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Abstract

During the patient’s hospitalization, a physician must record daily observations of patients

and summarizes them into a brief document called “discharge summary” when a patient

is discharged. The discharge summaries play a crucial role in patient care, and are used

to share information between hospitals and physicians. However, compilation of hospi-

tal discharge summaries is an onerous task for physicians, and such paperwork restricts

physicians’ time to spend with patients and causes burnout. Researchers have begun to

apply automatic summarization techniques to address this problem. Because many high-

performance summarization techniques have been developed in natural language process-

ing, the generation of discharge summaries can be a promising application of the technol-

ogy. In particular, automated generation of discharge summary using neural architecture

can greatly relieve the physician’s burden. Neural network based approaches have achieved

remarkable performance in the summarization task, and are also employed in few previous

works of discharge summary generation. The discharge summary generation task often has

different characteristics than the general domain, such as containing noisy sentences, var-

ious meta-information, and many types of source documents. Thus, how to address these

characteristics should be an important research topic. However, due to the limited number of

studies on discharge summary generation using neural networks, the impact of such issues

has not been well studied.

In addition, the generation of discharge summaries using neural networks has not been

studied in Japanese because of the lack of a large data set of electronic health records.

For the discharge summary generation in Japanese, it should be necessary to research in

Japanese rather than English due to problems specific to the Japanese language. And the

corpora and trained models created there whold be important assets for future work on
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generating discharge summaries in Japanese. To this end, this thesis investigates three topics

using a large multi-institutional health records archive in Japan.

First, a study was conducted to find the optimal linguistic granularity of input for ex-

tractive summarization using a neural architecture. Previous works in the general domain

employed sentences and clauses as the self-contained linguistic unit for extractive sum-

marization, but this study hypothesizes that they cannot cover medical meanings. Thus,

the “clinical segment” was developed as a new self-contained linguistic unit for medical

documents. It was defined with the support of physicians and annotated by medical profes-

sionals. For the verification of the effectiveness of the clinical segment, three types of input

to a neural network-based classifier were experimented with: sentence, clause, and clinical

segment. The results showed that using the clinical segment achieved the best performance

and was the best input granularity for generating discharge summary. The parallel dataset

of dummy discharge summaries and inpatient records created here, as well as the trained

clinical segment splitter, are also publicly available.

Second, a study was conducted to investigate whether medical meta-information is use-

ful for abstractive summarization of discharge summary. While medical data contain rich

meta-information (e.g., disease, length of stay, etc.), it is not known how they affect the dis-

charge summary generation task. Thus, four types of meta-information, hospital, physician,

disease, and length of stay, were used in the abstractive summarization experiments. The

results showed that adding the disease information into the summarization model increased

summarization performance the most. In addition, the disease information also increased

the precision of representations of disease and symptom in the outputs. This is the first

time to generate discharge summaries in Japanese using an abstractive method with neural

networks. The codes of the model used in this study are available.

Finally, a study was conducted to address the question of whether a discharge summary

can be generated from only the inpatient records. Previous works of abstractive summa-

rization in other domain have defined factual hallucination as information that cannot be

generated from only source documents. Hence, this study is an analysis of factual halluci-

nation in the generation of discharge summaries. The discharge summary generation task is

assumed to require a variety of information sources (e.g., referral documents, prescriptions,

and physician’s memory) that are more than in the general domain. To this end, discharge
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summaries were broken down into clinical segments and manually labeled their possible

sources of information by medical professionals. The results showed that 39% of the infor-

mation came from external sources. Compared to statics of dataset from general domain,

this study found that the medical dataset was more externally dependent. The most common

external source was the patient’s past clinical records (17%), and the next most common ex-

ternal source was patient referral documents (7%). Remarkably, the results showed that 4%

of the information in a discharge summary came from the physician’s memory, suggesting

that the information cannot be reconstructed from only the records. In addition, this study

developed the “clinical role label” that represents the statement’s medical role (e.g., descrip-

tion, action and evaluation) in the discharge summary for deeper analysis. It was defined

with the support of physicians and annotated by medical professionals. By investigating the

unsourced rate for each clinical role label, this study found that subjective descriptions (e.g.,

diagnosis and plan), with added the physician’s interpretation, were especially externally

dependent. The trained clinical role label classifier developed here is publicly available.

This thesis is organized as follows: Chapter 1 describes the motivation of this thesis

and a brief explanation of each topic. Chapter 2 provides the related works and evaluation

metrics. Chapter 3 details the datasets used across the studies and how they were created.

Chapter 4 introduces the "clinical segment", a unit representing medical meaning to break

down sentences, which is used in later chapters. Chapter 5 introduces the clinical role

label, which assigns the role in medical records to a clinical segment for further in-depth

analysis. Chapter 6 explores the optimal granularity of linguistic units to input into the

neural extractive model for the discharge summary generation task. Chapter 7 examines the

usefulness of medical meta-information for an abstractive summarization method. Chapter

8 analyzes whether discharge summary generation can be achieved using only the inpatient

record, and what other types of information sources are needed. Chapter 9 concludes the

thesis and describes future work.
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Chapter 1

Introduction

Clinical notes are written daily by physicians from their consults and are used for their own

decision-making or coordination of treatment. They contain a large amount of important

data for machine learning, such as conditions, laboratory tests, diagnoses, procedures, and

treatments. While invaluable to physicians and researchers, the paperwork is burdensome

for physicians. A recent study found that family physicians spent 5.9 h of their 11.4 h work-

day on electronic health records (EHRs) [1]. In 2019, 74% of physicians spent more than

10 h per week on paperwork and administration [2]. Another study reported that physicians

spent 26.6% of their daily working time on documentation [3]. Discharge summaries, a

subset of these, also play a crucial role in patient care, and are used to share information

between hospitals and physicians. It is created by the physician as a summary of notes

during hospitalization at the time of the patient’s discharge, which is known to be very

time-consuming.

Artificial intelligence technology has been increasingly applied in various fields of medicine

[4–10]. Its application in medical texts is expected to improve the efficiency of paperwork

[11–13]. In natural language processing (NLP), various summarization techniques, espe-

cially neural network models, have demonstrated high accuracy in summarization bench-

marks [14–19]. These technologies can be applied to summarizing inpatient records. There-

fore, some studies have been conducted on the automated generation of the whole discharge

summary using neural network models [20–25].

The discharge summary generation task often has different characteristics than the gen-

eral domain, such as containing noisy sentences, various meta-information, and many types
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of source documents. Thus, how to address these characteristics should be an important

research topic. However, due to the limited number of studies on discharge summary gen-

eration using neural networks, the impact of such issues has not been well studied. To

this end, this thesis addresses three topics on discharge summary generation using neural

network models.

First, a study was conducted to find the optimal linguistic granularity of input for extrac-

tive summarization using a neural architecture. Some recent studies of extractive summa-

rization investigated the best granularity units for neural model inputs [26, 27]. However,

the granularity of inputs has not been explored for the summarization of medical documents.

Thus, we attempted to identify the optimal granularity by defining three units with different

granularities and comparing their summarization performance: whole sentences, clinical

segments, and clauses. The clinical segment is our novel concept to express the smallest

medically meaningful concepts. It was created based on our hypothesis that current linguis-

tic units cannot cover medical meaning.

Second, a study was conducted to investigate whether medical meta-information is use-

ful for abstractive summarization of discharge summary. previous studies used extractive

or abstractive summarization methods, but most of them focused on only progress notes for

inputs. Properly summarizing an admission of a patient is a quite complex task, and requires

various meta-information such as the patient’s age, gender, vital signs, laboratory values and

background to specific diseases. Therefore, discharge summary generation needs more med-

ical meta-information, than similar but narrower tasks such as radiology report generation.

However, what kind of meta-information is important for summarization has not been inves-

tigated, even though it is critical not only for future research on medical summarization, but

also for the policy of data collection infrastructure. Thus, four types of meta-information,

hospital, physician, disease, and length of stay, were used in the abstractive summarization

experiments. This is the first time to generate discharge summaries in Japanese using an

abstractive method with neural networks.

Finaly, Most previous studies used only the inpatient record as the source for abstrac-

tive summarization task. Therefore, whether artificial intelligence can generate hospital

discharge summaries from inpatient records remains an open question. The discharge sum-

mary generation task is assumed to require a variety of information sources (e.g., referral
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documents, prescriptions, and physician’s memory) that are more than in the general do-

main. Abstractive summarization tasks on other domain have defined factual hallucination

as information that cannot be generated from only source documents. Hence, this study is an

analysis of factual hallucination in the generation of discharge summaries. We broke down

discharge summaries into clinical segments and manually labeled their possible sources of

information by medical professionals. If physicians rely on their memory, it would be diffi-

cult to automatically generate a discharge summary solely from inpatient records, even with

a top-performing summarization technique.

Our contributions are as follows:

• We have created the first publicly available parallel corpus of inpatient records and

discharge summaries in Japanese. This will be useful for future research using elec-

tronic health records, such as the automatic generation of discharge summaries.

• We developed the clinical segment that breaks down healthcare texts into the smallest

medical semantic units and an automatic splitter for this purpose. This is the first time,

to the best of our knowledge, that a sentence is split into contextualized subsequences

specific to the healthcare domain.

• We developed the clinical role label and its automatic assigner that assigns a clinical

meaning to a clinical segment for the automated analysis of large healthcare texts.

• In comparing the sentence, clause, and clinical segment, we found that the best gran-

ularity for extractive automatic summarization of healthcare documents is the clinical

segment. The results suggest that a unit reflecting medical semantics may be useful

for model input.

• We found that medical meta-information is useful for the abstractive summarization

of healthcare documents. In particular, a model encoding disease information can

generate appropriate disease and symptom words consistent with the source.

• We investigated the origin of the information that appears in the discharge summaries

to evaluate the possibility of the automated summarization of inpatient records alone.

The analysis illustrates that only 61% of the total information is derived from inpa-

tient records, and 39% of the information originated from sources other than records.
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While past medical documents are the most common sources of external informa-

tion, 11% of the information contained was not derived from any documents, which

included speculation and post-discharge plans.



Chapter 2

Background and Related Works

2.1 Automatic summarization

Automatic summarization is a popularly studied topic in NLP [28, 29, 17–19, 16]. The

purpose of the summarization task is to yield a short summary of a longer document for

quick comprehension. Commonly targets of summarization task include research papers

[30], news articles [31, 32], Q&A [33], and so on. An example of a news article summa-

rization is shown in Table 2.1. In general, the summarization task includes a variety of

components such as extracting and paraphrasing information, reasoning, and introducing

world knowledge.

Automatic summarization has two main approaches: extractive and abstractive summa-

rization. The former method extracts contents from the source text and combines them to

generate a summary. The text of the generated summary is wholly derived from the source

and does not contain new content. The latter method generates a summary by creating new

content based on the source using some algorithms. The algorithms of abstractive method

used in earlier works were sentence compression [34], sentence fusion [35, 36], and sentence

revision [37], but at present encoder-decoder architectures are commonly used [17–19, 16].

It is a method that maps input text into linear space by the encoder and generates tokens

autoregressively by the decoder [38], and is known for its high performance. In the medical

field, extractive summarization method was commonly used for knowledge acquisition of

clinical features such as diseases, prescriptions, examinations, etc.
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Table 2.1 Example of a news summarization task. It is extracted from the CNN / Daily Mail
dataset. The left column is the source text and the right is the target text.

Five Americans who were monitored for
three weeks at an Omaha, Nebraska, hos-
pital after being exposed to Ebola in West
Africa have been released, a Nebraska
Medicine spokesman said in an email
Wednesday. One of the five had a heart-
related issue on Saturday and has been dis-
charged but hasn’t left the area, Taylor Wil-
son wrote. The others have already gone
home. They were exposed to Ebola in
Sierra Leone in March, but none devel-
oped the deadly virus. They are clinicians
for Partners in Health, a Boston-based aid
group. They all had contact with a col-
league who was diagnosed with the dis-
ease and is being treated at the National In-
stitutes of Health in Bethesda, Maryland.
As of Monday, that health care worker is
in fair condition. The Centers for Dis-
ease Control and Prevention in Atlanta has
said the last of 17 patients who were being
monitored are expected to be released by
Thursday. More than 10,000 people have
died in a West African epidemic of Ebola
that dates to December 2013, according to
the World Health Organization. Almost all
the deaths have been in Guinea, Liberia
and Sierra Leone. Ebola is spread by direct
contact with the bodily fluids of an infected
person.

17 Americans were exposed to the Ebola
virus while in Sierra Leone in March . An-
other person was diagnosed with the dis-
ease and taken to hospital in Maryland .
National Institutes of Health says the pa-
tient is in fair condition after weeks of
treatment.

