Aerodynamic detailed design of an Unmanned Aerial Vehicle with VTOL capabilities

Abstract

ALF/ENGAER 139424-L Vasco Luís Martins Ferreira Coelho. Examination Committee: Chairperson: BGEN/EngEl 119923-E Rui Fernando da Costa Ferreira; Supervisor: MAJ/EngAer 131603-G Joao Vítor Aguiar Vieira Caetano, Dr. Frederico José Prata Rente Reis Afonso; Member of the Committee: Prof. Dr. Afzal SulemanEsta tese está integrada num projeto de desenvolvimento de um veículo aéreo não tripulado capaz de efetuar descolagem e aterragem vertical, e tendo hidrogénio como principal fonte de energia utilizando para tal uma célula de combustível. A dissertação foca-se nas fases de desenvolvimento preliminar e detalhada no que diz respeito a estudos aerodinâmicos e desempenho em voo. A fase preliminar abrange a conceção da asa e da cauda, recorrendo ao software XFLR5, em conjunto com uma estimativa da resistência aerodinâmica total da aeronave, recorrendo a expressões semi-empíricas. Para a análise detalhada, foi utilizado o software de mecânica de fluidos computacional Fluent. A escolha do modelo de turbulência SST, em conjunto com o modelo de transição y_Re0 , é validada pelas simulação 2D do perfil SG6042, apresentando resultados consistentes com os dados experimentais. A polar aerodinâmica da asa é obtida através da simulações 3D da mesma para vários ângulos de ataque. Por forma a melhorar as propriedades aerodinâmicas da asa, foi aplicada torção à ponta da asa, movendo a região inicial da perda da ponta da asa para a raiz. O impacto do sistema de propulsão vertical na resistência aerodinâmica em voo cruzeiro é avaliado através da realização de testes em túnel de vento e simulações em Fluent. Simulações de toda a aeronave concluem que, dependendo do alinhamento dos rotores, a resistência aerodinâmica da aeronave varia entre 16.32 e 19.22 N para voo cruzeiro, resultando num tempo total de voo entre 3H05 e 3H25.This thesis is part of a project to design an unmanned aerial vehicle capable of performing vertical take-off and landing, and having hydrogen as its main energy source by using a fuel cell. The present dissertation is focused on the preliminary and detailed design phases regarding aerodynamics and flight performance studies. The preliminary phase encompasses the wing and tail design, with the aid of XFLR5, together with an estimate of the total aircraft drag by resorting to semi-empirical expressions. A longitudinal static stability analysis is conducted, and the unmanned aerial vehicle characteristics are presented after the preliminary phase of the project. For the detailed analysis, Fluent was chosen as the computational fluid dynamics software to be used. 2D simulation over the SG6042 wing airfoil validated the choice of the SST turbulence model, coupled with the y_ Re0 transition model, as the results were consistent with experimental data. The drag polar of the wing is obtained by simulating the 3D wing at various angles of attack. To enhance the wing aerodynamic properties, twist was given to the wingtip, moving the stall region from the wingtip to the root. The impact of the vertical propulsion system on the drag at cruise is assessed by performing wind tunnel tests and simulations on Fluent. Simulations of the entire aircraft conclude that, depending on the stopping position of the rotors, the drag of the aircraft varies between 16.32 and 19.22 N for cruise, which results in a total flight time between 3H05 and 3H25.N/

    Similar works