity will, in general, affect 

OHP thermal performance [14,18,25,64,65,71–73]. For terrestrial gravity environments 

(i.e. 1g), this dependence is often demonstrated experimentally by altering the OHP’s 

operating orientation and relative positioning of its evaporator and condenser. An OHP in 

the vertical bottom-heating orientation (or ‘mode’) is descriptive of it being collinear with 

the gravity vector and its condenser above its evaporator; while an OHP in the horizontal 

orientation indicates that the OHP is perpendicular to the gravity vector. Riehl 

demonstrated that, for a constant fill ratio of 50%, the sensitivity of an OHP’s thermal 

performance to working fluid is exaggerated when the OHP is operating in the horizontal 

orientation [74]. This was demonstrated for a variety of working fluids, including: water, 

methanol, acetone, isopropyl alcohol, and ethanol. Variation of the OHP’s effective 

thermal conductivity was found to vary by ± 19% when changing working fluids with the 

OHP in the bottom-heating mode, while the variation was ± 53% in the horizontal 

orientation. 

To combat adverse gravity effects, for a given working fluid, one can alter the 

OHP structure and design, by, for example: increasing the number of turns [24], 

decreasing the channel diameter [19], using check-valves [75] and/or increasing the 

number of channel layers [24,76,77]. The number of channel layers is of interest for high 

heat flux thermal management, as well as gravity combatting, since this allows the OHP 
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structure to overlap itself, thus becoming denser. Traditional OHP designs consist of a 

channel structure that remains in one plane, while multi-layered OHPs (ML-OHPs) 

consist of a channel that meanders through multiple planes. By having a multi-directional 

channel structure, the ML-OHP can be less prone to gravity force and provide for a wider 

range of heating/cooling boundary conditions [24]. 

Thompson et al. experimentally investigated a copper, flat-plate ML-OHP (two 

layers) filled with either water or acetone [75,76]. In addition to varying the working 

fluid and orientation, the heating area, and thus OHP evaporator size, was varied. It was 

demonstrated that increasing the OHP channel layer number could allow for higher heat 

flux mitigation (i.e. ~ 300 W/cm² was observed) and an increased range of operating 

orientations in which thermal performance is not altered. The orientation-dependence of 

the ML-OHP was shown to become stronger as the heating area was reduced, and this 

suggests that the OHP design investigated may have not been entirely optimal. 

Borgemeyer et al. experimentally investigated a tubular ML-OHP (two layers) filled 50% 

with water and observed exceptional thermal performance (~400 W capability) which 

was attributed to the OHP multi-layer design [78]. The evaporator-to-condenser 

temperature difference was found to decrease as power input increased. Smoot and Ma 

investigated the effect of channel layer number (up to three) and operating orientation on 

the thermal performance of a 229 x 76 x 13 mm3 copper ML-OHP [77]. The device 

consisted of a single-layer OHP brazed between a double-layer, interconnected OHP; 

creating two independent closed-loop structures that were either partially filled with 

water (at 50%) or remained empty. The results demonstrated that the utilization of more 

channel layers can significantly increase the OHP heat transfer capability (i.e. ~ 8 kW). It 
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was further confirmed that the utilization of an ML-OHP with interconnected channels 

between layers provides for less sensitivity to operating orientation. In contrast, a ML-

OHP with independent/stacked single-plane channel circuits is more prone to operating 

orientation limitations, but can have a reduced start-up power requirement.  

To date, ML-OHPs have been fabricated using traditional manufacturing 

methods, in which mini-channels are milled/etched and then cover plates are either 

mechanically or metallurgically (e.g. furnace brazing) attached for sealing purposes. 

While these methods are proven means for manufacturing single- or double-layer OHPs, 

the fabrication of a ML-OHP with interconnected channels exceeding two layers is 

challenging; especially while maintaining hermetic-grade channel encapsulation. The 

geometry and complexity of the OHP channel structure is also severely constrained by 

manufacturing capability, available resources and time. Although ultrasonic consolidation 

(UC) has been demonstrated as a successful means for fabricating aluminum OHPs [79], 

its utility for realizing highly-complex ML-OHPs and other types of TGPs remains at 

question. 

Additive manufacturing (AM) is an appealing method for generating complex, 

metallic components from the ground-up directly from computer-sourced solid models 

(i.e. CAD). For metals, AM is commonly accomplished by the repetitious melting and 

solidification of metallic powder via directed energy in the form of a laser or electron 

beam. One common technique for the AM of metals is Laser Powder Bed Fusion (L-

PBF) [80]. During L-PBF, successive solid layers of a part are formed by uniformly 

distributing and selectively fusing (via a laser) a bed of metallic powder under an inert 

protective atmosphere. 
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The use of L-PBF for generating application-tailored components is currently 

being realized in the biomedical and aerospace industries [81,82]. Structures with high 

degrees of geometric complexity are readily manufacturable, as un-melted particles 

within the L-PBF powder bed structurally support subsequent layers during their 

deposition; allowing for the fabrication of internal features and channels. With regard to 

OHPs, L-PBF provides new design options for channel geometry, number of channel 

layers, working material (i.e. materials other than copper or aluminum), surface features, 

alternate hermetic sealing methods and more. As an illustrative example, L-PBF allows 

one to construct an OHP with six layers of triangular channels parallel to various, tilted 

planes. With regard to fabricating surface-mounted heat sinks for electronics cooling, 

AM also provides a unique opportunity to manufacture heat transfer devices with better-

matching CTEs and higher melting temperatures. Although various AM methods have 

been proven successful in building Ti-6Al-4V components worthy for application, the 

mechanical integrity of such components is still relatively unknown and this is important 

when considering their use in high pressure or high thermal/mechanical cycling 

applications [83–86]. 

