637 research outputs found

    Research Brief

    Get PDF
    Approved for public release; distribution is unlimited

    Morphing Concept for Multirotor UAVs Enabling Stability Augmentation and Multiple-Parcel Delivery

    Get PDF
    This paper presents a novel morphing concept for multirotor Unmanned Aerial Vehicles (UAVs) to optimize the vehicle ight performance during multi-parcel deliveries. Abrupt changes in the vehicle weight distribution during a parcel delivery can cause the UAVs to be unbalanced. This is usually compensated by the vehicle ight control system but the motors may need to operate outside their design range which can deteriorate the stability and performance of the system. Morphing the geometry of a conventional multirotor airframe enables the vehicle to continuously re-balanced itself which improves the overall vehicle performance and safety. The paper derives expressions for the static stability of multirotor UAVs and discusses the experimental implementation of the morphing technology on a Y6 tricopter configuration. Flight test results of multi-parcel delivery scenarios demonstrate the capability of the proposed technology to balance the throttle outputs of all rotors

    Aerodynamic detailed design of an Unmanned Aerial Vehicle with VTOL capabilities

    Get PDF
    ALF/ENGAER 139424-L Vasco Luís Martins Ferreira Coelho. Examination Committee: Chairperson: BGEN/EngEl 119923-E Rui Fernando da Costa Ferreira; Supervisor: MAJ/EngAer 131603-G Joao Vítor Aguiar Vieira Caetano, Dr. Frederico José Prata Rente Reis Afonso; Member of the Committee: Prof. Dr. Afzal SulemanEsta tese está integrada num projeto de desenvolvimento de um veículo aéreo não tripulado capaz de efetuar descolagem e aterragem vertical, e tendo hidrogénio como principal fonte de energia utilizando para tal uma célula de combustível. A dissertação foca-se nas fases de desenvolvimento preliminar e detalhada no que diz respeito a estudos aerodinâmicos e desempenho em voo. A fase preliminar abrange a conceção da asa e da cauda, recorrendo ao software XFLR5, em conjunto com uma estimativa da resistência aerodinâmica total da aeronave, recorrendo a expressões semi-empíricas. Para a análise detalhada, foi utilizado o software de mecânica de fluidos computacional Fluent. A escolha do modelo de turbulência SST, em conjunto com o modelo de transição y_Re0 , é validada pelas simulação 2D do perfil SG6042, apresentando resultados consistentes com os dados experimentais. A polar aerodinâmica da asa é obtida através da simulações 3D da mesma para vários ângulos de ataque. Por forma a melhorar as propriedades aerodinâmicas da asa, foi aplicada torção à ponta da asa, movendo a região inicial da perda da ponta da asa para a raiz. O impacto do sistema de propulsão vertical na resistência aerodinâmica em voo cruzeiro é avaliado através da realização de testes em túnel de vento e simulações em Fluent. Simulações de toda a aeronave concluem que, dependendo do alinhamento dos rotores, a resistência aerodinâmica da aeronave varia entre 16.32 e 19.22 N para voo cruzeiro, resultando num tempo total de voo entre 3H05 e 3H25.This thesis is part of a project to design an unmanned aerial vehicle capable of performing vertical take-off and landing, and having hydrogen as its main energy source by using a fuel cell. The present dissertation is focused on the preliminary and detailed design phases regarding aerodynamics and flight performance studies. The preliminary phase encompasses the wing and tail design, with the aid of XFLR5, together with an estimate of the total aircraft drag by resorting to semi-empirical expressions. A longitudinal static stability analysis is conducted, and the unmanned aerial vehicle characteristics are presented after the preliminary phase of the project. For the detailed analysis, Fluent was chosen as the computational fluid dynamics software to be used. 2D simulation over the SG6042 wing airfoil validated the choice of the SST turbulence model, coupled with the y_ Re0 transition model, as the results were consistent with experimental data. The drag polar of the wing is obtained by simulating the 3D wing at various angles of attack. To enhance the wing aerodynamic properties, twist was given to the wingtip, moving the stall region from the wingtip to the root. The impact of the vertical propulsion system on the drag at cruise is assessed by performing wind tunnel tests and simulations on Fluent. Simulations of the entire aircraft conclude that, depending on the stopping position of the rotors, the drag of the aircraft varies between 16.32 and 19.22 N for cruise, which results in a total flight time between 3H05 and 3H25.N/