2.2 Automatic summarization of medical text

Summarization on the medical domain can be roughly categorized by the type of input:

structured and unstructured text. The tasks using unstructured text are generally noisier and

more difficult than those using structured text. Most previous NLP for unstructured medical

text has focused on normalization and prediction such as ICD codes, mortality rates, and

readmission risks [39–45], which are also called visualization and summarization. They
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target to extract or predict important information from the input, not the summarization we

aim for, such as outputting a document. Also, some studies attempt to retrieve important

information from EHRs [46–49], such as diseases, examination results, and medications,

while they collect fragmented information and do not try to generate contextualized pas-

sages. Other studies generated several key sentences from the EHRs to give physicians a

quick grasp of the main points [50–53].

Previous studies generating a whole discharge summary mostly used structured data as

input [54–56]. Some recent studies try to generate a whole discharge summary from the

input of free-form inpatient records, which is the same as ours [20–25]. While some studies

employ extractive methods [22–25], in other studies, the encoder-decoder architecture of

the neural model was used to generate sentences for abstractive summarization [20–22].

However, the amount of such research is not large.

2.3 Hallucination in abstractive summarization

As abstractive summarization can generate more flexible summaries, it has become a ma-

jor approach in automatic summarization research [14–19]. However, abstractive summa-

rization may sometimes unintentionally generate unfaithful descriptions, known as hallu-

cinations. Summaries with hallucinations are fluent [57], but hallucinations degrade the

summary quality. Therefore, they have drawn attention in the field [58–63].

Maynez et al. (2020) classified hallucinations into two types: intrinsic and extrinsic

hallucinations [57]. Intrinsic hallucination is a phenomenon in which the concept or term

itself is in source documents; its synthesis misrepresents the information in the source and

the meaning becomes inconsistent. Extrinsic hallucination is a content that is neither sup-

ported nor contradicted by the source, and is caused by source documents with poor infor-

mation. Therefore, the analyses of extrinsic hallucination in previous works almost equal

our investigation of the information sources in discharge summaries. Please note that, in

the discharge summaries, complementary statements may be inserted that are not explicitly

stated in inpatient records; however, they can be easily inferred from the records by med-

ical professionals. We do not consider this to be a hallucination if the information can be

inferred, even though previous studies have defined hallucinations more rigorously.
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2.4 Dataset of medical records

For advancing the research on summarization of clinical texts, appropriate language re-

sources are indispensable. In English, public corpora of medical records are available, such

as MIMIC-III [64], [65], and [66]. The number of resources available in Japanese is limited.

The largest publicly available corpus is the one used for a shared task in an international con-

ference, NTCIR [67]. A non-profit organization for language resources maintains another

corpus, GSK2012-D [68]. However, their data volume is small, and their statistics exhibit

significant difference from those of large-scale data, as illustrated in Table 3.2. This low-

resource situation makes the processing of Japanese medical documents more challenging.

Furthermore, that problem is critical for the methods using neural models, as they require a

large amount of data.

In addition, the Japanese data set is important because Japanese language processing has

the following characteristics. First, Japanese medical texts often contain excessive shorten-

ing of sentences and orthographical variants of terms originating from foreign languages.

Besides, Japanese requires word segmentation. Most importantly, there is no Japanese par-

allel corpus of inpatient records and discharge summaries. Therefore, we built a new corpus

in this thesis.

2.5 Evaluation metric

Measurement of the summarization quality must be automated to avoid costly manual eval-

uation. ROUGE [69] has been used as a standardized metric to measure the summarization

quality in NLP tasks. Formally, ROUGE-N is an n-gram recall between a candidate sum-

mary and the reference summaries. When we have only one reference document, ROUGE-N

is computed as follows:

ROUGE-N =
∑gramn∈Reference Countmatch(gramn)

∑gramn∈Reference Count(gramn)
, (2.1)

where Countmatch(gramn) is the maximum number of n-grams that co-occur in a candidate

summary and a reference summary.
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When we have several references, ROUGE-L is the longest common subsequence (LCS)

score between a candidate summary and the reference summaries. As it can assess word re-

lationships, it is generally considered a more context-aware evaluation measure than ROUGE-

N. Specifically, ROUGE-L is computed as follows:

Recalllcs =
∑u

i=1 LCS∪(ri,C)

Referencetokens
, (2.2)

Precisionlcs =
∑u

i=1 LCS∪(ri,C)

Summarytokens
, (2.3)

ROUGE-L =
2RecalllcsPrecisionlcs

Recalllcs +Precisionlcs
(2.4)

where u is the number of reference sentences, and LCS∪(ri,C) is the LCS score of the union

of the longest common subsequences between the reference sentence ri and C, where C is

the sequence of candidate summary sentences. For example, if ri = (w1,w2,w3,w4), and C

contains two sentences: c1 =(w1,w2,w6,w7) and c2 =(w1,w8,w4,w9), the longest common

subsequence of ri and c1 is (w1,w2), and the longest common subsequence of ri and c2 is

(w1,w4). The union of the longest common subsequences of ri, c1, and c2 is (w1,w2,w4),

and LCS∪(ri,C) = 3/4.



Chapter 3

Datasets

3.1 NHO data

Investigating issues of discharge summary generation using neural models needs a large-

scale data set. In additoin, clinical records can be expressed in various dialects and jargons.

Accordingly, a study on a single institution would lead to highly biased results in medi-

cal NLP tasks because of local and hospital-specific dialects. To study clinical document

summarization, it is necessary to set up a multi-institutional environment to mitigate the

potential bias caused by the medical records stored in a single EHR source. For this pur-

pose, we designed an experiment using the largest multi-institutional health records archive

in Japan, National Hospital Organization Clinical Data Archives (NCDA) [70]. NCDA is

a data archive operated by the National Hospital Organization (NHO), which stores repli-

cated EHR data for 66 national hospitals owned by this organization. Thus, the archive has

become a valuable data source for multi-institutional studies that span across the country.

The dataset we used for the study, referred to as NHO data hereafter, is the anonymized

subset of the archive, which includes 24,641 cases collected from five hospitals that belong

to the NHO. Each case includes inpatient records and a discharge summary for patients of

internal medicine departments. The statistics of the target data are summarized in Table 3.2.

As shown, the scale of the NHO data is much larger than that of GSK2012-D and MedNLP,

which have been used in previous studies [67]. Accordingly, the results obtained using the

NHO dataset are expected to be more general.
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3.2 Dummy record

There is no publicly available Japanese parallel corpus of inpatient records and discharge

summaries. Therefore, we built a publicly available small corpus of medical records. This

corpus was built because annotation over the NHO data was restricted due to privacy con-

cerns. An example of our corpus is shown in Table 3.1. This dataset is a parallel corpus

containing 108 inpatient records and their discharge summaries, created by physicians who

imagined hypothetical patients. In this paper, it is referred to as Dummy record. The statis-

tics of the resulting corpus are given in Table 3.2. With respect to the inpatient records, the

corpus is closer to real data than in previous studies, except for the number of sentences in

a document. For the discharge summary, there are no publicly available Japanese corpora

besides the one we built. Because of the summarization process, the sentences contain more

words and characters than the source inpatient records.

3.3 Comparison of NHO data and dummy record

This section describes other characteristics of the two data sets. First, let us discuss the for-

mat of the inpatient record used in this thesis. Since inpatient records are created daily, they

are inherently multi-document. Therefore, the discharge summary generation task could

be seen as a multi-document summarization. However, they are all the same nature docu-

ments; thus, we address this task as a single-document summarization. For our experiments,

we created the inpatient records by concatenating multiple inpatient records over the length

of stay into a single document, which filters out descriptions that overlapped with earlier

days’ records. The inpatient record and the discharge summary always have a one-to-one

correspondence, both in the NHO data and in the dummy record. This method may look

strange, but it has been used in prior studies [20, 71], and although it is a naive approach,

it fits as a verification tool for the later steps. The possibility of more advanced approaches

are discussed in Chapter 9.

Next, we discuss copy-and-paste rates in the gold discharge summaries. We investigated

the percentage of sentences in the discharge summary that were copy-and-pasted from the

inpatient record. As a result, the copy-and-paste rate for the NHO data was 32% and 20% for

the dummy record. The rates are similar, although the NHO data has a higher rate, and it is
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Table 3.1 Example of a discharge summary. The left column shows the original Japanese
texts, and the right column shows corresponding English translations.

#1細菌性髄膜炎 #1 Bacterial meningitis
4/20～5/8 VCM 1250mg(q12h) 4/20-5/8 VCM 1250mg (q12h)
4/20 SBT/ABPC 1.5g単回 4/20 SBT/ABPC 1.5g single dose
4/20～MEPM 2g(q8h) 4/20- MEPM 2g (q8h)
4/20～4/23デキサート 6.6mg(q6h) 4/20-4/23 Dexate 6.6mg (q6h)
4/20～4/22日赤ポログロビン 4/20-4/22 Nisseki polyglobin
4/20 腰椎穿刺 1 回目 髄液 糖定量 30
mg/dl(血中糖 95mg/dl)細胞数 2475/µl.

4/20 1st lumbar puncture, cerebrospinal
fluid glucose level 30 mg/dl (blood glucose
level 95 mg/dl), cell count 2475/µl.

グラム染色するも明らかな菌が見つから
ず、髄液培養でも優位な菌は培養されな
かった。

Gram stain did not reveal any obvious bac-
teria, and cerebrospinal fluid culture also
did not reveal any predominant bacteria.

細菌性髄膜炎に対するグラム染色の感度
は 60%程度であり、培養に関しても感度
は高くない。

The sensitivity of the gram stain for bacte-
rial meningitis is about 60%, and the sen-
sitivity of the culture is not high either.

また髄液中の糖はもう少し減るのではな
いだろうか。

Also, the glucose in the cerebrospinal fluid
would have been slightly lower.

確定診断はつかないものの、最も疑わし
い疾患であった。

Although no definitive diagnosis could be
made, bacterial meningitis was the most
suspicious disease.

起因菌はMRSA,腸内細菌等を広域にカ
バーするためバンコマイシン,メロペネ
ム (髄膜炎 dose)とした。

The causative organism was assumed to be
MRSA, and vancomycin and meropenem
(meningitis dose) were used to cover a
wide range of enteric bacteria.

possible that the creation process is more efficient by copying and pasting. In addition, 87%

of the summaries contained at least one copy-and-paste sentence. Another possible lead

from these is that it may be possible to achieve good performance by mixing the extractive

and abstractive methods, i.e., the same methods as in the present summarization task [72,

73], since there are some extractive representations.
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Table 3.2 Statistics of the target data

Inpatient records

Dataset Cases Sentences/Document Words/Sentence Characters/Sentence
NHO data 24,641 192.0 9.0 18.1
GSK2012-D 45 97.4 7.5 15.1
MedNLP 278 22.6 12.7 22.4
Dummy record 108 274.1 9.1 18.5

Discharge summary

Dataset Cases Sentences/Document Words/Sentence Characters/Sentence
NHO data 24,641 35.0 12.4 23.3
Dummy record 108 17.4 18.6 34.4



Chapter 4

Clinical Segment

4.1 Introduction

In this chapter, we attempt to identify linguistic units that can properly cover medical mean-

ings for later studies. This linguistic unit is used in the extractive summarization experi-

ments in Chapter 6 and as the annotation target for the rest of this thesis. It is important to

identify the medical domain-specific unit, rather than sentence and clause, for processing

and analysis in medical documents.

In the past, several types of linguistic units have been defined, such as sentence, clause,

or phrase, which are called self-contained linguistic unit [74]. However, they are in the gen-

eral domain and would not always fit in the medical domain. In addition, the linguistic units

in Japanese is a little different from that in English. In particular, clauses in Japanese have

significantly different characteristics from clauses in English because they can be formed

by simply adding a particle to a noun. Owing to this characteristics, Japanese clauses are

often very short at the phrase level. Another similar concept is the elementary discourse

unit [75], which breaks down sentences into smaller units for the analysis of relationships in

discourse structure. This concept is also defined in Japanese [76]. However, the elementary

discourse unit in Japanese is the clause itselff and the authors annotate discourse relations to

clauses. Therefore, the boundary of separation is the same as the clause, so it was not tested

in this study. Accordingly, they cannot constitute a meaningful unit that carries concepts

of medical significance. Therefore, we need a new self-contained linguistic unit that has
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Table 4.1 Examples of the three types of units. 〈SEP〉 indicates the boundary of either a
segment or clause.

Units Examples

Sentence 認知症が進んでおり自宅退院は困難であること、施設入
居のためにはご家族の手続きが必要になることを説明
(We explained that it would be difficult to discharge her due
to her advanced dementia, and that her family would need
to make arrangements to move her into another facility.)

