765 research outputs found

    Automatic Recognition of Knowledge Characteristics of Scientific and Technological Literature from the Perspective of Text Structure

    Get PDF
    This paper independently explores the chapter structure of scientific and technological literature in the field of shipbuilding in the natural sciences and the field of library and information in the social sciences. The chapter structure model of previous studies, namely \u27background, purpose, method, result, conclusion, demonstration,\u27 is quoted as the verification object of the document chapter structure in the field of exploration. In order to verify the rationality of the structure, this paper uses the deep learning models TextCNN, DPCNN, TextRCNN, and BiLSTM-Attention as experimental tools, and designs 5-fold cross-validation experiment and normal experiment, and finally verifies the rationality of the model structure, and It is concluded that the BiLSTM-Attention model can better identify the chapter structure in this field

    Multi-Task Attentive Residual Networks for Argument Mining

    Full text link
    We explore the use of residual networks and neural attention for argument mining and in particular link prediction. The method we propose makes no assumptions on document or argument structure. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble. We evaluate it on a challenging data set consisting of user-generated comments, as well as on two other datasets consisting of scientific publications. On the user-generated content dataset, our model outperforms state-of-the-art methods that rely on domain knowledge. On the scientific literature datasets it achieves results comparable to those yielded by BERT-based approaches but with a much smaller model size.Comment: 12 pages, 2 figures, submitted to IEEE Transactions on Neural Networks and Learning System

    Computational Argumentation for the Automatic Analysis of Argumentative Discourse and Human Persuasion