In this study, a novel high-temperature, CTE-matching material desirable for 

many applications – Ti-6Al-4V – is utilized for fabricating a ML-OHP with four 

interconnected layers of circular mini-channels via L-PBF. The ML-OHP design and 

manufacture are discussed and then followed by details of the experimental setup and 

procedure. Results demonstrating the thermal performance of the ML-OHP, as well as its 

internal channel surface condition, are then provided. 
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4.2 Prototype Design and Manufacturing 

A titanium alloy (Ti-6Al-4V) ML-OHP, shown in Figure 4.1, was manufactured 

layer-by-layer atop a 10 x 10 x 1 cm3 titanium platen within an argon purged L-PBF 

system (ProX 100™) equipped with a 50 W fiber laser [87]. Gas atomized Ti-6Al-4V 

spherical particles (ASTM B347 Grade 5), with a diameter range of 15-45 m, were 

utilized in their as-received condition. The 50.80 x 38.10 x 15.75 mm3 ML-OHP 

consisted of four interconnected, horizontal layers of circular mini-channels – forming 

one closed, continuous loop. Using Equation 4.1, the channel diameter was selected as Ø 

≅ 1.52 mm to ensure capillarity of the multiple working fluids investigated. Ti-6Al-4V 

was chosen for the manufacture of the ML-OHP due to its proven additive-

manufacturability and thermal expansion properties, i.e. CTE. Unlike the CTEs of 

traditional heat transfer materials such as copper (~17 x 10-6 K-1) and aluminum (~23 x 

10-6 K-1), Ti-6Al-4V has a CTE (~9 x 10-6 K-1) closer in magnitude to that of silicon (~3 x 

10-6 K-1), a common semiconductor material used in integrated circuits. 
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Figure 4.1 Ti-6Al-4V ML-OHP with fill port and vent holes: (left) photograph after 
milling of faces with transparent CAD part and (right) dimensioned 
drawings (in millimeters). 

Manufacturer-suggested process parameters for Ti-6Al-4V were employed to 

fabricate the ML-OHP with minimal porosity, including a laser power and scanning 

speed of 49 W and 40 cm/s, respectively. The nominal powder layer thickness and hatch 

distance (distance between adjacent laser passes within the same layer) used during 

fabrication were 70 µm and 30 µm, respectively. The ML-OHP was built vertically 

upward; with the majority of its channel structure perpendicular to the build plate. 

Parallel laser scans were performed at 45º angles while depositing each new layer of 

material. After fabrication, the ML-OHP was sheared off the build plate using electrical 

discharge machining (EDM). 

Parts fabricated via L-PBF are prone to possessing relatively rough surfaces due 

to powder size variation, partially melted powder remaining at the edges, and potential 

balling phenomena at the trailing melt pool. Hence, the as-built ML-OHP had two of its 

sides faced (via end-milling) to obtain smoother surfaces for better contact with 



 

46 

heating/cooling blocks during experimentation. A photograph of the post-PBF, machined 

ML-OHP is provided in Figure 4.1. The encapsulated, un-melted powder within the 

closed-loop channel structure was sought for removal via a de-powdering process; hence, 

nine vent holes (two at Ø 1.83 mm and seven at Ø 1.27 mm) were drilled (and tapped) 

into the sides of ML-OHP channel layers. Powder was forced out of the ML-OHP, layer-

by-layer, by supplying pressurized air (~1 MPa) through the vent holes. After de-

powdering each layer, the vent holes were sealed using titanium screws (0-80 UNF or 2-

56 UNC threaded plugs), which were secured in place with thread locker (Loctite® 222). 

The fill port (Ø 3.18 mm, 1/8 NPT), protruding from the side of the ML-OHP as shown 

in Figure 4.1, was tapped and a vacuum-grade fitting (Swagelok® SS-1-UT-1-2) was 

installed. 

A phosphorous-deoxidized copper (alloy 122) tube (0.8 mm ID) was connected to 

the fill port, and the ML-OHP was connected in-line with a vacuum pump (Fisher 

Scientific Maxima C Plus Model M8C) assembly. The ML-OHP internal channel 

structure was repetitiously flushed with acetone (99.5% purity) for removal of excess 

powder and oxide. Prior to the introduction of the working fluid, the fitted ML-OHP 

assembly was confirmed to hold a vacuum for a prolonged period of time by monitoring 

the pressure (MKS INC 910 pressure transducer, ± 5% accuracy) of the vacuum 

pump/heat pipe assembly. To investigate the effects of working fluid, approximately 70% 

(± 2%) of the heat pipe channel was filled with either: high performance liquid 

chromatography (HPLC)-grade water (Fisher Scientific W5SK-4, 1 g/mL density, 100% 

purity), HPLC-grade acetone (Fisher Scientific A949-4, 0.7857 g/mL density, 99.5% 

purity), n-pentane (Aqua Solutions P1033-4L, 0.63 g/mL density, 99% purity) or 
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NovecTM 7200 (3M, 1.43 g/mL density, standard purity). All working fluids were de-

gassed and ‘back-filled’ into the evacuated ML-OHP (~3 Pa vacuum) to prevent air from 

adversely affecting its thermal performance. After filling the ML-OHP, its charging tube 

was pneumatically crimped to ensure a hermetic seal. 

