23 research outputs found

    Characterization of nematic liquid crystals at microwave frequencies

    Get PDF
    The use of nematic liquid crystal (LC) mixtures for microwave frequency applications presents a fundamental drawback: many of these mixtures have not been properly characterized at these frequencies, and researchers do not have an a priori clear idea of which behavior they can expect. This work is focused on developing a new procedure for the extraction of the main parameters of a nematic liquid crystal: dielectric permittivity and loss tangent at 11 GHz under different polarization voltages; splay elastic constant K11, which allows calculation of the threshold voltage (Vth); and rotational viscosity 驴11, which allows calculating the response time of any arbitrary device. These properties will be calculated by using a resonator-based method, which is implemented with a new topology of substrate integrated transmission line. The LC molecules should be rotated (polarized) by applying an electric field in order to extract the characteristic parameters; thus, the transmission line needs to have two conductors and low electric losses in order to preserve the integrity of the measurements. This method was applied to a well-known liquid crystal mixture (GT3-23002 from MERCK) obtaining the permittivity and loss tangent versus bias voltage curves, the splay elastic constant, and the rotational viscosity of the mixture. The results validate the viability of the proposed method

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    Design and Measurement of a Millimeter-wave 2D Beam Switching Planar Antenna Array

    Get PDF
    A millimeter-wave 2-D beam switching microstrip patch antenna array excited by a 4x4 substrate integrated waveguide (SIW) Modified Butler Matrix is designed and experimentally evaluated in this thesis. A novel architecture is introduced for the Butler Matrix feed network to give designers a choice for phase shifter location to pursue a smaller circuit area. In addition, it enables the designer to control the BM phased outputs for achieving a set of desired 2-D beam directions, e.g., 蠒0=45掳, 135掳, 225掳, and 315掳 at 胃0=45掳, with a passive beam switching network for a given array geometry. Full-wave simulation results show when the so designed 4x4 Butler Matrix feeds a 2x2 planar patch antenna array, 4-quadrant beam switching is achieved. To meet the goal of providing a low cost small footprint solution, the presented Modified Butler Matrix features straight SIW phase shifter using periodic apertures. The Modified Butler Matrix is fabricated on a single layer Rogers RO4350B substrate, achieving a circuit area of 222.5 mm2, which is a 54% improvement over previously published 60 GHz results. The fully-integrated antenna array system is created by development of a new SIW to planar patch antenna transition structure which maintains a total antenna frontend area of 333 mm2, just 42% of the area of the next closest SIW 2-D beam switching publication at 60 GHz. For verification of beam switching via over the air (OTA) measurements at 60 GHz, a benchtop anechoic chamber with proper transmitter and receiver antenna positioners is designed and fabricated using in-house maker laboratory resources. 2-D beam steering is proved in the intended 4 quadrants of radiation space at 蠒0=50掳, 140掳, 220掳, and 300掳 and 胃0=30卤5掳 demonstrating meeting the design specifications with a very good margin. As well, for each switched beam the gain of antenna array was measured to be between 4.8 to 6 dBi at 60 GHz which is within 1dB deviation from the simulated results