    Full text link
    Tesis por compendio[ES] La argumentación computacional es el área de investigación que estudia y analiza el uso de distintas técnicas y algoritmos que aproximan el razonamiento argumentativo humano desde un punto de vista computacional. En esta tesis doctoral se estudia el uso de distintas técnicas propuestas bajo el marco de la argumentación computacional para realizar un análisis automático del discurso argumentativo, y para desarrollar técnicas de persuasión computacional basadas en argumentos. Con estos objetivos, en primer lugar se presenta una completa revisión del estado del arte y se propone una clasificación de los trabajos existentes en el área de la argumentación computacional. Esta revisión nos permite contextualizar y entender la investigación previa de forma más clara desde la perspectiva humana del razonamiento argumentativo, así como identificar las principales limitaciones y futuras tendencias de la investigación realizada en argumentación computacional. En segundo lugar, con el objetivo de solucionar algunas de estas limitaciones, se ha creado y descrito un nuevo conjunto de datos que permite abordar nuevos retos y investigar problemas previamente inabordables (e.g., evaluación automática de debates orales). Conjuntamente con estos datos, se propone un nuevo sistema para la extracción automática de argumentos y se realiza el análisis comparativo de distintas técnicas para esta misma tarea. Además, se propone un nuevo algoritmo para la evaluación automática de debates argumentativos y se prueba con debates humanos reales. Finalmente, en tercer lugar se presentan una serie de estudios y propuestas para mejorar la capacidad persuasiva de sistemas de argumentación computacionales en la interacción con usuarios humanos. De esta forma, en esta tesis se presentan avances en cada una de las partes principales del proceso de argumentación computacional (i.e., extracción automática de argumentos, representación del conocimiento y razonamiento basados en argumentos, e interacción humano-computador basada en argumentos), así como se proponen algunos de los cimientos esenciales para el análisis automático completo de discursos argumentativos en lenguaje natural.[CA] L'argumentació computacional és l'àrea de recerca que estudia i analitza l'ús de distintes tècniques i algoritmes que aproximen el raonament argumentatiu humà des d'un punt de vista computacional. En aquesta tesi doctoral s'estudia l'ús de distintes tècniques proposades sota el marc de l'argumentació computacional per a realitzar una anàlisi automàtic del discurs argumentatiu, i per a desenvolupar tècniques de persuasió computacional basades en arguments. Amb aquestos objectius, en primer lloc es presenta una completa revisió de l'estat de l'art i es proposa una classificació dels treballs existents en l'àrea de l'argumentació computacional. Aquesta revisió permet contextualitzar i entendre la investigació previa de forma més clara des de la perspectiva humana del raonament argumentatiu, així com identificar les principals limitacions i futures tendències de la investigació realitzada en argumentació computacional. En segon lloc, amb l'objectiu de sol\cdotlucionar algunes d'aquestes limitacions, hem creat i descrit un nou conjunt de dades que ens permet abordar nous reptes i investigar problemes prèviament inabordables (e.g., avaluació automàtica de debats orals). Conjuntament amb aquestes dades, es proposa un nou sistema per a l'extracció d'arguments i es realitza l'anàlisi comparativa de distintes tècniques per a aquesta mateixa tasca. A més a més, es proposa un nou algoritme per a l'avaluació automàtica de debats argumentatius i es prova amb debats humans reals. Finalment, en tercer lloc es presenten una sèrie d'estudis i propostes per a millorar la capacitat persuasiva de sistemes d'argumentació computacionals en la interacció amb usuaris humans. D'aquesta forma, en aquesta tesi es presenten avanços en cada una de les parts principals del procés d'argumentació computacional (i.e., l'extracció automàtica d'arguments, la representació del coneixement i raonament basats en arguments, i la interacció humà-computador basada en arguments), així com es proposen alguns dels fonaments essencials per a l'anàlisi automàtica completa de discursos argumentatius en llenguatge natural.[EN] Computational argumentation is the area of research that studies and analyses the use of different techniques and algorithms that approximate human argumentative reasoning from a computational viewpoint. In this doctoral thesis we study the use of different techniques proposed under the framework of computational argumentation to perform an automatic analysis of argumentative discourse, and to develop argument-based computational persuasion techniques. With these objectives in mind, we first present a complete review of the state of the art and propose a classification of existing works in the area of computational argumentation. This review allows us to contextualise and understand the previous research more clearly from the human perspective of argumentative reasoning, and to identify the main limitations and future trends of the research done in computational argumentation. Secondly, to overcome some of these limitations, we create and describe a new corpus that allows us to address new challenges and investigate on previously unexplored problems (e.g., automatic evaluation of spoken debates). In conjunction with this data, a new system for argument mining is proposed and a comparative analysis of different techniques for this same task is carried out. In addition, we propose a new algorithm for the automatic evaluation of argumentative debates and we evaluate it with real human debates. Thirdly, a series of studies and proposals are presented to improve the persuasiveness of computational argumentation systems in the interaction with human users. In this way, this thesis presents advances in each of the main parts of the computational argumentation process (i.e., argument mining, argument-based knowledge representation and reasoning, and argument-based human-computer interaction), and proposes some of the essential foundations for the complete automatic analysis of natural language argumentative discourses.This thesis has been partially supported by the Generalitat Valenciana project PROME- TEO/2018/002 and by the Spanish Government projects TIN2017-89156-R and PID2020- 113416RB-I00.Ruiz Dolz, R. (2023). Computational Argumentation for the Automatic Analysis of Argumentative Discourse and Human Persuasion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194806Compendi

    Syntax-based machine translation using dependency grammars and discriminative machine learning