4.3 Experimental Setup and Procedure 

The ML-OHP was experimentally characterized for thermal performance using a 

setup shown schematically in Figure 4.2. In order to determine the effects of gravity, the 

device was suspended in an insulated, rotatable test frame for accomplishing horizontal 

(i.e. parallel to ground), vertical bottom-heating and vertical top-heating orientations. As 

shown in Figure 4.2, the ML-OHP evaporator and condenser were located on opposing 

faces and sides. This heating/cooling configuration was selected for maximizing the 

layer-wise heat flux (i.e. along the OHP thickness). The evaporator and condenser areas 

were approximately equal; each accounting for ~ 25.4 x 38.1 mm² (or about half) of the 

machined face area. 

 

Figure 4.2 Experimental setup and thermocouple (TC) locations (black dots) along the 
bottom-heated ML-OHP surface. 
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An aluminum water block (with two Ø 10 mm channels) was tightly clamped to 

the ML-OHP condenser area and connected to a temperature-controlled water 

bath/circulator (PolyScience AD15R-30-A11B) to allow for an inlet water temperature of 

approximately 20 ºC at 20.1 l/min flowrate. An aluminum hot plate - consisting of two 

embedded 150 W cartridge heaters (Watlow) - was clamped to the ML-OHP evaporator 

for achieving near-uniform heat flux conditions. A Variac and digital multimeter (DMM) 

were utilized for controlling the power supplied to the cartridge heaters, which was 

estimated by P = V2/R (where R is the heater resitance). Sixteen type-T thermocouples 

(Omega) were fixed (via Loctite® 495) on the surface of the ML-OHP with locations 

shown in Figure 4.2. Temperature measurements were collected using a data acquisition 

(DAQ) system (National Instruments cDAQ-9178 chassis with NI-9213 temperature 

module) connected to a computer equipped with Lab View Signal Express. 

Power was supplied to the cartridge heaters in 5 W increments from 5 to 50 W 

(+/- 0.5 W) or until the maximum temperature of the ML-OHP reached ~150 ºC. After 

introducing a new power input, the ML-OHP surface temperature field was allowed to 

respond until a (pseudo) steady-state was achieved – as evidenced by temperatures 

oscillating with a time-invariant mean. This steady-state temperature field was recorded 

for approximately 3 minutes. This process was repeated for each working fluid and 

orientation investigated (vertical bottom heating and horizontal). The ML-OHP, while 

filled with each working fluid, was also tested in an ‘inverted’, vertical top-heating 

orientation at a power input of approximately 50 W. Thermal paste/epoxy (Omegatherm 

201) was applied to condenser and evaporator surfaces, as well as around cartridge 

heaters, to reduce thermal contact resistance. The ML-OHP, while clamped against the 
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hot plate and water block, was well insulated on all sides while suspended in the rotatable 

test frame. Heat loss to the environment during testing was found to increase with power 

input but was less than 5% at the highest power input (50 W). The ML-OHP was also 

tested while empty (and open to atmosphere) for establishing a baseline performance 

curve. 

The average, steady-state temperature difference between the ML-OHP 

evaporator and condenser, ∆𝑇avg, was calculated using time-averaged temperature 

measurements at the jth location identified in Figure 4.2, i.e. 𝑇𝑗, via Equation 4.2: 

 ∆𝑇avg = (
𝑇11+𝑇12+𝑇14+𝑇15

4
) − (

𝑇1+𝑇2+𝑇9+𝑇10

4
) (4.2) 

These measurement locations were selected to account for temperature gradients 

along the channel-wise and layer-wise directions in the evaporator and condenser. The 

temperature difference provided in Equation 4.2 was used for defining an effective OHP 

thermal resistance, 𝜓eff, for a specific power input, P, i.e. 

 𝜓eff =
∆𝑇avg

𝑃
 (4.3) 

Since the heat transfer through the OHP is less than the power input, the exact 

OHP thermal resistance, which is per unit heat transfer, will be higher. The metrics 

defined in Equations 4.2 - 4.3 were used for quantifying the thermal performance of the 

ML-OHP during its operation while using various working fluids (water, acetone, Novec 

7200, n-pentane, air/empty), working orientations (vertical bottom-heating, horizontal, 

vertical top-heating) and power inputs (5-50 W). 

The error in the supplied voltage, cartridge heaters resistance, and ∆Tavg was 

constant at ±0.2 V, ±0.1 Ω, and ±0.5 oC, respectively. Thus the uncertainty of 𝜓eff varied 
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with power input as V increased. The error was largest at lower power inputs when the 

voltage and temperature uncertainty was large compared to the magnitude and the 

respective variables. In general, the error for 𝜓eff ranged from +10%/-11% at 5 W to 

+8%/+2% at 50 W. The asymmetric uncertainty is due to the ML-OHP heat loss, which is 

always negative. 

