14 research outputs found

    5G Mobile Phone Network Introduction in Colombia

    Get PDF
    This research received support from the AUIP (Iberoamerican University Association for Postgraduate Studies).The authors would like to thank the following members of Ericsson and Nokia Company for their valuable technological support in relation to the deployment of 5G networks in Colombia and Latin America. To Ericsson Company: Fabian Monge, Head of Networks & Managed Services Sales LATAM North—Ericsson, Andrés Quintero Arango, Country Manager Colombia— Ericsson, Camilo Beltrán, RAN Sales Domain Manager—Ericsson, Tatiana Dimian, Technical & Solution Sales Colombia—Ericsson. To Nokia Company: Juan Gabriel Mariño Pedroza, Presales Director & Business Development Colombia—Nokia.The deployment of the 5G mobile network is currently booming, offering commercially available services that improve network performance metrics by minimizing network latency in countries such as the USA, China, and Korea. However, many countries around the world are still in the pilot phase promoted and regulated by government agencies. This is the case in Colombia, where the assignment of the first 5G band is planned for the third quarter of 2021. By analyzing the results of the pilot phase and the roadmap of the Colombian Ministry of Information and Communication Technologies (MinTIC), we can determine the main issues, which contribute to the deployment of 5G mobile technology as well as the plans to achieve a 5G stand-alone network from 4G networks. This is applicable to other countries in Latin America and the world. Then, our objective is to synthesize and share the most important concepts of 5G mobile technology such as the MIMO (multiple input/multiple output) antenna, RAN (Radio Access Network), C-RAN (Centralised-RAN), and frequency bands, and evaluate the current stage of its introduction in Colombia.AUIP (Iberoamerican University Association for Postgraduate Studies

    A review on massive MIMO Antennas for 5G communication systems on challenges and limitations

    Get PDF
    High data rate transfers, high-definition streaming, high-speed internet, and the expanding of the infrastructure such as the ultra-broadband communication systems in wireless communication have become a demand to be considered in improving quality of service and increase the capacity supporting gigabytes bitrate. Massive Multiple-Input Multiple-Output (MIMO) systems technology is evolving from MIMO systems and becoming a high demand for fifth-generation (5G) communication systems and keep expanding further. In the near future, massive MIMO systems could be the main wireless systems of communications technology and can be considered as a key technology to the system in daily lives. The arrangement of the huge number of antenna elements at the base station (BS) for uplink and downlink to support the MIMO systems in increasing its capacity is called a Massive MIMO system, which refers to the vast provisioning of antenna elements at base stations over the number of the single antenna of user equipment. Massive MIMO depends on spatial multiplexing and diversity gain in serving users with simple processing signal of uplink and downlink at the BS. There are challenges in massive MIMO system even though it contains numerous number of antennas, such as channel estimation need to be accurate, precoding at the BS, and signal detection which is related to the first two items. On the other hand, in supporting wideband cellular communication systems and enabling low latency communications and multi-gigabit data rates, the Millimeter-wave (mmWave) technology has been utilized. Also, it is widely influenced the potential of the fifth-generation (5G) New Radio (NR) standard. This study was specifically review and compare on a few designs and methodologies on massive MIMO antenna communication systems. There are three limitations of those antennas were identified to be used for future improvement and to be proposed in designing the massive MIMO antenna systems. A few suggestions to improve the weaknesses and to overcome the challenges have been proposed for future consideration

    A review on massive MIMO antennas for 5G communication systems on challenges and limitations

    Get PDF
    High data rate transfers, high-definition streaming, high-speed internet, and the expanding of the infrastructure such as the ultra-broadband communication systems in wireless communication have become a demand to be considered in improving quality of service and increase the capacity supporting gigabytes bitrate. Massive Multiple-Input MultipleOutput (MIMO) systems technology is evolving from MIMO systems and becoming a high demand for fifth-generation (5G) communication systems and keep expanding further. In the near future, massive MIMO systems could be the main wireless systems of communications technology and can be considered as a key technology to the system in daily lives. The arrangement of the huge number of antenna elements at the base station (BS) for uplink and downlink to support the MIMO systems in increasing its capacity is called a Massive MIMO system, which refers to the vast provisioning of antenna elements at base stations over the number of the single antenna of user equipment. Massive MIMO depends on spatial multiplexing and diversity gain in serving users with simple processing signal of uplink and downlink at the BS. There are challenges in massive MIMO system even though it contains numerous number of antennas, such as channel estimation need to be accurate, precoding at the BS, and signal detection which is related to the first two items. On the other hand, in supporting wideband cellular communication systems and enabling low latency communications and multigigabit data rates, the Millimeter-wave (mmWave) technology has been utilized. Also, it is widely influenced the potential of the fifth-generation (5G) New Radio (NR) standard. This study was specifically review and compare on a few designs and methodologies on massive MIMO antenna communication systems. There are three limitations of those antennas were identified to be used for future improvement and to be proposed in designing the massive MIMO antenna systems. A few suggestions to improve the weaknesses and to overcome the challenges have been proposed for future considerations