Segment 認知症が進んでおり〈SEP〉自宅退院は困難であること、
〈SEP〉施設入居のためにはご家族の手続きが必要になる
ことを〈SEP〉説明
(Due to her advanced dementia 〈SEP〉 it would be difficult
to discharge 〈SEP〉 her family would need to make arrange-
ments to move her into another facility 〈SEP〉 we explained)

Clause 認知症が進んでおり〈SEP〉自宅退院は〈SEP〉困難である
〈SEP〉こと、〈SEP〉施設入居のためには〈SEP〉ご家族の手
続きが必要になることを〈SEP〉説明
(Due to her advanced dementia 〈SEP〉 discharge 〈SEP〉 it
would be difficult 〈SEP〉 (verb nominalizer) 〈SEP〉 to move
her into another facility 〈SEP〉 her family would need to
make arrangements 〈SEP〉 we explained)

a longer span than a clause in Japanese and expresses the smallest medically meaningful

concept.

For this reason, we defined the clinical segment that spans several clauses but is shorter

than a sentence. A comparison of the clause and sentence is shown in Table 4.1. As exem-

plified in the table, segments may comprise clauses connected by a conjunction to form a

medically meaningful unit; alternatively, they may be identical to clauses. In addition, for

the statistical analysis, the clinical segment must be defined formally so that a splitter can

automatically divide sentences into segments. We investigated the performance of splitting

clinical segments mechanically by building an automated splitter. The codes developed in

this chapter are publicly available 1.

1https://github.com/ken-ando/Exploring-optimal-granularity-for-extractive-summarization-of-
unstructured-health-records
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4.2 Design and annotation of clinical segment

In designing the clinical segment, we attempted to distill the atomic events related to medical

care as a single unit. For example, statements such as “jaundice was observed in the patient’s

conjunctiva,” “the patient was diagnosed with hepatitis,” and “a CT scan was performed”

would lose their medical meaning if they are further split. In addition, medical events are

the central statements in medical documents, whereas non-medical events play a relatively

small role. Therefore, in this study, we considered only medical events as a component

of self-contained units, and non-medical events were interpreted as noise. In other words,

a clinical segment cannot be formed if the span consists only of non-medical events. A

self-contained unit was defined with respect to semantics in previous studies. In our study,

it was extended to a pragmatic unit based on domain knowledge. The details of the six

segmentation rules are listed in Table 4.2.

Based on this definition, we annotated the clinical segment to the dummy record. The

annotation was made by one author and medical professionals and labeled, resulting in two

different labels. In the result, the total number of segments in the corpus was 3,816, the

average number of segments per sentence was 2.18, and the average number of segment

boundaries per sentence was 1.18. The agreement rate between the participants of the seg-

mentation task and an author is 0.82, which is sufficiently high to be used for further study.

The agreement rate is the accuracy of the workers’ labels for the correct boundaries anno-

tated by the author. Across this task, we adopted the labels annotated by one of the authors.

4.3 Automated segmentation

Table 3.1 shows a discharge summary—a type of medical record written by a Japanese

physician. As illustrated, it is a noisy document: punctuation marks are missing, and line

breaks appear in the middle of a sentence. Sentence boundaries may be denoted by spaces

instead of punctuation marks. Therefore, for the further analysis of the three types of ex-

traction units, we first need preprocessing for sentence splitting and segment splitting.

For sentence splitting, we adopt two naive rules below to define the boundaries of a

sentence:
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Table 4.2 Segmentation rules

Rule 1 Split at the end position of a predicate, by a comma or a verbal noun.
This is the base rule for segmentation, and others are exception rules.
(e.g., “絶食、 〈SEP〉抗菌薬投与で 〈SEP〉肺炎は軽快。”)
(e.g., “(After) fasting and 〈SEP〉 antibiotic use, 〈SEP〉 pneumonia was relieved.”)

Rule 2 If a segment is enclosed in parentheses, split a sentence at the positions of parentheses.
To extract the clinical segment inside parentheses, parentheses sometimes become segment boundaries.
(e.g., “画像で「〈SEP〉両側肺門部に陰影あり、〈SEP〉 CTで両肺に多彩な浸潤影を認め 〈SEP〉重
症肺炎」 〈SEP〉として 4月 10日に入院。”)
(e.g., “On imaging, “ 〈SEP〉 there are bilateral hilar shadows and 〈SEP〉 widespread consolidation in
both lungs on CT scan, 〈SEP〉 (suspected of) severe pneumonia ” 〈SEP〉 (the patient was) admitted to
the hospital on April 10.”)

Rule 3 Split content that includes disease name.
Disease names are often written as diagnoses and play an important role in EHRs. Therefore, even if
rule 1 does not match, the content that includes disease names should be split.
(e.g., “肺炎疑いで 〈SEP〉当院紹介となった。”)
(e.g., “Due to suspected pneumonia, 〈SEP〉 he was referred to our hospital.”)

Rule 4 Split examination results and their evaluation.
Examination results and their evaluation are often written in a single sentence. Because the meaning
of the examination results and their evaluation are clearly different, they should be divided even if rule
1 does not match.
(e.g., “血清クレアチニンキナーゼは 4512 U/Lと 〈SEP〉高度に上昇していた。”)
(e.g., “Serum creatinine kinase level was 4512 U/L, 〈SEP〉 which was highly elevated.”)

Rule 5 Do not split anything that is not related to the medical treatment.
If the content is medically meaningless, its role is not important in its document, and it is not worthy of
analysis. Therefore, the content with little relevance to medical treatment is not split, even if it matches
rule 1.
(e.g., “ケアマネジャーに同伴されて来院した。”)
(e.g., “She came to our hospital accompanied by her care manager.”)

Rule 6 Do not split content that does not add meaning.
If the content that supplements the meaning of the previous description does not add meaning (e.g.,
“. . . schedule to [VP] . . . ” and “. . . continue the treatment . . . ”), it is not split even if it matches rule 1.
(e.g., “外来で抜糸を行う方針とした。”)
(e.g., “It was planned to remove sutures as an outpatient.”)
This includes contents where the semantic label does not change before and after the split.
(e.g., “発熱、盗汗、体重減少、喀痰、血痰は否定。”)
(e.g., “Fever, sweating, weight loss, sputum, and bloody sputum were not observed.”)
It also includes contents that represent the passage of time or assumptions.
(e.g., “抗菌薬開始後、発熱・腹痛は徐々に改善し”)
(e.g., “After starting antibiotic use, fever and abdominal pain gradually improved.”)
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1. A statement that ends with a full-stop mark.

2. A statement that ends with a new line and has no full-stop mark.

There is oversimplification here, compared to sentence splitting tasks in medical NLP that

have been studied [77, 78]. However, since it is not a focus of this study, we adopted this

naive approach for its simplicity. In this process, we also used MeCab [79] as a tokenizer.

The MeCab’s dictionaries are mecab-ipadic-NEologd [80] and J-MeDic [81] (MANBYO

201905).

Next, sentences must be automatically split into clinical segments to efficiently analyze

the huge dataset, NHO data. We compared several approaches to achieve the best splitting

performance. In this study, we used 3,816 annotated segments in the corpus and applied

six-fold cross-validation.

We used three rule-based splitters as baselines: a simple rule-based model for split-

ting by full-stop marks (Full-stop), another simple rule-based model for splitting by full-

stop marks and verbs (Full-stop & Verb), and a complex rule-based model for splitting by

clauses (CBAP) [82]. To be more precise, in the case of the Full-stop & Verb model, it starts

with a verb and splits in front of the next occurring noun except for non-independents. The

last model, which included 332 rules that were manually set up based on morphemes, was

used to confirm that clinical segments have different boundaries than traditional clauses.

We used SEGBOT [83] as a machine learning method based on a pointer network archi-

tecture [84] for the splitting task. The method includes three phases: encoding, decoding,

and pointing. An overview is shown in Fig 4.1. Medical records may include local dialects

and technical terms that are not listed on public language resources. Accordingly, the split-

ter must handle even unknown words. In our approach, each input word is first represented

by a distributed representation using fastText [85, 86]. FastText is a model that acquires

vector representations of words considering the context. Notably, fastText can obtain vec-

tors of unknown words by decomposing them into character n-grams. These vectors capture

hidden information about a language, such as word analogies and semantics.

The performance of the splitter methods is summarized in Table 4.3. The machine-

learning-based SEGBOT outperformed the others, with its F1 score being 0.257 points
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Fig. 4.1 Overview of SEGBOT.

Table 4.3 Results of the segmentation task.

Precision Recall F1 score

Full-stop 0.521 0.187 0.275
Full-stop & Verb 0.569 0.610 0.589

CBAP [82] 0.368 0.464 0.411
SEGBOT [83] 0.864 0.829 0.846

The numbers in bold indicate the best performing methods.

higher than that of the Full-stop & Verb model, which was the second best. Since this preci-

sion of 0.864 is higher than the inter-annotator agreement, it is considered to be almost the

upper bound. In addition, CBAP, which is a clause segmentation model, has a low F1 score

of 0.411, suggesting that the definitions of the clause and the clinical segment are inherently

different. The precision of the model with splitting at the full-stop marks (Full-stop) is only

0.521, indicating that the clinical segment is not always split at the full-stop marks, and that

it is necessary to consider the context for splitting. Overall, the results suggest that machine

learning is the best fit for the segmentation task. Thus, the data preprocessed by this method

are used for the main experiment of this study.
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4.4 Granularity comparison

Table 4.4 shows the statistical relation of the three types of units. The first column shows

how many units are included in a sentence on average. The second and third columns show

the average number of tokens and characters included in each type of units. The result

suggests that segments are longer than clauses on average. Nevertheless, the difference

of a clause and a segment is not significant, at least for the average number of characters.

Accordingly, the relationship between clause and clinical segment granularity is worthy of

a more detailed analysis.

We ensure the order of the three types of linguistic units, by an additional experiment on

word-wise relation between clauses and clinical segments. For any two linguistic units in

a sentence, there are four possible relationships (Fig 4.2): “Equal” is where the two match

exactly, e.g., “認知症が進んでおり” of a clause and “認知症が進んでおり” of a segment.

“Inclusive” is where a segment completely includes a clause, e.g., “自宅退院は困難である
<SEP>こと、” of a clauses and “自宅退院は困難であること、” of a segment. “Included”

is where a clause completely includes a segment. “Overlap” is where the two overlaps.

We obtained statistics of the four relationships, from all inpatient records and discharge

summaries in the NHO data. The results are shown in Table 4.5. We found that 59.6% of

them have the same boundaries. This is influenced by the many short sentences that have

no boundaries. Then, “Inclusive” shared 20.0% of the relations. The sum of “Equal” and

“Inclusive” turned out to be 79.6%, which is six times more than “Included” that shared

only 13.1%. The figures gives the detailed dynamics of the relation between segments and

clauses, shown just as 11.83 and 10.74 characters/unit in Table 4.4. Although the difference

in the average length between segment and clause is small, there is a significant difference

between segments and clauses in their relative sizes, when compared by each corresponding

pair of the actual units.
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Fig. 4.2 The four types of relationship between clause and clinical segment.

Table 4.4 Granularity of three units. The numbers in bold indicate the smallest units.

Units Units/Sentence Tokens/Unit Characters/Unit

Sentence 1 8.98 18.06
Segment 2.18 6.42 11.83

Clause 2.75 5.74 10.74

Table 4.5 The Relationships between clauses and clinical segments.

Relation types Equal Inclusive Included Overlap

Number of relationships 6,687,046 2,239,839 1,469,423 821,663
(59.6%) (20.0%) (13.1%) (7.3%)
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Clinical Role Label

5.1 Introduction

For the analysis of the later summarization experiments in this thesis, we need to deeply

examine expressions in NHO data. However, it is unrealistic to check expressions manually,

for cost and privacy reasons. Therefore, this chapter defines labels of expression under

physician supervision and develops a classification model for automation of the labeling.

This is similar to medical term ontologies such as UMLS [87], but different because they

are targeted only to entities. To the best of our knowledge, this is the first work that assigns

medical roles to contextualized expressions. While previous studies have employed entity-

based quantitative methods in the analysis of medical documents [88–91], our work shows

the potential for extending that analysis over sentences. The codes developed in this chapter

are publicly available 1.

5.2 Definition and annotation of clinical role label

Assuming the summarization phenomenon of physicians, the results of various processes

are represented in the descriptions of discharge summaries. To analyze the patterns of sum-

marization, we check expressions that appear in clinical documents and define the types.