To aid discussion regarding the effects of working fluid properties on ML-OHP 

thermal performance, select dimensionless parameter groups were employed, including 

the Bond number (Bo), Prandtl number (Pr), inverse Jakob number (Ja-1), Galilei number 

(Ga), and Laplace number (La). Working fluid properties, as summarized in Table 4.1, 

were evaluated at a nominal ML-OHP operating temperature of 50 ºC, saturation 

pressure, standard acceleration due to gravity (g = 9.81 m/s²), and a reference 

temperature difference (∆𝑇o) of 20 ºC. The internal channel surface possessed roughness 

approximately half of the powder diameter (to be discussed); thus, an effective internal 

channel radius as 𝑟𝐻 ≅ 730 µm, was utilized as the characteristic length. Property values 

listed in Table 4.1 were utilized for evaluating the chosen dimensionless groups and their 

corresponding formulae and magnitudes are summarized in Table 4.2. 
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Table 4.1 Thermophysical and rheological properties of investigated working fluids 
at 50 ºC and saturation pressure. 

 𝜌l 

(kg/m3) 

𝜌v  

(kg/m3) 

𝜎 

(N/m) 

ℎlv 

(kJ/kg) 

𝑘l  

(W/m∙K) 

𝑐p,l  

(kJ/kg∙K) 

𝜇l 

(μPa∙s) 

water [88] 988 0.083 0.068 2382 0.644 4.19 547 

Novec 7200 
[89,90] 

1365 4.47 0.011 119 0.068 1.2 468 

acetone 
[91,92]  

757 1.71 0.02 525 0.172 2.25 250 

n-pentane 
[88] 

595 4.55 0.013 346 0.10 2.44 177 

Table 4.2 Non-dimensional numbers for investigated working fluids and ML-OHP 
using property values from Table 4.1, a characteristic length of rH, 
standard acceleration due to gravity, g = 9.81 m/s², and reference 
temperature difference (∆𝑇o) of 20 ºC. 
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4.4 Experimental Results 

4.4.1 Channel Surface Quality Inspection 

Parts fabricated via PBF can have residual, partially-melted particles sintered 

along their free surfaces within or along the periphery of the part. Although external 

surfaces of PBF parts can be readily machined for reducing surface roughness, internal 

surfaces (especially with capillary dimension) are more challenging to post process. 

Hence, the internal surface quality and topology of the ML-OHP channel structure is 

worth investigating, as such features can generally impact a fluid’s wetting/wicking 

behavior and heat transfer in an OHP [93–95]. For instance, the thin film evaporation, a 

dominant heat transfer mechanism in the OHP evaporator, as well as the fluid pulsation 

and convection/condensation, throughout the OHP, depend on the fluid-to-wall wetting 

behavior (e.g. contact angle, meniscus formation) which depends on surface roughness 

and condition of the channels. The sensible heat transfer between the evaporator and 

condenser, accomplished via oscillating advection of the liquid, is also affected by the 

wall surface roughness as this impacts the channel structure pressure drop, and thus the 

resulting flow behavior. 

The channel surface quality inside the ML-OHP was first inspected via neutron 

radiography, which is a unique, non-destructive means for visualizing features within 

various materials/media. In this method, neutrons are ejected from a neutron source and 

aimed toward the to-be-inspected materials positioned in front of a camera/detector [96]. 

The amount of neutrons that pass through or are absorbed by the material depend on the 

material type, size and density. The High Flux Isotope Reactor (HFIR) CG-1D neutron 

imaging facilities at Oak Ridge National Laboratory [97,98] were utilized. The ML-OHP 
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was positioned in front of a charge-coupled device (CCD) camera in line with a neutron 

beam. The detector collected images at a resolution of 100 micron at a rate of 1 fps. 

Radiographs were produced by sampling over a 50 s time frame. The ML-OHP was 

inspected as-is; free of any heating or cooling, and its orientation was varied in between 

runs to obtain frontal and side views of the channel structure. Prior to inspection, the ML-

OHP was attached to a vacuum/charging station for removal of its internal working fluid; 

which was known to be water. Since the goal of the visualization was to obtain 

qualitative data, neutron radiographs were only bright field corrected; no special attention 

was given to volumetric measurements via pixel intensity correlation. The time-averaged 

(over 50 s), contrast-adjusted neutron radiographs of the ML-OHP’s front and side are 

shown in Figure 4.3a, and Figure 4.3b, respectively. Note that the channel structure 

appears brighter in Figure 4.3b due to there being less solid material attenuating in that 

orientation, and the Ti-6Al-4V material appears more transparent (attenuates less) than 

the residual water due its atomic composition. 
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Figure 4.3 Neutron radiographs of ML-OHP with residual water slugs and droplets a) 
front and b) side view 

As evidenced in the neutron radiographs shown in Figure 4.3, volumes of remnant 

water existed unevenly along the internal channel structure, despite the preliminary 

vacuuming procedure. This water most likely remained in the ML-OHP due to its (i) 

relatively high surface tension and the (ii) notable pressure drop across the entire ML-

OHP channel structure. The trapped water slugs exhibit concave menisci indicating 

secondary wicking along the capillary channel walls. Smaller volumes of residual water, 

in the form of speckles or droplets, are also observed, further indicating the wicking and 

adhesive properties of the sintered walls. This is of interest, since previous neutron 

visualization experiments on liquid wetting behavior in relatively smoother OHP 

structures [16,17] demonstrate full channel wicking with no major evidence of isolated 

speckles/droplets along walls. Most water slugs/droplets are seen in the lower portions of 

the ML-OHP, indicating the influence of gravity. Figure 4.3 further indicates that the 
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ML-OHP internal channel structure was clear of any major, solid-phase blockages or 

other channel obstructions, and this indicates that the OHP was genuinely closed-loop 

and that the PBF and de-powdering processes were both effective in maintaining channel 

cross-section continuity. 