    5G Mobile Phone Network Introduction in Colombia

    Get PDF
    The deployment of the 5G mobile network is currently booming, offering commercially available services that improve network performance metrics by minimizing network latency in countries such as the USA, China, and Korea. However, many countries around the world are still in the pilot phase promoted and regulated by government agencies. This is the case in Colombia, where the assignment of the first 5G band is planned for the third quarter of 2021. By analyzing the results of the pilot phase and the roadmap of the Colombian Ministry of Information and Communication Technologies (MinTIC), we can determine the main issues, which contribute to the deployment of 5G mobile technology as well as the plans to achieve a 5G stand-alone network from 4G networks. This is applicable to other countries in Latin America and the world. Then, our objective is to synthesize and share the most important concepts of 5G mobile technology such as the MIMO (multiple input/multiple output) antenna, RAN (Radio Access Network), C-RAN (Centralised-RAN), and frequency bands, and evaluate the current stage of its introduction in Colombia

    Millimetre-wave radio-over-fibre supported multi-antenna and multi-user transmission

    Get PDF
    In this thesis, various features of the RoF supported mmW communication for future wireless systems have been analysed including photonic generation of mmW for MIMO operation, performance analysis of mmW MIMO to achieve spatial diversity and spatial multiplexing with analog RoF fronthaul, and multi-user transmission in the 60 GHz-band using multiplexing-over-fibre transport and frequency-selective antenna. A low cost mmW generation system for two independent MIMO signals has been presented, consisting of a single optical Phase Modulator (PM). The different aspects of experimental analysis on RoF-supported mmW MIMO in this thesis, which were not considered before, include use of specific MIMO algorithm to understand the amount of improvement in coverage and data rate for a particular MIMO technique, performance comparison with SISO at several user locations, and verification of optimum RAU physical spacing for a particular transmission distance with the theoretical results. The results show that flexible and wider RAU spacings, required to obtain optimum performance in a mmW MIMO system, can be achieved using the proposed analog RoF fronthaul. The investigation was extended to verification of a method to individual measurement of mmW channel coefficients and performing MIMO processing, which shows that mmW channels are relatively static and analysis can be extended to much longer distances and making projections for NĂ—N MIMO. For mmW multi-user transmission, a novel low cost, low complexity system using single RoF link and single RF chain with single transmitting antenna has been presented and characterized, which was based on large number of RF chains and multiple antenna units previously. The setup involves generation and RoF transport of a composite SCM signal, upconversion at the RAU and transmission of different frequency channels towards spatially distributed users using a frequency-selective Leaky-Wave-Antenna (LWA), to convert Frequency Division Multiplexing (FDM) in to Spatial Division Multiple Access (SDMA). Analysis on low user-signal spacing for the SCM shows the feasibility to serve a large number of users within a specific transmission bandwidth and experimental demonstration to achieve sum rate of 10Gb/s is shown by serving 20 users simultaneously. Furthermore, investigation on SNR degradation of high bandwidth signals due to beamsteering effect of the LWA and theoretical calculations of the sum data rate for different number of users is performed, which shows that the proposed system can provide much higher sum rates with high available SNR. It was also experimentally demonstrated that improvement in coverage and spectral efficiency is obtained by operating multiple LWAs using single RF chain. Finally, an experimental demonstration of a DWDM-RoF based 60 GHz multi-user transmission using single LWA is presented to show the feasibility to extend the setup for a multiple RAU based system, serving each at distinct optical wavelength and performing direct photonic upconversion at the RAU for low cost mmW generation

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    New Radio Small Cell Propagation Environment