In this definition, it is assumed that the clinical facts are interpreted by physicians, and the

1https://github.com/ken-ando/Is-artificial-intelligence-capable-of-generating-hospital-discharge-
summaries-from-inpatient-records
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Fig. 5.1 Overview of the subjectivity and the clinical role label. The probable label is dupli-
cated across six labels and they are classified as the high subjectivity.

processing progresses in this order in the summarization of inpatient records. For example,

physicians may perform physical and laboratory examinations during the early stages of

hospitalization. They recorded the results in the inpatient records as facts. Subsequently,

evaluations of the test results, diagnoses, treatment plans, etc. would be performed by physi-

cians based on their interpretations. Therefore, there must be a gradation in subjectivity in

the descriptions that appear in inpatient records and summaries. Subjective descriptions

may include interpretations of objective information in the source record. Based on this

assumption, the clinical role labels are defined (Table 5.1). All definitions were designed

under the supervision of a physician.

5.2.1 Low subectivity labels

First, low subjectivity labels are defined to include Description, Action, and Others labels.

They consisted of objective facts and formed the basis of clinical records and discharge

summaries.

Description labels comprise the content of past events and statuses. These are the funda-

mental contents of clinical records. For example, observations of patients, physical findings,

test results, and paraphrasing of test results (e.g., “high blood pressure” instead of “Blood

Pressure:180/90”), and past episodes fell under this category. The paraphrases included in

this label are limited to the conversion of expressions without any interpretative comments.
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Table 5.1 Details of the clinical role label. It shows label names, brief explanations, and
examples in discharge summaries.

Label Explanation Example

Low Subjectivity Labels

Description Past events and status. Only pneumococcal urine antigen
test results are positive.

Action Past actions. Discharged.
Others Meaningless segments. However“

Middle Subjectivity Labels

Result Comments as seen, but can
change slightly from person to
person.

Infiltration shadow in the lower
right lung field

Undefinable Unclear whether descriptions are
future plans caused by Japanese
linguistic characteristics.

4月 10日に入院。⟨Hospitalized or
will be hospitalized on April 10.⟩

High Subjectivity Labels

Evaluation Reasoning from facts. Because it was considered to be
an acute exacerbation of interstitial
pneumonia

Diag Clinical or definitive diagnosis. Clinically diagnosed with small-
cell lung cancer

Plan Future treatment plans. The patient was scheduled for long-
term PCI.

Nonfact Hearsay and assumptions, etc. Considering his advanced age and
limited life expectancy

Probable Probabilistic expressions. Suspected renal abscess or renal
cell carcinoma.

The history of present illness section mostly consists of the description label because it is

based on patients’ past episodes.
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Action label comprises the contents of someone’s past actions (e.g., “hospitalized”,

“prescribed”, and “discharged”). These were mostly medical treatment records. Here, ac-

tion verbs can be active, passive, or other voices, and any form is acceptable for action

content.

Others label comprises meaningless content from a medical perspective. Typical ex-

amples are dates, item names, parentheses before and after a segment, etc. (e.g., “【現病
歴】” ⟨“[history of present illness]”⟩). Although these symbols are objective descriptions,

they do not contain information about patients. Thus, this study reserved a class for such

cases to simplify further processing.

5.2.2 Middle subectivity labels

Second, middle subjectivity labels are defined, which include result and undefinable labels.

In clinical documents, determining the subjectivity of some descriptions is difficult; these

categories are devised to accommodate such cases and maintain the quality of annotations

for high and low labels.

The Results label comprises content that is slightly subjective to healthcare providers.

For example, physicians record abnormalities and interpret images in radiological reports.

However, they often comprise qualitative descriptions and objective expressions, which re-

sults in a combination of subjectivity and objectivity. Other examples include changes in

test values (e.g., “improvement” and “worsening”) that can also be influenced by physicians’

subjectivity. Clinical documents may contain expressions that are difficult to categorize as

factual or subjective. This label was intended as a buffer to cover borderline cases.

The Undefinable label comprises content that is unclear whether it is a reference for

a future plan. In Japanese, to write a concise sentence, predicates are often transformed

into nouns (e.g., “退院した” ⟨“Discharged. ”⟩ → “退院” ⟨“Discharge.”⟩ “検査する” ⟨“to

examine.”⟩→ “検査” ⟨“examination. ”⟩). In such cases, whether the examples refer to past

or future plans remains unclear.
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5.2.3 High subectivity labels

Third, high subjectivity labels are defined, including evaluation, diag, plan, nonfact, and

probable labels. This class comprises information that is a hypothetical or subjective state-

ment by the writer. Such content is produced by accepting clinical findings as inputs, and

then inferences, external knowledge, and personal insights are used to generate the outputs.

This is the primary content of the clinical course section, which appears to be the most

difficult part to summarize automatically.

The Evaluation label comprises content that is discussed and reasoned about, findings,

test results, and events. This category is another core element of clinical records. A general

example is the list of test results followed by discussion of the findings. In clinical texts, a

description of evaluation may accompany a trailing diag description and can be insepara-

ble if the descriptions are abbreviated (e.g., “diagnosed as COVID-19 based on the severe

clinical course”). As our labeling framework allows multiple labels, a sentence may contain

both evaluation and diag labels. However, this case rarely appeared in our annotation; thus,

the diag label was prioritized over the evaluation label.

Diag labels were used for the clinical diagnosis. Although a definitive diagnosis can be

performed objectively, the diagnosis relies on objective findings. Therefore, in this classifi-

cation, diagnostic descriptions were considered low-objectivity classes. This label is similar

to the evaluation label; it is also a core element of the clinical record. Note that there are

medical concepts that can be both symptoms and diseases, depending on the context, such

as “dyspnea.” Such borderline cases are assigned to the result label to avoid contamination

of the diag labels.

The Plan label was assigned to expressions that explicitly refer to future plans. In

Japanese, such expressions often comprise certain terms, such as “予定 (schedule)” and “計
画 (plan).” These are mainly written at the bottom of the inpatient records. They sometimes

refer to the next scheduled visit and referral source that the patient will visit after discharge.

The Nonfact label comprises content written with hearsay or assumptions; however, it

does not belong to any other label. Some characteristic words in Japanese, such as “if,”

“consider,” and “say that,” indicate that the content is not based on fact.

Finally, the probable label comprises clearly subjective content, such as “doubt” or “pos-

sibility.” This label must have a multilabel structure as it can be added to any content In this



28 Clinical Role Label

case, all contents labeled as probable are classified as high in the subjectivity label, regard-

less of the original label, because their information becomes subjective.

5.2.4 Annotation

We annotated dummy record with clinical role labels. We first split the sentences and de-

composed them into 3,761 clinical segments, as described in Section 4.3. The annotation

was conducted by two clinical workers, and the agreement rate was calculated as the accu-

racy, which was 0.790. The distribution of clinical role labels is shown in the left half of

Table 5.2.

The most common label was description, followed by action. Both are past facts that

appear to be appropriate considering the original purpose of the medical records, which

was to record the medical treatment process. In addition, description was twice as common

as action, suggesting that recording the past status plays a major role in clinical records.

For high subjectivity, evaluation, diag, and plan were nearly the same in number, whereas

nonfact and probable were relatively low. This suggests that the medical records consist of

an equal amount of evaluation of findings and test results, clinical diagnosis, and plans for

future treatment.

5.3 Automation of labeling

Using the annotated dummy records, this study trained a classification model that was used

to classify the NHO data shown on the right-hand side of Table 5.2.

5.3.1 The classification model

An overview of the proposed model is shown in Fig 5.2. As the basic architecture for

classification, this study adopted a pretrained neural model, BERT (Bidirectional Encoder

Representations from Transformers) [92]. Because its parameters are learned from a large

number of documents in advance, BERT is known to achieve good accuracy even with few

training samples. In this study, UTH-BERT was used [93], an improved version of BERT
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Table 5.2 Distribution of the clinical role and subjectivity labels. The labels in the dummy
record were manually annotated by clinical workers and the NHO data were automatically
annotated.

Dummy record NHO data
Subjectivity Clinical role Number of segments (%) Number of segments (%)

Description 1,463 (37%) 484,385 (32%)
Low Action 797 (20%) 2,324 (61%) 183,245 (12%) 917,724 (60%)

Others 65 (2%) 241,729 (16%)

Middle
Result 306 (8%)

646 (17%)
160,118 (11%)

401,049 (26%)
Undefinable 340 (9%) 258,939 (17%)

Evaluation 278 (7%) 45,043 (3%)
Diag 255 (6%) 60,772 (4%)

High Plan 264 (7%) 844 (22%) 53,389 (4%) 205,671 (14%)
Nonfact 82 (2%) 12,511 (1%)
Probable 133 (3%) 24,313 (2%)

that was pre-trained on clinical records from the University of Tokyo Hospital. In contrast

to previous Japanese BERT models [94–96], which were pre-trained mainly on web data

such as Wikipedia, UTH-BERT was expected to perform better on documents in our target

domain. (For more detailed architecture, training methods, and performance of UTH-BERT,

see previous papers [92? , 93].)

This study also adopted a multitask learning framework. Multitask learning achieves

improved performance by exploiting the relationship between labels and is considered to

provide various benefits (e.g., regularization, eavesdropping, and data augmentation [97]).

In our study, three labels (i.e., subjectivity, clinical roles, and probable labels) were assigned

to a clinical segment, and multitask learning compensated for the small data volume of the

dummy records by virtually multiplying the labels used for learning. Subjectivity prediction

can also aid in a more complex clinical role prediction task.

The processing pipeline operates as follows: a clinical segment split from the target

dataset is input into the BERT. The input segment was previously tokenized by WordPiece

[? ] and provided with tokens “[CLS]” for the head and “[SEP]” for the tail. Then, the

[CLS]hidden vector from the final layer of BERT is obtained and inputted to a separate three-

layer perceptron for each of the three labels. It calculates the cross-entropy loss value based
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Fig. 5.2 Overview of the classification model for subjectivity, clinical role, and probable
label. Each of the three labels is defined as three tasks. Input segments are fed to UTH-
BERT, and then the outputs to the specific layers. Finally, the loss scores of three tasks are
calculated and combined to obtain the overall loss score.

on the gold and predicted labels and obtains three loss values. The model was trained using

the weighted sum of the three loss values as the overall loss. In this process, BERT is trained

only on the parameters of the final layer. The weighted sum Lall is formulated as

Lall = λsubLsub +λroleLrole +λprobLprob, (5.1)

where Lsub, Lrole, and Lprob are the loss values for subjectivity, clinical role, and probable,

respectively, and λsub, λrole, and λprob are the hyperparameters of the corresponding weights.

λsub, λrole, and λprob were normalized and summed to 1.

In the implementation, this study employed UTH-BERT, which was pre-trained using

the method of whole-word masking. In addition, the Adam optimizer was used [98] for 20

epochs, and the learning rate η = 0.00001. Based on the available memory and training per-
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formance, the batch size is set to 32. The setup of the other hyperparameters was the same

as that in UTH-BERT. For the development and testing data, 300 samples were randomly

selected from the dummy records, and the remaining examples were used as training data.

The average results of three training runs with different seeds are reported.

5.3.2 Results of classification

The hyperparameter search and classification results are presented in Tables 5.3 and 5.4,

respectively. The model performance was evaluated using the F1 score against the correct

labels. The F1 score is the harmonic mean of recall and precision. Recall is formulated as
TP

TP+FN , where TP is the number of true positives and FN is the number of false negatives. In

addition, precision was formulated as TP
TP+FP , where FP is the number of false positives. Let

recall be R and precision be P, F1 = 2RP
R+P . In the hyperparameter search, each weight was

changed by 0.25 and grid-searched to find the optimal value. The F1 scores with individual

labels are found in the columns in which λsub, λrole, and λprob are 1. This study found that

multiple-label settings were always better than single-label settings.

In the detailed classification results for each label, this study found that the model could

be classified with much higher accuracy for high and low subjectivities. The classification

accuracy is lower for middle subjectivity, which is not surprising because this label includes

ambiguous segments that improve annotation quality. This study did not use the middle

label for further analysis. Furthermore, in the detailed labels for high and low subjectivities,

this thesis found that others and nonfact are low. This was because of the small sample size

of these labels. For the same reason, the probable label is less accurate.



32 Clinical Role Label

Ta
bl

e
5.

3
R

es
ul

ts
of

a
hy

pe
rp

ar
am

et
er

se
ar

ch
.

T
hr

ee
la

be
lin

g
ta

sk
s

ar
e

co
nd

uc
te

d
as

in
de

pe
nd

en
tt

as
ks

,a
nd

th
e

w
ei

gh
ts

of
th

e
ta

sk
s

ar
e

sl
id

by
0.