Via EDM, a previously-manufactured ML-OHP prototype was sectioned to allow 

portions of the channel structure to be examined using a field emission scanning electron 

microscope (FESEM). The channel roughness is clearly observable in Figure 4.4a; 

especially by comparing it to the EDM’ed surface visible along the top edge of the image. 

Figure 4.4b better shows the details of the Ti-6Al-4V particles closer to the channel wall 

and the spherical morphology of the employed powder is confirmed. The majority of 

sintered particles were found to conform to the manufacturer-specified powder size (15-

45 μm), although some outliers are evident in Figure 4.4b. For the arbitrarily-selected 

regions of the channel structure inspected via FESEM, no major differences in wall 

topology was observed and the sections shown in Figure 4.4 are deemed representative. 
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Figure 4.4 FESEM images of a channel surface at (a) 54x and (b) 310x magnification 

The benefit/cost of having PBF-sourced, sintered channel structures within an OHP, 

or any other heat transfer device, will depend on its operating conditions/application. For 

the case of OHPs, the roughened surfaces can decrease the start-up power threshold of 

the OHP (due to boiling enhancements and secondary capillary action) while decreasing 

its power limit (since pressure balancing within the evaporator becomes easier to obtain 

during operation) [94,95,99,100]. However, if these characteristics were not needed or 

even undesirable for a certain application, methods such as purging the channels with an 

acidic solution to etch the sintered particles could be an option for reducing channel 

roughness. Residual powder not attached to channel could prove advantageous for OHP 
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operation, as low-concentration, micro/nano-fluid suspensions can form due to mixing 

from consistent fluid pulsation along the channel structure. 

4.4.2 Steady State Temperature Oscillations 

The Ti-6Al-4V ML-OHP was found to operate successfully for all experimental 

conditions investigated after a critical power input, which ranged between 10 – 25 W, 

was achieved. In most cases, the ML-OHP surface temperature field oscillated, indicating 

cyclic phase-change heat transfer and fluid pulsation within its channel structure. 

Representative ML-OHP steady-state temperature oscillations, at the T14 evaporator-side 

location (see Figure 4.2), for a 50 W power input, and for various orientations and 

working fluids, are shown in Figure 4.5. The ML-OHP was considered to be at steady-

state when the long time-scale temperature means became steady, i.e. temperature 

oscillations about a constant value. Fluids providing for the highest to lowest evaporator 

temperature (i.e. T14 measurement) were: acetone, n-pentane, Novec 7200 and water, 

respectively, and this remained consistent for all operating orientations investigated. 

These results suggest that fluids with a low product of Ga and La numbers, i.e. ~ 𝜌𝐿
3 𝜇𝐿

4⁄ , 

are desirable for minimizing the evaporator operating temperatures. In general, the 

average ML-OHP evaporator temperature was found to be relatively insensitive, ~2-3% 

change, to operating orientation. The fact that the ML-OHP still functioned while in the 

top-heating orientation is a significant demonstration of gravity independence as 

compared to other types of OHPs possessing less channel layers. The enhanced 

capillarity of the internal channel structure, due to the peripheral, secondary wicking 

structure consisting of sintered particles, provides a means to increase liquid pumping 
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from the condenser to the evaporator. The partially melted powder can increase the 

capillary pressure inside the OHP, thus reducing gravity effects on fluid flow. 
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Figure 4.5 Local steady-state ML-OHP surface temperature (T14) vs. time while filled 
with either acetone, n-pentane, water, or Novec 7200 and operating at P ≅ 
50 W for the following heating modes: (a) vertical bottom-heating, (b) 
vertical top-heating, (c) horizontal. 
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Although the average T14 evaporator temperature remained near constant, the 

apparent amplitude and frequency of T14 were found to depend on the working fluid and 

the ML-OHP operating orientation. Evaporator temperatures slightly increased for all 

working fluids in the horizontal orientation, except for water and Novec 7200, which 

decreased and remained un-changed, respectively. The water ML-OHP was most 

sensitive to operating orientation, as its T14 temperature oscillations changed significantly 

in both frequency and amplitude for different working orientations. Water temperature 

oscillations possessed higher apparent frequency while the ML-OHP operated during 

bottom-heating relative to horizontal and top-heating orientations. Going from vertical 

bottom-heating to vertical top-heating resulted in the water ML-OHP evaporator 

temperature field to pulsate at higher amplitude and frequency. This trend was also 

observed for the other working fluids, but not to the same extent as water. In the 

horizontal heating mode, the evaporator temperature of the water ML-OHP became more 

stable, indicating its strong coupling with gravity. 