    A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems

    Get PDF
    Antennas on-chip are a particular type of radiating elements valued for their small footprint. They are most commonly integrated in circuit boards to electromagnetically interface free space, which is necessary for wireless communications. Antennas on-chip radiate and receive electromagnetic (EM) energy as any conventional antennas, but what distinguishes them is their miniaturized size. This means they can be integrated inside electronic devices. Although on-chip antennas have a limited range, they are suitable for cell phones, tablet computers, headsets, global positioning system (GPS) devices, and WiFi and WLAN routers. Typically, on-chip antennas are handicapped by narrow bandwidth (less than 10%) and low radiation efficiency. This survey provides an overview of recent techniques and technologies investigated in the literature, to implement high performance on-chip antennas for millimeter-waves (mmWave) and terahertz (THz) integrated-circuit (IC) applications. The technologies discussed here include metamaterial (MTM), metasurface (MTS), and substrate integrated waveguides (SIW). The antenna designs described here are implemented on various substrate layers such as Silicon, Graphene, Polyimide, and GaAs to facilitate integration on ICs. Some of the antennas described here employ innovative excitation mechanisms, for example comprising open-circuited microstrip-line that is electromagnetically coupled to radiating elements through narrow dielectric slots. This excitation mechanism is shown to suppress surface wave propagation and reduce substrate loss. Other techniques described like SIW are shown to significantly attenuate surface waves and minimise loss. Radiation elements based on the MTM and MTS inspired technologies are shown to extend the effective aperture of the antenna without compromising the antenna鈥檚 form factor. Moreover, the on-chip antennas designed using the above technologies exhibit significantly improved impedance match, bandwidth, gain and radiation efficiency compared to previously used technologies. These features make such antennas a prime candidate for mmWave and THz on-chip integration. This review provides a thorough reference source for specialist antenna designers.This work was supported in part by the Universidad Carlos III de Madrid and the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant 801538, in part by the Icelandic Centre for Research (RANNIS) under Grant 206606, and in part by the National Science Centre of Poland under Grant 2018/31/B/ST7/02369

    Design and performance evaluation of millimeter-wave flat lens antennas for communications, radar and imaging applications