25
to

fin
d

th
e

op
tim

al
va

lu
e

in
m

ul
tit

as
k

le
ar

ni
ng

.E
xp

er
im

en
ts

ar
e

co
nd

uc
te

d
us

in
g

du
m

m
y

re
co

rd
s.

H
yp

er
pa

ra
m

et
er

s
Su

bj
ec

tiv
ity

λ s
ub

1
0.

75
0.

5
0.

33
0.

25
0

C
lin

ic
al

ro
le

λ r
ol

e
0

0.
25

0
0.

5
0.

25
0

0.
33

0.
75

0.
5

0.
25

0
1

0.
75

0.
5

0.
25

0
Pr

ob
ab

le
λ p

ro
b

0
0

0.
25

0
0.

25
0.

5
0.

33
0

0.
25

0.
5

0.
75

0
0.

25
0.

5
0.

75
1

A
cc

ur
ac

y
F1

su
b

0.
83

0
0.

83
4

0.
82

5
0.

84
6

0.
86

2
0.

85
6

0.
85

6
0.

85
9

0.
84

4
0.

84
0

0.
82

3
0.

57
4

0.
53

4
0.

85
4

0.
40

6
0.

59
8

F1
ro

le
0.

06
0

0.
75

1
0.

06
9

0.
76

5
0.

76
7

0.
05

0
0.

77
1

0.
77

4
0.

74
5

0.
76

5
0.

05
3

0.
74

7
0.

72
2

0.
77

2
0.

73
7

0.
00

8
F1

pr
ob

0.
38

2
0.

39
7

0.
95

1
0.

96
7

0.
96

5
0.

96
2

0.
96

9
0.

42
5

0.
96

7
0.

96
9

0.
96

7
0.

39
5

0.
96

0
0.

38
4

0.
96

9
0.

96
2



5.3 Automation of labeling 33

Table 5.4 Results of automatic labeling using dummy record. The hyperparameters of λsub,
λrole, and λprob are 0.5, 0.25, and 0.25 for subjectivity; 0.25, 0.75, and 0 for clinical role;
and 0.33, 0.33, and 0.33 for probable label.

Roles Precision Recall F1

Description 0.86 0.87 0.87
Action 0.88 0.81 0.84
Others 1.00 0.43 0.60
Result 0.65 0.65 0.65
Undefinable 0.55 0.77 0.64
Evaluation 0.61 0.83 0.70
Diag 0.79 0.88 0.83
Plan 0.81 0.65 0.72
Nonfact 0.00 0.00 0.00

Probable Precision Recall F1

Positive 0.60 0.55 0.57
Negative 0.98 0.99 0.98

Subjectivity Precision Recall F1

Low 0.92 0.90 0.91
Middle 0.66 0.73 0.70
High 0.85 0.84 0.84

The distribution of automatically assigned labels is shown in the right-hand half of Table

5.2, along with the distribution of the dummy records. This study found that low subjec-

tivity was present in the same proportion as in the dummy record. Upon comparing middle

and high subjectivity, the statistics show that middle subjectivity is more common. This is

because many formatting expressions exist in NHO data, such as examination results, dates,

and times. Overall, the distributions of the dummy records and NHO data were mostly

consistent. This suggests the appropriateness of the automated labeling process.



Chapter 6

Exploring Optimal Granularity for

Extractive Discharge Summary

Generation

6.1 Introduction

Automated summarization of daily inpatient records involves various technical topics and

challenges. For example, descriptions of important findings related to a patient’s diagnosis

require an extractive summary. Our preliminary experiments revealed that 20–31% of the

sentences in discharge summaries were created by copying and pasting. This result proves

that a certain amount of content can be automatically generated by extractive summariza-

tion. Meanwhile, when a patient is discharged from the hospital after surgery without any

major problems, it is necessary to summarize the clinical record as the patient “recovered

well after the surgery,” even if more details of the postoperative process are described in

the records. Therefore, such descriptions cannot be created by copy and paste, and needs

to be abstracted. These observations suggest that the generation of discharge summaries

is a complex process that is a mixture of extractive and abstractive summarization, and it

remains unclear how to process the unstructured source texts, i.e., free-texts. To advance

this research field, it is desirable to properly decompose these summarization processes and

clarify their interactions.
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To this end, this chapter focuses on the extractive summarization process by physicians.

Some recent studies investigated the best granularity units in this type of summarization

[26, 27]. However, the granularity of extraction has not been explored for the summariza-

tion of medical documents. Thus, we attempted to identify the optimal granularity in this

context, by defining three units with different granularities and comparing their summariza-

tion performance: whole sentences, clinical segments, and clauses.

An overview of our study is shown in Figure 6.1. First, the inpatient records are split into

sentences by some rules. Second, sentences are automatically split into clauses and clinical

segments. Finally, we evaluate the performance of automatic summarization models with

extractive architecture inputting the sentence, clause, and clinical segment units. The codes

developed in this chapter are publicly available 1.

6.2 Related work

To identify the optimal granularity of extractive summarization, there are two approaches.

One approach is a method that takes n word sequences of arbitrary lengths and compares

them as the units for summarization. The other approach is a method that uses predefined

linguistic units. Previous studies [26, 27] in this domain have used the latter approach and

found that a sentence was a longer-than-optimal granularity unit for extractive summariza-

tion. A study adopted a clause as a shorter self-contained linguistic unit [74] instead of

a sentence [26]. However, it remains unclear whether the clause performs the best in the

summarization of clinical records or there could be further possibilities.

6.3 Summarization model

In an extractive summarization task, the goal is to automatically assign a binary label to each

unit of the input to indicate whether this unit should be included in the summary. Therefore,

we adopted a single classification model to cover the three types of units.

1https://github.com/ken-ando/Exploring-optimal-granularity-for-extractive-summarization-of-
unstructured-health-records
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Fig. 6.1 Outline of our pipeline.

The top block is an example of the inpatient record, and the subsequent blocks indicate the
chain of processes up to adding summarization labels.

Following Zhou et al. [26], we used a model based on BERT [92], as shown in Fig 6.2.

Instead of the original work that adopted BERT as an encoder for extractive summarization,

we adopted UTH-BERT [93].

Formally, let the i-th sentence contain l segments Si =(si,1,si,2, ...,si,l). The j-th segment

with k words in Si is denoted by si, j = (wi, j,1,wi, j,2, ...,wi, j,k). We add [CLS] and [SEP]

tokens to the boundaries between sentences. After applying the UTH-BERT encoder, the

vector of tokens is represented as (wBT
i, j,1,w

BT
i, j,2, ...,w

BT
i, j,k). Next, we apply average pooling at

the segment level. The pooled representation s′i, j is formulated as follows:
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Fig. 6.2 Overview of classification model for clinical segments.

s′i, j =
1
k

k

∑
1

wBT
i, j,k. (6.1)

Note that segments and clauses do not include the [CLS] and [SEP] tokens in average pool-

ing. Subsequently, we apply a segment-level transformer [99] to capture their relationship

for extracting summaries. The model predicts the probability of extracting for summary

from those outputs as follows:

S′′ = Transformer(S′), (6.2)

p(s′′i, j) = σ(W os′′i, j +bo), (6.3)

where S′ = (s′1,1,s
′
1,2, ...,s

′
i, j) is a sequence of segments input to the transformer, and S′′ =

(s′′1,1,s
′′
1,2, ...,s

′′
i, j) is a sequence that is the output of the transformer. The training objective
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of the model is the binary cross-entropy loss given the gold label yi, j and the predicted

probability p(s′′i, j).

This model does not need to change its structure depending on the input units. For

clauses, the span of the segments is replaced by that of the clauses. In the case of sentences,

the average pooling is not performed; instead, we input the [CLS] token into the transformer.

6.4 Training data

Our model requires an entire document for training. However, our corpus could be too

small to be used for the training of the model, and would compromise the robustness of

the model. Accordingly, we used NHO data as training data by assigning pseudo labels.

Following previous studies [27, 26], we used the ROUGE scores to automatically assign

gold labels to the three units. We used the ROUGE score both to create the gold labels

and to evaluate the model. This may seem unusual, but it is a commonly used approach in

previous studies. As ROUGE is correlated with human scores [100], the best summary can

be obtained by creating a system that maximizes this score during evaluation, regardless of

whether this score was used during training. The labeling steps were as follows.

First, we applied the splitter created in Section 4.3 to the NHO dataset and split it into

clauses and clinical segments. In this manner, we easily obtained a larger dataset. We used

CBAP as a splitter for clauses and SEGBOT as a splitter for clinical segments.

Second, we measured ROUGE-2 F1 for each unit of the source documents (against the

discharge summaries), which were then sorted in descending order of their scores. Thus, we

obtained a list of units that were important for our summary.

Third, we selected the units from the topmost part of the list. At this stage, we stopped

selecting units when the result exceeded 1,200 characters, which was the average length of

the summaries in the NHO data.

Finally, we assigned positive labels to the selected units. The entire process yielded

the gold standard for the training and evaluation without manual annotation. We randomly

selected 1,000 documents each for the development and test sets, and we used the remaining

22,641 documents for the training data.
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Table 6.1 Results of the summarization task.

Units ROUGE-1 ROUGE-2 ROUGE-L

Sentence 31.91 2.50 7.93
Segment 36.15 3.12 8.26

Clause 25.18 1.30 6.62

The numbers in bold indicate the best performing methods.

6.5 Experiments and results

In this experiment, we used the three contextual units, instead of the n-gram units, and

evaluated their impact on the summarization performance to determine which unit performs

the best. The results of summarization, using the three types of units, are shown in Table 6.1.

Comparing the three types of units in granularity, the model with clinical segments scored

the highest in ROUGE-1, ROUGE-2, and ROUGE-L. The model with clinical segments

outperformed sentences and clauses in summarizing inpatient records.

In summary, clinical segments exhibited the best performance in ROUGE and it lies

between sentences and clauses in their size. Combining the results in this chapter, we can

conclude that the segment units we introduced in this thesis are better and optimal units that

lie between sentence and clause units.

6.6 Discussion

The result that extractive summarization with sentences is less effective than with other

granularities is consistent with previous studies [26, 27]. Given the consistency of these

results, this could be a universal property that must be exploited in further summarization

tasks in NLP research.

In the summarization of medical documents, the experimental results of using linguistic

units suggest that physicians create discharge summaries by capturing clinical concepts from

the inpatient records. On the other hand, sentences and clauses performed poorly, probably

because they were chunked only with syntactic information and did not deal with medical

concepts. Accordingly, automatic summarization in the medical field requires not only syn-
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tactic information but also high-level semantic and pragmatic information related to domain

knowledge. Clinical segments are reasonable candidates as atomic units that carry medical

information. Therefore, clinical segments can potentially be used to quantify the quality of

medical documentation and to acquire more detailed medical knowledge expressed in texts.

Limitations in the current study and analysis are twofold: language and cultural depen-

dency. Firstly, Japanese grammar and Japanese medical practices are very different from

those of European languages, and there can be differences in the description, summariza-

tion, and evaluation processes. Accordingly, this pipeline using extractive method might be

applicable only to Japanese clinical setting. In particular, the clinical segment was defined

for Japanese, only labeled corpus for Japanese exists, so it is not naively applicable to other

languages. However, the idea of capturing medical concepts may be useful for other lan-

guages. Also, more researches at various institutions would be preferable to confirm the

generalizability of our results, although our study used the largest multi-institutional health

records archive in Japan. Secondly, in some countries with different cultural background,

dictation is used in clinical records and their summaries [101]. In this regard, Japanese hos-

pitals do not use dictation to produce discharge summaries, which could result in frequent

copying and pasting from sources to summaries. This custom could have contributed to

using extractive texts in the discharge summaries in Japan. The analysis of the influence of

this customary difference is left for future work.

6.7 Conclusion

In this study, we explored the best granularity for the automatic summarization of medical

documents. The result indicated clinically motivated semantic units, larger than clauses, are

the best granularity for the extractive summarization.

The results of this study suggest that the clinical segments that we have introduced are

useful for automated summarization in the medical domain. This provides an important

insight into how physicians write discharge summaries. Previous studies have used other

entities to analyze medical documents [89, 102, 103]. Our results will help to provide more

effective assistance in the writing process and automated acquisition of clinical knowledge.



Chapter 7

Is In-hospital Meta-information Useful

for Abstractive Discharge Summary

Generation?

7.1 Introduction

While there are some previous studies that discharge summary generation using abstractive

summarization methods, most of them focused on only inpatient records for inputs. Properly

summarizing an admission of a patient is a quite complex task, and requires various meta-

information such as the patient’s age, gender, vital signs, laboratory values and background

to specific diseases. Therefore, discharge summary generation needs more medical meta-

information, than similar but narrower tasks such as radiology report generation. However,

what kind of meta-information is important for summarization has not been investigated,

even though it is critical not only for future research on medical summarization, but also for

the policy of data collection infrastructure.