    Get PDF
    Machine translation underwent huge improvements since the groundbreaking introduction of statistical methods in the early 2000s, going from very domain-specific systems that still performed relatively poorly despite the painstakingly crafting of thousands of ad-hoc rules, to general-purpose systems automatically trained on large collections of bilingual texts which manage to deliver understandable translations that convey the general meaning of the original input. These approaches however still perform quite below the level of human translators, typically failing to convey detailed meaning and register, and producing translations that, while readable, are often ungrammatical and unidiomatic. This quality gap, which is considerably large compared to most other natural language processing tasks, has been the focus of the research in recent years, with the development of increasingly sophisticated models that attempt to exploit the syntactical structure of human languages, leveraging the technology of statistical parsers, as well as advanced machine learning methods such as marging-based structured prediction algorithms and neural networks. The translation software itself became more complex in order to accommodate for the sophistication of these advanced models: the main translation engine (the decoder) is now often combined with a pre-processor which reorders the words of the source sentences to a target language word order, or with a post-processor that ranks and selects a translation according according to fine model from a list of candidate translations generated by a coarse model. In this thesis we investigate the statistical machine translation problem from various angles, focusing on translation from non-analytic languages whose syntax is best described by fluid non-projective dependency grammars rather than the relatively strict phrase-structure grammars or projectivedependency grammars which are most commonly used in the literature. We propose a framework for modeling word reordering phenomena between language pairs as transitions on non-projective source dependency parse graphs. We quantitatively characterize reordering phenomena for the German-to-English language pair as captured by this framework, specifically investigating the incidence and effects of the non-projectivity of source syntax and the non-locality of word movement w.r.t. the graph structure. We evaluated several variants of hand-coded pre-ordering rules in order to assess the impact of these phenomena on translation quality. We propose a class of dependency-based source pre-ordering approaches that reorder sentences based on a flexible models trained by SVMs and and several recurrent neural network architectures. We also propose a class of translation reranking models, both syntax-free and source dependency-based, which make use of a type of neural networks known as graph echo state networks which is highly flexible and requires extremely little training resources, overcoming one of the main limitations of neural network models for natural language processing tasks

    Conceptual Representations for Computational Concept Creation

    Get PDF
    Computational creativity seeks to understand computational mechanisms that can be characterized as creative. The creation of new concepts is a central challenge for any creative system. In this article, we outline different approaches to computational concept creation and then review conceptual representations relevant to concept creation, and therefore to computational creativity. The conceptual representations are organized in accordance with two important perspectives on the distinctions between them. One distinction is between symbolic, spatial and connectionist representations. The other is between descriptive and procedural representations. Additionally, conceptual representations used in particular creative domains, such as language, music, image and emotion, are reviewed separately. For every representation reviewed, we cover the inference it affords, the computational means of building it, and its application in concept creation.Peer reviewe