Non-dimensional parameter groups are useful for describing working fluid 

wetting behavior, capillarity, heat transfer ability, rheology and more. Results suggest 

that a fluid’s Ga number is indicative of its fluid pulsation behavior with respect to 

gravity. Water, having the lowest Ga and Bo numbers of the group, was highly sensitive 

to operating orientation, while n-pentane, having the highest Ga number of the group, 

provided for temperature oscillations near-independent of operating orientation. Working 

fluids with a high inverted Ja number were observed to provide for higher temperature 

amplitudes at lower frequency. This is especially evidenced by the water and acetone 

temperature oscillations during vertical top-heating of the ML-OHP. Based on these 
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observations, it appears that the working fluid’s latent heat of vaporization affects OHP 

surface temperature oscillation and frequency while also making the OHP more sensitive 

to operating orientation. Both Novec 7200 and n-pentane have the highest Bo number and 

appear to provide for the most consistent temperature oscillations irrespective of 

operating orientation. Acetone and n-pentane have similar temperature oscillations during 

the horizontal operating mode, and they both share a high La number – indicating the 

importance of viscosity and surface tension in the absence of direct gravity influence. 

Both Novec 7200 and n-pentane ML-OHPs had local evaporator temperatures decrease 

when going from bottom-heating to top-heating orientations, although their thermal 

resistances increases. It is interesting to note that both of these fluids possess relatively 

dense vapor and low inverted Ja numbers. 

The surface temperature field measured along the ML-OHP was inspected to 

determine the effect of multiple channel layers on the evaporator-to-condenser heat 

transfer. The steady-state temperature oscillations as recorded at locations T1 - T15 for the 

bottom-heated acetone and water ML-OHPs, at ~40 W power input, are provided in 

Figure 4.6-4.7. Based on the thermocouple arrangement set forth herein (as shown in 

Figure 4.2), four regions are of concern, including the layer immediately underneath the 

heat source, i.e. the primary ‘evaporator layer’, the layer in contact with the heat sink, i.e. 

the primary ‘condenser layer’, one of the adiabatic sides of the ML-OHP, as well as the 

opposite heated/cooled ends of the ML-OHP. In general, the water ML-OHP surface 

temperature field was substantially more ‘active’ for all locations measured, suggesting 

that low Bo and Ga numbers are important in establishing spatially-uniform fluid 

pulsation with respect to ML-OHP channel layer and region. Such uniform, and strong, 
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surface pulsations were only observed for the water ML-OHP. All other ML-OHPs 

demonstrated strong temperature oscillations near the evaporator, but less active 

oscillations along the ML-OHP sides and near the condenser. Assuming temperature 

amplitudes are related to latent heat transfer, as the current results suggest; then clearly 

the high inverse Jakob number of water allows for more severe temperature amplitudes 

measured along the outer ML-OHP structure. Results indicate that working fluids with 

lower Pr numbers provide for temperature oscillations of more similar magnitude 

between the evaporator- and condenser-side regions. For the case of Novec 7200, which 

has the highest Pr number, the phase-change heat transfer in the condenser is shown to be 

most likely less than ; occurring in the evaporator.   

 

Figure 4.6 Local steady-state ML-OHP surface temperature vs. time at P ≅ 40 W for 
vertical bottom-heating: (a) acetone ‘evaporator layer’ T1 - T4, (b) water 
‘evaporator layer’ T1 - T4, (c) acetone ‘condenser layer’ T13 – T15, (d) 
water ‘condenser layer’ T13 – T15. 
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Figure 4.7 Local steady-state ML-OHP surface temperature vs. time at P ≅ 40 W for 
vertical bottom-heating: (a) acetone ‘adiabatic side’ T5 – T8, (b) water 
‘adiabatic side’ T5 – T8, (c) acetone evaporator T11 – T12 and condenser 
T9 – T10 ends, (d) water evaporator T11 – T12 and condenser T9 – T10 
ends. 

The multi-layer design feature of the ML-OHP allows for higher channel-to-

volume density and thus more high heat flux mitigation. Even for the current prototype, 

in which the channel layer-to-layer (and even adjacent channel-to-channel) distance was 

not minimized, the evaporator-to-condenser heat flux was found to provide sufficient 

vapor pressure for fluid pulsation within each of the OHP’s four layers; regardless of 

working fluid used. It is clear that the ML-OHP designer should consider the depth of 

heat penetration from the heat source, as this will establish the number of heat affected 

layers capable of producing vapor. Depending on the heat penetration depth and the 
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heating/cooling configuration, each heat affected layer may behave as an independent 

OHP. Hence, in order to design the ML-OHP for a given application, it is best to consider 

the container thermal conductivity, as well as the thermal spreading/constriction 

resistance, to best estimate the level of heat penetration and number of heat affected 

layers. 