In this chapter, we first reveal the effects of meta-information on neural abstractive sum-

marization on admissions. Our model is based on an encoder-decoder transformer [99]

with an additional feature embedding layer in the encoder (Figure 7.1). Hospital, physician,

disease, and length of stay are used as meta-information, and each feature is embedded in

the vector space. For experiments, we collect inpatient records, discharge summaries and



42Is In-hospital Meta-information Useful for Abstractive Discharge Summary Generation?

Fig. 7.1 Overview of our proposed method. A new feature embedding layer encoding hospi-
tal, physician, disease, and length of stay is added to the standard transformer architecture.
The figure shows an example of hospital embedding.

coded information from the electronic health record system, which are managed by a largest

multi-hospital organization in Japan. Our main contributions are as follows:

• We first apply the abstractive summarization method to generate Japanese discharge

summaries.

• We found that a transformer encoding meta-information generates higher quality sum-

maries than the vanilla one, and clarified the benefit of using meta-information for

medical summarization tasks.

• We found that a model encoding disease information can produce proper disease and

symptom words following the source. Also, we found that the model using physi-

cian and hospital information can generate symbols that are commonly written in the

summary.
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7.2 Related work

Studies using medical meta-information have long been conducted on a lot of tasks. Xu et

al. [104] and Scheurwegs et al. [105] predicted diagnosis codes [106, 107] using medica-

tion codes [108, 109], procedure codes [110, 106], and lab test results. Choi et al. [111]

predicted disease and medication information using medial metainformation of past admis-

sions. Futoma et al. [112] and Zhang et al. [113] also used medication and physiologic

meta-information to predict future admission and sepsis onset, respectively. In abstractive

summarization on discharge summary, Diaz et al. [20] developed a model incorporating

similarity of inpatient records and information of the record author. They presented an idea

of integrating meta-information into the abstractive summarization model on medical docu-

ments, but did not reveal how meta-information would affect the quality of the summaries.

7.3 Methods

Our method is based on the encoder-decoder transformer model. The transformer model is

known for its high performance, has been widely used in recent studies, thus it is suitable

for our purpose. As shown in Figure 7.1, the standard input to a transformer’s encoder

is created by a token sequence T = [t0, t1, ..., ti] and position sequence P = [p0, p1, ..., pi],

where i is the maximum input length. The token and position sequences are converted into

token embeddings ET and positional embeddings EP by looking up vocabulary tables. The

sum of ET and EP is input into the model.

In this chapter, we attempt to encode meta-information to feature embeddings. We fol-

low the segment embeddings of BERT [92] and the language embeddings of XLM [114],

which provide additional information to the model. Our method is formulated as follows:

Let M be feature type, M ∈ {Vanilla, Hospital, Physician, Disease, Length of stay}, since we

set five types of features. The vanilla feature is prepared for the baseline in our experiment

and to equalize the total number of parameters with the other models. Feature embeddings

EM is created by looking up the feature table TableM = {m1,m2, ...,m j, ..., |M|}, where m j is

featue value (e.g., pysician ID, disease code, etc.) and |M| is the maximum number of dif-

ferences in a feature. In our study, |M| is set to four different values depending on features.

Specifically, they are as follows.
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Hospital As shown in Table 7.1, the data includes five hospital records. They were ob-

tained mechanically from the EHR system.

Physician Physicians are also managed by IDs in the EHR systems. The data contains

4,846 physicians, but setting |M| to 4,846 caused our model’s training to be unstable. There-

fore, we hashed the physician IDs into 485 groups containing 10 people each. Specifically,

as a naive strategy, we shuffled and listed the cases within each hospital, and hashed them

into groups in the order of appearance of the physician IDs. So each group has the informa-

tion about the relevance of the hospitals. The reason for employing a grouping strategy is

described in Appendix A.

Disease Two types of disease information exist in our EHRs: disease names and disease

codes called ICD-101. We did not use any disease names in the inputs for our experiment.

Instead, we encoded diseases with the first three letters of the ICD-10 code, because they

represent well the higher level concept. The initial three letters of the ICD-10 codes are

arranged in the order of an alphabetic letter, a digit, and a digit, so there are a total of 2,600

ways to encode a disease. In our data, some ICD-10 codes were missing, although all disease

names were systematically obtained from the EHR system. For such cases, we converted the

disease names into ICD-10 codes using MeCab with the J-MeDic [81] (MANBYO 201905)

dictionary. Also, diseases can be divided into primary and secondary diseases, but we only

deal with the primary diseases.

Length of stay The length of stay can be obtained mechanically from the EHR system

and the maximum value was set to 1,000 days.

We set |M| for vanilla, hospital, physician, disease, and length of stay to 1, 5, 485,

2,600, and 1,000, respectively2. The input to our model is the sum of ET , EP and EM. We

also prepare an extra model with all features for our experiments. This takes all four feature

embeddings (hospital, physician, disease, and length of stay) added to the encoder.

1For example, botulism is A05.1 in the ICD-10 code and is connected to upper category A05, “Other
bacterial foodborne intoxications, not elsewhere classified”.

2Actualy, the types of diseases and length of stay were 835 and 286, respectively. And a padding id is
added.
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Number of cases 24,630
Average num of words in source 1,728
Average num of words in summary 434
Number of hospitals 5
Number of physicians 4,846
Number of diseases 1,677
Number of primary diseases 835
Length of stay
Average 21
Median 9
STD 196

Table 7.1 Statistics of our data for experiment.

7.4 Experimental setup

7.4.1 Datasets and metrics

We evaluated our proposed method on a subset of the NHO data. The statistics of our data

are shown in Table 7.13, which includes 24,630 cases collected from five hospitals. Each

case includes a discharge summary and inpatient records for the days of stay. The data

are randomly split into 22,630, 1,000, and 1,000 for train, validation, and test, respectively.

Summarization performances are reported in ROUGE-1, ROUGE-2, ROUGE-L [69] and

BERTScore [42] in terms of F1.

7.4.2 Architectures and hyperparameters

Due to our hardware constraints we need a model that is computationally efficient, so we

employed the Longformer [115] instead of the conventional Transformer. Longformer can

reduce memory usage by setting window size against calculating attention. Our implemen-

tation of Longformer4 is based on the original author’s codes5.

3The standard deviation of the length of stay is much higher because the data set includes extremely long
stays (about 26,000 days), but we found only 12 cases with length of stay above 1,000 days.

4https://github.com/ken-ando/Is-In-hospital-Meta-information-Useful-for-Abstractive-Discharge-
Summary-Generation

5https://github.com/allenai/longformer
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Model R-1 R-2 R-L BERTScore

Longformer 10.93 1.23 9.05 63.13
w/ Hospital 13.39 1.41 10.70 65.19
w/ Physician 14.57 1.02 10.60 62.30
w/ Disease 15.38 1.96 12.17 66.80
w/ Stay length 14.61 1.25 10.63 61.94
w/ All features 13.18 0.86 10.82 61.68

Table 7.2 Performance of summarization models with different meta-information. The best
results are highlighted in bold. Each score is the average of three models with different
seeds.

In our model, number of layers, window size, dilation, input sequence length, output

sequence length, batch size, learning rate and number of warmup steps are 8, 256, 1, 1024,

256, 4, 3e-5 and 1K, respectively. Other hyperparameters are the same as in the original

Longformer, except for the maximum number of epochs is not fixed and the best epoch.

It is selected for each training using the validation data based on ROUGE-1. Also, the

original Longformer imports pretrained-BART parameters to initial values, but we do not

use pre-trained Japanese BART in this study. We used three GeForce RTX 2080 TI for our

experiments.

Our vocabulary for preparing input to Longformer is taken from UTH-BERT [93], which

is pre-trained on the Japanese clinical records. Since the vocabulary of UTH-BERT is

trained by WordPiece [116], we also tokenize our data with WordPiece. However, the vo-

cabulary does not include white space and line breaks, which cannot be handled, so we

add those two tokens to the vocabulary, resulting in a total size of 25,002. The vocabulary

has all tokens in full characters, so we normalized full-wdith characters by converting all

alphanumeric and symbolic characters to half-width for byte fallback.

7.5 Experiments and results

As shown in Table 7.2, we found that all the models with encoded medical meta-information

perform better in ROUGE-1 and ROUGE-L than the vanilla Longformer. However, in

BERTScore, only hospital and disease models outperform the vanilla. Specifically, disease
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information is most effective, improving ROUGE-1, ROUGE-2, ROUGE-L and BERTScore

by 4.45, 0.73, 3.12 and 3.77 points over the vanilla model, respectively. This seems to be

because disease information and the ICD-10 ontology efficiently cluster groups with sim-

ilar representations. In contrast, in ROUGE-2 and ROUGE-L, the model with physician

embedding is inferior to the vanilla model. This seems to be a negative effect of group-

ing physicians without any consideration of their relevance. It would be better to cluster

them by department, physician attributes, similarity of inpatient records, etc. Regarding low

ROUGE-2 scores in all models, a previous study [20] using the English data set also reported

a low ROUGE-2 score of about 5%, which may indicate an inherent difficulty in discharge

summary generation. In BERTScore, the models with the physician and the length of stay

did not reach the performance of the vanilla model, suggesting that the system’s outputs are

unnatural for humans. The model with all features performed the lowest of all models in

BERTScore. The reason for the low score of the model with all features seems to be that

its number of parameters in feature embedding was four times larger than that of the model

with the individual feature, and the amount of training data was insufficient.

7.6 Analyzing the precisions in generated words

To analyze the influence of encoded meta-information on the outputs, we evaluate the pre-

cisions of the generated text. Specifically, we measure the probability that the generated

words are included in the gold summary to investigate if the proper words are generated.

Some previous studies on faithfulness, which also analyze the output of summarization,

have employed words or entities [58, 117, 118]. In this study, we focused on words, not en-

tities, because we wanted to visualize expressions that are not only nouns. The words were

segmented by MeCab with the J-MeDic. For each segmented word, the numeral and symbol

labels were assigned as parts of speech by MeCab, the morphological analyzer, while the

disease and symptom were assigned by the J-Medic dictionary.

The results, shown in Figure 7.2, indicate that the encoded disease information leads to

generate more proper disease and symptom words. This indicates that the meta-information

successfully learns disease-related expressions. The encoded hospital or physician informa-

tion also improved the precision of symbols generation. This suggests that different hospi-
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Fig. 7.2 The precisions of words in the generated summaries. The vertical axis shows the
probability that the words exist in the gold summary.

tals and physicians have different description habits (e.g., bullet points such as “•”, “*” and

“-”, punctuation such as “。” and “.”, etc.), which can be grouped by meta-information.

7.7 Discussion

7.7.1 Limitations

Our limitations are that we used Japanese EHR, the limited number of tested features and

not performing human evaluations. As for the efficacy of the meta-information, we believe

that our results are applicable to non-Japanese, but it is left as a future work. Other meta-

information may be worth verifying such as the patient’s gender, age, race, religion and used

EHR system, etc. It is hard to collect a large amount of medical information and process

it into meta-information, so we may need to develop a robust and flexible research infras-

tructure to conduct a more large scale cross-sectional study in the future. In the discharge

summary generation task, which demands a high level of expertise, the human evaluation
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requires a lot of physicians’ efforts and it is a very high cost which is unrealistic. This is a

general issue in tasks dealing with medical documents, and this study also could not perform

human evaluations.

7.8 Conclusion

In this chapter, we conducted a discharge summary generation experiment by adding four

types of information to Longformer and verified the impact of the meta-information. The

results showed that all four types of information exceeded the performance of the vanilla

Longformer model, with the highest performance achieved by encoding disease informa-

tion. We found that meta-information is useful for abstractive summarization on discharge

summaries.
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Table 7.3 Statistics on the number of cases handled by physicians. C/P denotes Cases/
Physician, which indicates how many cases an individual physician has.

Hospital Median of C/P Max of C/P

A 18 201
B 16 210
C 33 330
D 5 910
E 2 162

Appendix A

Method of Grouping Physician IDs

A most naive method of mapping physician IDs to features is without any grouping pro-

cess. The data contains 4,846 physicians, so |M| was set to 4,846. However it caused our

model’s training to be unstable. This might be due to the many physician IDs appearing

for the first time in the test time. Table 7.3 shows the detailed number of cases handled by

physicians. In all hospitals, there is a large difference between the median and the maximum

of cases/physician. This indicates that a few physicians handle a large number of cases and

many physicians handle fewer cases. It is impossible to avoid physician IDs first seen at test

time without some process that averages the number of cases a physician holds. Due to this

characteristic of our dataset, it was not suitable to use the physician IDs directly as features.