    Get PDF
    Millimeter-wave systems introduce a set of particular severe requirements from the antenna point of view in order to achieve specific performances. In this sense, high directive antennas are required to overcome the huge extra path loss. Moreover, each particular application introduces additional requirements. For example, in very high throughput (VHT) wireless personal area networks (WPANs) communication systems at 60 GHz band beam-steering antennas are needed to deal with high user random mobility and human-body shadowing characteristic of indoor environments. Similarly, beam-steering capabilities are also needed in automotive radar applications at 79 GHz, since the determination of the exact position of an object is essential for most of the functions realized by the radar sensor. In the same way, beam-scanning, which is still commonly mechanically performed nowadays, is also needed in passive imaging systems at 94 GHz. Finally, from the integration perspective, the antennas must be small, low-profile, light weight and low-cost, in order to be successfully integrated in a commercial millimeter-wave wireless system. For these reasons, many types of antenna structures have been considered to achieve high directivity and beam-steering capabilities for the aforementioned millimeter-wave communication, radar and imaging applications at 60, 79 and 94 GHz. The most part of the currently adopted solutions are based on the expensive, complex and bulky phased-array antena concept. Actually, phased-array antenna systems can scan the beam at a fast rate. However, they require a complex integration of many expensive, lossy and bulky circuits, such as solid-state phase shifters and beam-forming networks. This doctoral thesis has contributed to the study, development, and assessment of the performance of innovative antena solutions in order to improve the existing architectures at millimeter-wave frequencies, conveniently solving the problems related specifically to short-range high data rate communication systems at 60 GHz WPAN band (including future 5G millimeter-wave systems), automotive radar sensors at 79 GHz band, and communications, radar, and imaging systems at 94 GHz. The specific goals pursued in this work, focused on defining an alternative antenna architecture able to achieve a full reconfigurable 2-D beam-scanning of high gain radiation beams at millimeter-wave frequencies, has been fulfilled. In this sense, this thesis has been mainly devoted to study in depth and practically develop the fundamental part of an innovative switched-beam antenna array concept: novel inhomogeneous gradient-index dielectric flat lenses, which, despite their planar antenna profile configurations, allow full 2-D beam-scanning of high gain radiation beams. A transversal study, going from theoretical investigations, passing by numerical analysis, new fabrication strategies, performance evaluation, and to full experimental assessment of the new antenna architectures in real application environment has been successfully carried out.Los sistemas a frecuencias de ondas milim茅tricas introducen una serie de requisitos muy estrictos desde el punto de vista de la antena con el objetivo de conseguir unos rendimientos espec铆ficos. En este sentido, se requieren antenas con una muy alta directividad con tal de conseguir superar las enormes p茅rdidas adicionales por propagaci贸n. Adem谩s, cada aplicaci贸n en concreto introduce unos requisitos adicionales. Por ejemplo, en redes de 谩rea personal de alta velocidad para sistemas de comunicaci贸n a la banda de 60 GHz, antenas con la capacidad de reconfiguraci贸n del haz de radiaci贸n son necesarias para poder tratar la problem谩tica de la alta movilidad de los usuarios en entornos cerrados. De la misma forma, capacidades de reconfiguraci贸n de la orientaci贸n del haz de radiaci贸n son necesarias en aplicaciones relacionadas con radar de automoci贸n a 79 GHz, dado que la determinaci贸n de la posici贸n exacta de un objeto es esencial para muchas de las funciones del sensor de radar. De forma muy similar, la capacidad de apuntamiento del haz, que muchas veces todav铆a se realiza mediante sistemas mec谩nicos, es tambi茅n imprescindible en sistemas de escaneo para aplicaciones biom茅dicas y de seguridad a 94 GHz. Finalmente, desde la perspectiva de la integraci贸n, las antenas deben ser el茅ctricamente peque帽as, ligeras, y econ贸micas para poder ser incorporadas a un sistema inal谩mbrico comercial a frecuencias de onda milim茅tricas. Por todos estos motivos, diferentes tipos de estructuras de antenas han sido propuestos para conseguir alta directividad, junto con capacidades de reconfiguraci贸n y apuntamiento del haz de radiaci贸n para las aplicaciones anteriormente mencionadas y descritas en la banda de 60, 79, y 94 GHz. La soluci贸n tradicionalmente adoptada en este tipo de casos est脿 estrictamente basada en el siempre caro, complejo y aparatoso concepto del phased-array. De hecho, los phased-arrays permiten el r谩pido escaneo de haces de radiaci贸n de alta directividad. Sin embargo, el hecho que requieran una compleja integraci贸n de muchos y caros componentes a alta frecuencia, tales como desfasadores de estado s贸lido o redes de conformaci贸n, los cuales introducen ciertos niveles de p茅rdidas, siendo adem谩s aparatosos, hacen que esta soluci贸n resulte inviable. La presente tesis doctoral contribuye al estudio, desarrollo, y ensayo experimental del