    Get PDF
    The characterization of the wireless medium in indoor small cell networks is essential to obtain appropriate modelling of the propagation environment. This dissertation on ”MeasurementBased Characterization of the 5G New Radio Small Cell Propagation Environment” has been developed in an experimental environment. The underlying tasks are divided into three phases. The first phase took place in the laboratory of the Instituto de Telecomunicações – Covilhã, located in the Departamento de Engenharia Electromecânica of Universidade da Beira Interior. During this part of the research, spectrum measurements and the characterization of the S11 parameter (response in the first port for the signal incident in the first port) have been made experimentally through the printed circuit board antennas in the 2.6 GHz and 3.5 GHz frequency bands operating in the 2.625 GHz and 3.590 GHz center frequency, manufactured by us. The fabrication of the antennas was preceded by the simulation in the student version CST STUDIO software. In this phase, the spectrum measurements and the characterization of Smith Chart have been made to measure gain and impedance using the Rohde & Schwarz Vector Network Analyzer (VNA) from IT laboratory. Based on mathematical calculations and considerations on the conductivity and permeability of the environment, the antennas were built for use in indoor and outdoor environments. The developed antennas are characterized by their bandwidth and their radiation characteristics. The second phase took place in the three rooms adjacent to the laboratory, in which the srsLTE emulation software was applied to the 4G indoor scenario. The experimental setup includes three elements, namely a base station (BS or 4G eNodeB), which transmits the communication signal and which served as a signal source, a user equipment (UE), and an interfering eNodeB. The size of each room is 7.32 × 7.32 square meters. While room 1 is the room of interest, where theoretical and practical measurements took place, BSs that act as wireless interfering nodes are also separately considered either in room 2 or room 3. By varying the UE positions within room 1, it was possible to verify that the highest values of the received power occur close to the central BS. However, the received power does not decrease suddenly because of the reduced gain in the radiation pattern in the back part of the antenna. In addition, it was demonstrated that there is an effect of “wall loss”proven by the path loss increase between room 1 and room 2 (or between room 2 and 3). If we consider an attenuation for each wall of circa 7-9 dB the trend of the WINNER II at 2.625 GHz model for the interference coming across different walls is verified. Future work includes to investigate the 3.5 GHz frequency band. The third phase is being carried out at the facilities of the old aerodrome of Covilhã which, using a temporary license assigned to us by Instituto de Comunicações Português (ICP-ANACOM) as the two first phases. The aim of this phase is to investigate the two-slope behaviour in the UMi scenario. Very initial LTE-Advanced tests have been performed to verify the propagation of the two ray (with a reflection in the asphalt) from BS implemented with USRP B210 and srsLTE system by considering an urban cell with a length of 80 m and an interfering base station at 320 m, at 2500 - 2510 MHz (DL - Downlink) by now, mainly due to the current availability of a directional antenna in this specific band.A investigação de sinais rádio em comunicações sem fios continua a gerar considerável interesse em todo mundo, devido ao seu amplo leque de aplicações, que inclui a troca de dados entre dois ou mais dispositivos, comunicações móveis e via Wi-Fi, infravermelho, transmissão de canais de televisão, monitorização de campos, proteção e vigilância costeira e observação ambiental para exploração. A tecnologia de ondas de rádio é o um dos vários recursos que viabilizam as comunicações de alta velocidade e encurta distâncias entre dois pontos em comunicação. Na realidade, caracterização da comunicação em redes com pequenas células é essencial para obter uma modelização apropriada de ambiente de propagação. Esta dissertação sob o tema ”Measurement-Based Characterization of the 5G New Radio Small Cells Propagation Envioronment” foi desenvolvida num ambiente experimental, cujas tarefas foram divididas em fases. A primeira fase teve lugar no laboratório do Instituto de Telecomunicações da Covilhã (IT), afeto ao Departamento de Engenharia Eletromecânica. Nela foram feitas as simulações das antenas no software CST STUDIO, versão do estudante que foram utilizadas nos equipamentos durante as medições. Seguiu-se a padronização das mesmas nas faixas dos 2.6 GHz e 3.5 GHz, nas frequências centrais de 2.625 GHz e 3.590 GHZ, usando placas de