Chapter 8

Can Discharge Summaries Be Generated

from Only Inpatient Records?

8.1 Introduction

There are some recent studies on the automated generation of the whole discharge summary

[119, 20–25]. However, it remains an open question whether artificial intelligence can gen-

erate hospital discharge summaries from inpatient records. This is especially problematic

for discharge summary generation using abstractive summarization method, since it often

produces unfaithful outputs from limited sources [58–63]. In other words, in the case of

discharge summary generation where information is derived from sources other than the

inpatient records, if a neural model is trained only from the inpatient records, it will gen-

erate out-of-source information. To address this issue, it is important to find the source of

the information expressed in the discharge summaries. If physicians rely on their memory,

it would be difficult to automatically generate a discharge summary solely from inpatient

records, even with a top-performing summarization technique.

Therefore, we designed the study to investigate the information sources of the discharge

summaries (Fig 8.1). First, the discharge summaries were automatically split into clinical

segments to break them down into medical semantic units. Second, medical profession-

als manually classified each description from discharge summaries to determine whether it

originated from daily inpatient records. Using manual classification, expressions that are
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completely different in appearance but semantically equivalent can be accurately identified.

Finally, an in-depth analysis of the expressions in discharge summaries that could not be

reconstructed from daily inpatient records was conducted. For this purpose, clinical role la-

bels were used. To overcome the problems of large and strictly privacy-sensitive target data

containing raw patient information, a small dataset of dummy health records was annotated,

and an automatic classification model was built.

8.2 Related work

In a prior study, Maynez et al. [57] first suggested the possibility of drawing information

from documents outside of sources contained in the dataset for the news domain. Also, in

the simplification task, Devaraj et al. [120] explored factuality issues such as the insertion

of extraneous information and the loss of key ideas in the simple text of the dataset. Mielke

et al. [121] and Zhou et al. [117] investigated factuality issues in chatbots and machine

translation, respectively. Seriously, prior study confirms that sources lacking key informa-

tion will lead to more accelerated generating hallucinations of the model [59]. This issue

can be resolved by providing additional external sources [57] or by using more stronger

pre-training models to enable the integration of background knowledge [59]. Despite sev-

eral studies, lack of source information is the most important factor for the hallucination.

However, such issues have not been addressed in the medical domain. To the best of our

knowledge, this study is the first attempt to address the hallucination problems in the sum-

marization of clinical narratives. In the summarization task, we also first comprehensively

explored potential source documents.

8.3 Datasets and preprocessing

Our target data is full NHO data, including 24,641 cases collected from five hospitals that

belong to the NHO. For preprocessing, each sentence in the dataset was first split by end

marks and line breaks. A primitive approach was adopted because the complex sentence-

splitting model might introduce biases in subsequent analyses, as the clinical documents

used in this study were noisy. Each sentence is then split into clinical segments. In this
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Fig. 8.1 Proposed framework of our study. The colored blocks in the dummy record repre-
sent the clinical segment developed in previous study, where the sentence is split by medical
sense.

process, the model built by Chapter 4 was used for the automatic assignment of clinical

segments.

8.4 Classification of unsourced segments

8.4.1 Methods

To measure the proportion of segments in the discharge summaries originating from inpa-

tient records, a two-step approach was employed. A flowchart of the proposed process is

shown in Fig 8.2. First, segments in the discharge summaries were automatically classified

using a simple matching algorithm for inpatient records. If the exact segments were found
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Fig. 8.2 Our annotation flowchart of the source origin. The source origin are manually
decide in two steps using pre-filtering.

in the records, they were obtained from them. However, the naive algorithm cannot handle

synonymous expressions, thus preventing a fully automated classification. Therefore, in the

second step, this study employed the manual annotation of segments considered unsourced

by automated classification. The target data comprised 772 segments extracted from 24 ran-

domly selected documents. These documents were selected from the five hospitals in the

NHO. Symbols from the system output, dates, and other symbols were excluded from this

task because they were meaningless in the annotation.
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Automatic filtering of unsourced segments

In the first step, word-based bi-grams were used to determine whether the segments in the

summaries were sourced from inpatient records. To this end, a bi-gram set was created

from all inpatient records, and a list of bi-grams from each discharge segment summary was

created. Subsequently, coverage with the bi-gram set from inpatient records was measured.

The bi-gram method was adopted because the distribution of the coverage ratio was closer to

uniform across the entire value range (Fig 8.3a). For simplicity, the classification threshold

was set to 0.5, which was validated through analysis.

Manually classification of unsourced segments

In the second step, segments with coverage ratios of less than 0.5 were manually anno-

tated. A total of 408 segments were used for annotation. The task involved comparing

each segment against inpatient records and labeling whether information in the segment

was provided in the source. This task required both medical and clinical knowledge. Anno-

tations were performed by an expert in NLP (Author K.A) and two medical professionals.

To relieve the burden on annotators, the author first assigned temporary labels to all the

data. Subsequently, a domain expert checked the labels and corrected them if they appeared

wrong. Finally, another expert checked and fixed the labels. The inter-annotator agreement

rate was 0.952, indicating the validity of the labels.

8.4.2 Classification results

Accuracy of automatic filter

We validate the accuracy of the automatic filter we created by comparing it to manually

classified results. The automatic and manual classification results for the annotations are

shown in Fig 8.3a and 8.3b, respectively. The bi-gram match rate was divided into five

intervals from 0 to 0.5 to confirm the validity of our threshold. The probability of the

presence of unsourced segments in these intervals was measured (Fig 8.3b). This probability

decreases as it approaches 0.5, with a low probability near 0.5, equal to 0.2. This indicates

that our threshold of 0.5 is sufficient to cover the segments suspected to be unsourced.
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Unsourced rate in clinical role and subjectivity labels

This chapter checked the amount of information in hospital discharge summaries that could

not be reproduced from the inpatient records. Table 8.1 shows the detailed label results. The

overall percentage of sourced segments was 61.3%, indicating that 38.7% of the informa-

tion in the discharge summary was obtained from external documents other than inpatient

records. In addition, the document-based unsourced rate, including at least one unsourced

segment in a document, amounts to 87%. Considering the unsourced rate for each subjec-

tivity, this study found that the unsourced probability is higher for high subjectivity than for

low subjectivity. This suggests that statements involving subjectivity do not rely much on

documents and are written by physicians themselves. For clinical role labels, diag and prob-

able were relatively high. This indicates that the core of medical practice, such as diagnosis

and prediction based on facts, is often generated in discharge summaries.

Unsourced rate in sections of discharge summary

Discharge summaries typically comprise descriptions of pre-hospital episodes and in-hospital

information. The “pre-hospital” part consists of past medical history, a history of present

illness, and results of examinations at the time of admission, whereas the “in-hospital” part

comprises all patient descriptions obtained after admission. Table 8.2 summarizes the un-

sourced and high subjectivity rates in the pre-hospital and in-hospital settings. The un-

sourced rates for the “pre-hospital” and “in-hospital” parts are 0.434 and 0.318, respectively,

illustrating the higher rate in the “pre-hospital” part. This is plausible because the hospitals

that participated in this survey were central hospitals, and most patients visited them by

referral. These hospitals had referral letters and past clinical records that could be used for

summarizing inpatient records (more details are provided in Section 8.5). Additionally, the

pre-hospital section had a lower percentage of high subjectivity segments. This reflects that

the content of this section is mainly patient history. In contrast, the in-hospital section had

a higher percentage of high-subjectivity segments, reflecting content such as speculation,

planning, and diagnosis, which generally occur during hospitalization.
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(a) Distribution of origin rates using bi-grams
from the randomly sampled data. Red, blue, and
gray dots are sourced, unsourced, and filtered out
segments, respectively. Note that symbols and
segments categorized as middle subjectivity are
excluded. The y-axis values were randomly gen-
erated from a uniform distribution of visibility.

(b) Proportion of unsourced segments appearing
in manually annotated data. The y-axis is the
value averaged every 0.1 steps for segments with
origin rates less than 0.5, as shown in Fig 8.3a.

Fig. 8.3 Origin rate of segments in discharge summaries against the inpatient records.

Table 8.1 Rate of unsourced segments in detailed labels. Because the clinical role and the
subjectivity labels are automatically added as different tasks, the subjectivity label is not a
weighted average of the clinical role labels. In contrast, “All” is a weighted average of low
and high subjectivity.

Subjectivity Clinical Role Unsourced rate
Description 0.369

All 0.387

Low Action 0.403 0.376
Others 0.304
Evaluation 0.487
Diag 0.529

High Plan 0.422 0.439
Nonfact 0.429
Probable 0.583

8.5 Analyzing the origin of unsourced information

The results suggest that physicians refer to various documents and inpatient records when

preparing discharge summaries. This section identifies the sources of information that ap-

pear in the discharge summaries in addition to the inpatient records. To this end, 14 labels
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Table 8.2 Rate of unsourced and high subjectivity segments in two sections. The sections
“Pre-hospital” and “In-hospital” include descriptions of patients before and after admission.

Unsourced rate High subjectivity rate

Pre-hospital 0.434 0.130
In-hospital 0.318 0.235

were developed to classify sources of information: patient referral documents, outpatient

clinical records, emergency room records and patient’s past clinical records (which cannot

be categorized in other labels of past records and mainly include patient’s past inpatient

records) are descriptions of past history. Prescriptions, nursing records, examination re-

sults, ECG reports, rehabilitation reports, surgical operation notes and anesthesia records

are descriptions of the current admission. Other patients’ clinical records, other documents,

and information not derived from any documents (i.e., a physician’s memory or inference)

are the descriptions of the others.

For example, drug information written in quantitative form was labeled as prescriptions.

Events during rehabilitation were labeled as rehabilitation reports. The admission episodes

of patients from the emergency department were labeled as emergency room records. Doc-

tors’ impressions and inferences are labeled not derived from any documents. These labels

may appear lengthy; however, they facilitate further insight into the origin of the information

written in the discharge summaries. Expressions labeled not derived from any documents in-

cluded information that could not be recorded during the hospital stay, such as descriptions

of the times of discharge and post-discharge schedules. They also included physicians’ per-

spectives on diagnostic approaches and treatment options. They may also contain excessive

abbreviations for the hospital stay such as “no significant change,” descriptions of normal

conditions such as “able to eat,” and omission of details of standardized protocols such as

“fluids and antibiotics.” Annotation was performed by including two medical professionals,

as described in Section 8.4.1. The inter-annotator agreement rate is 0.938. Such a high score

indicates the objectivity of the designed annotation labels with a physician.
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8.5.1 Statistics of external sources

The statistical results are listed in Table 8.3. Overall, this study found that 43.3% of the

new information was derived from the patient’s past clinical records. When patient referral

documents are included, the coverage of the new information is 61.7%, which suggests

that the availability of these two types of documents can complement 61.7% of the missing

information.

As a general trend, there were no significant differences between the two groups in

the low and high subjectivity columns. However, in the not derived from any documents

row, high subjectivity segments indicate a higher proportion (18.2%) than low subjectivity

segments (8.8%). This indicates that, when physicians write summaries, they often add

information based on reasoning rather than memory.

A characteristic difference was observed in the prehospital and in-hospital periods. The

top four documents in the prehospital section describe the history of patient admission.

This is the natural result of this function. Among these, the patient’s past clinical records

showed a significantly high rate. This indicates that, in the hospitals studied in this chapter,

a large number of admitted patients were former patients rather than referrals. However,

information not derived from any document was the most common item in the in-hospital

section. This is also a natural function of the section because it is a place to fill in doctors’

perspectives.
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Fig. 8.4 Breakdown of the information source in discharge summaries.

8.5.2 Interpretation and generalizability of the results

The analysis indicates a breakdown of the origin of information that appears in the dis-

charge summaries (Fig 8.4). Information derived from inpatient records constituted 61%

of the discharge summaries. The next most common source was the patient’s past clin-

ical records (17%), and the third most common source was patient referral (7%) of the

documents. To this point, 85% of the information in discharge summaries originates from

documents associated with the patient. The fourth most common source was not derived

from any documents, which explained 4% of the information sources.

As illustrated, physicians can refer to various documents, in addition to inpatient records,

when they write discharge summaries. In this analysis, the number of target documents

was limited because manual annotation was performed for accuracy. Although the analysis

reveals that a substantial proportion of the contents in discharge summaries originate from

sources other than inpatient records, the generalizability of the results should be verified.

For this purpose, the variance between hospitals was analyzed and is listed in Table 8.4.