rendimiento de soluciones de antenas innovadoras para la mejora de las existentes arquitecturas de antena en la banda frecuencial de las ondas milim茅tricas, convenientemente solucionando los problemas asociados espec铆ficamente a los sistemas de comunicaci贸n de corto alcance y alta velocidad a 60 GHz (incluyendo los futuros sistemas 5G a milim茅tricas), a los sistemas de radar de automoci贸n a 79 GHz, y a los sistemas de comunicaci贸n, radar, y escaneo para aplicaciones a 94 GHz. Los objetivos espec铆ficos perseguidos en este trabajo acad茅mico, focalizados en definir una arquitectura alternativa de antena, capaz de conseguir una completa reconfiguraci贸n y escaneo de los haces de radiaci贸n en dos dimensiones del espacio a frecuencias de onda milim茅tricas, se han conseguido plenamente. En este sentido, esta tesis doctoral ha sido dedicada esencialmente al estudio en profundidad y desarrollo pr谩ctico de la parte fundamental del innovador concepto del switchedbeam array: nuevas lentes diel茅ctricas inhomog茅neas de gradiente de 铆ndice con estructura plana, las cuales, a pesar de su configuraci贸n f铆sica totalmente llana, permiten una reconfiguraci贸n total, en dos dimensiones del espacio, de haces de radiaci贸n de alta directividad. Un estudio eminentemente transversal, que abarca desde la investigaci贸n te贸rica, pasando por el an谩lisis num茅rico, nuevas metodolog铆as y t茅cnicas de fabricaci贸n, evaluaci贸n de rendimientos, hasta una completa caracterizaci贸n y ensayo del rendimiento en entornos reales de aplicaci贸n de las nuevas arquitecturas de antena, se ha llevado a cabo con total 茅xito.Els sistemes a freq眉猫ncies d'ones mil路lim猫triques introdueixen una s猫rie de requisits molt estrictes des del punt de vista de l'antena per tal d鈥檃conseguir uns rendiments espec铆fics. En aquest sentit, es requereixen antenes amb una alta directivitat per aconseguir superar les enormes p猫rdues addicionals per propagaci贸. A m茅s a m茅s, cada aplicaci贸 en concret introdueix uns requeriments addicionals . Per exemple, en xarxes d'脿rea personal d'alta velocitat per a sistemes de comunicaci贸 a la banda de 60 GHz, antenes amb la capacitat de reconfiguraci贸 del feix de radiaci贸 s贸n necess脿ries per tal de poder tractar la problem脿tica de l'alta mobilitat dels usuaris en entorns tancats . De la mateixa manera, capacitats de reconfiguraci贸 de l'orientaci贸 del feix de radiaci贸 s贸n necess脿ries en aplicacions associades a radar d'automoci贸 a 79 GHz, donat que la determinaci贸 de la posici贸 exacta d'un objecte 茅s essencial per moltes de les funcions portades a terme pels ens or del radar. De forma molt similar, la capacitat d'apuntament del feix, que moltes vegades encara es realitza per mitj脿 de sistemes mec脿nics, 茅s tamb茅 imprescindible en sistemes d'escaneig per aplicacions m猫diques i de seguretat a 94 GHz. Finalment, des de la perspectiva de la integraci贸, les antenes han de ser petites en termes el猫ctrics, lleugeres, i econ貌miques per tal de poder ser incorporades en un sistema sense fils comercial a freq眉猫ncia d'ones mil路lim猫triques. Per aquestes raons , diversos tipus d'estructures d'antenes han sigut proposats per aconseguir alta directivitat, conjuntament amb la capacitat d'apuntament del feix de radiaci贸 per les aplicacions anteriorment descrites a les bandes de 60, 79, i 94 GHz. La soluci贸 tradicionalment adoptada en aquests casos 茅s estrictament basada en el sempre car, complexe, i aparat贸s concepte del phased-array. De fet, els phased-arrays tenen la capacitat de reconfigurar a gran velocitat feixos de radiaci贸 d'alta directivitat. Tot i aix貌, el fet que requereixin la complexa integraci贸 de molts components cars a alta freq眉猫ncia, amb certs nivells de p猫rdues i aparatosos, com s贸n els desfasadors d'estat s貌lid, i les xarxes de conformaci贸, fan d'aquesta soluci贸 inviable. La present tesis doctoral contribueix a l'estudi, des envolupament, i assaig experimental del rendiment de solucions d'antenes innovadores per tal de millorar les existents arquitectures d'antena a la banda freq眉encial de les ones mil路lim猫triques, convenientment solucionant els problemes associats espec铆ficament als sistemes de comunicaci贸 de rang proper d'alta velocitat a 60 GHz (incloent els futurs sistemes 5G a mil路lim猫triques ), als sistemes de radar d'automoci贸 a la banda dels 79 GHz, i als sistemes de comunicaci贸, radar, i escaneig per aplicacions a 94 GHz. Els objectius espec铆fics perseguits en aquest treball acad猫mic, focalitzats en definir una arquitectura d'antena alternativa, capa莽 d'aconseguir una completa reconfiguraci贸 i escaneig dels feixos de radiaci贸 en dues dimensions de l'espaia freq眉猫ncies d'ona mil路lim猫triques , s'han plenament aconseguit. En aquest sentit, aquesta tesis doctoral s'ha dedicat essencialment a l'estudi en profunditat i desenvolupament pr脿ctic de la part fonamental de l'innovador concepte del switched-beam array: noves lents diel猫ctriques inhomogenees de gradient d'铆ndex amb estructura planar, les quals, tot i preservar una configuraci贸 f铆sica totalment plana, permeten una reconfiguraci贸 total en dues dimensions de l'espai de feixos de radiaci贸 d'alta directivitat. Un estudi transversal, que compr猫n des de la investigaci贸 te貌rica, passant per l'an脿lisi num猫ric, noves metodologies i t猫cniques de fabricaci贸, avaluaci贸 de rendiments, fins a una completa caracteritzaci贸 i assaig del rendiment en entorns reals d'aplicaci贸 de les noves arquitectures d'antena s'ha dut a terme amb total 猫xit