    Automatic inference of causal reasoning chains from student essays

    Get PDF
    While there has been an increasing focus on higher-level thinking skills arising from the Common Core Standards, many high-school and middle-school students struggle to combine and integrate information from multiple sources when writing essays. Writing is an important learning skill, and there is increasing evidence that writing about a topic develops a deeper understanding in the student. However, grading essays is time consuming for teachers, resulting in an increasing focus on shallower forms of assessment that are easier to automate, such as multiple-choice tests. Existing essay grading software has attempted to ease this burden but relies on shallow lexico-syntactic features and is unable to understand the structure or validity of a student’s arguments or explanations. Without the ability to understand a student’s reasoning processes, it is impossible to write automated formative assessment systems to assist students with improving their thinking skills through essay writing. In order to understand the arguments put forth in an explanatory essay in the science domain, we need a method of representing the causal structure of a piece of explanatory text. Psychologists use a representation called a causal model to represent a student\u27s understanding of an explanatory text. This consists of a number of core concepts, and a set of causal relations linking them into one or more causal chains, forming a causal model. In this thesis I present a novel system for automatically constructing causal models from student scientific essays using Natural Language Processing (NLP) techniques. The problem was decomposed into 4 sub-problems - assigning essay concepts to words, detecting causal-relations between these concepts, resolving coreferences within each essay, and using the structure of the whole essay to reconstruct a causal model. Solutions to each of these sub-problems build upon the predictions from the solutions to earlier problems, forming a sequential pipeline of models. Designing a system in this way allows later models to correct for false positive predictions from downstream models. However, this also has the disadvantage that errors made in earlier models can propagate through the system, negatively impacting the upstream models, and limiting their accuracy. Producing robust solutions for the initial 2 sub problems, detecting concepts, and parsing causal relations between them, was critical in building a robust system. A number of sequence labeling models were trained to classify the concepts associated with each word, with the most effective approach being a bidirectional recurrent neural network (RNN), a deep learning model commonly applied to word labeling problems. This is because the RNN used pre-trained word embeddings to better generalize to rarer words, and was able to use information from both ends of each sentence to infer a word\u27s concept. The concepts predicted by this model were then used to develop causal relation parsing models for detecting causal connections between these concepts. A shift-reduce dependency parsing model was trained using the SEARN algorithm and out-performed a number of other approaches by better utilizing the structure of the problem and directly optimizing the error metric used. Two pre-trained coreference resolution systems were used to resolve coreferences within the essays. However a word tagging model trained to predict anaphors combined with a heuristic for determining the antecedent out-performed these two systems. Finally, a model was developed for parsing a causal model from an entire essay, utilizing the solutions to the three previous problems. A beam search algorithm was used to produce multiple parses for each sentence, which in turn were combined to generate multiple candidate causal models for each student essay. A reranking algorithm was then used to select the optimal causal model from all of the generated candidates. An important contribution of this work is that it represents a system for parsing a complete causal model of a scientific essay from a student\u27s written answer. Existing systems have been developed to parse individual causal relations, but no existing system attempts to parse a sequence of linked causal relations forming a causal model from an explanatory scientific essay. It is hoped that this work can lead to the development of more robust essay grading software and formative assessment tools, and can be extended to build solutions for extracting causality from text in other domains. In addition, I also present 2 novel approaches for optimizing the micro-F1 score within the design of two of the algorithms studied: the dependency parser and the reranking algorithm. The dependency parser uses a custom cost function to estimate the impact of parsing mistakes on the overall micro-F1 score, while the reranking algorithm allows the micro-F1 score to be optimized by tuning the beam search parameter to balance recall and precision

    Deep learning with knowledge graphs for fine-grained emotion classification in text

    Get PDF
    This PhD thesis investigates two key challenges in the area of fine-grained emotion detection in textual data. More specifically, this work focuses on (i) the accurate classification of emotion in tweets and (ii) improving the learning of representations from knowledge graphs using graph convolutional neural networks.The first part of this work outlines the task of emotion keyword detection in tweets and introduces a new resource called the EEK dataset. Tweets have previously been categorised as short sequences or sentence-level sentiment analysis, and it could be argued that this should no longer be the case, especially since Twitter increased its allowed character limit. Recurrent Neural Networks have become a well-established method to classify tweets over recent years, but have struggled with accurately classifying longer sequences due to the vanishing and exploding gradient descent problem. A common technique to overcome this problem has been to prune tweets to a shorter sequence length. However, this also meant that often potentially important emotion carrying information, which is often found towards the end of a tweet, was lost (e.g., emojis and hashtags). As such, tweets mostly face also problems with classifying long sequences, similar to other natural language processing tasks. To overcome these challenges, a multi-scale hierarchical recurrent neural network is proposed and benchmarked against other existing methods. The proposed learning model outperforms existing methods on the same task by up to 10.52%. Another key component for the accurate classification of tweets has been the use of language models, where more recent techniques such as BERT and ELMO have achieved great success in a range of different tasks. However, in Sentiment Analysis, a key challenge has always been to use language models that do not only take advantage of the context a word is used in but also the sentiment it carries. Therefore the second part of this work looks at improving representation learning for emotion classification by introducing both linguistic and emotion knowledge to language models. A new linguistically inspired knowledge graph called RELATE is introduced. Then a new language model is trained on a Graph Convolutional Neural Network and compared against several other existing language models, where it is found that the proposed embedding representations achieve competitive results to other LMs, whilst requiring less pre-training time and data. Finally, it is investigated how the proposed methods can be applied to document-level classification tasks. More specifically, this work focuses on the accurate classification of suicide notes and analyses whether sentiment and linguistic features are important for accurate classification
    corecore