Focusing on the differences between hospitals, this study found that the unsourced rates

differ greatly across hospitals. This difference can be ascribed to design differences in

the documentation of electronic health record system vendors. These results suggest that

hospital-specific bias must be considered when analyzing clinical narratives. Source avail-
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Table 8.4 Rate of unsourced and high subjectivity segments in institutions. Roman numerals
indicate the five surveyed hospitals.

Hospital
I II III IV V

Unsourced rate 0.596 0.289 0.231 0.461 0.360
High subjectivity rate 0.112 0.084 0.259 0.203 0.292

ability may affect the way physicians write discharge summaries. Furthermore, the variation

in the high subjectivity rates was limited, suggesting that the clinical reasoning process by

physicians follows similar patterns across different types of facilities. In either case, the

limited amount of data is a limitation of this study, and extending the studies to various

types of institutions, probably with automated classification, would be valuable.

8.6 Discussion

This chapter investigated the origin of the information that appears in discharge summaries

to evaluate the possibility of an automated summarization of inpatient records. The analysis

results indicate that only 61% of the total information is derived from inpatient records,

and 39% of the information originates from sources other than records. Manual evaluation

by medical professionals identified past medical documents as the most common source of

external information, such as patient referral documents and patient’s past clinical records.

These two types of source documents accounted for 62% of the missing information. This

study also found that 11% of the information contained speculation and post-discharge plans

that were not derived from documents.

Previous studies indicate that automated summarization using a trained model from in-

puts with incomplete information for the target summary leads to hallucinations [59]. A

previous study on news summarization using a dataset with an unsourced rate of 73% in

document-based counts yielded a high incidence of extrinsic hallucinations [57]. In news

summarization, the content is created from the source and supplemented by other news arti-

cles or common sense, which explains extrinsic hallucinations [59]. Our study revealed that
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the unsourced rate of expressions in the discharge summaries was 38.4% for the segment-

oriented count and 87% for the document-based count. Therefore, if the dataset containing

only inpatient records is used in the summarization of inpatient records, a higher incidence

of hallucinations would be caused by the high unsourced rate. Considering the nature of

healthcare, this result is unacceptable.

Clinical document summarization is inherently a multidocument summarization. Ap-

proximately 62% of the missing information could be generated if the patient’s past clinical

records (43.3%) and patient referral documents (18.4%) were available. However, 11% of

the information depends on the physician’s memory and clinical reasoning, and this portion

is difficult to generate automatically. Therefore, automatic high-quality summarization us-

ing machine learning is considered infeasible, and machine summarization with a human

post-editing process is the best solution for this problem.

A limitation of the present analysis lies in the volume of the target documents manu-

ally annotated and in the representativeness of the sampled target. A more thorough and

detailed analysis might result in different statistics, and language differences must also be

considered when applying the results to other languages. However, differences that may

emerge in the additional analysis would be minor compared to the technical contributions

of the present study. Extending the source material beyond inpatient records is necessary

for the automated generation of discharge summaries. It is also necessary to improve the

accuracy of abstractive summarization and present a draft that effectively elicits physicians’

reasoning and memory.

8.7 Conclusion

This study investigated whether artificial intelligence and natural language processing can

automatically generate discharge summaries. The results indicate that the majority of the

discharge summaries originated from sources other than patient records. The patients’past

clinical records and patient referral documents were the most and second-most external

sources, respectively. This study found that a certain amount of external information was

generated by the physician’s memory and clinical reasoning. The analysis suggests that

the automated generation of discharge summaries is impossible using a naive collection
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of inpatient records. The generation of discharge summaries involves multiple document

summarizations and clinical reasoning with undocumented information by physicians in

charge of hospitalized care.

Undoubtedly, the automatic generation of discharge summaries could reduce the heavy

burden on medical practice; thus, development in this field is highly desirable. Our re-

sults suggest that research efforts must be made to establish an optimal interaction between

humans and machines for the efficient authoring of discharge summaries by incorporating

generated drafts and post-editing assistance.



Chapter 9

Conclusion

9.1 Conclusion

This thesis examined the following topics related to the generation of the discharge sum-

mary. First, since we did not find a parallel corpus of discharge summaries and hospital-

ization records in Japanese, we created a new dummy record by the physician. This is

closer to the NHO data than the existing dummy medical record data set and is shown to be

potentially more realistic.

Second, we designed a new linguistic unit to cover medical meaning. The units anno-

tated by medical professionals are shorter than sentences and longer than clauses. We also

developed an automatic splitter and showed that it could achieve high performance auto-

matic splitting by using a neural model.

Third, we defined and annotated what clinical roles are represented by the clinical seg-

ment. We assigned a two-layered structure of subjectivity and detailed labels, and found

that many segments represent objective facts. In addition, the classifier was trained using

multi-task learning, which showed that it could automatically classify with good overall

accuracy.

Fourth, we investigated what linguistic units are the most efficient inputs for generating

discharge summaries using the extractive summarization method. Experimental results us-

ing the sentence, cause, and clinical segment showed that the clinical segment performed
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best, suggesting that it may be better to use units that cover medical meaning for summariz-

ing medical documents.

Fifth, we investigated whether medical meta-information is useful for generating a dis-

charge summary using abstractive methods. We used four types of information: hospital,

physician, disease, and length of stay, and found that inserting the disease information into

the model was the best. It also yielded better accuracy in representing diseases and symp-

toms in the output than the vanilla model. These results indicate that we may better utilize

the various meta-information obtained from outside of the source, depending on the pur-

pose.

Finally, we investigated whether discharge summaries could be generated from only in-

patient records. The results showed that 39% of the discharge summaries were obtained

from outside of the inpatient record, suggesting that it is an unrealistic setting for the dis-

charge generation task to use only the inpatient record as the source document, as many

previous studies have done. In addition, few of the information was derived from physi-

cians’ memories, indicating the need for a variety of sources.

9.2 Limitations

The following is a summary of the limitations of this thesis.

Language dependent

Japanese grammar and Japanese medical practices are very different from those of European

languages, and there can be differences in the description, summarization, and evaluation

processes. Accordingly, this pipeline using extractive method might be applicable only to

Japanese clinical setting.

In the clinical segment and clinical role label were defined for Japanese, only labeled

corpus for Japanese exists, so they are not naively applicable to other languages. However,

the idea of capturing medical concepts may be useful for other languages or cultures.
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Culture dependent

In some countries with different cultural background, dictation is used in clinical records

and their summaries, and it is reported that 62% of cases are created by dictation [101].

In this regard, Japanese hospitals do not use dictation to produce discharge summaries,

which could result in frequent copying and pasting from sources to summaries, and in this

study, 20-32% of discharge summaries were created by copying and pasting. This custom

could have contributed to using extractive texts in the discharge summaries in Japan. Just for

reference, compare the copy-paste rate for discharge summaries in the U.S. A study reported

that 8% of dictated summaries [122] and another study reported that 54% of handwritten

summaries were copy-pastes [123] (87% of the documents in our data). Note, this ratio

depends on the hospital and the definition of copy-and-paste [124].

This cultural difference may have influenced the experiments conducted in Chapters 6

and 7. In particular, the analysis in Chapter 8 may yield different results in countries having

different medical cultures, because the statistics are different even for different hospitals

within a country. The analysis of the influence of this customary difference is left for future

work.

Data-scale dependent

A limitation of the present results lies in the volume of the target documents we annotated

mannually, and in the representativeness of the target we sampled. In particular, the an-

notations were difficult to conduct on a larger scale due to the high cost, which required

the cooperation of healthcare professionals. Moreover, this study focused only on inpatient

medical records, but other experiments using many different types of healthcare documents

could be performed. Although our study used the largest multi-institutional health records

archive in Japan, more researches at various institutions would be preferable to confirm the

generalizability of our results. In addition, we may need to develop a robust and flexible

research infrastructure to conduct a more large-scale cross-sectional study in the future.

The annotation of clinical segment and clinical role label are deeply influenced by the

size of the data. Also, in the use of meta-information in Chapter 7, collecting more and

varied meta-information such as race, gender, religion, etc. will lead to stronger conclusions.
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In Chapter 8, more origins annotations and larger data sets with more variety of hospitals

and documents will lead to greater contributions.

In addition, it is important to experiment with data that include a wider variety of dis-

eases. Analyzing the differences between diseases is important, since some diseases are for

examination purposes and others are for long-term stays.

Human evaluation

In the discharge summary generation task, which demands a high level of expertise, the

human evaluation requires a lot of physicians’ efforts and it is a very high cost which is

unrealistic. This is a general issue in tasks dealing with medical documents, and this study

also could not perform human evaluations.

This human evaluation issue can be raised for most all automation experiments, it is

especially important to manually evaluate the discharge summaries generated in Chapters

6 and 7. However, this is still an understudied area, including policies on what discharge

summaries are good, and further research is needed. In particular, the manual evaluations of

gold discharge summaries are important for the future discharge summary generation task.

However, differences that may emerge in the additional analyses or experiments would be

minor, compared with the contribution of our studies.

9.3 Future work

This section shows the main future works of this thesis. Regarding the clinical segment

we developed, we suggested that it can capture medical meanings more effectively than

existing units, but since we only evaluated it through the summarization task, it is necessary

to investigate how well it captures medical meanings actually. For the clinical role label,

we showed the possibility to analyze clinical documents automatically and in depth, but it

needs to be evaluated whether it can be used for quantitative evaluation of various medical

documents.

More advanced approaches can be applied for the summarization experiment we used

the inpatient records as a single document. For single document summarization, we can
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consider a pipeline that generates a summary based on important expressions, with extrac-

tive summarization as the first stage, which is often employed in very long summarization

tasks [20, 125, 126]. For the inpatient records considered as multiple documents, a method

to extract important information by extractive summarization [21] is also possible, as well

as a method to capture the properties of documents in a single model [127].

Towards application to practical use

In the future, similar to other medical AI tasks such as radiology, it could be performed in

collaboration with physicians. Actually, in cancer detection, AI and human collaboration is

better performance than independent screening [128–130]. We can envision an idea where

an initial draft is created by the AI and subsequently edited by a physician in discharge

summary generation. Therefore, it is necessary to conduct research to establish the optimal

interaction between humans and AI, which is still unexplored in the discharge summary

generation. Studies in other medical domains have explored the conditions under which

physicians trust AI prediction outputs and the importance of developing interfaces in concert

with physicians, so we can draw on such studies to guide our work. In the case of a discharge

summary generation system, we could display the source medical documents of information

in representations of the output, or evidence of generation. This topic was an additional

analysis we wanted to address in Chapter 8, but it was not possible due to the lack of data

variety.

Other our insights for the future are as follows. Medical tasks require more careful

output, i.e., more highly precision (ratio of true positive to false positive), because errors in

the healthcare document have direct impacts on patient health. Therefore, it is necessary to

build a highly reliable model with a focus on precision. To enhance reliability in the model’s

predictive output, it is expected to provide the evidence for its decisions, and this is already

being actively studied as the explainable AI [131, 132].

In addition, the issue of physicians’ trust for the model, this is also related to the halluci-

nation. The hallucination that weird information is mixed into the generated summaries is a

major clinical problem, and may lead to a loss of trust. This can be relieved by showing the

evidence of generation. It is also important to evaluate separately the factual hallucinations

that good to occur and the non-factual hallucinations that are not good to occur [57]. We
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can also indicate the confidence level of the generated text. This has already been addressed

in many studies as related to the calibration [133–135] and is a realistic solution.

Besides the performance aspect of the model, another challenge is the personalization

for physicians. As pointed out in Chapter 7, it is necessary to pay attention to the habits

of physicians. There are ways to address this challenge, such as requiring expressions that

physicians must keep during a patient’s stay or handling physician information like Chapter

7. These strategies will increase physicians’ reliability of the model.

Finally, regarding the need for undocumented knowledge of physicians to generate dis-

charge summaries, as shown in Chapter 8. This may be resolved in the future with very large

data sets and models. In recent studies, a single giant model such as ChatGPT 1 or PaLM

[136] can solve a variety of tasks, and they are suggested to contain a variety of abstracted

knowledge such as world knowledge. Some giant models also exist for English medical

purpose, such as GatorTron [137] or Med-PaLM [138], and they can also solve a variety of

tasks. GatorTron was trained on billions of parameters using a corpus containing 90 billion

words. In Japanese, a similar model could be constructed in terms of data size, but there are

no computational resources available to train such a large model at the institution where the

data exists (it probably cannot be moved outside due to data privacy issues). A proposed

solution to the privacy issue is to use the federated learning [139, 140], in which a model is

learned at a central facility in collaboration with many hospitals. This method does not risk

personal information because it trains the model at each independent hospital and uses only

the results of training. The next challenge seems to be these issues.

1https://openai.com/blog/chatgpt
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