4.4.3 Effective Thermal Resistance 

The effective thermal resistance of the ML-OHP for multiple power inputs, during 

the vertical bottom-heating and horizontal orientations, for all working fluids 

investigated, is shown in Figure 4.8. It may be seen that the ML-OHP’s effective thermal 

resistance generally decreases as power input increases and that it depends on the 

working fluid type, operating orientation and power input. The ML-OHP effective 

thermal resistance, while in the vertical bottom-heating orientation, was found to be 

lower than that while in the horizontal orientation for most working fluids – 

demonstrating that the four-layered, closed loop capillary structure is still somewhat 

gravity dependent. In all cases, the top heating mode proved most detrimental to OHP 

thermal performance. This was expected, since in these cases the capillary force direction 

of evaporator-bound condensate is opposite of that for liquid weight. The ML-OHP, 

while filled with n-pentane or Novec 7200 and operating in the horizontal orientation, 

started to function near 10 W of power input; and this is ~ 150% lower than that required 

for water (~25 W) due to its relatively lower viscosity and La number. This also suggests 

that fluids with relatively high inverted Ja numbers require more heat transfer to initiate 

their oscillation within an OHP. The acetone ML-OHP in the vertical/bottom-heating 

orientation had the lowest thermal resistance, and this may be attributed to the low 
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viscosity and La number of acetone. However, although the effective thermal resistance 

of the acetone ML-OHP was low, its maximum evaporator temperature was the highest 

of all fluids investigated as shown in Figure 4.8. The relatively long internal channel 

structure of the ML-OHP can possess a high pressure drop, and fluids with relatively 

lower viscosity may be more advantageous for reducing overall thermal resistance. 

 

Figure 4.8 Effective ML-OHP thermal resistance vs. power input while filled with 
either n pentane, water, acetone, Novec 7200 or while empty (control 
group) in either the vertical (V) or horizontal (H) operating orientation. 

As expected, the empty ML-OHP provides for the maximum thermal resistance 

for all orientations investigated. Relative to the empty ML-OHP, the acetone ML-OHP 

provides for an 85% lower effective thermal resistance. Without a working fluid to aid 

thermal transport via phase change and physical oscillations, conduction through the Ti-

6Al-4V ML-OHP (a metal with a relatively low thermal conductivity: 6.7 W/m∙K) is the 

only available mode for heat transfer. As shown in Figure 4.9, all ML-OHPs investigated 
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tend to have an effective thermal resistance that increases going from bottom-heating, to 

horizontal-heating, then to top-heating. The exception is the water ML-OHP, which 

performed best while in the horizontal orientation. This indicates that water’s unique 

rheological and inertial properties (providing for relatively low Ga and Bo numbers), 

combined with the ML-OHP design, provides for a more gravity-dependent ML-OHP. 

The density of water vapor is also significantly lower than those of the other investigated 

working fluids and this may also play a role. Water does provide for the lowest effective 

thermal resistance relative to other fluids while the ML-OHP is in the horizontal 

orientation; indicating that a low Ja number may be advantageous for optimal OHP 

operation in absence of a collinear gravity force vector. The results indicate that low La 

numbers, or high Bo and Pr numbers, may correlate to lower OHP heat transfer ability, as 

well. This is supported by observing that Novec 7200, which provided for the lowest La, 

and highest Bo and Pr, for the investigated ML-OHP, resulted in the highest recorded 

effective thermal resistance for all orientations investigated. 
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Figure 4.9 Average, effective thermal resistance of ML-OHP while operating at P = 
50 W for three different orientations: vertical bottom-heating, ‘B’, 
horizontal, ‘H’, vertical/top-heating, ‘T’) and various working fluids 
(water, acetone, n-pentane, Novec 7200). 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions  

5.1.1 Bent Tube Oscillating Heat Pipe: 

A tubular oscillating heat pipe was shaped and tested experimentally at 0°, 45°, 

and 90° bend angle, with the channels’ bend angle placed centrally between the 

evaporator and condenser. Water, acetone, and n-pentane were used as working fluids to 

charge BT-OHP and evaluate thermal performance at horizontal and vertical orientations. 

Power input was varied from 10 to 700 W and the experimental tests were stopped as BT-

OHP surface temperature reached 100℃. Some of the major results are summarized 

below: 

1) Bend angle has a significant effect on the performance of the BT-OHP, where the 

performance of BT-OHP with vertical bottom heating increased as the bend angle 

increase from 0° to 90°. 

2) Working fluid thermal properties have a major effect on the performance of BT-OHP 

and it depends on the bend angle. Acetone performed better at 0°, while water was 

superior at 45° and 90° bend angles. 

3) Orientation has a direct effect on the thermal performance of BT-OHP as bend angle 

increase from 0° to 135°, where BT-OHP perform better with vertical bottom heating 
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orientation for bend angles from 0° to 90° and it performs better with horizontal 

orientation at 135° bend angle.  

4) The best BT-OHP thermal performance occurred at 90° bend angle, vertical bottom 

heating orientation and using water as a working fluid. 

5.1.2 Thermal Connector Oscillating Heat Pipe 

A thermal connector oscillating heat pipe (TC-OHP) with L-shape microchannel 

was machined from a copper plate and tested experimentally as a thermal connector for 

PCB. The TC-OHP was charged with n-pentane as a working fluid and tested for variable 

power input from 25 to 250W. The results are summarized below:  

1) The TC-OHP performed better than the control under similar conditions, with the 

thermal performance increasing as the temperature of the PCB increased. The surface 

temperature of the OHP thermal connector was lower than the control by 16C at 

250W. 

2) The thermal resistance of TC-OHP thermal connector decreased to be 0.09 W/C as 

the power input increased. 

3) Causal fitting of the thermal connector in the slot with bad contact caused air gaps to 

be formed, which acted as insulation to reduce the thermal connector performance. 