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    A Summary of the NASA Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project

    Get PDF
    The number of new markets and use cases being developed for vertical take-off and landing vehicles continues to explode, including the highly publicized urban air taxi and package deliver applications. There is an equally exploding variety of novel vehicle configurations and sizes that are being proposed to fill these new market applications. The challenge for vehicle designers is that there is currently no easy and consistent way to go from a compelling mission or use case to a vehicle that is best configured and sized for the particular mission. This is because the availability of accurate and validated conceptual design tools for these novel types and sizes of vehicles have not kept pace with the new markets and vehicles themselves. The Design Environment for Novel Vertical Lift Vehicles (DELIVER) project was formulated to address this vehicle design challenge by demonstrating the use of current conceptual design tools, that have been used for decades to design and size conventional rotorcraft, applied to these novel vehicle types, configurations and sizes. In addition to demonstrating the applicability of current design and sizing tools to novel vehicle configurations and sizes, DELIVER also demonstrated the addition of key transformational technologies of noise, autonomy, and hybrid-electric and all-electric propulsion into the vehicle conceptual design process. Noise is key for community acceptance, autonomy and the need to operate autonomously are key for efficient, reliable and safe operations, and electrification of the propulsion system is a key enabler for these new vehicle types and sizes. This paper provides a summary of the DELIVER project and shows the applicability of current conceptual design and sizing tools novel vehicle configurations and sizes that are being proposed for urban air taxi and package delivery type applications

    A novel concept for Titan robotic exploration based on soft morphing aerial robots

    Full text link
    This work introduces a novel approach for Titan exploration based on soft morphing aerial robots leveraging the use of flexible adaptive materials. The controlled deformation of the multirotor arms, actuated by a combination of a pneumatic system and a tendon mechanism, provides the explorer robot with the ability to perform full-body perching and land on rocky, irregular, or uneven terrains, thus unlocking new exploration horizons. In addition, after landing, they can be used for efficient sampling as tendon-driven continuum manipulators, with the pneumatic system drawing in the samples. The proposed arms enable the drone to cover long distances in Titan's atmosphere efficiently, by directing rotor thrust without rotating the body, reducing the aerodynamic drag. Given that the exploration concept is envisioned as a rotorcraft planetary lander, the robot's folding features enable over a 30%\% reduction in the hypersonic aeroshell's diameter. Building on this folding capability, the arms can morph partially in flight to navigate tight spaces. As for propulsion, the rotor design, justified through CFD simulations, utilizes a ducted fan configuration tailored for Titan's high Reynolds numbers. The rotors are integrated within the robot's deformable materials, facilitating smooth interactions with the environment. The research spotlights exploration simulations in the Gazebo environment, focusing on the Sotra-Patera cryovolcano region, a location with potential to clarify Titan's unique methane cycle and its Earth-like features. This work addresses one of the primary challenges of the concept by testing the behavior of small-scale deformable arms under conditions mimicking those of Titan. Groundbreaking experiments with liquid nitrogen at cryogenic temperatures were conducted on various materials, with Teflon (PTFE) at low infill rates (15-30%) emerging as a promising option.Comment: Presented at International Astronautical Congress 2023 (Baku, Azerbaiyan

    Design and testing methodologies for UAVs under extreme environmental conditions

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Static Testing of Propulsion Elements for Small Multirotor Unmanned Aerial Vehicles

    Get PDF
    The growing use of small multirotor aircraft has increased the interest in having better performance results especially with the propulsion system. The size of the propellers used on these aircraft operate at low Reynolds numbers that are typically less than 200,000. Static performance testing of ten propeller pairs (tractor and pusher) were completed and is the beginning of a systematic test of propellers used on multirotor systems. The propellers chosen for this initial set of tests were selected from four popular quadrotors. Besides testing the propellers provided with the aircraft, propellers that are sold as replacements from third-party companies were also tested. Both the 3D Robotics Solo and DJI Phantom 3 had multiple propellers tested and a method to compare the resulting endurance is discussed

    Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    Get PDF
    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraf
    • …
    corecore