    Novel Flexible Wearable Antennas Based on Advanced Materials and Fabrication Techniques.

    Get PDF
    PhD Theses.Wearable technology has evolved gradually in parallel with other technological advancements, and nowadays, it plays a key role in a wide range of applications. New antenna designs within wearable environments should explore solutions using exible materials, remaining ergonomic and comfortable but o ering mechanical robustness at the same time. Among these materials, carbon-based materials are up-and-coming candidates for these types of solutions and fabrics to fully integrate into e-textiles and smart clothing. The target of this research is to develop novel designs for exible antennas that will provide solutions to overcome the challenges associated with wearable technology by using modern fabrication techniques and materials. A comprehensive literature review regarding fabrication methods, together with material characterisation techniques is presented. A lack of experimental work was noticed, and for the rst time, a full campaign of measurements was carried out to accurately describe the temperature's impact on fabric-based devices using resonator antenna structures. Wearables in general and e-textiles, in particular, are about to tackle tremendous environmental and sustainability challenges. In the context of exploring sustainable materials in e-textiles, a novel soft and conformal textile-based antenna using multi-layer graphene sheets has been thoroughly analysed, describing its performance, the e ects of bending, and proximity to the human body. Within this research, printing techniques have been considered as an alternative to assembly processes. Two antenna designs (PICA/LOOP) with the advantages of carbon nanotubes inks and screen-printing methods, such as lightness, malleable and washability are characterized. In addition, a quasi-Yagi-Uda design has been optimized, fabricated, and characterised. The specimen was inkjet printed on Kapton substrate using graphene ink. A post-numerical analysis was used to characterise the e ect of a not ideal fabrication. The measured data was post-processed in order to overcome some of the associated challenges of measurements for exible devices in a wearable environment. The outcomes of this research ful l the gap between the use of carbon-based alternatives and fabrication procedures on di erent exible substrate

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Additive Manufactured Antennas and Novel Frequency Selective Sensors

    Get PDF
    The research work carried out and reported in this thesis focuses on the application of additive manufacturing (AM) for the development antennas and novel frequency selective surfaces structures. Various AM techniques such as direct writing (DW), material extrusion, nanoparticle conductive inks are investigated for the fabrication of antennas and FSS based sensors. This research has two parts. The first involves the development of antennas at the microwave and millimetre wave bands using AM techniques. Inkjet printing of nanoparticle silver inks on paper substrate is employed in the fabrication of antennas for an origami robotic bird. This provides an exploration on the practicability of developing foldable antennas which can be integrated on expendable robots using low-cost household inkjet printers. This is followed using Aerosol jet printing in the fabrication of fingernail wearable antennas. The antennas are developed to operate at microwave and millimetre wave bands for potential use in 5G Internet of Things (IoT) or body-centric networks. The second part of the research work involves the development of frequency selective sensors. Trenches have been incorporated on an FSS structure to produce a new concept of liquid sensor. The sensor is fabricated using standard etching techniques and then using FDM method in conjunction with nanoparticle conductive ink. Finally, a new concept displacement sensor using an FSS coupled with a retracting substrate complement is introduced. The displacement sensor is a 3D structure which is conveniently fabricated using AM techniques
    corecore