5.1.3 Multi-Layered Flat Plate Oscillating Heat Pipe: 

A Ti-6Al-4V multi-layered oscillating heat pipe (ML-OHP) was successfully 

fabricated using laser powder bed fusion (L-PBF) additive manufacturing. The device 

consisted of four interconnected layers of circular mini-channels which were successfully 

de-powdered after L-PBF. The ML-OHP was experimentally investigated in either the 
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bottom-heating, top-heating, or horizontal orientations, while being partially filled with 

either Novec 7200, acetone, n-pentane or water. The ML-OHP was heated and cooled on 

opposing planes and sides to determine heat transfer ability of the stacked layers. The 

heat pipe was characterized for surface quality, fluid wicking behavior, and thermal 

performance, and some of the major results are summarized below.  

1) Working fluid within the ML-OHP displays unique wicking behavior; due partially to 

residual, sintered powder along the periphery of the OHP channel. The characteristic 

surface roughness was found to be almost twice the maximum diameter of the spherical 

Ti-6Al-4V powder used for manufacture. These features should increase the capillary 

pumping ability of the OHP and promote boiling heat transfer during start-up, resulting 

in reduced gravity dependence and a reduced OHP start-up power requirement, 

respectively. 

2) No solid blockages were found within the channel structure, demonstrating the utility 

of L-PBF for fabricating mini-channel devices. A means for de-powdering the internal 

channel structure must be integrated at the design phase. 

3) The ML-OHP, which consisted of four interconnected channel layers, was shown to 

operate effectively while filled with water, Novec 7200, acetone or n-pentane, almost 

independent of operating orientation. This demonstrates that the OHP is ‘stackable’ 

when embedded in solid media.  

4) The vertically-bottom-heated, acetone ML-OHP and the horizontal-oriented, water 

ML-OHP each possessed the lowest thermal resistances measured. Working fluids, like 

n-pentane and Novec 7200, started oscillating at relatively low heat inputs while others, 
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like water, started oscillating at much higher heat inputs. Novec 7200 provided for the 

highest effective thermal resistance in all orientations. 

5) The ML-OHP evaporator size depends on the number of heat affected layers 

underneath the heat source and the heating/cooling configuration. Thus, the heat 

penetration depth resulting from the heat source is of importance, and the thermal 

spreading resistance of the evaporator and container material should be considered 

during design.  

6) The apparent amplitude and frequency of temperature oscillations were found to 

depend on working fluid and the ML-OHP operating orientation. The water ML-OHP 

temperature oscillations were most sensitive, in frequency and amplitude, to operating 

orientation. The water ML-OHP surface temperature field was the most spatially 

uniform. 

7) Results suggest important trends in non-dimensional numbers, OHP effectiveness and 

working conditions. Working fluids with low Bond and Prandtl numbers may be 

more advantageous for effective OHP operation, while higher inverted Jakob 

numbers appear to correspond to an OHP with larger temperature amplitudes along its 

external surface. OHPs that employ working fluids with relatively low Galilei 

numbers may be more prone to adverse gravitational effects, while low Laplace 

numbers, in the absence of major gravity influence, may be indicative of reduced 

OHP thermal performance. Fluids with a low Ga x La product may be desirable for 

minimizing the operating temperature of the OHP. 

There are many potential benefits for using emerging AM technology for 

fabricating state-of-the-art heat transfer devices, especially those with embedded channel 
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structures. Methods, such as laser-powder bed fusion (L-PBF), are especially beneficial 

in allowing one to build channel structures with complex cross-sections and 

arrangements, due to the powder bed serving as an inadvertent support structure during 

the layer-by-layer manufacturing process. Many metallic powders are available for the 

thermal engineer to design conformal heat transfer media. For instance, and as 

demonstrated in this study, one can use Ti-6Al-4V, which has a desirable coefficient of 

thermal expansion (CTE), for building heat transfer media in intimate contact with 

silicon-based, heat dissipating sources. The thermal engineers are now challenged with 

the unique task of ‘re-designing the wheel’; as once-impossible design concepts are now 

feasible for manufacture. Since thermal media typically do not experience high 

mechanical loads during operation, there is less hesitation in introducing additive-

manufactured heat exchangers to various applications.  

The benefit/cost of having PBF-sourced, partially-sintered channel structures 

within an OHP, or any other heat transfer device, will depend on its operating 

conditions/application. For the case of OHPs, the roughened surfaces can decrease the 

start-up power threshold of the OHP (due to boiling enhancements and secondary 

capillary action) while decreasing its power limit (since pressure balancing within the 

evaporator becomes easier to obtain during operation) [12,94,99,100]. However, if these 

characteristics were not needed or even undesirable for a certain application, methods 

such as purging the channels with an acidic solution to etch the sintered particles could be 

an option for reducing channel roughness. Residual powder not attached to channel could 

prove advantageous for OHP operation, as low-concentration, micro/nano-fluid 
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suspensions can form due to mixing from consistent fluid pulsation along the channel 

structure. 

5.2 Future Work 

The current work has presented three different designs of oscillating heat pipes 

with different methods of manufacturing. The major potential future works are as 

follows: 

1. Develop a numerical/analytical model on the working fluid inside 

oscillating heat pipe that considers non-traditional channel structures for a 

better understanding of the parameters affecting the performance of 

oscillating heat pipe.  

2.  Use selective laser melting to manufacture more complex designs of heat 

pipes and heat exchangers to learn more about advantages and challenges 

of using this method of manufacturing. 
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