circuitos impressos. Em seguida, foram feitas as medições do espectro e a caraterização do S11 e da carta de Smith para medir a impedância de entrada e o ganho. As medições foram feitas com recurso ao Vector Network Analyzer (VNA). Com base em cálculos matemáticos e considerações sobre a condutividade e permeabilidade do ambiente, as antenas foram construídas para uso em ambientes internos e externos e com ou sem interferentes. As antenas desenvolvidas são caracterizadas por sua largura de banda e suas características de radiação. A segunda fase decorreu nas três salas adjacentes ao laboratório de Telecomunicações, na qual foi montada a topologia com o sistema srsLTE associado aos USRP B210 ligados aos computadores com o sistema operativo Linux com três componentes, nomeadamente uma estação base (BS), que serviu de fonte do sinal de comunicação com um equipamento de utilizador (UE) que o recebe, e dois interferentes. Importa realçar que esta segunda fase foi dividida em duas etapas, das quais uma sem interferente para medir a potência recebida da própria estação base e outra com os interferentes mais próximo e mais afastado da sala do sinal da própria célula. O objetivo desta fase foi o de verificar o modelo de propagação do sinal de comunicação da tecnologia LTE e medir a potência recebida pelo utilizador com recurso ao Analisador de Espectro portátil FSH8 da Rohde & Schwarz capaz de medir de 10 kHz a 8 GHz, feita na frequência central de 2.625 GHz. Nas medições feitas em ambiente interior, o tamanho de cada uma das três salas é 7.32 × 7.32 metros quadrados. Embora a sala 1 seja a sala de interesse, onde ocorreram as medições teóricas e práticas, as BSs que atuam como nós interferentes também são consideradas separadamente na sala 2 ou na sala 3. Ao variar as posições de UE dentro da sala 1, foi possível verificar que os valores superiores da potência recebida ocorrem próximos à BS central. No entanto, a potência recebida não diminui repentinamente por causa do efeito do ganho reduzido no diagrama de radiação na parte traseira da antena. Além disso, foi demonstrado que existe um efeito de “atenuação da parede” comprovado pelo aumento da atenuação de trajeto entre a sala 1 e a sala 2 (ou entre a sala 2 e 3). Se considerarmos uma atenuação para cada parede de cerca de 7-9 dB, verifica-se a tendência do modelo WINNER II a 2.625 GHz para a interferência que atravessa as diversas paredes. Trabalhos futuros incluem a investigação da banda de frequência de 3.5 GHz. Já a terceira fase foi realizada nas instalações do antigo aeródromo da Covilhã, e em todas as fases servimo-nos de uma licença concedida pela Entidade Reguladora do Espectro (ICPANACOM), que permitiu realizar testes de verificação da propagação do sinal no ambiente livre na faixa de frequência dos 2.6 GHz com 2500 – 2510 MHz (UL - Uplink) e 2620 – 2630 MHz (DL - Downlink). A terceira fase ainda está a decorrer nas instalações do antigo aeródromo da Covilhã, mediante a mesma licença temporária que nos foi atribuída pelo Instituto de Comunicações de Portugal ou Autoridade Nacional de Comunicações (ICP-ANACOM) sendo esta reguladora do espectro. O objetivo é continuar a investigar o comportamento de duas inclinações no cenário UMi. Testes muito iniciais LTE-Advanced foram realizados para verificar a propagação dos dois raios (direto e refletido, com uma reflexão no asfalto) do BS implementado com o sistema USRP B210 e srsLTE, considerando uma célula urbana com um comprimento de 80 metros uma estação base interferente em 320 metros, a operar, provisoriamente, a 2500 - 2510 MHz (na ligação descendente, DL - Downlink, devido à disponibilidade de uma antena direcional específica para esta banda). Finalmente este trabalho de investigação pode ser resumidamente dividido em três categorias, nomeadamente investigação de análises teóricas e matemáticas relevantes da propagação de ondas de rádio em meios com e sem interferência significativa. Medições para verificar o comportamento do sinal de propagação da tecnologia LTE-Advanced com recursos ao analisador de espectro, simulação das antenas, fabricação e medição das características de radiação das mesmas. Assim, as antenas concebidas com bons resultados foram fabricadas nas instalações da Faculdade de Ciências no Departamento de Física da Universidade da Beira Interior, sendo de seguidas testadas e caracterizadas com o auxílio do Vector Nettwork Analyzer disponível no Laboratório de Telecomunicações do Departamento de Engenharia Eletromecânica da Universidade da Beira Interior. E, finalmente, os cálculos estatísticos que incluem o teste de normalidade de Kolmogorov-Smirnov com recurso ao software estatístico SPSS para validar os resultados obtidos seguida da construção dos gráficos no Matlab em 3D, conforme a superfície da sala

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore