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Abstract

Machine translation underwent huge improvements since the groundbreak-

ing introduction of statistical methods in the early 2000s, going from very

domain-specific systems that still performed relatively poorly despite the

painstakingly crafting of thousands of ad-hoc rules, to general-purpose

systems automatically trained on large collections of bilingual texts which

manage to deliver understandable translations that convey the general

meaning of the original input.

These approaches however still perform quite below the level of human

translators, typically failing to convey detailed meaning and register, and

producing translations that, while readable, are often ungrammatical and

unidiomatic.

This quality gap, which is considerably large compared to most other

natural language processing tasks, has been the focus of the research in

recent years, with the development of increasingly sophisticated models that

attempt to exploit the syntactical structure of human languages, leveraging

the technology of statistical parsers, as well as advanced machine learning

methods such as marging-based structured prediction algorithms and neural

networks.

The translation software itself became more complex in order to accommo-

date for the sophistication of these advanced models: the main translation

engine (the decoder) is now often combined with a pre-processor which

reorders the words of the source sentences to a target language word order, or

with a post-processor that ranks and selects a translation according according

to fine model from a list of candidate translations generated by a coarse

model.



In this thesis we investigate the statistical machine translation problem

from various angles, focusing on translation from non-analytic languages

whose syntax is best described by fluid non-projective dependency gram-

mars rather than the relatively strict phrase-structure grammars or projective-

dependency grammars which are most commonly used in the literature.

We propose a framework for modeling word reordering phenomena

between language pairs as transitions on non-projective source dependency

parse graphs. We quantitatively characterize reordering phenomena for the

German-to-English language pair as captured by this framework, specifically

investigating the incidence and effects of the non-projectivity of source

syntax and the non-locality of word movement w.r.t. the graph structure.

We evaluated several variants of hand-coded pre-ordering rules in order to

assess the impact of these phenomena on translation quality.

We propose a class of dependency-based source pre-ordering approaches

that reorder sentences based on a flexible models trained by SVMs and and

several recurrent neural network architectures.

We also propose a class of translation reranking models, both syntax-free

and source dependency-based, which make use of a type of neural networks

known as graph echo state networks which is highly flexible and requires

extremely little training resources, overcoming one of the main limitations

of neural network models for natural language processing tasks.
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Chapter 1

Introduction

1.1 Motivation

Automatic translation between human languages was one of the first ap-

plications of digital computers that researchers sought to realize since their

introduction in the 1950s.

Early approaches, grounded in the computationalist philosophy of mind

which viewed human cognition and linguistic ability essentially as a process

involving discrete individually meaningful symbols manipulated according

to well-defined rules, attempted to translate sentences by parsing them

according to some formal phrase-structure grammar (Chomsky, 1956, 1957)

(usually a context-free grammar (CFG)), hand-coded by human linguists and

then transform these sentences into their target-language equivalents using

dictionaries and syntactic transfer rules, also hand-coded.

These early syntax-based approaches found some success in restricted

application domains, but were largely unable to provide general-purpose

machine translation systems capable of handling natural languages in a

broad usage range, a goal which remained essentially unfulfilled until the

introduction of statistical methods in the 1990s.

The statistical machine translation paradigm took at first a diametrically

opposed approach at the translation problem: sentences are viewed as

sequences of words, whose correlations are modeled by simple stochastic
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models such as Markov chains, ignoring any information about their overall

syntactic structure.

Translation models are learned from large corpora of bilingual text using

statistical methods, estimating correlations between sentences in the source

language and their reference translations in the target language, either at the

level of words (word-based models (Brown et al., 1990, 1993)) or short segments

of contiguous words (phrase-based models (Och et al., 1999; Och and Ney, 2002,

2004; Marcu and Wong, 2002; Koehn et al., 2003)).

Phrase-based translation yields performances good enough to be used in

practical applications, but still performs substantially worse than human

translators.

In recent years, there has been a tendency to reintroduce syntax in the

framework of statistical machine translation: rather than using hand-coded

strict grammars and transfer rules, these approaches estimate stochastic

syntactical models from the training corpora, which enables them to take

into account complex long-distance correlations that can’t be represented by

standard phrase-based models.

These approaches typically use a probabilistic version of context free

grammars (PCFG) or related formalisms (Yamada and Knight, 2001; Chiang,

2005, 2007), or alternatively dependency grammars, which while based on a

linguistic theory different than phrase-structure grammar (Tesnière, 1959;

Mel’čuk, 1988), are often constrained to be projective, introducing an isomor-

phism with PCFGs.

These formalisms can be well suited to represent the syntax of analytic

languages with a largely fixed word order such as English, Chinese or

Japanese, while non-analytic languages with a relatively free word order

such as German, Italian, Czech or Bulgarian might better represented by

non-projective dependency grammars (Bosco and Lombardo, 2004; Chanev,

2005).

Moreover, the type of correlations that current syntax-based machine trans-

lation systems can take into account are typically "tree-local", meaning that

while they may involve words and clauses that are far apart in the sentence,

their distance in the syntax parse graph must be short. Indeed, most system
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only consider parent-child and sibling-sibling relations. This limitation might

fail to capture linguistic phenomena that may be relevant for translation

quality.

Non-projective dependency grammars and "non-tree-local" syntactic

models have not been significantly applied to statistical machine translation

so far, which, we believe, leaves open promising research opportunities that

we sought to undertake in this thesis.

Statistical machine translation can be seen as a structured prediction prob-

lem in the framework of machine learning.

Early approaches primarily used generative machine learning techniques,

which estimate explicit, marginalizable representations of joint probability

distributions. Discriminative machine learning techniques, more accurate but

less flexible since they only estimate limited representations of conditional

probability distributions, were initially used only for tuning a small set of

parameters (Och, 2003).

More recently discriminative learning techniques have become more

prominent, usually in the form of linear models with a large number of

sophisticated input features (Och et al., 2004; Chiang et al., 2009; Hasler et al.,

2011).

There has also been interest in non-linear models such as neural networks

(Bengio et al., 2006; Auli et al., 2013; liu et al., 2013), but their applications

have been limited by difficulties involved with training and decoding.

We believe that discriminative machine learning models, in particular neural

networks and non-linear SVMs, can be beneficial to machine translation due

to their ability to overcome the linear separability representation issue of linear

models, thus we set forth to devise ways to exploit these techniques.

1.2 Object and Contributions of the Thesis

The object of this thesis is to develop techniques for statistical machine

translation that exploit syntactic information modeled by non-projective

dependency grammars, in order to assess the effectiveness of this framework,

especially for translation from non-analytic languages.
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We also aim to investigate the applicability of machine learning tech-

niques which have not been commonly used in the field.

Modern statistical machine translation system have become quite com-

plex in order to decompose the hard training and decoding problems into

subproblems which can be more effectively addressed separately by specific

algorithms.

The main translation engine (the decoder) can be coupled with preprocessing

systems, usually performing word reordering, or with postprocessing systems

performing reranking among a set of candidate translations.

We aim to investigate how to apply our dependency-based techniques on

different steps of this translation pipeline, assessing where they yield the

most promising results.

1.2.1 Research questions

The main research questions that thesis investigates are:

1. The effects of non-projectivity and tree non-locality on reordering

phenomena between language pair. Specifically we investigate the

German-to-English pair, which is both well studied and still considered

significantly hard. We intend to determine whether non-projectivity

and tree non-locality are linguistic phenomena relevant to machine

translation.

2. The viability of non-projective and non-tree-local syntax-based pre-

reordering systems automatically trained from source-side parsed and

word-aligned parallel corpora. We intend to determine whether a

system trained by machine learning can successfully discover how to

exploit these type of syntactic relations that are not usually considered

by typical syntax-based approaches.

3. The viability of several translation reranking approaches based on the

topology of the source-side dependency graph.
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1.2.2 Main contributions

Our main contributions address the research questions as follows:

1. We investigated the incidence of non-projectivity and tree non-locality,

how they correlate with each other and with reordering accuracy

and translation accuracy of pre-reordered phrase-based systems, both

under ideal "oracle" permutations derived from word alignments and

under hand-coded pre-reordering rules. We found that both non-

projectivity and non-tree-local reordering are common linguistic phe-

nomena in the German-to-English language pair and that they are

relevant to reordering and translation quality. Specifically, they cor-

relate with the pseudo-upper bounds on improvements that can be

obtained using heuristic "oracle" permutations 1. When reordering with

dependency-based hand-coded rules, non-projectivity and tree non-

locality also predict improvement, although the measured effect of non-

projectivity is weaker.

2. We investigated several novel syntax-based pre-reordering models

based on SVMs and recurrent neural networks and compared them with a

standard phrase-based baseline system and hand-coded rules and cor-

related the reordering and translation accuracy with non-projectivity

and tree non-locality. Specifically, we designed a system based on

transitions on the source dependency graph guided by SVM classifiers.

We evaluated it on the German-to-English and the (easier) Italian-to-

English language pairs but we couldn’t obtain an improvement over

the phrase-based baseline. We attributed this issue to an apparent bias

of the model towards an in-order depth-first traversal of the graph. We

developed a class of RNN models that overcame this difficulty by al-

lowing greater freedom of movement on the graph at the cost of greater

computational complexity (O(L2) or O(L3) instead of approximately

O(L)). We obtain a significant improvement of translation quality w.r.t.

the baseline, with performance comparable to the best hand-coded

1Al-Onaizan and Papineni heuristic (Al-Onaizan and Papineni, 2006).
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rules. We found a positive correlation both between non-projectivity

and translation accuracy and tree non-locality and translation accuracy.

3. We introduce a novel class of reranking approaches based on graph

echo state neural networks (GraphESN), both syntax-free and syntax-

based, and we compare these models to each other and to the baseline.

GraphESNs are a flexible and efficient type of neural networks for

prediction tasks in domains where inputs are complex data structures

represented as arbitrary graphs. Their main point of attraction is that

they are highly non-linear models but they are trained as linear models,

owing to their reservoir computing paradigm. These models require

minimal training resources and feature engineering, hence in addition

to being interesting on their own, they can be used to investigate

a lower bound to the performance gains that can be obtained by

reranking with dependency topology information. We also consider

a linear reranking model based on engineered dependency topology

features. This system examines the output of the upstream phrase-

based decoder in order to analyze, for each candidate translation of

a source sentence, how the phrase segmentation cuts its dependency

parse tree and how these phrases are reordered in the translation with

respect to the source parse. We evaluated these models on the Italian-

to-English language pair and found that these approaches significantly

improve translation quality over the phrase-based baseline.

1.3 Map and origin of the chapters

The Thesis is structured as follows:

• Chapter 2 describes the background theory and techniques relevant

to this work. Specifically, section 2.2 introduces the general concepts

of natural language processing, sec. 2.3 describes constituency and de-

pendency parsing, sec. 2.1 provides a perspective on machine learning

techniques used in this work, sec. 2.4 introduces language modeling
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techniques and finally sec. 2.5 describes statistical machine translation

approaches.

• Chapter 3 describes our characterization of German-to-English reordering

as transitions on a dependency tree.

• Chapter 4 describes our discriminative non-tree-local syntax-based sentence

pre-reordering approach. This approach was inspired by an earlier work

presented by a at the SSST-5 "Fifth Workshop on Syntax, Semantics and

Structure in Statistical Translation" associated with the ACL HLT 2011

conference. (Attardi et al., 2011). Part of this work (the SVM model)

was presented at the ACL 2013 WMT "Eight workshop on Statistical

Machine Translation" (Miceli Barone and Attardi, 2013). Other parts

of this work (the recurrent neural network models) will be presented

at the ACL 2015 main conference and the NAACL HLT 2015 SSST-

9 "Ninth Workshop on Syntax, Semantics and Structure in Statistical

Translation".

• Chapter 5 introduces our reranking models. Specifically, section 5.1

describes reranking with graph echo state networks and sec. 5.2 reraking

using source phrase dependency features. The latter work will be presented

at the NAACL HLT 2015 SSST-9 "Ninth Workshop on Syntax, Semantics

and Structure in Statistical Translation".
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Chapter 2

Background

In this chapter we describe the existing background theory and methods this

work was built upon.

We will first describe some machine learning primitives that are relevant

to this work, then we will the general concepts of the framework of natural

language processing, focusing in particular on syntactic representations and

language models. Then we will describe statistical machine translation tech-

niques.

2.1 Machine learning

Machine learning is the set of techniques used to make computer system learn

how to perform tasks from the automated analysis of data.

Considered a branch of both Inferential statistics and Artificial intelligence,

machine learning is centered on identifying representations that can be used

to describe and compute useful predictions from suitably large classes of

models, and training procedures to efficiently compute these representations

from data. The models learned from data must both represent the training

data accurately and they must generalize well on unseen data, as long as it is

sufficiently homogeneous to the training data.

A full taxonomy of machine learning tasks and techniques is beyond the

scope of this document, therefore, in the following sections we will only

describe those which are relevant to this work.
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2.1.1 Discriminative models

A typical way of framing machine learning problems is to identify a set of

random variables: the inputs (independent variables) X and outputs (de-

pendent variables) Y. We assume that there exists an underlying probability

distribution over these variables that is unknown to us, but that we can

observe a set of observations (examples) independently sampled from it.

Given a set of m examples, known as the training set T, we want to

estimate the properties of the underlying conditional probability distribution

P(Y|X). Specifically we want to obtain a representation that allows us to

compute the probability of an output value y ∈ Y given an arbitrary input

value x ∈ X, or to predict the most likely output given an arbitrary input:
∗
y ≡ argmaxy∈Y P(Y = y|X = x) 1.

This approach is known as supervised learning, and the class of model it

produces are known as discriminative models.

We can distinguish these learning tasks according to the type of the

outputs. The typical cases include:

• Regression, if the outputs are continuous (scalar or vectorial) values.

• Classification, if the outputs are discrete labels in a small set.

• Structured prediction, if the outputs are discrete data structures in a large
2 set, usually dependent on the input: y ∈ GEN(x) ⊂ Y.

We will focus on classification and structured prediction, as they are more

relevant to statistical natural language processing. In fact, broadly speaking,

most NLP tasks can be viewed as structured prediction problems, where the

input x is typically a sentence of text or speech and the output y is a complex

property or transformation of this sentence, such as parse tree or a translation

in another language.

1As a slight abuse of notation, we are going to use capital letters to denote both random

variables and their domain
2By "large" we mean that it will be typically too big to allow efficient exhaustive

enumeration.
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2.1.2 Generalized linear models

Linear binary classification

Binary classification using a linear model is one of the simplest problem that

can be considered in machine learning, which is nevertheless significant since

many other problems can be reduced to it.

We assume that there are only two possible output labels ("true" and

"false", or "positive" and "negative") and that the inputs are real-valued

vectors of fixed dimension: X ≡ Rn.

Given an input x, the model computes its prediction according to thresh-

olded linear decision function:

h (x, θ) ≡
n

∑
i=1

θixi ≥ −θ0 (2.1)

where x1, . . . , xn are the n components of the input vectors and θ0, . . . , θn are

the n + 1 adjustable real-valued parameters that characterize the model.

Or, in a simplified notation:

h (x, θ) ≡ θT · x ≥ 0 (2.2)

where we assume that x is a vector in Rn+1, with x0 = 1 (the "bias" feature),

and that the dot operator denotes the inner product between vectors.

Probability estimates In this simple formulation, the classification model only

computes the most likely output label given the input.

If we also want to compute an estimation of the probability of class member-

ship we can do so by converting the linear score θT · x to a number in the [0, 1]

range which can be interpreted as a probability. This is accomplished using a

suitable non-linear activation function:

P(Y = y|X = x) = π
(

θT · x
)

(2.3)

Where π : R → [0, 1] is typically defined as the logistic sigmoid function:

lgc (u) ≡ exp (u)
exp (u) + 1

=
1

exp (−u)
(2.4)
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Training as an optimization problem The problem of training a classification

model from a set of labeled examples is usually formulated in terms of an

optimization problem, where we seek to minimize the cost (or error) of the

model with respect to the training set, which is a measure of how much the

predictions made by the model differ from the training examples.

Let X be the set of input values, Θ be the set of values the model

parameters can take. Let

T ≡
((

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(m), y(m)
))

(2.5)

be a list of m training examples. Then the training problem is defined as

computing
∗
θ ≡ argmin

θ

cost (T, θ) (2.6)

The cost function is often defined as the average (or sum) of per-example

costs:

cost (T, θ) =
1
m

m

∑
i=1

L
(

h
(

x(i), θ
)

, y(i)
)

(2.7)

where L : R × R → R is a loss function, which measures how far the

predicted value is from the reference value for that particular example.

In this case, it is usually defined as the "0-1 Loss", which is equal to 0 if the

labels are the same and it is equal to 1 if they are different, or, if the model

provides probability estimates, as the empirical cross-entropy loss:

LCE(z, y) ≡ −y log (z)− (1− y) log (1− z) (2.8)

(Using a logistic activation function trained with the cross-entropy loss is

called logistic regression, which, despite the name, is actually a classification

approach)

An optional additive "regularization" term that only depends on the

parameters θ and not on the training examples can be included in the cost

function. This can be interpreted as a measure of the intrinsic "complexity"

of the model. Intuitively, simpler models are expected to generalize better to

inputs not seen during training.

Common choices for the regularization term that work well in practice

are the L1-norm or the L2-norm of the parameter vectors, scaled by an

hyperparameter λ.
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Training algorithms A large number of training algorithms that solve the

optimization problem defined above have been proposed in the literature.

They differ in which loss function and regularization function (if any) they

support, whether they require the full training set to be available at the

beginning of the computation (batch algorithms) or they can accept training

examples incrementally (online and mini-batch algorithms), whether they

solve the optimization problem to a global optimum or to a local optimum,

and so on.

A description of these algorithms is beyond the scope of this document.

We will briefly mention the most common in use, which include the averaged

perceptron (Freund and Schapire, 1999; Collins, 2002) (an implicitly regular-

ized variant of the earlier perceptron algorithm), "large margin" algorithms

such as linear support vector machines (SVM) (Vapnik, 1982; Cortes and Vapnik,

1995) and the margin-infused relaxed algorithm (MIRA) (Crammer and Singer,

2002).

Logistic regression models have a cost function that is differentiable w.r.t.

the model parameters, and are therefore trained using first-order or second-

order unconstrained continuous optimization algorithms, such as stochastic

gradient descent (Ferguson, 1982), the conjugate gradient method (Press et al.,

1988), or the limited-memory BFGS method (Liu and Nocedal, 1989).

Linear separability No matter which training algorithm is used, linear mod-

els can’t learn to accurately represent arbitrary relations, not even arbitrary

deterministic relations.

Mathematically, a linear binary classifier separates the original Rn input

space in two halves divided by the (oriented) hyperplane ∑n
i=1 θixi ≥ −θ0

and classifying all examples on one side as positive and all examples on the

other side as negative.

This implies that linear classifiers can’t represent arbitrary input-output

relations, since there exist relations that are not linearly separable.

Linear classifiers can still perform well if the underlying relation is approx-

imately linearly separable, but fail in case of severe non-linearity. In these

scenarios, non-linear machine learning techniques, such as neural networks
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Figure 2.1: Linear classification in two dimensions. Examples above the separation

line are classified as positive, the others as negative.

(section 2.1.3) can be used.

Linear structured prediction

A more interesting class of problems involve outputs, and possibly inputs,

which are complex data structures, such as a natural language sentence and

its parse tree or a sentence and its translation in another language.

We can address these problem using a feature extraction function (or just

feature function) f : X×Y → Rn that maps each pair of possible inputs x ∈ X

and outputs y ∈ GEN(x) to a fixed-dimension vector of reals. The design of

this function is task-specific and in general requires a significant engineering

effort.

Once we specified the feature function, we can formulate the prediction

problem using a linear model as:
∗
y ≡ argmax

y∈GEN(x)
θT · f (x, y) (2.9)

where θ ∈ Rn is the parameter vector (note that there is no "bias" feature).

This optimization problem will be usually non-trivial, and will require a

task-specific algorithm. In particular, computing an exact solution, or even
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an approximated solution with guaranteed quality, to this problem may be

unfeasible, and therefore the algorithm will produce a heuristic solution.

Therefore, training algorithms for linear structured prediction also need

to be designed specifically for the task, although they often fall into general

categories which are based on extensions of the training algorithms used for

binary classification.

Common approaches include the structured (averaged) perceptron (Collins,

2002), structured SVM (Tsochantaridis et al., 2005; Finley and Joachims, 2008;

Cherry and Foster, 2012) and structured MIRA Crammer and Singer (2003);

McDonald et al. (2005); Watanabe et al. (2007); Cherry and Foster (2012).

Logistic regression can also be generalized to structured prediction by

replacing the logistic sigmoid function with the logistic softmax function,

resulting in a probabilistic model in the form of:

P(Y = y|X = x) =
exp

(
θT · f (x, y)

)
∑y′∈GEN(x) exp (θT · f (x, y′))

(2.10)

which is trained with the categorical cross-entropy loss, yielding a so-called

maximum entropy model.

The optimization problem can be solved using unconstrained continuous

optimization algorithms as in the logistic regression case, although the

denominator of the formula above can’t be feasibly computed in a direct way,

hence some task-specific mathematical tricks 3 or approximations need to be

used.

Multi-class classification, that is classification with a small number greater

than two of output labels, can be considered as a simpler special case of

structured prediction or it can be reduced to binary classification (bo Duan

and Keerthi, 2005; Chang and Lin, 2011).

A notion of linear separability also exists for linear structured prediction,

which implies that these models can’t learn certain kinds of relations.

This is not necessarily always a severe issue since the feature function is

specifically designed for the task and with sufficient feature engineering a

problem with a non-linear decision boundary can be transformed into a lin-

3generally based on exploiting some way to factorize the probabilistic model
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early separable problem. Feature engineering, however, is time-consuming

and requires significant domain-specific expertise.

2.1.3 Neural networks

Some machine learning tasks involve inherently non-linear underlying pro-

cesses and are difficult to solve with linear methods even after substantial

feature engineering. In these cases, non-linear models may be more appro-

priate.

These non-linear models usually are usually composed by a non-linear

feature transformation that maps the input features to a different, usually

higher dimensional, transformed feature space, followed by a linear model.

Different methods are distinguished by the form of feature mapping they

use, its parametrization (which can be adaptive or fixed) and the specific

algorithms used to solve the training problem.

Popular choices include SVM with non-linear kernels (Aizerman et al.,

1964; Boser et al., 1992), decision tree ensemble methods (such as random forests

(Breiman, 2001) and gradient tree boosting (Friedman, 2001)) and artificial

neural networks.

Artificial neural networks (ANN), or simply neural networks (NN), encompass

a large variety of machine learning techniques, all characterized by the

general approach of computing complicated, highly non-linear functions

using networks of interconnected units with adjustable parameters.

Owing to their flexible architecture that can be customized for tasks with

structured inputs and outputs and their ability to scale well to large number

of input features and large training sets, neural networks have become

popular in NLP applications in recent years.

Since the field is vast, even a survey would be beyond the scope of this

document, thus, in the following sections we will describe some types of

neural networks that were relevant for this thesis work.
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Figure 2.2: Multi-layer perceptron with two hidden layers and a single output unit.

Each unit computes the weighted sum of its inputs and maps it through a squashing

function such as the logistic sigmoid.

Multi-layer perceptron

Consider a logistic regression model whose inputs are themselves computed

by s (non-thresholded) logistic regression models of the original features:

hregr(x, Θ(1), θ(2)) ≡ lgc

(
θ
(2)
0 +

s

∑
i=1

θ
(2)
i · lgc

(
Θ(1)

i,0 +
n

∑
j=1

Θ(1)
i,j · xj

))
(2.11)

where the model parameters θ ≡ (Θ(1), θ(2)) are a matrix Θ(1) ∈ Rs×n+1

whose rows are the parameter vectors of the intermediate logistic models

(the hidden units), and the parameter vector θ(2) ∈ Rs+1 of the final logistic

model (the output unit).

More concisely:

hregr(x, Θ(1), θ(2)) ≡ lgc
(

θ
(2)
0 + θ

(2)
1: · lgc(Θ(1) · x)

)
(2.12)

where x0 = 1 and the inner logistic function is applied element-wise.

This model is known as feed-forward neural network or multi-layer perceptron

(MLP) with a single hidden layer and logistic activation. Given a sufficient

number s of hidden units, it can represent any arbitrary boolean function

of n variables.
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More generally the network architecture (the number of hidden layers and

of units in each of them), and the logistic function in the hidden units can be

replaced by any squashing 4 activation function, such as the hyperbolic tangent

sigmoid:

tanh(u) ≡ exp(2u)− 1
exp(2u) + 1

(2.13)

and the logistic function in the output layer can be replaced by any arbitrary

function or removed. All these models, even with a single hidden layer,

can approximate arbitrary well any Borel-measurable function with com-

pact support and range within the range of the output activation function

(Cybenko, 1989; Hornik et al., 1989). This makes multi-layer perceptron well

suited for essentially arbitrary classification or regression tasks. Furthermore,

the number of output units can be increased in order to perform multiclass

classification or vector regression.

The general form of the multi-layer perceptron with l hidden layers is:

hregr(x, Θ(1), . . . , Θ(L+1)) ≡ a(l+1)
1:

where a(0) = x,

and ∀j = 1 . . . l + 1, a(j)
0 = 1,

a(j)
1: = π(j)

(
Θ(j) · a(j−1)

)
.

(2.14)

MLP training In order to train a multi-layer perceptron, the main approach

is to consider the number of hidden layers and the number of units in each

hidden layer as hyper-parameters, choose a loss function and optionally a

regularization function, and minimize the resulting cost function.

For instance, using the cross-entropy loss and L2-regularization, we obtain:

∗
θ = argmin

θ

− 1
m

m

∑
i=1

[
y(i) log

(
hregr(x(i), θ)

)
+
(

1− y(i)
)

log
(

1− hregr(x(i), θ)
)]

+

+
λ

2
‖θ1:‖2

(2.15)

4Any monotonically increasing function π : R → R such that limu→− inf π(u) = −c and

limu→inf π(u) = c, for some c > 0.
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where hregr is defined as in eq. 2.14 and the parameter vector

θ ≡
(

Θ(1), . . . , Θ(l+1)
)

is the concatenation of the parameter matrices

for each layer of the network.

Computing the global optimum of this type of problems is NP-hard even

for very simple network architectures (Blum and Rivest, 1992; Orponen,

1994), however, since the cost function is differentiable, local optima can

be computed efficiently using gradient-based techniques, notably stochastic

gradient descent, conjugate gradient or L-BFGS.

In order to apply these methods we need a procedure to compute gradient of

the (non-regularized) per-example cost:

C(i)(θ) ≡ L(hregr(x(i), θ), y(i)) (2.16)

This can be accomplished using the error back-propagation algorithm (Bryson

and Ho, 1969; Rummelhart, 1986). Adding to d
dθ C(i)(θ) the contribution of

the regularization function (which is 2λ
m θ for L2-regularization) yields the

regularized per-example gradient, which can be used directly for stochastic

gradient descent. Alternatively, these terms can be summed over a mini-

batch of examples or over the whole training set to be used with arbitrary

unconstrained optimization methods.

Recurrent neural networks

Standard multi-layer perceptrons compute functional mappings between

fixed-dimensional input spaces to fixed-dimensional output spaces. For

some tasks, the input, the output or both are sequences of events of arbitrary

length and their relation can’t be accurately decomposed to a mapping

between individual events. Typical examples arise in NLP, since inputs are

often sentences represented as sequence of words or sounds, and outputs

are either global properties of the sentence (e.g. language model probability,

topic, sentiment, etc.) or local properties that are defined for each word but

nevertheless depend on a context (e.g. part-of-speech tags, named entities,

syntactic chunks, etc.).

In some cases, it is possible to transform the task into a fixed-dimensional

classification or regression problem by turning the input sequence into an
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Rn vector using cleverly engineered feature functions for global property

prediction, or considering only finite windows of events for local property

prediction. However, this approach isn’t necessarily the best.

In the general case, we want to model a stochastic process between

sequences p(Y(1), . . . , Y(k)|X(1), . . . , X(k)), where the sequence length k

varies for each example.

A key observation to be made is that many realistic processes can be assumed

to have a Markov property w.r.t. a state v(t) that evolves over time:

∀1 ≤ t ≤ k, p(Y(t) = y(t)|Y(1 : t : k) = y(1 : t : k), X(1 : k) = x(1 : k)) =

= p(Y(t) = y(t)|V(t) = v(t))

∀1 ≤ t ≤ k, p(V(t) = v(t)|V(1 : t : k) = v(1 : t : k), X(1 : k) = x(1 : k)) =

= p(V(t) = v(t)|V(t− 1) = v(t− 1), X(t) = x(t)).
(2.17)

that is, the output at any time depends only on the current state, which in

turn depends only on the current input and the previous state.

If the state is finitely-dimensional, the original infinitely-dimensional model

can be decomposed in the finitely-dimensional models for p(Y(t)|V(t)) and

p(V(t)|V(t− 1), X(t)) (and p(V(0)) if the initial state is not known a priori).

Recurrent neural networks (RNN) are networks similar to MLPs but with

feedback connections between the units. These feedback connections main-

tain a state, which is initialized to some default value and then evolves over

time.

A typical model of RNN has a single hidden layer with feedback connections

limited to hidden units:

hregr(t, x(1, . . . , t), Θ(1), θ(2), ΘREC) ≡ π(2)
(

θ
(2)
0 + θ

(2)
1: · v(t)

)
where v(τ) =

{
0⊗s if τ = 0

π(1)(Θ(1) · x(τ) + ΘREC · v(τ − 1)) otherwise
(2.18)

where the ΘREC ∈ Rs×s is the matrix of parameters for the feedback

connections.

More generally, we can have multiple hidden layers and feedback connection

may go from any non-input layer to the same layer or to any previous non-



2.1 Machine learning 21

input layer. Alternatively, we can view an RNN just as a directed graph of

units, each with an associated state variable maintaining its activation value,

without making a distinction between forward and feedback connections.

Due to an obvious mapping from sequential logic circuits, it’s easy to

show that RNNs can represent arbitrary finite-state machines.

RNNs are dynamical systems which can exhibit various regimes, including

chaotic, periodic or "quasiperiodic" behaviors. Under free evolution 5 their

phase space (state space) can have multiple attractors of various types.

In order to train an RNN we need a training set of examples of the form

(x(i)(1), . . . , x(i)(k(i)), y(i)(1), . . . , y(i)(k(i))) if we are doing local property

prediction or (x(i)(1), . . . , x(i)(k(i)), y(i)) if we are doing global property pre-

diction 6, a loss function and an optional regularization function. From these

elements, we can formulate the training problem as a usual unconstrained

optimization problem.

For instance, for global property prediction with cross-entropy loss and L2-

regularization:

∗
θ = argmin

θ

− 1
m

m

∑
i=1

[
y(i) log

(
hregr(t, x(i)(1, . . . , k(i)), θ)

)
+
(

1− y(i)
)

log
(

1− hregr(t, x(i), θ)
)]

+

+
λ

2
‖θ1:‖2

(2.19)

Solving (to a local optimum) this problem with gradient-based algorithms

such as stochastic gradient descent requires a procedure to compute the

gradient.

Note that, for any choice of parameters θ and input sequence x(1, . . . , k(i)),

we can compute the output z(t) at time t by "unfolding" the RNN into a feed-

forward MLP whose depth depends on t.

Specifically, when there is a single hidden layer with feedback connection

5the behavior under an input sequence of constant null vectors
6In the RNN literature, global property prediction and local property prediction are

sometimes called global transduction and local transduction, respectively. In this document we

do not use this terminology to avoid confusion with transductive learning.
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confined to it, we can write:

z(t) = π(2)
(

Θ(2) · a(t)
)

where a(0) = 0⊗s,

and ∀j = 1 . . . t, a(j)
0 = 1,

a(j)
1: = π(1)

(
Θ(1) · x(j) + ΘREC · a(j−1)

)
.

(2.20)

This is a MLP with t hidden layers, all with the same number of units and

identical parameters, and with inputs that skip layers (the x(t) input goes

directly into the t-th hidden layer, skipping over the previous ones). Thus,

we can leverage the error backpropagation algorithm for MLPs to compute

the per-example gradient terms, and therefore the total gradient of the cost

function. This technique is known as backpropagation through time (Rumelhart

et al., 1985).

Other techniques based on the extended Kalman filter 7 also exist (Jaeger, 2002).

In practice, the applicability of these techniques is limited by the fact the

cost functions tend to have very irregular landscapes, especially when the

length of input sequences is large. Gradient based techniques may get stuck

at bad local minima or saddle points (the vanishing gradient problem). Online

algorithms such as stochastic gradient descent or the extended Kalman filter

method may fail to converge or even diverge (the exploding gradient problem).

For a detailed discussion of these issues, and approaches to mitigate them,

see (Bengio et al., 1994; Jaeger, 2002; Pascanu et al., 2012).

Despite these issues, RNNs have been successfully applied in a variety of

application domains, including natural language processing for tasks such as

language model probability estimation (Mikolov and Zweig, 2012), semantic

analysis (Mikolov et al., 2013b) and machine translation (Auli et al., 2013).

Echo state networks

The Echo state property Among the various regimes that RNNs can exhibit,

one of particular interest is the regime where, as time passes, the system

7A general Bayesian method to estimate the hidden state of stochastic non-linear

dynamical systems (Jazwinski, 1970; Sorenson, 1960).
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state tends to become less and less dependent on the initial state. Given

two different input sequences which share a suffix, the corresponding state

trajectories, and thus outputs will become less and less distinguishable as the

length of this shared suffix increases. Formally, let x(1, . . . ) and x′(1, . . . ) be

two infinite input sequences such that ∃ts : ∀t ≥ ts, x(t) = x′(t). Then this

"fading memory" regime is defined as:

lim
t→inf

∥∥hreg(t, x, θ)− hreg(t, x′, θ)
∥∥ = 0 (2.21)

If this occurs for any possible choice of pairs of input sequences with a shared

suffix, the RNN is said to have the echo state property (ESP) (Jaeger, 2001).

Equivalently, let ĥ(x, v, θ) be the function that computes the output of the

network given the infinite sequence x(1, . . . ) and the initial state v, then the

echo state property can be defined as:

∀sequences x, ∀states v, v′, lim
t→inf

∥∥∥ĥ(x, v, θ)− ĥ(x, v′, θ)
∥∥∥ = 0 (2.22)

that is, if we fix an input sequence and start the system from an arbitrary

initial state, it exhibit an attractor dynamic, with a basis of attraction encom-

passing all the state space. Furthermore, if the input sequence converges, the

system state also converges.

While the ESP prevents the network from representing arbitrary compu-

tations, it is nevertheless a often desirable condition, because it models many

realistic processes which tend to operate in a steady-state regime, where

dependencies from the past eventually fade away, as it is typically the case

in local property prediction tasks. Moreover, the ESP makes the network

intrinsically stable, avoiding divergences and chaotic behavior during both

prediction and training.

If an RNN has a single hidden layer which contains all feedback connec-

tions, and with hidden units with a scalar, differentiable squashing activation

function π̂ : R → R, the presence of the ESP depends on the feedback

parameter matrix ΘREC.

A necessary condition for the ESP is that the spectral radius 8 of ΘREC is less

8the absolute value of the eigenvalue with the largest absolute value.
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than the inverse of the Lipschitz constant 9 of the activation function:

ρ(ΘREC) < 1/C (2.23)

where ρ()̇ denotes the spectral radius and C the Lipschitz constant of π̂. For

the logistic sigmoid, C = 1/4, while for the hyperbolic tangent sigmoid C =

1.

By Banach fixed point theorem, a sufficient condition for the ESP is that any

norm (Euclidean or otherwise) of the recurrent matrix is less than 1/C:

‖ΘREC‖∗ < 1/C (2.24)

This condition also ensures that convergence to the attractor is exponentially

fast:

‖v(t)− v′(t)‖∗ < σt · ‖v(0)− v′(0)‖∗ (2.25)

where the contractivity hyperparameter σ = C‖ΘREC‖∗ < 1 is the Lipschitz

constant of the whole state transition function of the network. The smaller the

value of σ, the faster the network memory fades, making its behavior more

local. Conversely, the larger it is, the richer the dynamics of the network,

making its behavior more global.

If the process we are trying to model has known a characteristic time scale τ,

we may want to set σ ≈ exp(− 1
τ ). In practice some rounds of model selection

are usually performed to determine an appropriate value (Gallicchio and

Micheli, 2011a).

Random initialization Once we have chosen the hyperparameters s and σ and

the type of hidden activation function (usually tanh), a simple way to obtain

an echo state network is to first randomly initialize ΘREC with small values

(e.g. by sampling them from the uniform distribution between [−1, 1] or

the standard normal distribution). Additional constraints, to enforce sparsity

(which reduces computational complexity), or some special connectivity

pattern, can be included.

9the smallest c such that ∀u, u′, ‖π(u)−π(u′)‖ ≤ c‖u− u′‖. For a differentiable function

R → R, this corresponds to the supremum of the absolute value of the derivative.
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Then ΘREC is rescaled according to some norm (usually L2) to obtain the

desired σ:

ThetaREC ← ThetaREC · σ

C‖ΘREC‖∗
(2.26)

as long as σ < 1 this guarantees the ESP. Alternatively we may rescale

according to the spectral radius, which, while yielding only a necessary

condition on the ESP, often works well in practice for large values of σ.

The input-to-hidden Θ(1) parameter matrix can be generated by randomly

sampling small values (e.g. with standard deviation≈ 0.1− 0.01 for properly

normalized input variables). If needed, the hidden-to-output matrix Θ(2) can

be initialized in a similar way.

We can use these parameters as the starting point for the local search

gradient-based algorithms described in the previous section. Combining this

initialization with regularization (Pascanu et al., 2012), or with the explicit

rescaling of the ΘREC to preserve the ESP at each step of the training

algorithm(Palangi et al., 2013), enables effective training with little or no

probability of divergence or chaotic behavior.

Alternatively, we can use these parameters directly for the reservoir computing

approach.

Echo state networks While the ESP helps RNN training algorithms by pre-

venting the exploding gradient problem, convergence might be slow due

to the vanishing gradient problem. Moreover, it has been observed that

training algorithms mostly modify the parameters in the hidden-to-output

layer matrix leaving the input-to-hidden and the recurrent matrix relatively

unchanged (Schiller and Steil, 2005).

Therefore, training all the parameters of a RNN with the ESP, might not be

necessarily worth its computational cost. In fact, restricting training to the

parameters of the output layer can be often sufficient to obtain good, even

state of the art in some cases, performances.

An Echo State Network (ESN) (Jaeger, 2002; Jaeger and Haas, 2004) is a

RNN with one hidden layer, where only the hidden-to-output parameters are

subject to training, while the input-to-hidden and the recurrent hidden-to-
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hidden parameters are randomly generated at the beginning of the training

process and left untouched.

The hidden units, with their randomly initialized recurrent connections and

input connections are known as the reservoir of the network, since they

contain a large amount of rich non-linear dynamics, which can be tapped into

by the output layer (known as the readout of the network). This is effectively a

generalized linear model applied on top a fixed, randomly generated, highly

non-linear feature mapping of the input. Since generalized linear models

can be trained very efficiently using the methods described in the previous

section (e.g. perceptron, logistic regression, linear SVM, etc.) this approach is

orders of magnitude faster than full RNN training.

Training is typically performed as following:

• Choose the type of hidden activation function, the number of hidden

units s, the contraction coefficient σ and and input feature scaling factor

η.

• Sample the elements of the input-to-hidden matrix Θ(1) and the re-

current matrix ΘREC from uniform distributions over [−η, η] and over

[−1, 1], respectively.

• Scale the recurrent matrix ΘREC by σ
C‖ΘREC‖2

.

• For each training sequence i, initialize the hidden units in the all-zero

state and pass the input vectors x(i)(t) through the reservoir, recording

the sequence of hidden state vectors (for local property prediction) or

the last hidden state vector (for global property prediction).

• Compute the hidden-to-output matrix Θ(2) by training a linear model

on the recorded hidden state vectors and the original output reference

labels. This step can be interleaved with the previous one if an online

algorithm (e.g. stochastic gradient descent) is used.

It might be counterintuitive that an untrained random mapping can still

yield useful features that the generalized linear output layer can exploit. The

ESP property plays a role in this regard, by making sure that the reservoir



2.1 Machine learning 27

state always "follows" the input, and in particular by preventing chaotic

dynamics which would quickly turn the state into useless pseudo-random

noise.

ESN have been successfully applied to various prediction tasks with se-

quential inputs, including speech recognition (Triefenbach et al., 2010) and

language modeling (Rachez and Hagiwara, 2012).

Graph echo state networks

The echo state network approach has been extended to structured tasks

where the input data structures are trees (Gallicchio and Micheli, 2013) and

arbitrary graphs (Gallicchio and Micheli, 2010; Gallicchio, 2011; Gallicchio

and Micheli, 2011c). In this document we will describe the graph version of

ESN which have been used in this thesis work.

In the simplest case of unlabeled, undirected graphs, let the input be:

x ≡
(

Vx, Ex, x(1), . . . , x(kx)

)
(2.27)

where Vx = 1, . . . , kx is a finite set of vertices, Ex is a set of edges and for

each vertex j, x(j) ∈ Rn is a fixed-dimensional vector of input features.

In a global property prediction task we want to perform classification or

regression computing an output label for the whole input graph, while in

a local property prediction task we want to compute an output label for each

of its vertices.

The model Consider a local (q-dimensional) property prediction task. If

the graph topology Ex did not carry any significant information, we could

just process each vertex independently using a fixed-dimensional machine

learning model, such as a MLP with a single hidden layer of s units and q

output units. We can view all these instances of the same MLP model as a

total per-example MLP model with kxn input units, kxs hidden units and kxq

output units.

Obviously, we are interested to the case where the graph topology does carry

significant information, and we want to incorporate this information in the

model. A way of doing so is to add feedback connections between the hidden
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layers of the per-vertex neural networks that comprise the total per-example

network. Specifically, for each pair of neighboring nodes (j, j′) ∈ Ex, we add

feedback connections from the hidden units for vertex j to those for vertex j′

(and viceversa), parametrized by a matrix ΘEDGE ∈ Rs×s independent of the

particular edge.

The end result is a recurrent neural network customized for the specific

example x, where the input-to-hidden Θ̂(1) ∈ Rkx(n+1)×kxs and hidden-

to-output Θ̂(2) ∈ Rkxs×kxq parameter matrices are just those of the MLP

vertically replicated kx times, and the feedback connection matrix Θ̂REC ∈
Rkxs×kxs is the block matrix:

Θ̂REC = Ax ⊗ΘEDGE (2.28)

where Ax is the adjacency matrix of the graph and ⊗ denotes the Kronecker

product.

Note that while the size of the RNN varies with the size of the input graph,

the number of free parameters is fixed.

We are interested in computing a function, while in general an RNN is a

dynamical system whose output varies over time. However, if we choose the

parameters so that the network has the echo state property, then we can run

it while keeping the input vectors fixed and it will converge, exponentially

fast, to a stable state and hence a stable output which we can consider as the

prediction of our model.

Due to the block structure of the recurrent matrix Θ̂REC, if for all the

possible inputs the graph has a bounded maximum degree D, the echo

state property can be characterized in terms of the properties of edge matrix

ΘEDGE.

Specifically, a sufficient condition(Gallicchio and Micheli, 2010) is σ < 1,

where the contractivity hyper-parameter σ is defined as:

σ = C · D · ‖ΘEDGE‖∗ (2.29)

for any norm ‖ · ‖∗, where C denotes the Lipschitz constant of the hidden

unit activation function.
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The type of processes that this model can represent can be thought as

a generalization of the fading-memory processes represented by ESNs for

sequences: In a sequence-ESN the output at any given time depends on the

current and past inputs, with the dependence from the past fading away with

time. In a graph-ESN for local property prediction, the output at any given

vertex depends on its input and the inputs on the nearby vertices, with the

dependence fading away with distance on the graph. For a more detailed

discussion, see (Gallicchio and Micheli, 2010; Gallicchio, 2011; Gallicchio and

Micheli, 2011c).

Training Similarly to sequence-RNNs, graph-RNNs can trained by adapting

all the parameters, using gradient-based optimization methods, or in a

reservoir computing approach, training only the output layer parameters.

The reservoir computing approach, GraphESN (Gallicchio and Micheli,

2010), performs the random initialization and then adapts the hidden-to-

output parameters using any generalized linear model technique.

Alternatively, the parameters of the recurrent layer can be adapted using

GraphNN: a backpropagation-based full training method is introduced in

(Scarselli et al., 2009). The parameters are randomly initialized satisfying

the ESP, and then they are trained using local search. Given a training

example (x(i), y(i)) and a current parameter vector θ, the model is run on

x(i) until convergence, then the per-example gradient is computed as in

backpropagation-through-time and combined with a regularization gradient

term designed to penalize violations of the ESP. This gradient is used to

perform stochastic gradient descent.

This approach has been successfully applied to a large variety of tasks,

including NLP (Muratore et al., 2010; Chau et al., 2009).

Extensions So far we have only discussed local property prediction.

In some learning tasks, the input graph always have some distinguished

"super-root" vertex of special significance. In these cases global property pre-

diction can be performed just by considering the output at this distinguished

vertex.
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In other tasks, where no appropriate special vertex, global property pre-

diction can be performed by combining the kx per-vertex state vectors into

a single, fixed-dimensional, vector which is then feed to the output layer.

Combination can be performed simply by summing, averaging, or by more

advanced adaptive methods (Gallicchio and Micheli, 2011b).

The approach can be also extended to other types of input graphs: in

directed graphs, incoming and outgoing edges can be distinguished by

using two different feedback parameter matrices: ΘEDGEIN and ΘEDGEOUT .

Similarly, we can further distinguish the edges according to discrete labels

and/or positions using additional matrices.

All these feedback matrices are randomly initialized and the condition on

the contractivity hyper-parameter sufficient for the ESP is guaranteed by

constraining their maximum norm: σ < 1, where:

σ = C · D ·max
ψ
‖ΘEDGEψ‖∗ (2.30)

2.1.4 Generative models

The machine learning methods described so far are used for training dis-

criminative models: given a distinction between input variables X and output

variables Y, they represent hypotheses in the form h(x, θ) = argmaxY P(Y =

y|X = x) or hregr,y = P(Y = y|X = x), where the parameter θ is learned from

the training data.

Generative models, on the other hand, represent the joint probability distri-

bution of all variables X without making a distinction between input and

output: h(x, θ) = P(X = x).

In order to make the model computationally tractable, the joint probabil-

ity distribution is assumed to be factorizable into a product of unconditional

and conditional probability distributions, each involving one or a few vari-

ables and controlled by some parameters.

For instance:

P(X1, X2, X3, X4) = P(X1) · P(X2) · P(X3|X1) · P(X4|X2, X3) (2.31)
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Various classes of generative model exist, differing in the type of variables

they admit, the choice of the elementary probability distribution and the

way factorization is performed. Typical choices are graphical models (which

represent the dependence and independence assumptions according to some

graph) such as Bayesian networks (Pearl, 1985) (notably including hidden

Markov models (Stratonovich, 1960)) and Markov random fields (Moussouris,

1974). A comprehensive discussion of these models is beyond the scope of

this document. In this section we will briefly describe the general principles

of generative training.

Assume that we have already chosen the general structure of the model

representation, with its choice of elementary probability distributions, factor-

ization and optional hidden variables (unobservable random variables) 10.

Given a training set T =
(

x(1), . . . , x(m)
)

of i.i.d. examples, we condition the

joint probability distribution on the parameters and maximize the empirical

likelihood of the parameters:

∗
θ = argmax

θ

m

∏
i=1

P(X = x(i)|Θ = θ) =

= argmax
θ

m

∑
i=1

log(P(X = x(i)|Θ = θ))

(2.32)

Alternatively we may perform a maximum a posteriori estimation of the

parameters w.r.t. a prior distribution P(Θ).

If there are no hidden variables, performing this estimation is generally

relatively easy: if the elementary distributions the model factors into are in

the exponential family, the ML or MAP (w.r.t. conjugate priors) estimate of

their parameters can be computed from sample statistics (counts, means,

sample variances, etc.) of their variables.

Alternatively, if the optimization objective is continuous and differentiable

w.r.t. the parameters, gradient-based optimization techniques can be used

to compute a local optimum, which is also the global optimum if the

optimization objective is concave.

10This structure can be learned as well from the data, at least in principle, however doing

so is generally very computationally expensive and requires a large amount of data.
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If the model include hidden variables Z in addition to the observable

variables X, the ML estimation problem involves the maximization of the

empirical marginal likelihood w.r.t. the hidden variables:

∗
θ = argmax

θ

m

∏
i=1

∑
z∈Z

P(X = x(i), Z = z|Θ = θ) =

= argmax
θ

m

∑
i=1

log(∑
z∈Z

P(X = x(i), Z = z|Θ = θ))

(2.33)

Unless the model has some special structure or the hidden variables take

values in a small finite set, an explicit computation of the marginal per-

example likelihoods P(X = x(i), Z = z|Θ = θ) is unfeasible, hence some

other approach is needed.

The expectation-maximization (EM) method (Dempster et al., 1977) is a

class of iterative algorithms to efficiently solve this training problem without

explicitly computing the marginal likelihoods.

Approximation techniques which make use of randomized sampling, in

particular Markov chain Monte Carlo methods such as Gibbs sampling (Geman

and Geman, 1984) and the Metropolis-Hastings algorithm (Hastings, 1970) can

be used in alternative to the EM method (by directly sampling the marginal

log-likelihoods) or in conjunction to it (by sampling the Q(t)(θ) functions).

2.2 Natural language processing

Natural language processing is the discipline concerning techniques that allow

computers to extract and manipulate information available from written or

spoken natural human language.

Traditional information technology requires data to be presented to com-

puter systems encoded in strictly syntactically precise formats: data that does

not come from sensors performing physical measurements must be entered

by human operators using specifically designed artificial languages or form-

based interfaces. Even with extensive human intervention, representing

general semantic information, such as the plot of a story or the sequence of

events in a newspaper article, has proven to be very challenging.
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From the beginning of the electronic computer era, in the 1950s, computer

scientists sought to automate the processing of natural language, founding

what would become one of the main research fields of artificial intelligence.

In fact, one of the first definitions of artificial intelligence, the Turing Test,

involved the ability of a machine to impersonate an human in a textual

conversation.

Inspired by mathematical linguistics and early cognitivist psychology,

which tended to view human thought as an essentially symbolic manipula-

tion process driven by syntactic rules, the first attempts at natural language

processing were aimed at modeling the syntax and semantics of natural

languages in terms of formal grammars, and constructing rule-based expert

systems to manipulate such symbolic information. In particular, research

initially focused on automatic translation from Russian to English.

Despite initial high hopes, such approaches proved essentially fruitless:

while some toy systems, restricted to very small and unambiguous vocabu-

lary and simple syntax, were successfully demonstrated, attempts to extend

them to real world language use cases failed. It turned out that natural

language, and the thought processes associated with its production, are too

complex and nuanced to be captured by a simple set of hand-coded syntactic

rules.

Progress in natural language processing remained limited until statistical

approaches started to surface in the 1980s.

Built on both theoretical advances in machine learning techniques and

increased computational resources that allow to manage large data sets,

and also inspired by the shift in linguistics and psychology from strict

symbolic computationalism towards connectionism, statistical natural language

processing consists in analyzing large sets of real world language samples

(known as linguistic corpora), in order to automatically derive probabilistic

models suitable for various processing tasks.

Rather than modeling language and language manipulation tasks using

"hard", discrete symbolic manipulation rules, statistical methods typically

yield "soft" models involving probabilities or some other form multi-valued

confidence measure. In particular, modern approaches tend to be based on
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Bayesian inference, which has both strong theoretical underpinnings and

extensive practical success records.

Natural language processing has a large number of applications, includ-

ing:

• Speech recognition: transcribe spoken language into written text, or some

other representation suitable for input to other NLP tasks. Speech is

generally more difficult to process than text, because of phonetic issues

(noise, voice differences between speakers) and the fact that spoken

language is even less syntactically precise than written text (it may

contain fillers, repetitions, aborted or "repaired" sentences, etc.)

• Semantic analysis: determine the "meaning" of a text or speech. Extract

the high-level conceptual information, converting it into a form which

can be used to automate or aid decision making. It involves a number of

different tasks, such grouping sentences into speech acts and classifying

them by function in the discourse (question, claim, command, etc.)

and their relationship, determining the general topic of the discourse,

identifying specific conceptual entities and classifying them by their

semantic role and their relationship, and so on. Open-ended, domain-

independent semantic analysis of is extremely difficult for a machine,

as it would require it to possess human commonsense knowledge

and to follow human thought processes. For this reason, the task

is usually limited to application-specific domains, where the input

text is assumed to loosely adhere to some known format and there

are a limited number of well defined conceptual entities that can be

recognized, usually given as a formal ontology.

• Sentiment analysis: determine the opinions of speakers on certain top-

ics. Related to semantic analysis, though more focused on detecting

feelings and emotions rather than conceptual information. It can be

targeted at analyzing the sentiments of a single speaker in a single

interaction (e.g. a phone call from a customer to a product support

call center) or at summarizing the general public opinion on a product,
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organization or political issue or candidate from user-generated content

on blogs and online social networks.

• Natural language generation: report to the user the output of a computa-

tion (an NLP task, database query or some other process) as natural text

or speech. Common applications involve data-to-text transformations,

such as the generation of weather forecasts or summaries of financial

data, or text-to-text transformations, such as automatic text summariza-

tion, syntactic simplification to make text more accessible to young or

non-native speakers, or, more experimentally, changing the tone of the

text, and automatically generating jokes and puns.

• Natural language user interface: allow the user to control the functionality

of a complex computer system through spoken or textual commands.

Rather than forcing the user to learn a specific set of commands and

combinators, as when interacting with an UNIX shell or a traditional

programming environment, the goal is to accept instructions in a form

as "natural" as possible, ideally as if the user was interacting with

another human. Often, the system is also required to produce output

in natural language form, hence this task involves a combination of

semantic analysis, natural language generation, and possibly speech

recognition and speech generation.

• Machine translation: Translate the text or speech in a given natural

language to a different natural language. The translation should be

both accurate (faithfully preserve the information, sentiment and tone

of the source text or speech) and fluent (appear syntactically correct

and idiomatic to a native speaker of the target language). Machine

translation of written text is the focus of this PhD thesis.

These applications are based on several common low-level processing

techniques. In the next section, we will review these techniques, with

particular focus on those that have been used in this work.
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2.2.1 Syntactic segmentation

The initial stages of text processing usually involves breaking the incoming

stream of characters into its basic constituents and classify them according

to their syntactic function. While the exact number and type of these stages

varies from system to system, a text pre-processing pipeline is typically

organized according to the following structure:

Sentence splitting

Sentences are the smallest linguistic units that are essentially syntactically

self-contained. Splitting the input text into sentences is usually the first stage

of any NLP system, since, at least at syntactical level, they can be processed

independently. In European languages, sentences are usually delimited by

specific punctuation characters (dot, question mark, exclamation mark, etc.),

with some exceptions. Some other languages lack punctuation, making sen-

tence splitting more difficult. Typical state of the art modules for European

languages, like the Punkt Tokenizer, are based on a technique involving

unsupervised learning from an unannotated corpus (Strunk et al., 2006) the

system attempts to detect whether a dot in the text is used to denote a

sentence boundary or an abbreviation by using a learned a dictionary of

words which are likely abbreviations (detected by their brevity, presence of

internal dots, etc.), and also by taking in consideration the word on the right

of the dot (whether it is capitalized, or it appears frequently after the word

on the left in the training corpus).

Word tokenization, lemmatization, morpheme extraction

Sentences can be further decomposed in words, which are defined as the

smallest units of meaning that can be uttered or written in isolation. Word

segmentation is a necessary pre-processing step for most other stages, since

they typically operate at word level. In languages written using spaces,

or equivalent punctuation characters, word segmentation is relatively easy.

However, in some languages, such as German, long compound words need
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to be broken down, similarly, in languages such as Turkish, single words can

be composed by a large number of morphemes (smallest units of meaning)

that should be considered separately. By contrast, in languages like Italian,

short sequences of words that appear in a fixed form and have a specific

meaning, should be aggregated as single words. Detecting word boundaries

in spoken language is much more difficult, as inter-word pauses and even

entire syllables are routinely dropped in normal speech.

2.2.2 Tagging

In NLP applications, once the input text or speech has been broken down

into sentences and words, we often want to classify each word by assigning

it a tag: a label in a small, discrete set.

One of the most typical tagging task is part of speech (POS) tagging: a very

basic form of syntactic analysis where each word is labeled according to

coarse syntactic function, such as verb, noun, adjective, etc. POS tagging

is typically used as a preprocessing step for more sophisticated syntactic

analysis (parsing) or syntax-based machine translation.

Other tagging tasks include named entity recognition (the identification of

names of people, places, organizations, or dates and numerical values,

etc.), "shallow parsing" (breaking the sentence into syntactic "chunks": non-

overlapping consecutive strings of words with a coherent syntactic function

such as "noun phrase", "verb phrase", etc.), super-sense tagging (classifying

words according to coarse semantic categories), and so on.

In general, in all tagging tasks, the tag of each word depends not only on

the specific word but also on a context of nearby words, hence, in machine

learning terminology, tagging is a structured prediction problem (section 2.1.2).

However, compared to other structured prediction problems that occur in

NLP, such as parsing and machine translation, tagging is often much simpler.

By making reasonable independence assumptions, tagging can be reformu-

lated as a multi-class classification problem over small windows of consecutive

words (n-grams), or as a structured prediction problem over models with

optimal substructure properties (Bellman, 1957), such as hidden Markov models
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(Stratonovich, 1960) or conditional random fields (Lafferty et al., 2001) where

both prediction and training can be performed efficiently.

2.3 Parsing

In addition to word-level part of speech tags and shallow syntactic chunks,

natural language has a recursive syntax, which controls how words or

phrases that be quite distant in a sentence correlate with each other and

combine to convey meaning.

The task of discovering the syntactic relationships in a sentence is known

as parsing. Parsing is usually performed after POS tagging and possibly

syntactic chunking, and produces a parse graph, typically a tree or a forest.

The form of the output being produced depends on the syntactic model

(grammar) that we use. The most popular types of grammar are generative

grammars, which produce constituency parses, and dependency grammars, which

produce dependency parses.

2.3.1 Constituency parsing

Phrase structure grammars

Generative grammars (Chomsky, 1957) attempt to model the thought pro-

cesses of a speaker producing a sentence as the iterative application of

symbolic computational rules.

Given a finite alphabet A of symbols, consisting of terminals W (the words

in the lexicon of the language) and other symbols known as non-terminals V,

each rule lhs ::= rhs specifies a (non-empty) precondition string lhs ∈ A∗ and

a postcondition string rhs ∈ A∗.

The alphabet A, a finite set of rules R and a distinguished non-terminal start

symbol S ∈ V define a phrase structure grammar G.

Probabilistic context-free grammars (PCFG), also known as stochastic context-

free grammars (SCFG), are a type of phrase grammar where each rule has

precondition consisting of exactly one non-terminal and has an associated

probability, such that these probabilities add up to one over rules with the
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same precondition.

Sentence generation can be modeled as a stochastic process, where, starting

from a string consisting only of the start symbol, at each step a non-terminal

is selected and it is expanded by randomly and independently sampling a

rule with matching precondition according to its associated probability 11.

Therefore, given a sentence x and one of its admissible constituency trees y,

their joint probability P(y, x) according to the grammar G is just the product

of the probabilities of all the rules that appear in y, each taken with the

multiplicity of its instances.

In a PCFG, the derivation of a sentence from the start symbol can be

represented as an ordered tree of symbols, where the leaf vertices are labeled

by terminals and internal vertices are labeled by non-terminals, with the start

symbol at the root. Each internal vertex represents one application of a rule

which rewrote the non-terminal in its label with the labels of its children

vertices.

Each subtree in a derivation tree covers a contiguous substring of words in

the sentence, denoted as syntactic phrase. Therefore, the child-to-parent rela-

tion can be interpreted as a constituency relation between syntactic phrases:

each child phrase constitutes a part of its parent phrase.

For this reason, derivation trees are known as constituency trees.

We can estimate a PCFG from an annotated corpus and use it to parse any

sentence x by computing the admissible constituency
∗
y which maximizes

the joint probability P(y, x). This enables us to avoid the complexity of

manually designing a grammar and resolve the ambiguity of parsing by

using probabilities.

Given a sentence x, the statistical parsing task consists of finding the max-

imum likelihood constituency tree y which describes the generation of x

according to a context-free grammar G.

A discussion of model estimation techniques and the details of the

various parsing algorithms is beyond the scope of this document. It suffices

to note that, due to the independence assumptions in the generation process,

11we do not make stochastic assumptions about the order in which non-terminals are

expanded, since it does not influence the outcome of the process.
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Figure 2.3: Constituency tree for the sentence "The boy who came here yesterday,

reading his brand new bicycle, is tall.", statistically parsed with the DELPH-IN PET

parser (http://moin.delph-in.net/PetTop).

http://moin.delph-in.net/PetTop
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The boy who came here yesterday , riding his brand new bicycle , is tall .

Figure 2.4: Dependency tree for the sentence "The boy who came here yesterday,

reading his brand new bicycle, is tall.", labels not shown.

PCFG parsing retains the optimal substructure property of classical CFG

parsing which enables dynamic programming. In particular chart parsing

algorithms such as the Cocke-Younger-Kasami (CYK) algorithm (Cocke, 1969)

and the Earley algorithm (Earley, 1970) can be adapted to perform this task,

maintaining their asymptotic complexity (Charniak, 1997a,b; Stolcke, 1995).

While enabling efficient parsing, the stochastic independence assump-

tions of PCFGs can be often excessively strong, limiting the ability of the

parsing algorithms to resolve ambiguity in a linguistically meaningful way.

One way to relax this assumption is to lexicalize the grammar (Collins, 2003),

by decorating each non-terminal in a constituency tree with an head word: the

"most important" word on its underlying subtree.

2.3.2 Dependency parsing

Instead of modeling the syntax of a sentence in terms of syntactic con-

stituents, dependency grammars (Tesnière, 1959; Mel’čuk, 1988) attempt to

model the syntactic dependency relation between words.

Introduced by Lucien Tesnière in the 1950s, this theory of syntax views the

main verb of a sentence as the head: the most important word of the sentence,

with the main subject and object nouns or pronouns as its direct modifiers,

their adjectives and subordinate verbs as their own modifiers and so on,

resulting in a hierarchy of head-modifier dependency relationships between

words.

Formally, this can be described as a directed graph on the words of a

sentence, usually a tree rooted at the main verb (or a forest, if a sentence has
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multiple main verbs). The edges are often labeled by a dependency relation

tag (DEPREL) which describes the type of the syntactic relationship between

the pair of words it connects. If each subtree in the dependency graph covers

a contiguous substring of the sentence, the graph is defined as projective.

Dependency graphs represent information about a sentence which is in

some ways related and in other ways orthogonal to the information repre-

sented by constituency trees. Non-projective dependency trees, in particular,

may be more informative for languages, such as German, Italian or Czech,

which allow significant freedom in the order of words in a sentence, while

constituency trees, which are always projective, may be better suited for

languages with a substantially fixed word order, such as English.

The syntactic dependency relation often carries more semantic content than

the constituency relation, and for this reason it is widely used in semantic

NLP tasks such as named entity recognition, semantic role labeling and text

understanding.

Dependency relationships are also often relatively invariant between lan-

guages, which makes them interesting for syntax-based machine translation

(Fox, 2002; Hwa et al., 2005).

Dependency parsing is often performed using statistical discriminative

learning techniques.

Instead of building an explicit dependency grammar, the system directly

estimates a conditional probability model P(y|x) relating a sentence x to a

dependency graph y, which is maximized during parsing using a dynamic

programming, beam search or even greedy search approach.

In a global parser (Eisner, 1996; McDonald et al., 2005), a score F(y, x)

proportional to the logarithm of P(y|x) is computed, typically as a linear

combination of features f (y, x):

F(y, x) ≡ θT · f (y, x) (2.34)

where θ ∈ Rn is a parameter vector estimated from an annotated training

corpus and f (y, x) ∈ Rn is a feature vector depending on the sentence x and

the candidate parse graph y.

Other approaches, known as transition-based methods (Yamada and Mat-
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sumoto, 2003), model parsing as a formal automaton which recognizes the

sentence x, producing a parse graph y as a side effect of its state transitions.

By associating features to these transitions, linear, or even non-linear, scores

can be computed, enabling us to define parsing as a score maximization

problem.

In this thesis work, we extensively used the transition-based dependency

parser DeSR (Attardi, 2006).

2.4 Language modeling

NLP applications that generate natural language, such as speech recognition

or machine translation, have the requirement of fluency: the generated text

must be syntactically correct and idiomatic.

If the output has a relatively fixed form, and is generated by a limited

number of hand-coded rules, then acceptable fluency can be usually guar-

anteed by careful design of these rules. However, if the output is in free-

form and the system is trained by statistical methods, as most state of the art

speech recognition or machine translation system are, then there is the need

of a method to evaluate the fluency of arbitrary sentences.

A language model is a stochastic model that estimates the probability that

a speaker of some language will utter or write any given sentence. In terms

of Bayesian inference(Box and Tiao, 1992; Jaynes, 2003), this probability can be

interpreted as a prior over sentences. In addition to estimating the probability

of complete sentences, these models are also designed to provide estimates

for prefixes or arbitrary consecutive segments of sentences, in order to guide

the language generating components as they incrementally build sentences

by concatenating words or segments together.

The computation of a precise prior over sentences would require having

an accurate model of all the speaker’s mental processes that are involved

with conscious thought and language production. Of course, this is way

beyond the capabilities of any present machine, therefore actual systems

use estimations statistically inferred from large amounts of training text. The

rest of this section will describe the prevalent types of language models and
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estimation techniques that are relevant to this work.

2.4.1 N-gram language models

Given a sentence x of Lx words (x1, . . . , xLx) we want a model which allows

us to compute the unconditional probability P(x). Usually, we also want to

be able to compute the probability for arbitrary prefixes of a sentence P(x:j),

or, in applications such as syntax-based machine translation, the probability

of contiguous substrings12 P(xj:j′).

It can be observed that in any natural language the frequency of different

words varies greatly. For instance, in English, the most frequent word "the"

makes up about 6-7% of a typical training corpus, while some words are

very infrequent and may occur only once or twice even in very large training

corpora. In general, word frequencies appear to be distributed according to

a heavy-tailed probability distribution, known as Zipf’s law or Zeta probability

distribution (Zipf, 1935).

Since word frequencies vary so much, it makes sense to exploit them in

a language model: if a sentence has many rare words, we can tell that its

probability is likely low.

We can formalize this intuition by making a strong assumption of inde-

pendence between individual words, and hence model the probability of a

sentence (or a fragment of it) just as the product of its word probabilities:

P(x) =
Lx

∏
j=1

P1(xj) (2.35)

where P1(w) is a categorical probability distribution, estimated at maximum

likelihood using the empirical frequencies of word occurrence in a monolin-

gual training corpus:
∗

P1(w) =
c(w)

∑w′inW c(w′)
(2.36)

where W is the language lexicon and c(w) is the empirical count of word w.

This model is known as the unigram language model.

12assuming that sentences are always segmented at word boundaries
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Of course, the independence assumption of the unigram language model

is too strong: it would estimate the probability of all permutations of a given

sentence the same, even if obviously most permutations of realistic sentences

are gibberish that has virtually zero probability of being even produced by

an actual speaker.

In a natural language, words are strongly correlated to each others. While

some correlation occurs between distant words, and modeling it generally

requires syntax-aware methods, the strongest correlations occur at short

distance. We can model them by conditioning our word probability distri-

butions for each word on a window of nearby words.

Specifically, for some small order k > 2, we condition the word probability

on the k− 1 previous words:

P(x) =
Lx+1

∏
j=1

Pk(xj|xj−k+1:j−1) (2.37)

(note that we consider the sentence augmented by one special terminator

symbol "</s>" at index Lx + 1, and k − 1 padding symbols "<s>" at non-

positive indexes, which enable the model to take into account statistical

regularities that occur at the start and the end of sentences.)

The conditional word probability distributions are assumed to be categorical

probability distributions for each choice of the conditioning values.

This type of model belong to the class of discrete-time Markov chains (Dam-

erau, 1971; Markov, 1971).

In principle, we could estimate the parameters of these conditional

word probability distributions at maximum likelihood from the empirical

frequencies:
∗

Pk(w|w1, ,̇wk−1) =
c(w|w1, ,̇wk−1)

∑w′inW c(w′|w1, ,̇wk−1)
(2.38)

where c(w|w1, ,̇wk−1) is the number of times word w appears in the training

corpus preceded by the sequence of words w1, ,̇wk−1.

However, the distribution of the frequencies of these k-grams (sentence

fragments) is heavy-tailed much like the distribution of single words, and

in fact, the higher the order k, the more extreme this phenomenon becomes

(Egghe, 2000). There are |W|k k-th order possible n-grams, where the lexicon
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size |W| is in the order of 105 − 106, and we have to estimate a numerical

parameter for each of them. Even for k = 3, this exceeds the number of words

of any realistic training corpus: many n-grams will appear only once or twice

in the corpus, making the empirical frequency an unreliable estimator of the

underlying probability. Many more n-grams will not appear at all in the

training corpus, and therefore they will have a frequency equal to zero or

even undefined (with an empirical count ratio of 0/0).

In order to address this sparsity issue, we need more sophisticated models

and estimation techniques to assign a reasonable probability to n-gram which

occurred few times or none at all in the training corpus. A discussion of these

so-called "smoothing" techniques is beyond the scope of this document. The

Kneser-Ney (Kneser and Ney, 1995) and modified Kneser-Ney (Chen and

Goodman, 1999) methods which have become the state of the art techniques

for n-gram language model estimation.

In typical applications, n-gram orders between 3 and 5 are used, as anything

above that is considered too computational expensive and prone to overfit-

ting.

2.4.2 Neural language models

Although standard n-gram language models are very good at capturing very

localized linguistic phenomena, they do not scale well enough to accurately

model medium-distance (5 − 7 words) or long distance (sentence-wide)

correlations between words. In order to overcome these limitations, we can

use discriminative machine learning techniques with stronger generalization

performances, such as neural networks (section 2.1.3).

Multi-layer perceptron language models Using the same k-th order Markov

chain stochastic model of standard n-gram language models, we can mod-

ify the parametrization of the conditional word probability distribution

Pk(w|w1, ,̇wk−1), replacing the conditional categorical distribution with a

discriminative multiclass classification model with per-class probability out-

puts: a model that given a context of k − 1 consecutive words, computes a
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probability distribution for the next word.

Specifically, the model will have |W| real-valued outputs, one output yw

for each word w in the lexicon, and |W| · (k − 1) binary valued inputs,

corresponding to the context words each represented using the "one-hot"

encoding:

∀w′ ∈W, ∀j ∈ 1, . . . , k− 1, x̂w′,j =

{
1 if w′ = wj

0 otherwise
(2.39)

Multi-layer perceptron neural networks are a natural choice for this type

of problems, since they can be efficiently trained on large training sets (which

are normally available for language model training, since they are just plain

text corpora), they enable the many output units to share the same hidden

units, limiting the model complexity, and, using the multiple logistic softmax

(eq. 2.10) activation function in the output layer, they directly constrain the

outputs to be normalized probabilities.

In the original model proposed by Bengio et. al (Bengio et al., 2006),

there are two hidden layers, the first one with d · (k − 1) linear units 13, the

second one with s units with hyperbolic tangent activation, where d and s are

hyperparameters controlling the capacity of the model.

The input-to-first-hidden parameters are constrained so that, for each posi-

tion j in the context, the |W| inputs corresponding that position feed only the

d first-hidden units corresponding to the same position j, and the parameters

of these connections are independent from the position j:

Θ(1)
a,b =

{
ΘE

c,wj
if a = d · j and b = |W| · j + c

0 otherwise
(2.40)

note that there is no bias feature for this layer.

The matrix ΘE ∈ Rd×|W| is known as word embeddings matrix: for each word

w in the lexicon, the corresponding column is a d-dimensional continuous

representation of w.

13the linear hidden layer does not increase the effective depth of the network, but is

nevertheless used because it allows an useful parametrization.
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All the parameters of the model can be estimated using standard MLP

training techniques, minimizing cross-entropy loss with L2-regularization

using stochastic gradient descent.

In practice, for large lexicon size (> 105), prediction and especially

training can be computationally expensive due to the large number of output

units.

A number of techniques have been developed to reduce the time complexity

of these model by performing approximations during training (Schwenk

and Gauvain, 2005; Bengio and Senecal, 2008), or by modifying the output

layer to use hierarchical encoding (Morin and Bengio, 2005), which groups

words into hierarchical classes based on their frequencies, or by mapping

the problem to binary classification task (Mnih and Teh, 2012), where the

model takes both the target word w and its context w1, . . . , wk−1 as inputs

and computes the probability using a single output unit, estimating the

parameters using the noise contrastive method (Gutmann and Hyvärinen,

2010).

Once they are trained MLP language models can be used in most applica-

tions as a drop-in replacement for standard n-gram language model or they

can be used in combination with them, as they often have complementary

strengths and weaknesses.

Moreover, the word embedding vectors, computed as a side effect of the

training process, are themselves useful as features for various NLP tasks

(Turian et al., 2010; Mikolov et al., 2013a).

Recurrent neural network language models While MLP language models ex-

ploit the generalization power of neural networks to overcome the overfitting

and complexity issues of standard n-gram models, they are still limited by

the fact that they can only model word correlations up to a distance equal to

the order hyperparameter k.

Recurrent neural networks can be used overcome this limitation, allowing

to model correlation over theoretically arbitrary distances.

Mikolov et al. (Mikolov et al., 2010, 2013b), introduced a RNN model with

|W| binary inputs in the input layer, one for each word in the lexicon, a
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single hidden layer with feedback connections and |W|-dimensional output

layer of probability estimates.

Starting from a default initial state v(0), the network receives the words

of the sentence one at time, updating its internal state and computing a

probability distribution over the next word.

Training is performed using stochastic gradient descent with

backpropagation-through-time. The column of the input-to-hidden

parameters matrix can be interpreted as word embedding vectors.

RNN language models are usually more accurate in terms of empirical

likelihood that MLP language models, since they can model medium-

distance and long-distance correlations 14. However, they can’t be used as

drop-in replacements of n-gram or MLP language models in applications

such as speech recognition and machine translations, since their continuous

valued internal state can’t be easily processed by the dynamic programming

algorithms that are commonly used for solving these structured prediction

problems.

Specialized reranking algorithms which can make use of RNN language

models have been developed, such as (Auli et al., 2013).

2.4.3 Syntactic language models

Neural language model can capture linguistic phenomena that entail

medium distance and medium-long distance (up to about ten words)

correlations. Due to the recursive syntactic structure of natural language

sentences, however, this may not be enough to model all the relevant

linguistic phenomena.

For instance, in the sentence "The boy who came here yesterday, riding his

brand new bicycle, is tall.", the main verb "is" and its subject "boy" and

subjective complement "tall" are obviously strongly correlated: changing

one of them without appropriately changing the others can easily make

14but note that even when not explicitly enforced, these networks will typically have

the echo state property, which will cause their sensitivity to word correlations to drop off

exponentially with the distance.
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The boy who came here yesterday , riding his brand new bicycle , is tall .

Figure 2.5: A sentence with a possible (unlabeled) dependency parse tree. Note that

the main verb "is" and its subject "boy" are directly connected in the parse tree

despite the fact that they occur far from each other in the sentence.

the sentence nonsensical. But the language models described so far would

generally fail to appropriately model the long-distance correlation between

"boy" and "is tall".

If we are able to parse the sentence according to some syntactical model,

either a constituency grammar or a dependency grammar, these long-

distance correlations become rather short when considering the distance

on the parse graph. Syntactic analysis also produces a variety of other

information such as part-of-speech (POS) tags, dependency relation (DEPREL)

tags, lemmas, morphology, etc., which can be all used as features for a

machine learning model.

Statistical parsers generally produce a model score, which can be often

interpreted as a (log) probability. We could simply parse a sentence and

use the parser score as a language model probability. This approach how-

ever, does not produce good results when applied to machine translation

reranking tasks (Och et al., 2004; Post and Gildea, 2008; Carter and Monz,

2011), possibly because statistical parsers are trained on corpora consisting

entirely of substantially grammatical sentences, while the outputs of a

statistical machine translation system or a speech recognition system are

often ungrammatical, and therefore fall outside the input space the parser

was trained to process.

Instead of parsing the output of a generic SMT system with a conven-

tional parser, it may be better to use a string-to-tree (Shen et al., 2008,

2010; Zollmann and Venugopal, 2006; Galley et al., 2006) or tree-to-tree

(Nesson et al., 2006; DeNeefe and Knight, 2009; Smith and Eisner, 2006) SMT
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system which directly generates a parse graph for the target sentence while

computing it.

The language model probability computation can be formulated as a struc-

tured input probability regression problem, yielding a model which is either

used for reranking, or is incorporated directly into the SMT decoder.

Shen et al. (Shen et al., 2008, 2010), use a generative syntactic language

model for rooted dependency parse trees: the probability of a sentence is

decomposed in Markovian fashion in a product of categorically-distributed

word probabilities, each conditioned on a local context.

Collins et al. (Collins et al., 2005b) introduced a syntactic discriminative

language model based on these principles for constituency parse trees, which

is used for reranking in speech recognition tasks, which has been also

adapted (Carter and Monz, 2011) to machine translation reranking (Shen

et al., 2004).

Similar discriminative language models for dependency parse trees also

exist: (Lambert et al., 2013; Popel and Mareček, 2010) (building on earlier

work by Charniak (Charniak, 2001; Charniak et al., 2003)).

2.5 Statistical machine translation

Machine translation was one of the first research fields of computer science

to be investigated. The first public demonstration occurred in 1954 with

the Georgetown-IBM experiment (Hutchins, 2004), which consisted in the

translation of about sixty sentences from Russian to English. However,

the field really started to produce promising results only in the nineties,

with the introduction of statistical methods pioneered by IBM (Brown

et al., 1990, 1993) (although already suggested as early as 1949 by Weaver

(Weaver, 1955)). Rather than using hand-coded rules, a translation model is

learned from parallel corpora: large sets of texts with sentence-by-sentence

reference translations. In the simplest approaches, source sentences and their

reference translations are considered just as strings of words, and their

stochastic relations are estimated using statistical methods, without any

explicit modeling of syntax.
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Statistical machine translation (SMT) can be considered a machine learn-

ing structured prediction problem: given a sentence in a source language,

determine its best translation in a target language, according to a model

learned from a parallel corpus.

Most SMT approaches consider the sentence as the fundamental unit

of translation 15. Given a sentence f in the source language, find its best

translation e in the target language 16, according to a model learned from

training data:
∗
e ≡ argmax

e
P(e| f ) (2.41)

Applying Bayes’ theorem, this formula can be decomposed as:

∗
e = argmax

e
P( f |e) · P(e) (2.42)

where the prior probability P(e) (the language model probability for the target

language) provides fluency while the likelihood P( f |e) provides accuracy.

This view lends itself to a theoretically useful, albeit fictitious, interpretation

of the translation process known as the noisy channel model, in analogy to the

noisy channel models used in information theory and electrical engineering:

Assume we are translating from Italian to English. Under the noisy channel

model, each Italian sentence is considered to be a "corrupted" version of

an English sentence, originally generated by a random source of English

sentences (P(e)) and then transmitted over a noisy channel (P( f |e)) which

converts it to Italian. The translation task is therefore to undo the action of the

channel, decoding the Italian sentence and recovering the "original" English.

Although not realistic, this model allows us to leverage the framework and

techniques originally developed for electrical engineering, and has been

widely used in the early SMT approaches, although more recent approaches

deviated from it.
15This makes an independence assumption between sentences which is not actually

realistic. Translating at document level can yield superior performances, but it may be more

computationally expensive, and it is a recent area of research (Hardmeier, 2012).
16Due to a historical convention, f stands for "foreign" or "French" and e stands for

"English".
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Figure 2.6: This diagram, known as "Vauquois triangle", represents the various ideal

levels of machine translation approaches, from direct, word-based and phrase-based

translation (bottom), to syntactic transfer, semantic transfer, up to translation by a

hypothetical language-independent intermediate representation (interlingua).

"Oblique" approaches, that use a different level of abstraction on the source language

an the target language are also possible.
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SMT approaches can be characterized by the level of representation they

operate at.

The earliest methods operated at the level of single words. Although not

competitive anymore as complete translation systems, some of these tech-

niques are used in the training processes of other approaches.

Better performances can be obtained by methods which operate at the level

of contiguous spans of words, known as phrases.

Other approaches exploit the recursive structure of natural language, both

in a fully automatic form or by making use of expert-derived linguistic

knowledge, which is incorporated in the models using "soft", probabilistic

rules.

Ideally, we could hypothesize methods which abstract over syntax and

operate at the level of meaning, possibly using a language-independent

"interlingua" representation, however operating at a such high level is

currently not possible and in fact may not necessarily be a good idea,

since the higher the level of abstraction, the further the risk of losing some

important information.

In the following sections we sections we will briefly introduce the

principles behind the modern state of the art translation systems, such

as Moses (Koehn et al., 2007), and the background techniques particularly

related to this thesis work.

2.5.1 Word-based methods

Words are generally considered to represent the elementary units of meaning

in a sentence, and usually they have some degree of correspondence between

different languages, which enables us to compile bilingual dictionaries.

Therefore, the simplest form of translation is to replace each word in the

source sentence with its most likely translation in the target language.

For instance, the Italian sentence "Mary è una ragazza." can be translated

word by word into English as "Mary is a girl.".

Obviously, this approach is inadequate in many cases, as words are trans-

lated completely without context. For instance "Mary legge il suo libro
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preferito." might be translated as "Mary reads the his book favorite.". Al-

though the meaning is arguably preserved, the translation is ungrammatical:

the content words (the two nouns, the verb and the adjective) are rendered

correctly but they are not in the right order, pronoun gender is not in

agreement with the gender of its subject and the determiner is spurious. In

more complex examples, even the meaning could be lost.

We can improve this direct dictionary translation method by including a

language model. The translation problem becomes:

∗
e = argmax

e

L f

∏
j=1

PLEX( f j|ej) · P(e) (2.43)

where L f is the length of the source sentence (and the target sentence as well,

by construction), f j and ej are the j-th word in the source and target sentence,

respectively and PLEX( f j|ej) is the lexical translation probability function: for

each choice of target word, it is a categorical probability distribution over the

set of source words.

For a n-gram language model, this is just a hidden Markov model decoding

problem, which can be efficiently solved using standard dynamic program-

ming techniques such as the Viterbi algorithm (Viterbi, 1967).

Given a training parallel corpus of sentence pairs, where each target sentence

has the same number or words of the target sentence, the lexical translation

probabilities can be estimated with maximum likelihood just from observed

frequencies:
∗

PLEX(w f |we) =
c(w f |we)

c(we)
(2.44)

where c(we) is the number of times the target word we appears in the training

set and c(w f |we) is the number of times the source work w f appears in

correspondence to the target word we.

Although a language model improves the quality of the translation by

providing some context on the target side (for instance it would presumably

solve the pronoun concordance issue of our previous example), this system

is still quite limited. We would like our translation system to be able to swap,

insert or drop words.
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Mary legge il suo libro preferito .
     1           2       0      3                    5            4           6 

Mary reads her favourite book  .

Figure 2.7: A sentence pair with a reasonable source-to-target word alignment.

Word alignments Even if the strict one-to-one, monotonic 17 correspondence

assumption of our previous toy model turned out to be excessively strong,

words in a sentence and its translation do happen to generally correspond to

each other.

A key observation, which lead to the development of the first workable

SMT systems (Brown et al., 1990), is that we can treat this correspondence,

known as word alignment as a hidden variable in our stochastic model of the

translation process, whose probability distribution relative to the source and

target words can be estimated from the training corpus and which can be

marginalized during decoding.

Today, word-based approaches are not used anymore as full translation sys-

tem, but they are used to estimate the maximum likelihood word alignment

of the training corpus and lexical translation probabilities which are then

used in the training process of more advanced translation systems.

Given a source sentence f of length L f and a target sentence e of (possibly

different) length Le, the source-to-target alignment function

a f ,e : 1, . . . , L f → 0, . . . , Le (2.45)

maps each position in the source sentence to a position in the target sentence,

including a special NULL position at index 0 representing a lack of corre-

sponding word. Each source word is therefore aligned to zero or one target

word, while each target word can be aligned to multiple source words.

Making appropriate independence assumptions, the source sentence

17In the context of machine translation, "monotonic" means preserving the word order

between the source and the target.
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generation can be modeled by the following stochastic process: first the target

sentence e is generated according to the language model probability P(e).

Then the length of the source sentence is sampled from some distribution

P(L f |e), and one of the (Le + 1)L f alignment functions is sampled from the

alignment distribution P(a|L f , e). Finally, for each position j in the source

sentence, a word is sampled according to the lexical translation probability

of the aligned source word PLEX( f j|ea(j)). Translation therefore consists in

decoding e given f while marginalizing over the set of all possible alignments

A(L f , Le):

∗
e = argmax

e
∑

a∈A(L f ,Le)

Le

∏
j=1

PLEX( f j|ea(j)) · P(a|L f , e) · P(L f |e) · P(e) (2.46)

In the general form, this decoding problem is computationally difficult: note

that in principle, for any source sentence f , the set of possible translations

GEN( f ) is infinite. Even if we constrain the length of the translations to

be linear in the source length, there are still exponentially many possible

translations, and for each of them, exponentially many possible alignments.

In fact, it can be shown that this decoding problem is equivalent to the

traveling salesman problem (TSP) (Knight, 1999; Zaslavskiy et al., 2009), a well

known NP-complete, APX-complete combinatorial optimization problem.

Thus, in order to enable tractable decoding and training, the source length

and the alignment probability distributions are restricted to have certain

specific forms.

Training can be performed in a fully supervised way using a parallel

training corpus of sentences with manually annotated word alignments,

or more commonly, in an unsupervised way from an unannotated parallel

corpus.

A discussion of word alignment models and their relative algorithms is

beyond the scope of this document.

In practice, IBM model 4 (Brown et al., 1993) is often used to produced

the (approximate) maximum likelihood alignment of a training corpus and

estimate the lexical translation probabilities. This method, along with HMM

alignment (Vogel et al., 1996) and the other IBM models introduced in (Brown
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et al., 1993), is implemented in the giza++ open source tool (Och and Ney,

2003).

2.5.2 Phrase-based methods

The main issue of word-based translation methods is that they do not

strongly take into account correlations between source words. In fact, their

main linguistic assumption that words represent the fundamental unit of

meaning, and in particular that the meaning of a sentence simply decom-

poses over the meaning of its words, turned out to be too strong.

Therefore, in order to properly convey meaning between different languages,

it can be useful to translate at the level of phrases: short contiguous substrings

of words.

Despite the name, these are not necessarily syntactic phrases as defined in

section 2.3.1: each of them is not necessarily covered by a single full subtree

in a constituency or dependency parse graph of the sentence. In fact, in the

basic phrase-based translation method, we do not explicitly model syntax.

Hybrid or fully syntactic translation method exist and will be discussed in

the next section.

Noisy channel model

We can introduce phrase-based translation by extending the theoretical noisy

channel generation process of word-based translation:

First, a target language sentence e of length Le is generated according to the

language model probability P(e). Then, this sentence is segmented into Ls

non-overlapping, non-empty, contiguous phrases ēj, according to the seg-

mentation probability distribution PSEG(s|e), where s is a list of starting posi-

tions for each phrase. These phrases are then permuted according to an one-

to-one phrase alignment sampled from another distribution PALIGN(a|s, e),

and finally each target phrase ēj is replaced with a source phrase f̄ j according

to the phrase translation categorical probability distribution PPHRASE( f̄ j|ēj).

Note that here the main independence assumption is between the translation

of phrases rather than between the translation of words.
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The translation problem can be thus modeled as the decoding problem for

that noisy channel:

∗
e = argmax

e
∑

s∈S(e)
∑

a∈A(s,e)

Ls

∏
j=1

PPHRASE( f̄ j|ēj) · PALIGN(a|s, e) · PSEG(s|e) · P(e)

(2.47)

Note that there are 2Le−1 possible ways of segmenting a sentence e,

and each segmentation s produces Ls phrases that can be permuted in

Ls! ways. We can reduce the number of segmentations by introducing a

maximum phrase length M, and the number of permutations by a maximum

distortion distance D 18, but the double sum in eq. 2.47 still insists over an

approximately doubly-exponential in Le number of terms.

Therefore, full parameter estimation and decoding in the noisy channel

model are impractical.

Practical phrase-based translation models, developed between the late

1990s and the early 2000s by Franz Josef Och and others (Och et al., 1999; Och

and Ney, 2002, 2004; Marcu and Wong, 2002; Koehn et al., 2003), manage to

effectively tame this complexity by making further simplifying assumptions

that enable efficient decomposition of the model probability:

• Instead of considering all the possible phrase segmentations of a

sentence pair, they build a dictionary, known as phrase table, of phrase

pairs up to a certain length seen during training. During decoding, they

only consider segmentations which are consistent with these phrase

pairs 19. An uniform probability distribution, or some other simple

prior, is considered over these segmentations.

• The distortion (phrase alignment) probability depends only on the dis-

tortion distance of each phrase pair: the distance between the endpoints

of each pair of source phrases which are translated as consecutive target

phrases.

18The distortion distance of a phrase in a permutation is the distance between the starting

points of the phrase in the original string and in the permuted one.
19When a source sentence contains a new word not seen during training, the phrase table

is temporarily with special phrase pair consisting just of that word translated as itself.
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• The target sentence prior probability is computed by a k-th order n-

gram language model.

We can further approximate by maximizing over possible segmentations

and phrase alignments rather than summing over them, obtaining the

following decoding problem:

∗
e = argmax

e
max

s,a

Ls

∏
j=1

(
PPHRASE( f̄ j|ēj) · PD(|start(j)− end(j− 1)− 1|)

)
· PLM(e)

(2.48)

where start(j) and end(j) are respectively the start and end position of the

j-th source phrase in segmentation s and alignment a, with end(0) = 0. In

this formula we assumed uniform probability over segmentations.

The distortion probability PD(d) can be modeled as a categorical probability

distribution or as an exponential distribution PD(d) = θD exp(−θDd), 20

Discriminative models

Rather than using a generative model, with strong conditional independence

assumptions between the various stages of the generative process, a discrim-

inative, generalized linear model is used to directly estimate a translation

score to be optimized.

Using a discriminative model has a number of benefits over a genera-

tive one: it avoids overly strong conditional independence assumptions, it

enables the incorporation of a large number of additional features of various

types, and it optimizes the model resources for accuracy in the space of the

most high quality translation hypotheses:

Let F(e, f , θ) be the model score for a source sentence f and candidate

translation e, under parameters θ. We can interpret F(e, f , θ) as the logarithm

of the source-to-target probability P(e| f ), up to a normalization constant.

However, since we are using this score in a maximization operation, we

are only concerned that it accurately tracks the true probability only for

candidate translations where this probability is high and have thus a chance

20In practice we can ignore normalization and define PD(d) = exp(−θDd).
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of being selected as the one-best translation. We do not care if the estima-

tion is inaccurate for low-probability candidate translations. By biasing the

estimation in this way, we can therefore do better than naive maximum

likelihood estimation.

Specifically, we define the model score as:

F(e, f , θ) ≡ θT · h(e, f ) (2.49)

where h(e, f ) ∈ Rn is the feature vector of the sentence pair.

The noisy channel model can be seen as a special case of the discrimi-

native model, with feature functions corresponding to the logarithms of the

factors in equation 2.48:

FNC(e, f , θ) ≡
Ls

∑
j=1

(
θPI log(PPHRASE( f̄ j|ēj))− θD|start(j)− end(j− 1)− 1|

)
+ θLMPLM(e)

(2.50)

where we assumed to use an exponential distortion distance probability

distribution parametrized by θD while the other parameters θPI and θLM are

fixed to one.

The discriminative model allows us to include additional features, and let

us optimize all the parameters for maximum translation quality. A typical

choice of features include:

• Direct (source-to-target) phrase translation probabilities

PPHRASE(ēj| f̄ j).

• Direct and inverse lexical translation probabilities PLEX(ei| fi) and

PLEX( fi|ei), defined as in word-based translation model. These features

compensate the estimation error that phrase translation probabilities

have for long rare phrases, due to data sparsity.

• The length Le of the target sentence. Multiplied by its own parameter

θW , usually greater than one, this feature compensates the bias of n-

gram language models for short sentences.

• The number of phrase pairs Ls in the segmentation. Multiplied by its

own parameter θS, this relaxes the assumption of uniform probability
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over segmentations, enabling the model to express a preference for

segmentations with shorter or longer phrases.

Training is typically performed in two phases. The training proper phase

involves extracting the phrase table from a parallel corpus and estimating the

categorical probability distributions used in the feature functions. Then the

tuning phase then optimizes the linear model parameters θ against a separate

tuning parallel corpus, using some automatic translation accuracy metric

such as BLEU (Papineni et al., 2002) as the loss function to be optimized.

Training

Various approaches to phrase table extraction and estimation of the phrase

translation probabilities have been proposed. The most commonly used is a

heuristic method introduced by Och and Ney (Och et al., 1999; Och and Ney,

2003; Koehn et al., 2003) which extracts a phrase table making use of word-

based alignments between sentence pairs of the parallel training corpus:

1. Train word-based alignment models (usually IBM model 4) on the

training corpus both in the source-to-target and in the target-to-source

directions and compute the maximum likelihood word alignments of

the corpus.

2. Combine the two one-to-many, source-to-target and target-to-source

word alignments into a single many-to-many symmetrical word align-

ment: start with alignment points in their intersection and iteratively

add points in their union according to a heuristic (see (Koehn et al.,

2003)).

3. Extract all the phrase pairs, up to a maximum length, which are con-

sistent with the symmetric word alignment: A phrase pair is consistent

with the alignment if at least one pair of its words are aligned to each

other and none of its words are aligned to words outside the phrase

pair.

4. Estimate the direct and inverse phrase translation probabilities

PPHRASE(ēj| f̄ j) and PPHRASE( f̄ j|ēj) at maximum likelihood from
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the observed frequency counts. Smoothing (e.g. Good-Turing)

can be performed to compensate for data sparsity, just as in n-

gram language model estimation. Categorically distributed relative

distortion probabilities PD(d) or absolute distortion probabilities can

be also estimated from observed frequency counts if needed.

Training the word alignment models also produces estimates for the lexical

translation probabilities PLEX(we|w f ) and PLEX(w f |we) which are used as

features for the translation model.

This method has been adopted in state of the art phrase-based translation

systems such as Moses (Koehn et al., 2007).

Tuning

Once the phrase table extraction and the estimation of relevant probability

distributions has been performed, it is generally possible to guess an initial

parameter vector θ(0) which achieves good results. However, in order to

maximize translation quality, the model parameters need to be tuned by

machine learning methods.

This is performed using a separate parallel corpus, known as tuning set. We

want our system to translate each source sentence in the tuning set as close as

possible to the reference translation, as measured by a suitable loss function.

The most commonly used loss function (actually, a similarity function) is

BLEU (Papineni et al., 2002), which is based on precision at n-gram level, with

n-gram order between one and four. BLEU allows to use multiple reference

translations for each source sentence, to take into account the fact that there

is rarely one "true" translation for any given sentence.

BLUE was developed primarily to evaluate the quality of translation systems

and using it to define a loss function suitable for machine learning presents

some technical hurdles, as the BLEU score is defined at corpus level and does

not decompose additively or multiplicatively over sentence pairs. Sentence-

level variants of BLUE can be used, or the optimization algorithms can be

adapted to deal with the non-decomposability.

Other loss function have been proposed, from translation edit rate (TER)
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(Snover et al., 2006), which measures the editing effort needed to change the

system output to a reference translation, to highly sophisticated measures

such as MEANT (Lo et al., 2012) which take into account and semantic

similarity. BLEU constitutes a good compromise between correlation with

human quality judgment, performance and lack of dependence on external

tools (syntactic parsers, semantic role labelers, etc.) which may be not

available for many languages.

Optimizing the parameter vector θ to minimize the loss against a tuning

set is a linear structured prediction problem (section 2.1.1).

Typically, iterative optimization algorithms which repeatedly invoke the

decoder to compute n-best translation lists of the source sentences are used.

If the dimension of the parameter vector is small, as in the basic model

described above, minimum error rate training (MERT) (Och, 2003), a method

based on Powell’s optimization algorithm (Powell, 1964), is typically used.

If the translation model is extended with additional features, particularly

sparse features, the dimension of the parameter vector can easily range in

the order of 105 − 106. Since MERT running time tends to be approximately

proportional to this dimension, it becomes unpractical to use in these

cases. Margin-based machine learning methods, such as MIRA, batch MIRA

(Watanabe et al., 2007; Chiang et al., 2009; Hasler et al., 2011) or structured

SVM (Cherry and Foster, 2012) can be better suited for large dimensional

tuning.

Decoding

The problem of computing the best scoring translation of a given source

sentence in the phrase-based model is NP-hard and APX-complete, just as

the translation problem for the word-based model (which is a special case

of phrase-based translation). For this reason, decoding is performed using

heuristic algorithms that compute a local optimum of the translation space.

The most commonly used decoding method is an incremental beam search

algorithm (Koehn et al., 2003; Koehn, 2004a), similar to limited memory

variants of A* (Hart et al., 1968):
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We can define the decoding process in terms of a non-deterministic automa-

ton: Starting from an initial state consisting of an empty target sentence, at

each step non-deterministically choose a source phrase consisting only of

yet unused source words and append one of its possible translations to the

current target string. Repeat until all source words have been used. Output

the best scoring translation of all final states.

Obviously this automaton has a number of possible execution traces expo-

nential in the length of the source sentence, hence a naive implementation

would be unfeasible. We can reduce this complexity using hypothesis recombi-

nation and pruning.

Hypothesis recombination exploits the fact that the score of each candi-

date translation e of a source sentence f , decomposes additively over the

transitions of the automaton: At each state v we can compute a partial score,

starting from zero at the initial state and adding at each step j the partial

score of the previous state to a transition score which depends only on the

identity of the current phrase-pair for the translation log-probability features,

the last source word position end(j − 1) of the previous phrase pair for the

distortion log-probability feature, the last k− 1 target words for the k-th order

language model feature, and the length of the current target string Lē1:j−1 and

the number of phrase pairs used so far j− 1 for their own features. Moreover

set of descendant paths of state v only depends on the set of source words

used so far U f .

Therefore, we can define the set of used source words and all the properties

the transition scores to its children depend upon as the signature σ(v) of state

v. States with the same signature can be combined together, keeping the one

state with maximum partial score and discarding the rest.

We can view the signatures of the states as vertices in a graph, where edges

represent the transitions, each weighted by its transition score. Finding the

best translation then amounts to computing the maximum-weight path in

this search graph, which can be done in polynomial time in the size of the

graph (since it is directed acyclic). N-best list decoding consists in computing

the N-maximum-weight paths.

Hypothesis recombination significantly reduces the size of the search
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space, which however remains exponential in the source sentence size due to

the fact that it can still arbitrary reorder the phrase pairs. Incremental decod-

ing with hypothesis recombination is considered a dynamic programming

algorithm due to the fact that it exploits the optimal substructure property of

the decoding problem w.r.t. the local contexts defined by state signatures.

However, since there are exponentially many state signatures 21, this is

not enough to obtain polynomial time complexity. The complexity of the

algorithm is: O(L2
f · 2

L f · |We|k−1 · E), where E is the maximum number of

translations of each source phrase in the phrase table, and |We| is the size of

the target lexicon.

In order to make decoding feasible, we need to prune unpromising

hypotheses: remove from the search graph nodes which appear unlikely to

be on the path of the best translation. This process is heuristic and therefore

potentially introduces search errors which can prevent the decoding algo-

rithm from computing truly maximum scoring translation.

In beam search, at each step, after we generate the new states and combine

them according to their signatures, we rank them by their estimated total

score, which is defined as the sum of their partial score and an estimated

future score, computed by a heuristic. This is similar to the way A* and

its derivatives estimate vertex scores for expansion and possibly pruning,

although here we only use it for pruning (expansion always proceeds in a

breath-first fashion) and since we are not interested in optimality we do not

require the future score heuristic to be technically admissible 22.

In the phrase-based translation model, we estimate the future score of a

state signature σ(v) as an approximation of the score obtained by translating

all the spans of currently unused source words ignoring the order of the

phrase pairs. This can be quickly precomputed in polynomial time for all the

possible source word spans before the decoding process starts (see (Koehn

et al., 2003) for details).

This future score estimate is not very accurate in an absolute sense, but in

21specifically, the set of sets of used source words has cardinality 2L f

22In A*, a future score heuristic is admissible if it never underestimates the score of the

best path from the current vertex to a goal vertex.
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practice it is good enough to compare vertices with the same number of used

source words. Therefore, in order to prune, we separate by the number of

used source words in the state signatures in different bins, or stacks 23. Within

each stack, we remove all the worst vertices that exceed a maximum beam

size B (histogram pruning) or have a score lower than c times the score of the

best vertex in the stack (threshold pruning).

With pruning, the algorithm complexity drops to O(L2
f · B), which is

quadratic in the length of the source sentence. We can further reduce the size

of the search space by using a maximum distortion distance D, obtaining

even linear complexity: O(L f · D · B). We went from exponential to linear

complexity at the cost of sacrificing optimality.

In practice, the beam search algorithm is often very fast and relatively

accurate, with the hyperparameters B, c and D trading off accuracy for speed.

Incremental beam search decoding can be used with more complex

models with additional features. However, it is important to note that all

these features need to be local, in the sense that they decompose additively

over transitions, and, for each state they depend only on the current phrase

pair and the signature of the previous state. In particular, this means that

there exist a constant k′ such that they can only depend on a context of

k′ − 1 words on the left of the current phrase pair (in the base model

k′ = k is just the order of the n-gram language model). Increasing k′

exponentially increases the complexity of the unpruned algorithm (which

scales as |We|k
′−1). When pruning is enabled, for a fixed beam size B,

increasing k′ exponentially increases the number of discarded search vertices,

which may significantly increase the number of search errors.

Therefore, there is a fundamental tradeoff in the design of features for a

phrase-based translation model: more complex features can make the model

better at scoring candidate translations, but if they necessitate an increase

of the context length k′, or more generally an increase of the amount of

state information that must be included in the signatures, they may make

the decoder actually worse at finding a high scoring translation, possibly

23which, despite the name, are just sets of state signatures, without any LIFO semantics.
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decreasing the overall translation quality.

For this reason, some advanced machine translation systems tend to keep the

proper decoder simple and add complexity around it, as a pre-processing

step to restructure (typically reorder) the source sentence, or as a post-

processing step to rerank a list of n-best candidate translation or a represen-

tation of the explicit search graph (known as word lattice).

Besides incremental beam search, other decoding algorithm have been

proposed. Local search algorithm, starting from (Marcu and Wong, 2002),

start by quickly generating an initial complete translation, either randomly

or using beam search with a small beam size (possibly equal to 1 in the case

of greedy search), and then they iteratively modify it until they hit a local

maximum where they can’t improve it for a given number of iterations.

In principle, local search methods may be more accurate since they can

use features that do not decompose locally without paying an exponential

performance penalty of beam search. In practice, however, they may not be

as efficient to compete with plain beam search.

Some variants of local search methods may be instead more efficient than

beam search, at the cost of imposing additional constraints on the model

features. For instance, phrase-based decoding can be directly reduced to an

instance of the asymmetric generalized traveling salesman problem (AGTSP)

(Zaslavskiy et al., 2009), which is then reduced to the usual symmetric TSP

which can be solved at a local optimum using the Lin-Kernighan heuristic

(Lin and Kernighan, 1973), a high performance local search algorithm.

This outperforms beam search when using bigram language models (k =

k′ = 2), but runs int practical complexity issues on when increasing the

language model order even to trigrams.

Extensions

Since the phrase-based translation model was proposed in the early 2000s,

a large number of variants that extend it with additional features have been

proposed.

Most of these extension focus on the distortion component of the model
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score which is pretty simplistic in the baseline model described so far, and

proper modeling of distortion is believed to be highly beneficial to translation

quality (Birch et al., 2008).

The lexicalized (phrasal) distortion model (Koehn et al., 2005; Tillmann,

2004) condition the distortion log-probabilities to the identity and position of

the phrase pairs used in the translation.

Given the phrase pair ( f̄ j, ēj), with ēj occurring as the j-th target phrase in e,

we characterize the orientation of ( f̄ j, ēj) with respect to the previous phrase

pair ( f̄ j−1, ēj−1) as:

• left-monotone if f̄ j occurs just after f̄ j−1 in f (that is, if start(j) = end(j) +

1).

• left-swap if f̄ j occurs just before f̄ j−1 in f .

• left-discontinuous otherwise

Similarly, we characterize its orientation with respect to the next phrase pair

( f̄ j+1, ēj+1) as right-monotone, right-swap or right-discontinuous.

During phrase table extraction, for each phrase pair we estimate, based

on the word alignments, the probability of it occurring in any of these

configurations. During decoding, these (log-)probabilities are used as model

features.

The "left" features require no additional information to be included in the

state signatures, thus they do not affect hypothesis recombination. The

"right" features require to include in each signature the identity of its last

phrase pair. In practice both left and right features are often used.

Even though the type of ordering relations that it can represent are pretty

coarse, lexicalized distortion modeling can provide a significant improve-

ment in translation quality. In fact, it is enabled in the default configuration

of the state of the art translation system Moses (Koehn et al., 2007).

More complex distortion models use features leaned from reference re-

orderings of the training corpus: each source sentence of the training corpus

is permuted, based on the word alignments, in a target-like word order
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(Al-Onaizan and Papineni, 2006; Visweswariah et al., 2011). Then a source-

side n-gram language model can be trained on these reordered sentences

(Feng et al., 2010), or reordered word adjacency features can be learned

using a discriminative method (logistic regression) (Bisazza and Federico,

2013), or a Markov-chain operation sequence model over an ideal generative

process can be learned, again using language model estimation techniques

(Durrani et al., 2011) applied to a heuristically pre-processed training corpus.

Syntactical features, specifically features for paths between source words in

a dependency tree obtained by parsing the source sentence, can be used as

well to model distortion (Chang et al., 2009).

Other extensions focus on syntactical phrase coherence (whether a source

phrase spans a proper subtree of a source parse tree), tried without success

with constituency parse trees (Koehn et al., 2003) but successfully with

dependency parse trees (Cherry, 2008).

Various types of lexical sparse features have been used as well (Och et al.,

2004; Chiang et al., 2009; Hasler et al., 2011).

Finally, phrase-based translation systems can be extended using addi-

tional target-side language models.

MLP neural language models can be incorporated straightforwardly in the

model since they use fixed-size context of words just like standard n-gram

language models. RNN language models, on the other hand, have continu-

ous state vectors which do not play well with hypothesis recombination, and

therefore they are not normally used in the decoder. Syntactical language

models often require some modifications in the decoder.

See section 2.4 for a more detailed discussion.

2.5.3 Hierarchical and syntax-based methods

While phrase-based machine translation systems yield state of the art perfor-

mances on many language pairs, their lack of explicit modeling of language

syntax makes them prone to certain kinds of systematic errors.

For instance, when translating from English to French, a negative clause

"don’t X f ", should be translated using the split negation "ne Xe pas", but
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if "X f " is long, it is unlikely that a corresponding phrase pair exists in the

phrase table, therefore the decoder will translate the clause using a concate-

nation of phrase pairs, which will typically results in failing to generate the

"pas" particle. Similarly, long-distance concordance of grammatical gender

and number are difficult to get right if they are not isomorphic between the

two languages.

In practice, as long as we are translating between Romance languages and/or

English, the impact of these problems is limited, because the overall clause

structure is generally Subject-Verb-Object on both sides (although Romance

languages use the Subject-Object-Verb structure in some constructions).

Other common languages have different clause structure, such as Germanic

languages other than English (SOV-V2 24), Japanese, Persian (SOV), or

Russian (free form). Translating between languages with different clause

structure involves long-distance reordering, and phrase-based systems, with

their limited phrase length and distortion distance, often perform poorly at

it.

Starting from the works on stochastic inversion transduction grammars

by Dekai Wu in the late 1990s (Wu, 1997), numerous approaches have been

proposed for exploiting the syntactic recursive structure of language in a

statistical machine translation system.

Syntactic machine translation models can be characterized across various

dimensions: by the type of grammatical formalism they use (phrase structure

grammars or dependency grammars), by whether they use grammars based on

expert linguistic knowledge, machine-learned from annotated parallel cor-

pora 25, or grammars automatically constructed from unannotated corpora

(hierarchical systems), or by which sides they use syntactic modeling on: tree-

to-tree systems use syntax on both the source and the target languages, tree-

to-string use it only on the source language and string-to-tree use it only on

the target side.

An exhaustive description of all these approaches is beyond the scope of

24Subject-Object-Verb with finite verb in second position.
25typically themselves annotated using automatic statistical parsers, themselves trained

on human-annotated corpora.
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this document. In the rest of this section we will briefly describe the most

common approaches focusing on those related to this thesis work.

Phrase structure grammar approaches

Phrase structure grammars (section 2.3.1) model the syntax of a language as

a set of formal rewrite rules which generate its sentences. A typical way to

use this formalism for syntactic machine translation, specifically, for tree-to-

tree translation, is to extend the formalism to synchronous phrase structure

grammars, which model the joint generation of a pair of sentences, one in

the source language and the other in the target language.

Just as context-free grammars (CFG) are the most common type of

phrase structure grammars used for parsing, synchronous context-free gram-

mars (SCFG) (Lewis and Stearns, 1968) are commonly used for translation.

An SCFG models the generation of a pair of sentence according to the

following ideal process:

• At each step t, the state of the process ( f (t), e(t), a(t)) consists of a pair

of strings f (t) and e(t), made of terminals (words) and non-terminals,

and a bijective (one-to-one) alignment relation a(t) between the non-

terminals in f (t) and e(t), such that only identical non-terminals can be

aligned to each other (this implies that the non-terminals in f (t) and e(t)

are permutations of each others).

• Each rule is in the form lhs ::= (rhs f , rhse, rhsa), where lhs is a single

non-terminal, rhs f , rhse is a pair of strings made of terminals and non-

terminals, and rhsa is the bijective alignment relation between their

non-terminals, with the constraint that only identical non-terminals can

be aligned to each other.

• Starting from the state consisting only of start non-terminals (S1, S1)

(where the indices denote the alignment relation), choose at each step t

a rule such that its left-hand side appears in the current state as a pair

of aligned non-terminals and rewrite that pair with the right-hand side

of the rule.
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• Iterate until the string pair in the current state consists only of terminals.

Some variations of this formalism exist in the literature. For instance, it is

possible to remove the constraint of alignment only between equal non-

terminals, in which case the left-hand side of the rules consists of a pair

of non-terminals. See (Satta, 2010) for a detailed description of the specific

formalism and associated algorithms.

Rules in the grammar can be also weighted by probabilities

PR((rhs f , rhse, rhsa)|lhs), obtaining a probabilistic synchronous context-free

grammars (PSCFG).

More generally, multiple probabilities can be used, such as direct

and inverse translation probabilities PRD((rhse, rhsa)|rhs f , lhs) and

PRI((rhs f , rhsa)|rhse, lhs), or lexical translation probabilities (obtained

when the rules are extracted from word-aligned parallel corpora). The

logarithms of these probabilities can be used as features to be linearly

combined according to a parameter vector θ to obtain a rule score.

The hierarchical translation system developed by David Chiang (Chiang,

2005, 2007) is the first practical PSCFG translation system, which learns a

synchronous grammar from a parallel corpus without using linguistically

motivated annotations.

The rule extraction procedure is an extension of the phrase table ex-

traction procedure of phrase-based systems: given a word-aligned parallel

corpus, it extracts a large number of simple PSCFG rules, with an alphabet

of only two non-terminal symbols (the start symbol S and another generic

non-terminal X) and at most two non-terminal instances per rule.

Although these automatically learned grammars are quite simple com-

pared to those used by linguists, they can model various linguistic phenom-

ena useful for translation, such as long-distance reordering, split translations

and concordances.

For instance, when translating from English to French, the system can easily

learn a rule for translating negations X ::= (do not X1, ne X1pas).
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Decoding. For each pair of source and target sentences ( f , e) that the

grammar generates, it also produces a joint derivation y, consisting of a pair

of constituency trees whose internal (non-terminal) vertices are equal up to

a permutation of their children. Since a typical grammar is ambiguous, there

can be multiple derivations for each sentence pair.

Given a source sentence f , the translation problem consists in finding the

most probable (highest scoring) compatible target sentence e according to

the grammar:
∗
e = argmax

e
P(e| f )

= argmax
e

∑
y∈GEN(e, f )

P(y, e| f )
(2.51)

Since summing over all the possible derivations is unfeasible, we approxi-

mate this computation by considering only the best possible derivation, as

we did in the word-based and phrase-based translation schemes:

∗
e ≈ argmax

y∈GEN(e, f ),e
P(y, e| f )

= argmax
y∈GEN(e, f ),e

P(e|y, f ) · P(y| f )
(2.52)

But each derivation y deterministically (and trivially) defines a single target

sentence e (that is, P(e|y, f ) is a degenerate probability distribution and

GEN(e, f ) = GEN( f )), therefore, the translation problem can be reduced

to the problem of finding the best derivation of f :

∗
e ≈ E(

∗
y)

∗
y = argmax

y∈GEN( f )
P(y| f ) (2.53)

where the function E(y) simply extracts the sentence e from the derivation y

by returning the leaves of the target constituency tree.

Thus, we have reduced the translation problem to the constituency parsing

problem of the source sentence.

In fact, a PCFG chart parser, such as the CYK algorithm, can be adapted

to PSCFG decoding. Only the source right-hand side rhs f of the rules is used

during parsing, however, rules with the same source right-hand side but
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different target right-hand side rhs f or alignment relation rhsa should still be

distinguished, since they generate different derivations and hence possibly

different translations.

Although the problem is formally straightforward, with a polynomial

time complexity (O(L3
f · |G|)), the size of a typical synchronous grammar is

often much larger than the size of a monolingual grammar, and although the

asymptotic complexity in the grammar size |G| is only linear, exact parsing

is not feasible in practical applications.

Therefore pruning is typically used. Specifically, for each cell in the parsing

chart (the dynamic programming tableau), we store a limited number B

of entries, and we perform histogram and threshold pruning, optionally

augmenting the score with a heuristic "outside score" estimate in order to

reduce the pruning errors.

In order to be competitive with phrase-based systems, PCFG systems

need to include a language model feature in their models. The simplest

way to do so is to exploit the fact that a n-gram language model is a

weighted finite state automaton, and therefore it can be intersected with

the PCFG yielding a larger PCFG with an additional weight that can be

included in the log-linear score formula. Various systems, including the

original hierarchical translation system (Chiang, 2005) use this approach,

however, the grammars generated by this intersection operation tend to be

huge, with a size exponential in the order k of the language model, limiting

the usefulness of this approach.

Therefore, it is preferable to explicitly include the language model during

decoding, by extending the decoding (usually CYK) algorithm, effectively

performing this intersection online. Cube pruning (Chiang, 2007) is a heuristic

variation of the CYK decoder specifically developed to efficiently incorporate

a language model while limiting decoding errors. These techniques, included

in the Joshua open-source translation system (Post et al., 2013), and in the

late versions of Moses, are competitive with state of the art phrase-based

methods.

While hierarchical systems do not use linguistically motivated grammars,

various approaches have been developed to extract linguistically motivated
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synchronous grammars from annotated (parsed) parallel corpora.

Rules can be extracted using a generative EM-trained model (Yamada and

Knight, 2001), or heuristically from word-aligned corpora, for tree-to-tree

(Shieber and Schabes, 1990; Zhang et al., 2008) and tree-to-string systems

(Galley et al., 2004, 2006) 26, (Liu et al., 2006).

Tree-to-string models, in particular, in addition of being able to be decoded

by a variation of the CYK decoder described above, also admit a specialized

fast decoding algorithm based on a depth-first traversal of the source parse

tree (Huang and Mi, 2010). This algorithm builds the target sentence left-to-

right, hence it only uses a k − 1 right-most context of target words for the

language model, obtaining a decoding speed even greater than phrase-based

decoding (Moses), with equal or higher translation quality on some language

pairs.

Dependency grammars

The other major formalism for syntactic modeling, dependency grammars

(section 2.3.2), has also receive substantial attention from a statistical machine

translation perspective, due to the fact that dependency relations are often

approximately preserved between different languages (Fox, 2002; Hwa et al.,

2005).

Hiyan Alshawi proposed a first dependency statistical translation model

in 2000, based on weighted finite-state head transducers, an extension of stan-

dard finite-state transducers, which are used to transform source dependency

trees into target dependency trees.

Many other approaches use some extensions of the synchronous phrase

structure grammars and the associated parsing/decoding machinery

adapted to represent dependency rather than constituency relations. 27

26this model actually use a grammar formalism more general than PSCFG, which can

model complex relations between source trees and target sentences.
27This is relatively straightforward as long as the dependency trees are guaranteed to be

projective. Non-projective dependency trees are more interesting from a linguistic point of

view but are not easy to represent with extensions of phrase structure grammars, and thus

they are not widely used in machine translation.
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Chris Quirk et al. (Quirk et al., 2005) proposed an approach that operates

at the level of treelets: connected fragments of a dependency tree.

This approach starts with a word-aligned parallel training corpus, with

dependency and POS annotations on the source side (typically generated

by a statistical parser). These dependency relations are projected across the

word alignments, using a heuristic, generating a target parse tree, largely

isomorphic to the source tree. Then, a treelet translation table is extracted:

any source-side connected subgraph, up to a maximum number of vertices,

whose top level consists in a single subroot or a sequence of siblings vertices

is considered a valid source treelet, and if its node are aligned to a similarly

structured target-side treelet, they are considered a valid treelet pair which is

extracted.

During decoding the source sentence is parsed and matched against the

treelets in the translation table are identified: a treelet matches a subgraph

of the source tree if their topology and words are identical, and the match is

considered rooted at the highest vertex of the subgraph, and associated with

that vertex its target-side treelet as a candidate translation.

A bottom-up search, similar to CYK decoding, considers all the ways

of partitioning the source tree into non-overlapping treelets that match

against the translation table, and all the permutations of the corresponding

candidate translations at each vertex, which are scored according to a

distortion model based on source-side and target-side features, in addition

to phrase-translation log-probabilities and a target-side language model log-

probability. Independence assumptions in the scoring model can be exploited

to apply dynamic programming.

This approach provides higher translation quality with respect to phrase-

based approaches, at an higher computational cost (about 16 times higher).

If accurate dependency parsers are available for both the source and

target languages, then linguistically motivated tree-to-tree approaches can

be used.

Yuan Ding and Martha Palmer (Ding and Palmer, 2005) proposed syn-

chronous dependency insertion grammars (SDIG), a type of tree transduction

grammars which model the joint generation of a pair of trees in terms of



78 Background

tree fragment rewrite operations (as opposed as string rewriting operations

of conventional phrase structure grammars).

During training, tree fragment rewrite rules are extracted from a word-

aligned parallel corpus parsed on both sides. Probabilities are estimated from

empirical counts as in the hierarchical model.

During decoding, the source sentence is first parsed with a monolingual

dependency parser and then the tree itself is parsed/decoded according to

the synchronous grammar, using a variation of the CYK algorithm, then the

target tree, and thus the target sentence, is extracted from the best derivation.

Other approaches are string-to-tree, using syntax only on the target side,

mainly for the purpose of scoring candidate translations with a syntactic

language model.

Libin Shen et al. (Shen et al., 2008, 2010) extend the hierarchical translation

model to include in its rules target-side (projective) dependency relations,

extracted from the training corpus.

Specifically, each rule (other than the glue rules) is in the form X ::=

(rhs f , rhse, rhsa, rhsd), where rhs f , rhse and rhsa are defined as in a standard

PSCFG and rhsd is a dependency relation over the symbols in rhse, with the

specific restriction that it must be a well-formed dependency relation.

A dependency relation between words in a contiguous span of a sentence is

defined as well-formed if it is composed of a concatenation of complete sub-

trees with a common parent, which may be itself included in the relation

(known as fixed relation) or not (floating relation). In other words, a well-

formed dependency relation is a subtree up to the optional removal of some

top branches at the sides and its root node.

During training, rule extraction is limited to rules whose dependency rela-

tions are well-formed w.r.t. the sentences they were extracted from.

During decoding, a variant of the CYK algorithm for hierarchical decoding

is used: the source sentence is parsed using the source side of the rules

in the grammar, with the additional restriction that on the target side the

dependency relations must be combined in ways that preserve their well-

formedness. This enables the system to efficiently score each subtree in

the derivation (an thus each entry of the decoding chart) with a syntac-
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tic language model specifically designed to decompose over well-formed

dependency relations (section 2.4.3). An n-gram language model can be

also incorporated using standard hierarchical decoding techniques such as

cube pruning, therefore combining the strength of both methods, yielding a

significant increase of translation quality.

Synchronous grammars are relatively limited in the type of bilingual

relation they can efficiently represent. In order to relax some of these

restrictions, David Smith and Jason Eisner proposed a framework usable

both for string-to-tree and tree-to-tree dependency translation known as

quasi-synchronous grammars (QSG) (Smith and Eisner, 2006), usable both for

string-to-tree and tree-to-tree translation.

In this model, for each source sentence f , a specialized target-side monolin-

gual grammar G f is constructed, which generates only the strings that are

candidate translations of f . This grammar is typically weighted (it is a PCFG

or a variation thereof) in order that its generation probability distribution

P(e|G f ) approximates the translation probability distributions P(e| f ). This is

obtained by decorating the rules with source-side information so that scores

can be computed by a log-linear model using feature functions which take

into account a context both on the source sentence (and its parse tree if

available) and the target derivation.

Although the model is quite general and can be also used for phrase structure

syntactic translation, the authors propose to use it for dependency syntactic

translation. In their original work they run several experiment in using this

model to improve the quality of word alignment, but they did not use it in

a full translation system. However, this model is relevant since it inspired

other approaches, such as the phrase dependency rescoring system of Kevin

Gimpel and Noah Smith (Gimpel and Smith, 2013).

For further discussion of dependency statistical machine translation

approaches, refer to (Ambati, 2008).
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2.5.4 Neural network-based methods

In recent years a class of machine translation frameworks based on recurrent

neural networks have been proposed (Sutskever et al., 2014; Cho et al., 2014b;

Bahdanau et al., 2014).

These systems are similar to Mikolov et al. recurrent neural language

model (Mikolov et al., 2010) (section 2.4.2), but they condition the target

word probabilities on the source sentence: Instead of estimating the prior

probability P(e) of a target sentence e, they estimate the directly translation

probability P(e| f ) of source sentence f to target sentence e.

Training is performed as in monolingual neural language model, except

that a parallel corpus is used, minimizing the average per-word cross-

entropy of the target training sentences conditional on the source training

sentences.

Notably, these models don’t require the computation of word alignments or

other features.

Translation consists in maximum likelihood decoding, which is per-

formed in an approximate fashion using beam search without hypothesis

recombination (as recurrent neural network models aren’t factorizable in a

way exploitable by dynamic programming techniques).

The authors report performances comparable to state of the art phrase-

based systems, at least for language pairs with a small amount of long-

distance reordering such as English-French.

2.5.5 Pre-reordering

A competing approach to full syntax-based translation is to translate source

sentences with a phrase-based system after a heuristic preprocessing step

that restructures these sentences in ways designed to overcome the main

difficulties of standard phrase-based models.

As we remarked before, the arguably main difficulty of phrase-based ma-

chine translation is long-distance reordering. In fact, the estimated amount

of word order distortion between a language pair is the strongest known
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predictive factor of the phrase-based translation quality for that language

pair, for a given system and training corpus size (Birch et al., 2008). Therefore,

we may want to pre-reorder the source sentences in a "target-like" word

order, and then translate then with a phrase-based system itself trained on

a corpus with reordered source sentences.

Pre-reordering does not address all the issues of phrase-based models, for

instance, it does not help with split translations (e.g. "don’t X f " → "ne Xe

pas"28) or some kinds of grammatical concordance, but in practice it performs

competitively with both hierarchical and linguistically motivated syntax-

based translation in terms of translation quality, and often better in terms

of speed.

The simplest way of pre-reordering a source sentence is to syntactically

parse it and then apply some hand-coded reordering rules which may

permute the children of each vertex in the tree based on some local context.

Since the linguistic "word-to-head" relation is mostly important for this kind

of transformation, usually dependency parses or lexicalized constituency

parses are used.

This approach has been successfully applied to various language pairs such

as German-to-English (Collins et al., 2005a), Chinese-to-English (Wang et al.,

2007), and even between English and fully SOV languages like Japanese,

Korean, Hindi, Urdu and Turkish (Katz-Brown, 2008; Xu et al., 2009; Isozaki

et al., 2010).

The main issue with this approach is that it requires a high quality parser

for the source language, which may not be available for all languages, and

substantial linguistic expertise to produce the reordering rules.

Therefore, it is interesting to consider approaches that preserve the "spirit"

of statistical machine translation by automatically learning how to reorder

source sentences from the training corpus.

28Although we can address some of these cases with a little bit of hand-coded pre-

processing, e.g. by configuring the tokenizer to split at the apostrophe, thus splitting "don’t"

into "don’" and "t", "doesn’t" into "doesn’" and "t", etc.
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Syntax-free statistical reordering

Statistical reordering systems usually attempt to learn a reordering model

from a reference reordering of the source side of the parallel training corpus,

heuristically computed from the word alignments (just as the advanced in-

decoder distortion models described in section 2.5.2).

Specifically, given a pair of training sentences ( f , e), and a symmetric

word alignment between them a, we assign to each source word f j an index

corresponding to its left-most aligned target word:

idx(j) ≡ min
(j,j′)∈a

j′ (2.54)

then, we perform a stable sort of the source words according to this index to

obtain the reference permutation f ′.

In a given sentence, some source words may be not aligned to any target

word. The heuristics proposed in the literature differ by how they deal with

these unaligned words: they may attach them to the previous aligned source

words (Al-Onaizan and Papineni, 2006), move them to the beginning of the

sentence (Tromble and Eisner, 2009), or just drop them (Visweswariah et al.,

2011).

We use the pairs ( f , f ′) of source sentences and their reference permutations

as a training set for the pre-reordering system, learning a model hPERM(·, θ).

Then we apply this model to reorder all the source side of the training

and tuning corpora, obtaining sentence pairs in the form ( f ′′, e), where

f ′′ ≈ f ′. We use these source-reordered parallel corpora to train (and tune) a

conventional phrase-based decoder.

During decoding, we just apply the pre-reorderer and the decoder in se-

quence.

In principle, we may turn off the reordering capability of the downstream

decoder, simplifying the search process, although in practice it is beneficial

to leave it on, thus enabling the downstream decoder to have a chance at

correcting some short-distance reordering errors of the upstream reordered.

Various types of reordering models, with corresponding training and

prediction algorithms have proposed. In principle, all the advanced in-
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decoder distortion models can be also used for pre-reordering, effectively

employing a phrase-based model to "translate" between the source language

and its reordered version (Costa-jussà and Fonollosa, 2006). Thus we use an

upstream phrase-based system to translate f to f ′′ followed by a different

downstream phrase-based system to translate f ′′ to e.

One may wonder what is the benefit of cascading two systems of the same

kind. The main benefit is that since f and f ′′ must be permutations of each

other, we can constrain the phrase table extraction of the upstream model to

very short phrase pairs (even single-word pairs) and use specific heuristics

which result in a much smaller phrase table. Thus, the upstream decoder

can focus its search resources (beam space, essentially) on reordering alone,

without having to juggle lots of translation options for each short span of

words. It can therefore use a large, or even unlimited, maximum distortion

distance.

The downstream decoder, on the other hand, can be optimized to handle a

large number of long phrase pairs and perform little or no reordering. This

separation of concerns can result in an increased overall translation quality.

In principle, we could apply a different kind of upstream translation

model, such as the hierarchical model which is particularly well suited for long-

distance reordering. However, due to the complexity of chart decoding, the

computational cost of reordering may become the dominant w.r.t. the cost of

downstream decoding, making this approach not competitive with a straight

application of hierarchical translation.

Michel Galley and Christopher Manning proposed a variation of this ap-

proach, with hierarchical rules weighted by a score similar to the lexicalized

distortion score, and a simpler shift-reduce parser instead of the CYK

algorithm (Galley and Manning, 2008).

Other approaches use different types of reordering models based on

classical combinatorial permutation problems such as the traveling salesman

problem and the linear order problem (LOP).

Given a set of L distinguished elements f1, . . . , fL, and a pair-wise

preference scores matrix B ∈ RL×L, the linear order problem consists in

finding the permutation
∗
π ∈ ΠL of the element indices such that the sum
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of the pair-wise scores is maximized:

∗
π ≡ argmax

π∈ΠL

L

∑
i=1

L

∑
j=1

Bπ(i),π(j) (2.55)

this is a NP-hard, APX-complete optimization problem related to TSP.

Roy Tromble and Jason Eisner use this problem as the basis of their pre-

reordering system (Tromble and Eisner, 2009).

They define the scores between each pair of (POS tagged) source words as a

linear combination of features of the two words and their local contexts:

Bi,j(θ) ≡ θt · g( f , i, j) (2.56)

where θ ∈ Rn is the parameter vector and g is the local feature function.

The linear ordering problem then becomes a maximization problem of a total

score which is just the sum of these local pairwise scores:

∗
π = argmax

π∈ΠL

hREG(π, f , θ)

hREG(π, f , θ) = θT ·
L

∑
i=1

L

∑
j=1

g( f , i, j)
(2.57)

The authors propose to solve this optimization problem with a local search

strategy, where each step of the local search involves the solution of a simpler,

polynomial time, maximization problem using a dynamic programming

algorithm29.

Training of the parameter vector θ is preformed using the averaged

structured perceptron algorithm, with a loss function that compares for each

sentence f the reference permutation f ′ to the permutation produced by the

model f ′′, with early stopping based on reordering BLEU score ( f ′′ to f ′)

on a validation set. The reference permutations are obtained by applying the

heuristic described above to the automatically aligned (IBM Model 4 + Moses

symmetrization heuristic) parallel training corpus.

A similar method, based on the traveling salesman problem, has been

proposed by Karthik Visweswariah et al. (Visweswariah et al., 2011).

29which turns out to be an extension of monolingual CYK parsing over specially defined

CFGs.
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This model still uses pairwise scores between words computed by a linear

model, but sums into the total score only the scores of word pairs which

appear adjacent in the permutation π:

∗
π = argmax

π∈ΠL

hREG(π, f , θ)

hREG(π, f , θ) = θT ·
L

∑
j=1

g( f , j, j− 1)
(2.58)

this is an asymmetric TSP which can be reduced to a symmetric TSP and

solved at a local optimum using the Lin-Kernighan algorithm (Lin and

Kernighan, 1973). Compared to the TSP phrase-based decoder (section 2.5.2)

this is more efficient since the graph has only so many vertices as the number

of words in the sentence, while the TSP phrase-based decoder generates large

graphs whose size depends on the size of the phrase table and the order of

the language model.

This reordering system is trained in a similar way to the LOP system. The

main differences are that the authors used MIRA instead of the averaged

perceptron and the reference permutations are generated from a small

training set with manually annotated word alignments.

Syntax-based statistical reordering

The statistical reordering methods described in the previous section either

do not use any linguistically motivated resource or use only a source-side

POS tagger. This is beneficial for source languages where accurate parsers

are not available. However, when accurate parsers are available, it may

be beneficial to use methods which operate on parse trees of the source

sentences, exploiting the linguistic information that they provide.

Chris Dyer and Philip Resnik proposed a reordering model based on a

constituency parsing on the source sentence (Dyer and Resnik, 2010).

Given a source sentence f and its constituency parse tree y f , we compute a

specialized context-free grammar G f which can generate only f and a large

number its permutations 30.

30Note that this is a source-side sentence-specific grammar, which is different from the
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Specifically, we relabel the non-terminals in y f to make them unique, and for

each of them we produce a set of CFG rules which can generate its children

in the same order in which they appear in y f and in many other orders

(depending on a heuristic) as well.

Translation is not performed by cascading a reorder to a standard phrase-

based decoder, but rather by representing the phrase-based model as a finite

state transducer, intersecting it with the sentence-specific grammar G f , and

computing the best output using dynamic programming.

Training does not use word alignments, rather a custom discriminative

structured learning algorithm for a generalized linear score model.

Dmitriy Genzel (Genzel, 2010) developed a pre-reordering system based

on source dependency parsing. This model learns from a word-aligned

parallel corpus tree modification rules similar to those used in the hand-

coded reordering system.

Each rule has an lhs consisting of a vector of feature values relative to a

vertex with an optional context of some of its children, and an rhs specifying

a permutation of the children of the vertex. The rules are organized in a

priority-ordered list r1, . . . , rk.

During reordering, the rules are applied to the tree in their priority order: for

each rule rj the parse tree is visited top-down until a match between the lhs

of the rule and a node is found or all the leaves are reached. If a match is

found, the children of the matching node are permuted as specified by the

rhs and the process skips to the next rule.

Training is performed by iterating over the sentence pairs of the parallel

training set, and for each ( f , e) of them consider a random sample of all

the rules which can be obtained by permuting (with some heuristic limits)

the children in all the vertices of the source parse tree y f . These candidate

rules are then collected for all the sentences and scored against a loss

function based on the word-alignments (the number of crossed alignment

links that the rule removes, possibly coupled with a translation BLEU score

gain estimated with a word-based translation system operating on a small

target-side sentence-specific quasi-synchronous grammars of section 2.5.3
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validation corpus). The best or the few best rules are included in the current

rule list and the process is repeated for several iterations.

In addition of obtaining a significant gain of translation quality, this

approach has also the advantage that the learned rules are easy to interpret

by humans. In fact, they can be also manually edited or supplemented with

linguistically motivated rules, enabling to build a reordering system which

seamlessly combines expert knowledge and machine learned information.

2.5.6 Reranking

All the decoders described so far, both for phrase-based models and

hierarchical/syntax-based models, rely on dynamic programming

techniques to keep the size of their search space, and therefore their

time complexity, manageable.

As they generate translations incrementally, left-to-right, bottom-up or

top-down, they score partial translation hypotheses according to a model

which must decompose over the decisions made by the decoder in a way

such that the partial score at each decision point only depends on the current

decision and a signature of the previous decisions for that hypotheses, thus

enabling the decoder to recombine hypotheses with the same signature,

dramatically reducing the search space. Since the decoding complexity is

exponential in the size of these signatures, it is paramount that signatures

are small.

This greatly limits the type of features that can be used in the model: in

practice any feature can only depend on a fixed size k′ context of previously

generated target words, which is usually dominated by the order k of

the n-gram language model. Therefore many types of accurate language

models (high-order n-gram, high-order MLPLMs, RNNLMs and most

discriminative syntactical LMs) and other interesting bilingual features (e.g.

complex grammatical concordance features) are effectively ruled out.

In principle, local search decoders wouldn’t have this issue, however, lo-

cal search decoders aren’t competitive with dynamic programming decoders

and therefore they are not used in practice.
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An effective workaround is to perform a reranking of candidate translations:

the source sentence f is first decoded by a standard decoder using a conven-

tional translation model, but instead of computing just the best candidate

translation
∗
e, a set of promising candidate translations E f is returned. Then

a separate reranker scores these candidate translations according to a more

sophisticated model and returns the new best translation.

Reranking models can be characterized by the representation of the set of

candidate translation they use: n-best lists or lattices.

N-best reranking

An N-best list is just a list of the N highest scoring candidate translations

accessible to the decoder. In general it is straightforward to adapt the

dynamic programming decoders to generate N-best lists instead just the 1-

best translation. Typically, the hyperparameter N ranges between 102 and

103.

In principle, translations in the N-best list can be just plain sentences,

which would completely decouple the decoder from the reranker. However,

it is common to also record the derivation of each translation and their total

feature vectors, in order to include them in the reranking model.

Reranking just consists of evaluating the score of each translation in the

N-best list according to the reranking model, typically a linear model over

the original translation features and additional features, and returning the

highest scoring translation.

Training of the parameter vector θ is usually performed using MERT or

MIRA on a parallel corpus. For linear models, this is a discriminative learning

problem effectively equivalent to parameter tuning for a standard translation

model, and in fact the very same tools are typically used (although some

specific margin-based learning algorithms have been proposed as well (Shen

et al., 2004)).

Different N-best reranking approach differ by the type of feature they use.

In sections 2.4.2 and 2.4.3 we have already discussed various types of neural

and syntactic language models designed for reranking. They can be quite



2.5 Statistical machine translation 89

beneficial in increasing translation quality, specifically in terms of fluency

which is often relatively poor for standard translation systems.

Other approaches use features depending both on source and target

words, exploiting the word or phrase alignment information produced by

the upstream decoder for each candidate translation. For instance:

Och et al. (Och et al., 2004) describe various types of sparse lexical features

and distortion features.

Philipp Kohen and Kevin Knight (Koehn and Knight, 2003) use syntactical

features computed on phrase alignments between pairs of phrases which

are guaranteed (by constraining the training of the upstream decoder) to be

syntactical constituents.

Vassilina Nikoulina and Marc Dymetman (Nikoulina and Dymetman, 2008)

dependency parse the source sentence f and the target sentences in the N-

best list e1, . . . , eN and derive from the alignments some dependency coupling

features which are used in the reranking model.

Lattice reranking

Reranking on N-best list is straightforward, but the quality improvements it

can produce are limited by the fact that N-best lists of manageable size often

contain little variation: most candidate translations often differs only by a few

words. The combined decoding and reranking complexity is approximately

linear in N, and in general increasing N above 103 is impractical.

A different approach is to represent the set of promising candidate

translation E f as a translation lattice: a representation of the dynamic pro-

gramming tableau of the upstream decoder, which takes the form of a

directed acyclic graph whose vertices represent the decision points with their

state signatures and edges represent the decisions. Each directed path on

this graph from a distinguished start vertex to the final vertices represent

a candidate translation in E f .

The translation lattice is a compact representation of a large number of

promising candidate translations, in fact exponentially many in L f , but still

much less all possible translations GEN( f ) since most of them are pruned by
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the upstream decoder.

Lattice reranking consists in finding the path with the highest score

according to a reranking model. Compared to N-best reranking, this is a non-

trivial structured prediction problem, requiring its own decoding algorithm,

which is generally tightly coupled both to the reranking model and the

representation of the lattice which depends on the internal structure of the

upstream decoder.

Michael Auli et al. (Auli et al., 2013) propose a phrase-based lattice

reranking approach using a recurrent neural network LM with additional

source-side features:

In this approach, they augment the state signature of each vertex with a state

vector for the pre-trained RNN and a partial score.

The start vertex has the default initial state vector and zero partial score.

For each other vertex uj we compute the partial RNNLM score for each of

its parents uj′ ∈ PARENTS(uj), using the state vector of the parent v(u′j)

and the string of target words specified by their shared edge. The largest of

these scores becomes the partial score of uj and the state vector of the RNN

after computing it becomes the state vector of uj. Once the final vertices have

been scored, we compute the best path backwards by selecting the highest

scoring final vertex, then we select its highest scoring parent, and so on upon

reaching the start vertex. 31.

The RNNLM is trained separately from the reranker using source sentences

and their reference translations.

Kevin Gimpel and Noah Smith (Gimpel and Smith, 2013) perform syntax-

based lattice reordering using quasi-synchronous dependency grammars,

which are an extension of the quasi-synchronous dependency grammars

described in section 2.5.3: instead of modeling dependency relations between

the words of target sentences which can be generated by a specific source

sentence f , they model dependencies between phrases, defined as in the

phrase-based translation model.

Reranking is performed by applying various pruning heuristics on the lattice

31This can be generalized by storing more than one state vectors at each vertex, but

apparently this does not produce a substantial increase of translation quality.
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E f and then using it to generate the target-side context-free grammar G f ,

where the terminal symbols are whole target phrases instead of single words.

Rules of this grammar are weighted by a number of linguistically motivated

features combined in a linear model. A dynamic programming algorithm

is then used to compute the best sentence
∗
e that G f can generate, which is

returned as the best translation of f .

The parameters for the linear models of the rules are estimated using MERT.

2.6 Summary

In this chapter we broadly described the theoretical underpinnings and a

number of practical techniques of the field of statistical machine translation.

We introduced basic natural language processing concepts and tech-

niques such as segmentation, tagging and parsing.

Then we described the general machine learning theory behind all sta-

tistical machine translation (and in general, statistical NLP) techniques:

generative and discriminative learning models, regression, classification and

structured prediction tasks, then we introduced various model represen-

tations and associated learning algorithms, starting from the simple linear

models, to non-linear kernel models, to neural networks of different types.

We went further to describe statistical language models and finally

we introduced statistical machine translation systems, starting from the

simplest, but still relevant word-based models, to the modern phrase-based

models, to the more complex and advanced models involving hierarchical

and syntactical translation, pre-reordering and reranking.

The research field we explored are very vast and active. New techniques

are constantly introduced pushing the envelope of performance even further.

Therefore, this presentation is not intended to be exhaustive, neither in

coverage nor in detail. We hope, however, to have captured the core aspects

of the state of the art in the field and in particular to have provided the

relevant background to understand both the technique upon the original

contributions of this thesis work build upon and the context of research

issues in which they have been developed.
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Chapter 3

Characterization of

German-to-English reordering as

transitions on a dependency tree

In this chapter we study the word reordering phenomena involved with

translation from German to English, from the perspective of transitions on

a dependency parse of German sentences.

We imagine that a German sentence is reordered in an "English-like" word

order by performing a "walk" on its dependency tree and incrementally

emitting the words in the desired order. We quantitatively characterize these

moves in relation to their impact on the translation quality of a phrase-

based translation system, evaluating the impact of non-projectivity in the

dependency tree and tree non-locality of the reordering movements.

We also assess the impact of non-projectivity and tree non-locality on the

translation quality of a phrase-based system with hand-coded syntax-based

pre-reordering rules.

In order to do so, we evaluate various hand-coded syntax-based reordering

heuristics which differ by the type of parse tree they use and the tree locality

of reordering operations that they can perform.
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3.1 Motivation

Phrase-based statistical machine translation systems perform well when the

typical word ordering of the source language and the target language are

similar.

Short-distance reordering, such as the noun-adjective swap that occurs

between Romance languages and English, can be resolved by the combina-

tion of the ability of the phrase table to store idiomatic phrase pairs (e.g.

("Stati Uniti d’America", "United States of America")), the language model

(e.g. "States United" scores lower than "United States" in English) and the

distortion models (chapter 2, section 2.5.2).

However, due to the context-size limits needed to make decoding efficient,

phrase-based systems can’t deal effectively with long-range reordering,

which significantly limits their performance on language pairs with signif-

icantly different idiomatic word order (Birch et al., 2008), such as German

and English.

As previously discussed in chapter 2, section 2.5.5, translation perfor-

mance can be significantly increased, at least for some language pairs, by pre-

processing the source sentences, permuting their words in a target-like order,

and then feeding them to a phrase-based (or even hierarchical) translation

system trained on a training corpus with a similarly permuted source side.

In fact, syntactic parse trees, particularly dependency parse trees, typi-

cally capture most linguistic information needed to perform proper reorder-

ing, as evidenced by reordering approaches that exploit hand-coded rules

(Collins et al., 2005a; Wang et al., 2007; Katz-Brown, 2008; Xu et al., 2009;

Isozaki et al., 2010).

Systems that use hand-coded rules, however, require substantial source

language-specific linguistic expertise and engineering effort. Fully statistical

systems would be preferable.

A few statistical syntax-based reordering systems have been proposed

in the literature, e.g. Genzel (Genzel, 2010) and Dyer and Resnik (Dyer and

Resnik, 2010).

These approaches learn reordering rules or reordering grammars from
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source-parsed word-aligned corpora, and attain significant performance

improvements over direct phrase-based translation, but they have some

limitations which we attempted to overcome: they require constituency

parse trees or projective dependency parse trees and limit the permutations

they can generate to those that can be obtained by swaps between a parent

vertex and its children or between sibling vertices in the parse tree.

As we discussed in the previous chapters, non-analytic languages with

a relatively free word order have their syntax better represented by non-

projective dependency parse trees, and the reordering operations needed to

permute their words in a way suitable for translation to an analytic language

with strict word order such as English can be more complex than tree-local

swaps.

We hypothesized that these limitations in current syntax-based reorder-

ing systems imply that there may be some linguistic reordering phenomena

relevant to machine translation that they may fail to exploit. Therefore,

we intended to investigate the research question of whether source syntax

non-projectivity and non-tree-local word swaps between idiomatic orders

affect translation quality. Specifically, we analyzed the German-to-English

language pair, as German displays a significant amount of non-projectivity

when parsed with a suitable model and word alignment between German

and English is known to typically include long-distance relations.

We evaluate our hypothesis against "pseudo-oracle" reference permuta-

tions of German into an English-like word order heuristically derived from

IBM Model 4 word alignments and against hand-coded pre-reordering rules.

We didn’t analyze the English-to-German language pair because En-

glish is intrinsically mostly projective, hence we hypothesized that using a

non-projective source model wouldn’t make much difference and because

German is generally understood to have a freer word order than English,

which makes the concepts of reference permutations and deterministic pre-

reordering less justifiable. In fact, English-to-German pre-reordering seems

to be a harder problem than German-to-English pre-reordering (Navratil

et al., 2012).
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3.2 German-to-English reordering

German and English are both Indo-European West Germanic languages

which share various syntactic features, notably including the same basic

subject-verb-object (SVO) main clause structure. However, due to isolation

from other continental West Germanic languages and borrowings from other

languages such as Old French and Old Norse, the English syntax significantly

diverged from the syntax of other West Germanic languages such as German

and Dutch.

This is particularly notable in the placement of verbs: English is quite strictly

SVO in both main and relative clauses and places auxiliary verbs close to

the main verbs (with optional adverbs in between), while German uses a

SOV structure in relative clauses and splits auxiliaries and main verbs over

the object in main clauses (SAuxOV). Other subtler differences in word

placement exist. For an in-depth qualitative discussion, refer to Dryer and

Haspelmath (2013); Bisazza (2013).

In sentences with a non-trivial structure which includes relative clauses,

these syntactic differences can result in aligned words in a German-English

sentence pair to be placed far from each other. This is relevant to machine

translation, since phrase-based translation systems fail to properly address

these phenomena when they occur at a distance exceeding the maximum

distortion distance of the system (usually around 6 words). These issues

make syntax-based translation or syntax-based pre-reordering followed by

phrase-based translation particularly attractive for this language pair.

3.3 Reordering as a walk on a dependency tree

In order to quantitatively analyze the reordering phenomena in German-

to-English in relation to the German dependency syntax, we introduce a

reordering framework based on a graph walk of the dependency parse tree

of the source sentence. This framework doesn’t restrict the parse tree to be

projective, and allows the generation of arbitrary permutations, therefore it

allow us to quantify the frequency of non-projectivity and non-tree-locality
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and their impact on translation quality.

Let f ≡ ( f1, f2, . . . , fL f ) be a source sentence, annotated by a rooted

dependency parse tree:

∀j ∈ 1, . . . , L f , hj ≡ PARENT(j) (3.1)

We define a walker process that walks from word to word across the edges

of the parse tree, and at each steps optionally emits the current word, with

the constraint that each word must be eventually emitted exactly once.

Therefore, the final string of emitted words f ′ is a permutation of the original

sentence f , and any permutation can be generated by a suitable walk on the

parse tree.

3.3.1 Reordering automaton

We formalize the walker process as a non-deterministic finite-state automa-

ton.

The state v of the automaton is the tuple:

v ≡ (j, E, a) (3.2)

where j ∈ 1, . . . , L f is the current vertex (word index), E is the set of emitted

vertices, a is the last action taken by the automaton.

The initial state is:

v(0) ≡ (root f , {}, null) (3.3)

where root f is the root vertex of the parse tree 1.

At each step t, the automaton chooses one of the following actions:

• EMIT: emit the word f j at the current vertex j. This action is enabled

only if the current vertex has not been already emitted:

j /∈ E

(j, E, a) EMIT→ (j, E ∪ {j}, EMIT)
(3.4)

1we can slightly reformulate the model to accommodate for dependency forests by

including a dummy root vertex.
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• UP: move to the parent of the current vertex. Enabled if there is a parent

and we did not just come down from it:

hj 6= null ∧ a 6= DOWNj

(j, E, a) UP→ (hj, E, UPj)
(3.5)

• DOWNj′ : move to the child j′ of the current vertex. Enabled if the

subtree rooted at j′ contains vertices that have not been already emitted

and if we did not just come up from it:

hj′ = j ∧ a 6= UPj′ ∧ ∃k ∈ SUBTREE(j′) : k /∈ E

(j, E, a)
DOWNj′→ (j′, E, DOWNj′)

(3.6)

the DOWNj′ actions are parametrized by the index of the child they are

descending to.

The UP action is not parametrized, but in the last action a part of the state it

appears annotated by the current vertex, which we need in order to write the

precondition of the DOWNj′ actions.

The execution continues until all the vertices have been emitted.

We define the sequence of states of the walker automaton during one

run as an execution v̄ ∈ GEN( f ). An execution also uniquely specifies the

sequence of actions performed by the automation.

The preconditions make sure that all execution of the automaton always

end generating a permutation of the source sentence. Furthermore, no cycles

are possible: progress is made at every step, and it is not possible to enter in

an execution that later turns out to be invalid.

Since the parse tree is a connected graph, every permutation of the source

sentence can be generated by some execution. In fact, each permutation f ′

can be generated by exactly one execution, which we denote as v̄( f ′).

At the beginning of a run, the "walker" first needs to go down from the

root r1 to the vertex corresponding to the first word f ′1 in the permutation f ′

and then emits it. Then the "walker" climbs the tree up to the first vertex r2

which is a parent of both the first word f ′1 and second word f ′2, then it goes

down to f ′2 and emits it. The process continues until the last word f ′L f
in the

permutation is emitted.
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Therefore we can split the execution v̄( f ′) into a sequence of L f emission

fragments v̄j( f ′), each ending with an EMIT action.

The first fragment has zero or more DOWN∗ actions followed by one

EMIT action, while each other fragment has a non-empty sequence of UP

and DOWN∗ actions (always zero or more UPs followed by zero or more

DOWNs) followed by one EMIT action. We define the highest vertex rj in

the tree visited in emission fragment v̄j( f ′) as the top vertex of the fragment.

We define the signed distance of an emission fragment v̄j( f ′) as the

difference between the position of words f ′j and f ′j−1 in the original sentence,

that is:

π−1
f ′ (j)− π−1

f ′ (j− 1) (3.7)

where π−1
f ′ (j) maps the position of a word in the permuted sentence to its

original position. For the first emission fragment, we assume that π−1
f ′ (0) =

0.

We define the excursion of an emission fragment v̄j( f ′) as the maximum of

the unsigned distance in the original sentence between f ′j and rj and between

rj and f ′j−1, again assuming that f ′0 stays at position 0.

Finally, we define an action in an execution as forced if it was the only

action enabled at the step where it occurred.

3.3.2 Discussion

Suppose we perform reordering using a typical syntax-based system which

processes source-side projective dependency parse trees and is limited to

swaps between pair of vertices which are either in a parent-child relation

or in a sibling relation 2.

It is easy to show that in our walk-based framework these permutations

correspond to executions which describe depth-first visits of the parse tree.

Specifically, the identity permutation corresponds to an inorder depth-first

visit.
2systems which operate on constituency parse trees and only swap sibling vertices also

produce these kind of permutations, due to an isomorphism between constituency parse

trees and projective dependency parse trees.
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Note also that in the execution of a depth-first visit the UP actions are always

forced, since the "walker" process never leaves a subtree before all its vertices

have been emitted.

Suppose instead that we could perform reordering according to an

"oracle" which permuted the German words in an order that was as close

as possible to the English word order 3.

The executions of our automaton corresponding to these permutations will

in general contain unforced UP actions. We define these actions, and the

execution fragments that exhibit them, as non-tree-local.

3.4 Characterization of German-to-English

reordering against a reference permutation

If we actually had access to these "oracle" permutations we could characterize

how much they differ from the tree-local permutations produced by typical

syntax-based approaches by focusing on these unforced UP actions.

We could analyze the the frequency of non-tree-local execution fragments,

the distributions of their lengths, and distances, how these distribution differ

from tree-local execution fragments and, more importantly, what impact they

have on translation quality.

In particular, we are interested in the oracle performance gap: the difference

in translation quality between a phrase-based translation system augmented

with oracle pre-reordering and the same phrase-based system without pre-

reordering.

We hypothesize that sentences with large numbers of non-local execution

fragments and in particular those with fragment distance above the phrase-

based distortion limit have a high oracle performance gap and therefore

3clearly there is some ambiguity in the definition of what the English word order of a

German sentence entails. We could make this definition more precise by specifying it as

the permutation which when applied as a pre-processing step of a certain phrase-based

translation system maximizes the expectation of a certain measure of translation quality (e.g.

the BLEU score).
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could potentially benefit from a reordering model that can appropriately

handle non-tree-local reordering.

3.4.1 Heuristic pseudo-oracle

The oracle performance gap is by definition an upper bound on the im-

provement that the underlying translation system can obtain from pre-

reordering. In practice, computing the oracle permutation of every sentence

in the training, tuning and test corpora is too computationally expensive.

Therefore, we approximate it using a heuristic that generates reference

permutations from word alignments.

Following Al-Onaizan and Papineni (2006); Tromble and Eisner (2009);

Visweswariah et al. (2011); Navratil et al. (2012), we concatenate the training,

tuning, and test corpus the baseline translation system and we generate word

alignments in both the source-to-target and the target-to-source directions

using IBM model 4 as implemented in GIZA++ (Och et al., 1999) and then

we combine them into a symmetrical word alignment using the "grow-diag-

final-and" heuristic implemented in Moses (Koehn et al., 2007).

Given the symmetric word-aligned corpus, we assign to each source-side

word an integer index corresponding to the position of the leftmost target-

side word it is aligned to (attaching unaligned words to the following aligned

word) and finally we perform a stable sort of source-side words according to

this index.

On language pairs where IBM model 4 produces substantially accurate

alignments (generally all European languages) this scheme generates a

target-like reference reordering of the corpus.

3.4.2 Non-projective dependency parsing

For this set of experiments, we parsed the source side of the test corpus using

the DeSR non-projective transition-based parser (Attardi, 2006).

As discussed in the previous section, the automaton execution corre-

sponding to the identity permutation does not contain unforced UP actions

if and only if the dependency tree is projective.
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System BLEU

baseline Moses 33.00

pseudo-oracle Moses 41.80

Figure 3.1: Translation quality of the baseline system and the system with pseudo-

oracle reordering.

We define the execution fragments of the identity permutation which contain

unforced UP actions as non-projective.

We can characterize the non-projectivity of a tree by computing statistics

on these non-projective execution fragments. We can analyze their frequency

and the distributions of their lengths, distances and excursions, how they

relate with the non-tree-locality statistics of the (pseudo-)oracle permutation

and to the translation quality and oracle performance gap.

3.4.3 Dataset and baseline system

The baseline phrase-based system was trained on the German-to-English

corpus included in Europarl v7 (Koehn, 2005). We randomly split it in a

1,881,531 sentence pairs training set, a 2,000 sentence pairs development set

(used for tuning) and a 2,000 sentence pairs test set. The English language

model was trained on the English side of the parallel corpus augmented with

a corpus of sentences from AP News, for a total of 22,891,001 sentences.

The baseline system is phrase-based Moses in a default configuration

with maximum distortion distance equal to 6 and lexicalized reordering

enabled. Maximum phrase size is equal to 7.

The language model is a 5-gram IRSTLM/KenLM.

The pseudo-oracle system was trained on the training and tuning corpus

obtained by permuting the German source side using the heuristic described

in section 3.4.1 and is otherwise equal to the baseline system.

As we can note in figure 3.1, there is a very large total performance gap of

8.8 BLEU points between the system with pseudo-oracle pre-reordering and

the baseline system.
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This implies that, even though the pseudo-oracle permutation does not yield

the true quality upper bound of pre-reordering, it is good enough that it is

worth considering how much actual pre-reordering systems (and in-decoder

reordering models) can reproduce it.

3.4.4 Reordering example

Before we describe in detail the experiments that we performed, we will

present an example to illustrate the linguistic phenomena we are interested

in modeling.

Consider the German sentence from the Europarl corpus:

"auf diese Weise wird die raffinierte Undurchsichtigkeit geschickt

aufrechterhalten ; während der Euro " stark und stabil " sein sollte und

die Währungsreserven anfangs lediglich zur Verteidigung während des

Übergangszeitraums ( falls notwendig ) dienen sollten , erweist sich heute

, daßweder die eine noch die andere dieser Behauptungen zutreffend

waren und sich in Frankfurt überhaupt nichts tut !"

It’s full dependency parse tree is shown in figure 3.2, while its reference

English translation is:

"the issue therefore remains skilfully blurred ; while the euro was in-

tended to be ’ strong and stable ’ and the reserve assets were originally

intended to provide protection during the transitional period ( should this

prove necessary ) , it now appears that neither of these expectations has

been fulfilled and Frankfurt is totally deadlocked !"

Using the heuristic described above, we compute the following pseudo-

oracle permutation from the giza++ IBM Model 4 word alignment:

"die raffinierte geschickt Undurchsichtigkeit aufrechterhalten ; während

der Euro sollte auf sein " stark und stabil " und die Währungsreserven

anfangs lediglich dienen sollten zur Verteidigung während des Über-

gangszeitraums ( diese Weise wird falls notwendig ) , erweist sich heute ,

daßweder die eine noch dieser Behauptungen zutreffend die andere waren

und sich in Frankfurt überhaupt nichts tut !"

Some of the word swaps (e.g. moving "diese Weise wird" inside the
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Figure 3.2: Dependency parse of "auf diese Weise wird die raffinierte Undurch-

sichtigkeit geschickt aufrechterhalten ; während der Euro " stark und stabil " sein

sollte und die Währungsreserven anfangs lediglich zur Verteidigung während

des Übergangszeitraums ( falls notwendig ) dienen sollten , erweist sich heute

, daßweder die eine noch die andere dieser Behauptungen zutreffend waren und

sich in Frankfurt überhaupt nichts tut !"
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Figure 3.3: Dependency parse detail.

parentheses) in this permutation are artifacts that results from alignment

errors, but the overall reordering is arguably sensible.

Consider specifically the reordered segment "die Währungsreserven

anfangs lediglich dienen sollten zur Verteidigung" (fig. 3.3), corresponding

to the English: "the reserve assets were originally intended to provide

protection".

In order to compose this segment, the reordering automaton described

in our framework must perform a complex sequence of moves on the parse

tree:

• Starting from the modal verb "sollten", descend to the infinitive

"dienen", then keep descending to "Währungsreserven" and finally to

"die".

• Emit "die", then go up to "Währungsreserven", emit it and go up to

"dienen" and up again to "sollten". Note that the first two UP actions

are forced since they occur when no other actions are available, while

the last one is unforced since "dienen" has not been emitted at that point

and has also unemitted children. This unforced action indicates non-

tree-local reordering.

• Go down to "anfangs". Note that the in the parse tree edge crosses

another edge, indicating non-projectivity. Emit "anfangs" and go up

(forced) back to "sollten".

• Go down to "dienen", down to "zur", down to "lediglich" and emit it.
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• Go up (forced) to "zur", up (unforced) to "dienen", emit it, go up

(unforced) to "sollten", emit it.

• Finally go down to "dienen", down to "zur" emit it, go down to

"Verteidigung" and emit it.

Correctly reordering this segment would be difficult both for a phrase-

based system (since the words are further apart than both the typical

maximum distortion distance and maximum phrase length) and for a syntax-

based system (due to the presence of non-projectivity and non-tree-locality).

3.4.5 Results

Our tests were performed on the test corpus described in the previous section

consisting of 2,000 sentences, 52,711 words.

Non-tree-local reordering distribution

We estimated the distribution of non-tree-local reordering w.r.t. the pseudo-

oracle permutation in the corpus.

We hypothesized that non-tree-local reordering is common and the distribu-

tion is heavy-tailed, and in particular that the non-tree-local fragments with a

distance greater than the typical phrase-based maximum distortion distance

are a non-negligible fraction.

We found that:

• 79% of sentences have at least one non-tree-local (NTL) fragment.

• There are 5,261 NTL fragments in the dataset, an average of one for

each 10.02 words.

• 70% of all fragments are monotonic (that is, preserve the original

ordering), while only 49% of NTL fragments are monotonic.

• 83% of all fragments have positive signed distance (18% excluding the

monotonic ones).
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• 86% of NTL fragments have positive signed distance (22% excluding

the monotonic ones).

• 25% of NTL fragments have an unsigned distance greater than 6 (the

maximum distortion distance used in our configuration of Moses), 19%

of NTL fragments have distance greater than 8.

• 29% of sentences with at least one NTL fragment have a NTL fragments

with distance greater than 6, 21% with distance greater than 8.

• 23% of all sentences in the dataset have a NTL fragments with distance

greater than 6, 17% with distance greater than 8.

Distribution plots:
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We conclude that the hypothesis is strongly confirmed.

Non-projectivity distribution

We estimated the distribution of non-projective relations in the German

dependency parse trees of the dataset. We also estimate the distribution of

the excursion of these non-projective dependency relations We hypothesized

that non-projective relations are common and the excursion distribution is

heavy-tailed.

We found that:

• 47% of the sentence have at least one non-projective relation, one each

29.3 words.

• Mean number of non-projective relations per sentence = 0.9, std = 1.35,

median = 0.0, 95th percentile = 3.0.

• Mean excursion = 18.3, std = 14.5, median = 15, 5th percentile = 2.0, 95th

percentile = 47.5.

Distribution plots:
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We conclude that the hypothesis is strongly confirmed.

Non-tree-locality and translation quality

We analyzed the correlation between NTL reordering and baseline phrase-

based translation quality, and between NTL reordering and pseudo-oracle

quality gap.

Specifically for each sentence we considered the maximum NTL fragment

(unsigned) distance4 and the cumulative NTL fragment distance (the sum of the

unsigned distance of each NTL fragment in the sentence).

Sentence-level translation quality can’t be adequately measured using

the standard BLEU score, hence we used the sentence-level smoothed BLEU

(BLEU+1) metric (Lin and Och, 2004) and the Translation Error Rate (TER)

metric5 (Snover et al., 2006).

We hypothesized that NTL reordering correlates negatively with baseline

phrase-based translation quality and positively with pseudo-oracle quality

gap.

We found that:

• BLEU+1 correlates negatively with maximum NTL distance: Spear-

man’s rank correlation coefficient = -0.246, p-value = 3.799e-29. Linear

regression slope = 4.98e-3, intercept = 0.373, r-value = -0.214, p-value =

3.36e-22.

• TER correlates positively with maximum NTL distance: Spearman’s

rank correlation coefficient = 0.306, p-value = 1.16e-44. Linear regres-

sion slope = 6.96e-3, intercept = 0.509, r-value = 0.244, p-value = 1.50e-

28.

• BLEU+1 pseudo-oracle gap correlates positively with maximum NTL

distance: Spearman’s rank correlation coefficient = 0.188, p-value =

4We assume that sentences without NTL fragments have a maximum NTL fragment

distance equal to zero.
5note that TER is an error metric hence lower values denote a higher quality, in contrast

to BLEU and BLEU+1 which are accuracy metrics
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1.89e-17. Linear regression slope = 9.96e-4, intercept = -0.0730, r-value

= -0.0660, p-value = 3.17e-3.

• TER pseudo-oracle gap6 correlates positively with maximum NTL

distance: Spearman’s rank correlation coefficient = 0.268, p-value =

3.95e-34. Linear regression slope = 3.16e-3, intercept = 0.0967, r-value

= 0.170, p-value = 1.98e-14.

Linear regression plots (TER only):

6defined as the TER of the baseline system minus the TER of the pseudo-oracle system,

hence a positive value means that the pseudo-oracle system is better as for the BLEU+1

pseudo-oracle gap.
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We conclude that the hypothesis is strongly confirmed.

Non-projectivity and translation quality

We analyzed the correlation between non-projectivity and translation quality

and pseudo-oracle quality gap.

We hypothesized that the number of non-projective relations and max-

imum excursion of a sentence may correlate negatively with translation

quality and positively with pseudo-oracle gap. However, since we are con-

sidering phrase-based system which don’t make use of source dependency

information, we don’t expect these correlations to be very strong.

We found that:

• TER weakly correlates positively with the number of non-projective

relations: Spearman’s r = 0.126, p-value = 1.742e-8. Linear regression

slope = 1.78e-2, intercept = 0.539, r-value = 0.105, p-value = 2.406e-6.

• BLEU+1 weakly correlates negatively with the number of non-

projective relations: Spearman’s r = -6.82e-2, p-value = 2.25e-3. Linear

regression slope = -1.03e-2, intercept = 0.350, r-value = -7.47e-2, p-value

= 8.24e-4.

• TER weakly correlates positively with maximum non-projective excur-

sion: Spearman’s r = 1.39e-1, p-value = 3.74e-10. Linear regression slope

= 2.2e-3, intercept = 0.534, r-value = 1.36e-1, p-value = 1.005e-9.

• BLEU+1 weakly correlates negatively with maximum non-projective

excursion: Spearman’s r = -6.87e-2, p-value = 2.11e-3. Linear regression

slope = -1.23e-3, intercept = 0.352, r-value = -9.24e-2, p-value = 3.48e-5

• BLEU+1 pseudo-oracle gap weakly correlates positively with the num-

ber of non-projective relations: Spearman’s r = 1.31e-1, p-value = 8.24e-

9. Linear regression slope = 1.06e-2, intercept = -7.17e-2, r-value = -

7.91e-2, p-value = 5.42e-4.
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• BLEU+1 pseudo-oracle gap weakly correlates positively with maxi-

mum non-projective excursion: Spearman’s r = 1.38e-1, p-value = 5.91e-

10. Linear regression slope = 5.38e-4, intercept = -7.46e-2, r-value = -

6.23e-2, p-value = 5.35e-3.

• (similar TER results omitted for brevity)

We conclude that the hypothesis is confirmed in a weak form: the

hypothesized correlations exist and the p-values are small enough to exclude

that the effect is spurious, but these correlations are weak.

Non-projectivity and non-tree-local reordering

Since non-projectivity is not strongly correlated to phrase-based translation

quality and pseudo-oracle quality gap, it could be argued that it might not

be relevant to machine translation after all. Therefore, we checked if non-

projectivity correlates with non-tree-local reordering, which is a relevant

property.

We hypothesized that non-projectivity correlates with non-tree-locality.

We found that:

• For a word, being in a non-projective dependency relation correlates

positively with being emitted in a NTL reordering fragment: Spear-

man’s r = 2.28e-1, p-value = 0.0. Linear regression 7 slope = 4.03e-1,

intercept = 8.79e-2, r-value = 2.27e-1, p-value = 0.0.

• The excursion of non-projective dependency relations correlates posi-

tively with being emitted in a NTL fragment: Spearman’s r = 2.26e-1,

p-value = 0.0. Linear regression slope = 1.17e-2, intercept = 9.35e-2, r-

value = 1.55e-1, p-value = 5.30e-280.

We also found that the distance distributions of reordering fragments

with and without non-projectivity are distinguishable (by a two-sample

Kolmogorov-Smirnov test) only if the reordering fragments are non-tree-

local:
7Considering non-projectivity and NTL as variables which take values in 0, 1
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• All words vs all non-projective words by unsigned distance, KS value

= 2.12e-2, p-value = 5.03e-1 (not significant).

• All words vs all non-projective words by signed distance, KS value =

4.26e-2, p-value = 8.22e-3 (small).

• NTL words vs NTL non-projective words by unsigned distance, KS

value = 4.21e-1, p-value = 1.37e-101.

• NTL words vs NTL non-projective words by unsigned distance, KS

value = 4.06e-1, p-value = 1.04e-94.

We conclude that the hypothesis is confirmed: non-projectivity, especially

with high excursion, correlates with non-tree-local reordering. Moreover, we

argue that non-projective non-tree-local reordering tends to correspond to a

specific class of non-tree-local reordering linguistic phenomena, as evidenced

by the distinguishable distance distributions.

3.4.6 Discussion

We found that dependency non-tree-local reordering and dependency non-

projectivity are both relevant to German-to-English machine translation.

Both of them, especially non-tree-local reordering, negatively affect the

translation quality of a standard phrase-based system, in particular when

they involve long-distance relations.

Pre-reordering the German sentences in an English-like order can hugely

improve the quality of a phrase-based system, and we found that this

potential improvement correlates with dependency non-tree-local reordering

and dependency non-projectivity.

These gains that we measured obviously constitute a upper bound,

since the "pseudo-oracle" pre-reordering heuristic that we used reorders the

German words by looking at the English reference translation, hence it can’t

be used in an actual translation system.

Our results indicate that performing pre-reordering (or possibly in-decoder

reordering) using models which are aware of dependency non-tree-local
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reordering and dependency non-projectivity has the potential to bring sig-

nificant improvements. Experiments on realizable translation systems are

needed to determine how much they can actually affect translation quality.

The next section and the next chapter will describe some of these experi-

ments.

3.5 Effects of dependency non-projectivity on pre-

reordering with hand-coded rules

In order to determine whether non-projectity and tree non-locality can be

relevant to the translation quality of an actual translation system, we need to

design a system with a reordering model that takes them into consideration.

Syntax-based pre-reordering with hand-coded rules yields good results

for the German-to-English translation.

Performing non-tree-local reordering would probably require rules quite

different than those known in the literature. The design of these rules

would require a significant amount of specific linguistic expertise, and

unfortunately the author of this work is not fluent in German and thus

arguably lacks the required expertise.

Designing rules that exploit dependency non-projectivity, however, appears

to be an easier task, since we can adapt reordering rules already known in

the literature. Therefore, in this section we will experiment on German-to-

English pre-reordering using non-projective dependency-based hand-coded

rules.

The results will be likely less than ideal, as these rules aren’t particularly

optimized, but as long as they are positive they provide support to our

research hypothesis.

In the next chapter, however, we will introduce several approaches that auto-

matically learn how to perform syntax-based pre-reordering while exploiting

both dependency non-projectivity and tree non-locality.
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3.5.1 Legacy rules

As a starting point for our non-projective pre-reordering rules we consider

two sets of rules known in the literature: Collins et al. (2005a) and Navratil

et al. (2012).

Collins et al. rules

Collins et al. approach works on German sentences fully parsed to con-

stituency trees where non-terminal nodes are annotated with head and

grammatical function tags, which makes them isomorphic to labeled projective

dependency trees. Generating these parse trees with sufficient accuracy

requires an appropriate parser and is relatively time consuming, but the

impact of this approach on translation quality is large enough that, despite

its age, it still is used in state of the art translation systems (Durrani et al.,

2014).

The original implementation of Collins et al. (2005a) is not publicly available

and there is some ambiguity over some details in the original article,

therefore in this work we refer to the open-source implementation provided

by Howlett and Dras (2011a).

Given a parsed German sentence f , Collins et al. system applies a

sequence of rules which modify both the parse tree and the sentence word

order. Each rule is applied to all the locations of the parse tree that match its

antecedent, until these locations are exhausted (this can be performed by a

depth-first visit of the tree), then the system proceeds to the next rule in the

sequence, until all rules have been applied.

The rules are:

• Rule 1 "Verb initial". Antecedent: internal vertex is a verb phrase (’VP’)

and has a head child (’-HD’ grammatical function). Action: move the

(leftmost) head child in the first position among its siblings.

• Rule 2 "Verb second". Antecedent: internal vertex is a clause (’S’), has a

head child and a complementizer child (’KOUS’, ’PRELS’, ’PRELAT’,
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’PWS’, or ’PWAV’). Action: move the (leftmost) head child after the

(leftmost) complementizer child.

• Rule 3 "Move subject". Antecedent: internal vertex is a clause, has a

head child and a subject child (’-SB’ or ’PPER-EP’). Action: move the

(leftmost) subject child before the (leftmost) head child.

• Rule 4 "Particles". Antecedent: internal vertex is clause, has a finite verb

child (’VVFIN’) and a particle child (’PTKVZ’). Action: move (leftmost)

particle child before (leftmost) finite verb child.

• "Remove VP". Antecedent: internal vertex has is a verb phrase. Action:

remove vertex and reattach its children below its parent.

• Rule 5 "Infinitives". Antecedent: internal vertex is a clause, has a finite

verb child (’VVFIN’, ’VAFIN’, ’VMFIN’), one or more infinitive verb

children (’VVINF’, ’VVIZU’, ’VAINF’, ’VMINF’, ’VZ’) and an argument

child (’-DA’, ’-OA’, ’-OA2’, ’-OG’, ’-PD’, ’-SB’, ’-SBP’, or ’-SP’) in be-

tween. Action, move all the infinitive verb children after the (leftmost)

finite verb child, preserving their relative order.

• Rule 6 "Negation". Antecedent: internal vertex is a clause, has a finite

verb child (’VVFIN’, ’VAFIN’ or, ’VMFIN’), an infinite verb child

(’VVINF’, ’VVIZU’, ’VAINF’, or ’VMINF’) and a negation particle

child (’PTKNEG’). Action: move the negation particle child after the

(leftmost) finite verb child.

The numbered rules swap a vertex either with its head (which would

correspond to its parent in a dependency tree) or with a sibling. However,

the "Remove VP" step modifies the topology of the tree. Therefore, Collins et

al. approach is mostly, but not strictly, tree-local.

In our experiments we used the Howlett and Dras (2011a) implementa-

tion of Collins et al. (2005a) with the Berkeley parser (Petrov et al., 2006).

Navratil et al. rules

Navratil et al. (2012) introduced a set of simpler German-to-English pre-
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reordering rules which only make use of part-of-speech (POS) tags and some

additional grammatical function information.

The approach is briefly described in the original paper (since it serves

as a baseline for an automatic system) and no reference implementation is

provided. In our implementation we used a fast non-projective dependency

parser (DeSR) to extract the grammatical function information (as the deprel

tags) while ignoring the topology of the parse graph except subject to verb

edges which are required in order to apply the last rule.

The rules are:

• Rule 1. Antecedent: an auxiliary verb (’VA*’ or ’VM*’) and a full verb

(’V*’) on its right, not separated by punctuation (’$*’). Action: move full

verb after auxiliary verb.

• Rule 2. Antecedent: an auxiliary or modal verb and a negation particle

(’PTKNEG’) on its right, not separated by punctuation. Action: move

negation particle after auxiliary verb.

• Rule 3. Antecedent: a sequence of auxiliary or full verbs and their

subject (’-SB’), not separated by punctuation. Action: move sequence

of verbs after the subject.

3.5.2 Proposed rules

We developed dependency-based versions of the rule sets described above.

Each of these new rule sets can be used with in conjunction with either a

projective or a non-projective dependency parser, enabling us to determine

the impact of non-projectivity on translation quality.

In order to adapt Collins et al. (2005a) to be used with a dependency parse

tree we modify it in the following ways:

• Rule 1 antecedent matches any verb and its action moves it in first

position w.r.t. a subset of its children which are considered its verb

phrase. This verb phrase is estimated using a heuristic8.
8deprel not in ’PUNC’, ’CD’, ’NG’, ’CP’, ’OC’, ’CJ’, ’SB’, ’PSEUDOROOT’, ’CM’, POS in

’V*’, ’AV*’ or ’APPR’, ’NN’, ’APPRART’, ’PROAV’, ’PTKZU’
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• Rules 2, 3 and 4 match any verb.

• "Remove VP" iteratively reattaches vertices in a verb phrase other than

the head to the head’s parent.

• Rules 5 and 6 match any finite verb as the parent of the other elements.

When a non-head vertex is moved by a rule, all its subtree is moved as well,

compacting any gap introduced by non-projectivity.

Navratil et al. (2012) rules were adapted by just enforcing the dependency

relations as constraints: the rules only move a word with respect to another

if they have an appropriate dependency relation.

3.5.3 Datasets and configurations

Howlett and Dras (2011a) discovered that the performance of Collins et al.

(2005a) depend on the specific dataset and phrase-based system configura-

tion9.

Therefore, in addition to using the dataset described in section 3.4.3, we also

use on the "Newstest 2009" test set from WMT 2009 for testing.

In addition to the constituency Berkeley parser (Petrov et al., 2006) for the

original Collins et al. rules, we used three different dependency parsers for

the dependency-based pre-reordering rules that we proposed: a projective

parser (PCFG Stanford (Rafferty and Manning, 2008)) and the non-projective

parsers (DeSR and graph-based Mate (Bohnet, 2010)).

3.5.4 Results

The results of our experiments are shown in figure 3.4. Significance was

assessed using paired bootstrap resampling (Koehn, 2004b).

All pre-reordering strategies performed significantly better than the base-

line phrase-based system, although Collins et al. rules and their dependency-

based variants performed better than Navratil et al. rules.

9Pay attention that (Howlett and Dras, 2011a) has an erratum (Howlett and Dras, 2011b)

that weakens the original strong claim.
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System BLEU vs. baseline vs. proj

baseline, Europarl 33.00

baseline, Newstest 18.09

Collins original, Europarl 33.52 +0.52**

Collins original, Newstest 18.74 +0.65**

Navratil original, Europarl 33.10 +0.10*

Navratil original, Newstest 18.25 +0.16*

DepCollins Stanford (proj), Europarl 33.31 +0.31**

DepCollins Stanford (proj), Newstest 18.39 +0.30**

DepCollins DeSR, Europarl 33.48 +0.48** +0.17*

DepCollins DeSR, Newstest 18.38 +0.29** -0.01

DepCollins Mate, Europarl 33.55 +0.55** +0.34**

DepCollins Mate, Newstest 18.69 +0.60** +0.30**

DepNavratil Stanford (proj), Europarl 33.13 +0.13*

DepNavratil Stanford (proj), Newstest 18.33 +0.22*

DepNavratil DeSR, Europarl 33.16 +0.16* +0.03

DepNavratil DeSR, Newstest 18.35 +0.24* +0.02

DepNavratil Mate, Europarl 33.16 +0.16* +0.03

DepNavratil Mate, Newstest 18.37 +0.26** +0.04

Figure 3.4: Translation quality of systems with hand-coded pre-reordering rules. *:

significant at 5%. **: significant at 1%.
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For the dependency version of Collins et al., we can observe that using a non-

projective dependency parser generally yields a significantly better result

than using a projective dependency parser. For Navratil et al. rules these

differences consistent but they are too small to reach statistical significance.

3.5.5 Discussion

In these experiments we used dependency-based pre-reordering rules that

had not been particularly optimized for the dependency parsing framework

and yet we managed to significantly improve over the phrase-based baseline.

In particular, our improvements were greater when we used non-projective

dependency parser, even though the rules were not specifically designed to

exploit non-projectivity.

We were not able to improve over the original Collins et al. rules, which are

arguably very well designed, but we performed comparably.

We conclude that syntax-based reordering models which can process

non-projective dependency parse trees are a viable approach for German-

to-English machine translation.

3.6 Conclusions

In this chapter we characterized German-to-English reordering from the

perspective of linguistic phenomena that involve the source-side depen-

dency syntax. Specifically we considered dependency non-projectivity and

reordering tree non-locality.

We introduced an automaton model which enables us to describe arbi-

trary permutations of a source sentences in terms of walks on its dependency

tree.

We statistically analyzed German reordering into an English-like word or-

der using a "pseudo-oracle" heuristic. We established significant correlations

between non-projectivity and non-tree-locality with translation quality and a

quality improvement upper bound.

We analyzed the effects of non-projectivity on actual pre-reordering systems
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which use syntax-based hand-coded rules. We found significant effects.

We conclude that dependency non-projectivity and reordering tree non-

locality are properties relevant to machine translation and a syntax-based

reordering system can probably benefit from taking them into consideration.
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Chapter 4

Discriminative non-tree-local

dependency-based sentence

pre-reordering

In this chapter we introduce several methods to improve the quality of

machine translation by reordering the words of the source sentences in an

order idiomatic to the target language. We used discriminative machine-

learning techniques to train pre-reordering models from a source-parsed

word-aligned parallel corpus. Specifically, we used non-projective depen-

dency parses and our reordering models weren’t constrained to perform only

tree-local word swaps.

4.1 Motivation

In the previous chapter we introduced an automaton model based on walks

on a generally non-projective dependency parse tree of a source sentence and

we focused in particular on the concept of non-tree-local reordering.

We have shown that, at least for the German-to-English language pair,

sentences with significant non-projectivity in their dependence parse tree

and tree non-locality w.r.t. a "pseudo-oracle" permutation have the potential

of gaining a large amount of translation quality when translated after being
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appropriately pre-reordered.

In this chapter we will introduce several automatic pre-reordering methods

which attempt to learn how to perform these kind of syntax-based reordering

from a word-aligned training set using machine learning approaches.

We investigate the research question of whether it is possible to produce

effective pre-reorderings using an automatically trained system which makes

use of features derived from a non-projective dependency parse of the source

sentences and can capture long-distance reordering phenomena that are non-

local in the sentence both when viewed as a sequence and when viewed as a

dependency tree.

Among the typical statistically-trained reordering models in the literature

(both for pre-reordering and in-decoder reordering) the only ones that can

generate non-tree-local permutations are those which don’t make use of a

syntax-tree at all:

These syntax-free approaches, such as Tromble and Eisner (2009) or

Visweswariah et al. (2011), Navratil et al. (2012), define a global scoring

model on the permutations of the source sentence based on features which

depends on all pairs of words, each considered with a local context.

This enables them to formulate the reordering problem as a classical

combinatorial optimization problem such as the linear order problem (LOP) or

the traveling salesman problem (TSP) which can be solved to a local optimum

by specialized heuristic algorithms.

These approaches don’t exploit syntactic information on the source sentence

other than part-of-speech tags, which on one hand makes them flexible

and suitable to use on resource-poor source languages, on the other hand

prevents them from making use of valuable information on source languages

for which high-quality parsers are available.

Therefore we devised several statistical reordering approaches which can,

in principle, learn how to generate arbitrary permutations of the source

sentences while exploiting the linguistic information provided by non-

projective dependency parsing.
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4.2 Pre-reordering using transition-based walks

on dependency parse trees

The non-deterministic automaton model of the previous chapter (sec. 3.3)

was primarily useful for analysis: given a permutation f ′ of a source sentence

f , it allowed us to compute an execution v̄( f ′).

However, we can extend it to a weighted automaton model and use it to

generate permutations given a source sentence f .

The reordering problem can be thus defined as the following optimization

problem:
∗
f ′ ≡ out(

∗
v̄)

∗
v̄ ≡ argmax

v̄∈GEN( f )
h( f , τ, θ)

(4.1)

where v̄ ∈ GEN( f ) are the executions consistent with sentence f , out(v̄)

is the permutation generated by v̄ and h( f , v̄, θ) is a scoring model

parametrized by θ.

Note that since our model has no ambiguity, this equation is exact. We don’t

need to sum over the many executions generating a single permutation since

there is only one of them.

4.2.1 Scoring model

The scoring model estimates the log-probability (up to a normalization

constant) of executing the execution v̄ on sentence f or equivalently the log-

probability of permuting f into out(v̄).

In order to enable efficient reordering, the scoring model decomposes

additively over the actions in the execution:

h( f , v̄, θ) ≡
|v̄|−1

∑
t=1

φ( f , v(t), v(t + 1), θ) (4.2)

we further refine this as a linear model:

h( f , v̄, θ) ≡
|v̄|−1

∑
t=1

θT · g( f , v(t), v(t + 1)) (4.3)
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where θ ∈ Rn is the parameter vector and g(. . . ) is the n-dimensional local

feature function.

We can distinguish the local features between "stateless" features, which

only depend on j(t), E(t), a(t) and a(t + 1) and "stateful" features which

also depend on the additional s(t) component, which normally includes

information such as the ordered string of the last k emitted vertices, the

sequence of the k′ last actions (other than a), visit counts for each vertex,

and so on.

We will leave the full specification of s and the local features to the next

sections.

4.2.2 Decoding

In principle we could perform decoding using a dynamic programming

algorithm. Specifically, we could adapt the incremental beam search decod-

ing algorithm introduced for phrase-based translation (chapter 2, sec. 2.5.2),

where the states of the automaton take the role of signatures (vertices in the

decoder search graph).

Unpruned time complexity is exponential in the sentence length (due to the

presence of the emitted words set, which corresponds to the covered words

set of phrase-based translation) and in the size of the additional stateful

context s (which, like in phrase-based translation, disincentives features that

depend on a rich state).

Applying threshold and histogram pruning according to a beam size B

reduces the complexity to linear in the sentence length and beam size, trading

off accuracy for speed.

In our experiments we attempted to use a simpler greedy reordering

algorithm inspired by the success of greedy transition-based classifier-driven

dependency parsers (Nivre and Scholz, 2004; Attardi, 2006; Attardi and

Ciaramita, 2007).



4.2 Pre-reordering using transition-based walks on dependency parse trees 135

Classifier-driven action selection

The most useful features in our model turned out to be highly stateful,

depending on state properties such as vertex visit counts or emitted sub-

vertices counts. This leaves few opportunities for hypothesis recombination,

reducing the advantage of dynamic programming over simpler approaches.

Beam search would still be useful, allowing the reorderer to explore various

options at each decision point without committing to a single sequence of

choices, but as a preliminary attempt, inspired by the success of greedy

parsers such as DeSR, we tried a greedy reordering algorithm which at each

step selects an action based on the output of a classifier applied to the local

features of the state.

After various attempts, we settled for a two-stage classifier:

• The first stage is a three-class classifier, specifically a logistic classifier in

one-vs-all configuration, which chooses between EMIT, UP or DOWN.

• If the first stage chose DOWN, the second stage is applied to choose the

child j′ to descend to, returning a proper action DOWNj′ . This is a 1-best

ranking problem over the children of the current vertex j. We reduced

this problem to a binary classification problem on pairs of children: For

each pair (k, k′) : k < k′ of children of j, a binary logistic classifier

assigns a vote either to k or k′. The child that receives most votes is

chosen as j′. This is similar to the max-wins, one-vs-one approach used

in packages such as LIBSVM (Chang and Lin, 2011) to construct a M-

class classifier from M (M− 1) /2 binary classifiers, except that we use

a single binary classifier acting on a vector of features extracted from

the pair of children (k, k′) and the node j, with their respective local

contexts. We use logistic regression for this binary classifier.

Note that we are not strictly maximizing a global linear scoring function

as as defined by equation 4.3, although this approach is closely related to that

framework.

In fact, this approach is more general in that it allows the use of non-linear

classifiers such as kernel-SVMs or MLPs.
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4.2.3 Training

Dataset preparation

Dataset preparation is performed as in the previous chapter (sec. 3.4.1,

3.4.2): we use the Al-Onaizan and Papineni (2006) heuristic, to generate a

source-side reference reordering from the symmetrized IBM Model 4 word

alignments of the parallel corpus and we parse the source side using the

DeSR parser (Attardi, 2006; Attardi and Ciaramita, 2007).

Reference executions generation

For each parsed source sentence f in the training corpus and its reference

reordering f ′, we generate the unique execution v̄ such that f ′ = out(v).

Let j be the current vertex (starting at the root) and c be the emitted vertex

count (starting at zero). At each step:

• if the current vertex is the next vertex to emit f j = f ′c+1, then generate

the EMIT action and increment the emit count c by one.

• otherwise find the shortest path on the parse tree between j and the

next vertex to emit 1 and output the corresponding sequence of UP and

DOWN∗ actions.

this process continues until the vertices to emit have been exhausted.

Structured prediction model training

If we use the full model described in eq. 4.3, training can be performed

with any linear structured prediction machine learning algorithm such as

the structured perceptron, structured SVM or structured MIRA (chapter 2,

section 2.1.2), using a loss function suitable for scoring permutations.

Tromble and Eisner (Tromble and Eisner, 2009) and Visweswariah et al.

(Visweswariah et al., 2011) used this training strategy for their own models.

1since f ′ is properly defined as a permutation of f , the next vertex to emit at each step is

unique even if the corresponding word is repeated.
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In particular, online algorithms, such as perceptron or MIRA, which

iteratively perform additive updates to the parameter vector, can exploit

the additive decomposability of the scoring model in order to increase the

training efficiency by performing early updating: as soon as the decoding

process enters a state such that the correct reference permutation can no

longer produced, it is stopped and the partial feature vector accumulated

so far is used for the update.

It can be proved that this doesn’t affect the convergence properties of the

learning algorithms and empirically it tends to improve their speed (Collins

and Roark, 2004; Daumé III and Marcu, 2005; Xu et al., 2007; Huang et al.,

2012).

Classifier training

In our experiment we didn’t use full structured prediction model training,

instead we trained our classifiers in an offline fashion by generating appro-

priate training sets from the source corpus and the reference executions.

Let f be a parsed source sentence and v̄ its reference execution, for each

time step t in the execution v:

• generate a training example for the first stage classifier, mapping the

local feature vector g( f , v(t), v(t + 1)) to the corresponding EMIT, UP

or DOWN action.

• if the current action is DOWNj′ for some child j′ of the current vertex

j, then for each pair of children (k, k′) : k < k′ of j, generate a positive

example for the second stage classifier if j′ = k, or a negative example

if j′ = k′.

Downstream translation system training and testing

Once the reordering system has been trained, we apply it on the source side

of the whole training corpus and the tuning corpus.

For instance, if the parallel corpora are German-to-English, after the

reordering step we obtain German’-to-English corpora, where German’ is
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German in an English-like word order. These reordered corpora are used to

train and tune a standard phrase-based translation system such as Moses.

Finally, the reordering system is applied to source side of the test corpus,

which is then translated with the downstream phrase-based system and the

resulting translation is compared to the reference translation in order to

obtain an accuracy measure.

We also evaluate the "monolingual" reordering accuracy of upstream reorder-

ing system by comparing its output on the source side of the test corpus to

the reference reordering obtained from the alignment.

4.2.4 Experiments

We performed German-to-English and Italian-to-English reordering and

translation experiments.

Data

The German-to-English corpus is the same described in the previous chapter

3.4.3. In addition to the test set extracted from Europarl, we also used a 3,000

sentence pairs "challenge" set of newspaper articles provided by the WMT

2013 translation task organizers.

The Italian-to-English corpus has been assembled by merging Europarl

v7, JRC-ACQUIS v2.2 (Steinberger et al., 2006) and bilingual newspaper

articles crawled from news websites such as Corriere.it and Asianews.it.

It consists of a 3,075,777 sentence pairs training set, a 3,923 sentence pairs

development set and a 2,000 sentence pairs test set.

For both language pairs, we trained a baseline Moses phrase-based

translation system with the default configuration (including lexicalized

reordering).

In order to keep the memory requirements and duration of classifier

training manageable, we subsampled each training set to 40,000 sentences,

while both the baseline and reordered Moses system are trained on the full

training sets.
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Features

After various experiments with feature selection, we settled for the following

configuration for both German-to-English and Italian-to-English:

• First stage classifier: current vertex j stateful features (emitted?,

left/right subtree emitted?, visit count), current vertex lexical and

syntactical features (surface form f j, additional annotations lemmaj,

posi, morphi, depreli, and pairwise combinations between lemma, POS

and DEPREL), last two actions, last two visited vertices POS, DEPREL

and visit count, last two emitted vertices POS and DEPREL, bigram

and syntactical trigram features for the last two emitted vertices and

the current vertex, all lexical, syntactical and stateful features for

the neighborhood of the current vertex (left, right, parent, parent-

left, parent-right, grandparent, left-child, right-child) and pairwise

combination between syntactical features of these vertices.

• Second stage classifier: stateful features for the current vertex j and

the the children pair (k, k′), lexical and syntactical features for each of

the children and pairwise combinations of these features, visit count

differences and signed distances between the two children and the

current vertex, syntactical trigram features between all combinations

of the two children, the current vertex, the parent hj and the two last

emitted vertices and the two last visited vertices, lexical and syntactical

features for the two children left and right neighbors.

All features are encoded as binary one-of-n indicator functions.

Results

For both German-to-English and Italian-to-English experiments, we pre-

pared the data as described above and we trained the classifiers on their

subsampled training sets.

Both stages of the classifier are trained with the LIBLINEAR package (Fan

et al., 2008), using the L2-regularized logistic regression method.

The regularization parameter C is chosen by two-fold cross-validation.
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Src. language reordered BLEU improvement

German no 62.10

German yes 57.35 -4.75

Italian no 70.24

Italian yes 68.78 -1.46

Figure 4.1: Walk-based SVM monolingual reordering scores.

In order to evaluate the classifiers accuracy in isolation from the rest of

the system, we performed two-fold cross validation on the same training

sets, which revealed an high accuracy: The first stage classifier obtains

approximately 92% accuracy on both German and Italian, while the second

stage classifier obtains approximately 89% accuracy on German and 92% on

Italian.

We applied the reordering pre-processing system to the source side of

the corpora and evaluated the monolingual BLEU and score of the test sets

(extracted from Europarl) against their reference reordering computed from

the alignment

To evaluate translation performance, we trained a Moses phrase-based

system (max. phrase-table length: 7, max. distortion distance: 6, lexicalized

reordering model enabled) on the reordered training and tuning corpora, and

evaluated the BLEU of the (Europarl) test sets. As a baseline, we also trained

and evaluated Moses system on the original corpora.

We also applied our baseline and reordered German-to-English systems to

the WMT2013 translation task dataset.

4.2.5 Discussion and error analysis

Unfortunately we were generally unable to improve the translation quality

over the baseline.

Quality on the WMT 2013 set is very low, both for the baseline system

and for our system. We attribute this to the fact that it comes form a different

domain than the training set.
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Src. language test set system BLEU improvement

German Europarl baseline 33.00

German Europarl reordered 32.42 -0.58

German WMT2013 baseline 18.80

German WMT2013 reordered 18.13 -0.67

Italian Europarl baseline 29.17

Italian Europarl reordered 28.84 -0.33

Figure 4.2: Walk-based SVM translation scores

Since the cross-validation accuracy of the classifiers measured on their

training sets is very high, we speculate that the problem lies not in high bias

in the classifiers but in the greedy approach which, while appropriate for

the computationally easier problem of parsing, does not perform well on the

hard combinatorial problem of permutation optimization, that can be easily

NP-hard, APX-complete even for trivial choices of features.

In a greedy system, once the classifiers make an error they cannot recover

from it, and since the training sets are only generated from perfect reference

executions, the system now finds itself in a region of the state space, and

therefore of the feature space, that was not covered during training, causing

error accumulation.

Moreover, the classifiers are trained to minimize the cross-entropy classifi-

cation on their own training sets, which does not necessarily minimize the

reordering error.

We performed a semi-quantitative error analysis on the output of our

system:

We found that our system has a bias towards emitting words according to

an in-order depth-first visit of the dependency parse tree. When it makes a

mistake starting from a correct sequence, 63% of times it errs towards in-

order depth-first. After making a mistake, the system rarely recovers.

We considered using a proper scoring function rather than classifiers,

which would enable decoding using beam search.

However, after some preliminary exploratory tests, we found that the transi-
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tions which are enabled at each point of time often lead to states which have

quite different scores, which would be a problem for beam search. States

that occur immediately after word emission and have the same number of

emitted words have comparable scores, but at each point of time during the

search process states with different number of emitted words would be in the

beam.

This issue could perhaps be solved using a more complex search structure,

akin to the multiple "stacks" of the phrase-based decoders, but due to time

constraints we didn’t investigate this issue any further.

4.3 Dependency-based Recurrent Neural Network

reordering models

Given the search difficulty issues we experienced with the previous model,

we decided to investigate a different class of model which have the property

that state transition happen only in correspondence with word emission. This

enables us to leverage the technology of incremental language models.

Using language models for reordering is not something new (Feng et al.,

2010; Durrani et al., 2011; Bisazza and Federico, 2013; Bisazza, 2013), but

instead of using a more or less standard n-gram language model, we are

going to base our model on recurrent neural network language models (Mikolov

et al., 2010).

Neural networks give the designers a great freedom in how to incorporate

features, including sparse features which commonly arise when processing

syntactical information, while n-gram based models have troubles dealing

with sparse features. Since we want to include syntactic information in our

model, this issue is relevant to us.

Moreover, n-gram language models are biased when used for reordering,

since they assign some positive probability mass to sequences which are not

permutations of the original sentence. This can be partially compensated

during decoding by implicitly or explicitly re-normalizing the probabilities,

but the estimation techniques which are used to train these models are



4.3 Dependency-based Recurrent Neural Network reordering models 143

oblivious to the fact that they are being applied to permutations, which

implies that some model capacity is wasted in representing the probabilities

of impossible sequences.

Neural networks, on the other hand, can be trained more specifically on the

types of sequences that will occur during decoding, hence they can avoid

wasting model space to represent the probabilities of non-permutations.

4.3.1 Base RNN-RM

Let f ≡ ( f1, f2, . . . , fL f ) be a source sentence.

We want a model that, given a non-empty sequence ī of distinct indices in

[1, L f ], predicts the probability of the last index īt conditional on the other

indices īt−1:. Chaining these probability yields a probability distribution over

the permutations of integers in [1, L f ] and therefore over the permutations

f ′ ∈ GEN( f ) of sentence f .

We assume that this process is Markovian w.r.t. some state described by

a vector of real numbers v ∈ Rs and furthermore we assume that state

transitions are deterministic.

These are standard assumptions which allow us to apply the standard state

transition function for a single hidden layer recurrent neural network (sec.

2.1.3):

v(t) =

{
vinit if t = 0

tanh(Θ(1) · x(t) + ΘREC · v(t− 1)) otherwise
(4.4)

where x(t) ∈ Rn is a feature vector associated to the t-th word in a per-

mutation f ′ and vinit, Θ(1) and ΘREC are parameters2. We use the hyperbolic

tangent sigmoid as activation function.

If we know the first t− 1 words of the permutation f ′ in order to compute

the probability distribution of the t-th word we do the following:

• Iteratively compute the state v(t − 1) from the feature vectors

x(1), . . . , x(t− 1).

2we don’t use a bias feature since it is redundant when the layer has input features

encoded with the "one-hot" encoding
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• For the all the indices of the words that haven’t occurred in the

permutation so far j ∈ J(t) ≡ ([1, L f ]− īt−1:), compute a score h(j, t) ≡
ho(v(t− 1), xo(j)), where xo(·) is the feature vector of the candidate tar-

get word. (possibly computed by a different feature extraction function

than x(·)).

• Normalize the scores using the logistic softmax function: P( Īt =

j| f , īt−1:, t) = exp(h(j,t))
∑j′∈J(t) exp(h(j′,t)) .

The scoring function ho(v(t − 1), xo(j)) applies a feed-forward hidden

layer to the feature inputs xo(j), and then takes a weighed inner product

between the activation of this layer and the state v(t− 1). The result is then

linearly combined to an additional feature equal to the logarithm of the

remaining words in the permutation (L f − t)3 and to a bias feature:

ho(v(t− 1), xo(j)) ≡< tanh(Θ(o) · xo(j)), θ(2)� v(t− 1) > +θ(α) · log(L f − t)+ θ(bias)

(4.5)

We can compute the probability of an entire permutation f ′ just by

multiplying the probabilities for each word:

P( f ′| f ) = P( Ī = ī| f ) =
L f

∏
t=1

P( Īt = īt| f , t) (4.6)

Evaluation

Given a source sentence f and a reference permutation f ′ we can evaluate

how much the model fits the reference using the log-likelihood averaged by

words, which is defined as

L( f ′| f ) = log2(P( f ′| f ))/L f (4.7)

(the logarithm is in base two in order to obtain a result in bits, consistently

with the language models literature.)

This measure negated and averaged over a dataset of pairs of sentences

and reference permutations is the empirical cross-entropy CE of the model w.r.t.

the dataset. The perplexity of the model is defined 2CE.
3since we are then passing this score to a softmax of variable size (L f − t), this feature

helps the model to keep the score already approximately scaled.



4.3 Dependency-based Recurrent Neural Network reordering models 145

Training

Given a training set of pairs of sentences and reference permutations,

the training problem is defined as finding the set of parameters θ ≡
(vinit, Θ(1), θ(2), ΘREC, Θ(o), θ(α), θ(bias)) which minimizes the empirical cross-

entropy of the model w.r.t. the training set.

It is easy to show that this function is differentiable w.r.t. the parameters:

gradients can be efficiently computed using error backpropagation through time.

In principle any unconstrained gradient-based optimization algorithm could

be used to solve this problem to a local minimum.

In practice we used the following training architecture:

• Stochastic gradient descent, with each training pair ( f , f ′) considered

as a single minibatch for updating purposes.

• Gradients computed using the automatic differentiation facilities of

Theano (Bergstra et al., 2010) (which implements a generalized back-

propagation). No truncation is used.

• L2-regularization (λ = 10−4 per minibatch).

• Learning rates dynamically adjusted per scalar parameter using the

AdaDelta heuristic (Zeiler, 2012).

• Gradient clipping heuristic to prevent the "exploding gradient" prob-

lem (Graves, 2013).

• Early stopping w.r.t. a validation set to prevent overfitting.

• Uniform random initialization for parameters other than the recurrent

parameter matrix ΘREC. Random initialization with echo state property

for ΘREC, with contraction coefficient σ = 0.99.

Training time complexity is O(L2
f ) per sentence, which could be reduced

to O(L f ) using truncated backpropagation through time at the expense of

update accuracy and hence convergence speed. Space complexity is O(L f )

per sentence.
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Decoding

In order to use the RNN-RM model for pre-reordering we need to compute

the most likely permutation
∗
f ′ of the source sentence f :

∗
f ′ ≡ argmax

f ′∈GEN( f )
P( f ′| f ) (4.8)

Solving this problem to the global optimum is computationally hard4, hence

we solve it to a local optimum using a beam search strategy.

We generate the permutation incrementally from left to right. Starting

from an initial state consisting of an empty string and the initial state vector

vinit, at each step we generate all possible successor states and retain the B-

most probable of them (histogram pruning), according to the probability of

the entire prefix of permutation they represent.

Since RNN state vectors do not decompose in a meaningful way, we don’t

use any hypothesis recombination.

At step t there are L f − t possible successor states, and the process always

takes exactly L f steps5, therefore time complexity is O(B · L2
f ) and space

complexity is O(B).

Features

We use two different feature configurations: unlexicalized and lexicalized.

In the unlexicalized configuration, the state transition input feature func-

tion x(j) is composed by the following features, all encoded using the "one-

hot" encoding:

• Unigram: POS(j), DEPREL(j), POS(j) ∗ DEPREL(j).

• Left, right and parent unigram: POS(k), DEPREL(k), POS(k) ∗
DEPREL(k), where k is the index of respectively the word at the left

(in the original sentence), at the right and the dependency parent of

word j. Unique tags are used for padding.

4presumably at NP-hard
5actually, L f − 1, since the last choice is forced
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• Pair features: POS(j) ∗ POS(k), POS(j) ∗ DEPREL(k), DEPREL(j) ∗
POS(k), DEPREL(j) ∗ DEPREL(k), for k defined as above.

• Triple features POS(j) ∗ POS(le f tj) ∗ POS(rightj), POS(j) ∗
POS(le f tj) ∗ POS(parentj), POS(j) ∗ POS(rightj) ∗ POS(parentj).

• Bigram: POS(j) ∗ POS(k), POS(j) ∗DEPREL(k), DEPREL(j) ∗ POS(k)

where k is the previous emitted word in the permutation.

• Topological features: three binary features which indicate whether

word j and the previously emitted word are in a parent-child, child-

parent or sibling-sibling relation, respectively.

The target word feature function xo(j) is the same of x(j) except that each

feature is also conjoined with a quantized signed distance6 between word j

and the previous emitted word.

The lexicalized configuration is equivalent to the unlexicalized one except

that x(j) and xo(j) also have the surface form of word j (not conjoined with

the signed distance). Words that appear less than 10 times in the training set

are replaced by a distinguished rare word tag.

4.3.2 Fragment RNN-RM

The Base RNN-RM described in the previous section includes dependency

information, but not the full information of reordering fragments as defined

by our automaton model.

In order to determine whether this rich information is relevant to machine

translation pre-reordering, we propose an extension, denoted as Fragment

RNN-RM, which includes reordering fragment features, at expense of a

significant increase of time complexity.

We consider a hierarchical recurrent neural network. At top level, this

is defined as the previous RNN. However, the x(j) and xo(j) vectors, in

addition to the feature vectors described as above now contain also the final
6values greater than 5 and smaller than 10 are quantized as 5, values greater or equal to

10 are quantized as 10. Negative values are treated similarly.
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states of another recurrent neural network.

This internal RNN has a separate clock and a separate state vector. For each

step t of the top-level RNN which transitions between word f ′(t − 1) and

f ′(t), the internal RNN is reinitialized to its own initial state and performs

multiple internal steps, one for each action in the fragment of the execution

that the walker automaton must perform to walk between words f ′(t − 1)

and f ′(t) in the dependency parse (with a special shortcut of length one if

they are adjacent in f with monotonic relative order).

The state transition of the inner RNN is defined as:

vr(t) =

{
vrinit if tr = 0

tanh(Θ(r1) · xr(tr) + ΘrREC · vr(tr − 1)) otherwise
(4.9)

where xr(tr) is the feature function for the word traversed at inner time tr in

the execution fragment. Θ(r1) and ΘrREC are parameters.

Evaluation and decoding are performed essentially in the same was as in

Base RNN-RM, except that the time complexity is now O(L3
f ) since the length

of execution fragments is O(L f ).

Training is also essentially performed in the same way, though gradient

computation is much more involved since gradients propagate from the top-

level RNN to the inner RNN.

In our Python/Theano implementation we just used two nested "scan"

primitives to implement the RNNs and let Theano’s automatic differentiation

facilities compute the gradients. This may not be necessarily optimal.

Features

The unlexicalized features for the inner RNN input vector xr(tr) depend on

the current word in the execution fragment (at index tr), the previous one

and the action label: UP, DOWN or RIGHT (shortcut). EMIT actions are not

included as they always implicitly occur at the end of each fragment.

Specifically the features, encoded with the "one-hot" encoding are: A ∗
POS(tr) ∗ POS(tr − 1), A ∗ POS(tr) ∗ DEPREL(tr − 1), A ∗ DEPREL(tr) ∗
POS(tr − 1), A ∗ DEPREL(tr) ∗ DEPREL(tr − 1).
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These features are also conjoined with the quantized signed distance (in the

original sentence) between each pair of words.

The lexicalized features just include the surface form of each visited word

at tr.

4.3.3 Base GRU-RM

We also propose a variant of the Base RNN-RM where the standard recurrent

hidden layer is replaced by a Gated Recurrent Unit layer, recently proposed by

Cho et al. (2014a) for machine translation applications.

The Base GRU-RM is defined as the Base RNN-RM of sec. 4.3.1, except that

the recurrence relation 4.4 is replaced by:

vrst(t) = π(Θ(1)
rst · x(t) + ΘREC

rst · v(t− 1))

vupd(t) = π(Θ(1)
upd · x(t) + ΘREC

upd · v(t− 1))

vraw(t) = tanh(Θ(1) · x(t) + ΘREC · v(t− 1)� vupd(t))

v(t) = vrst(t)� v(t− 1) + (1− vrst(t))� vraw(t)

(4.10)

where vrst(t) and vupd(t) are the activation vectors of the "reset" and "update"

gates, respectively.

Features are the same of unlexicalized Base RNN-RM (we experienced

difficulties training the Base GRU-RM with lexicalized features).

Training is also performed in the same way except that we found more

beneficial to convergence speed to optimize using Adam Kingma and Ba

(2014) 7 rather than AdaDelta.

In principle we could also extend the Fragment RNN-RM into a Fragment

GRU-RM, but we did not investigate that model in this work.

4.3.4 Experiments

We performed German-to-English pre-reordering experiments with Base

RNN-RM (both unlexicalized and lexicalized), Fragment RNN-RM (unlex-

icalized) and Base GRU-RM (unlexicalized). Due to time constraints and
7with learning rate 2 · 10−5 and all the other hyperparameters equal to the default values

in the article.
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hardware limitations (namely, the lack of GPU-equipped workstations) we

didn’t perform Italian-to-English experiments.

Data

For our experiments with neural network models we used the same German-

to-English datasets that were used for the previous set of experiments with

the SVM classifiers model (sec. 4.2.4).

However, in the SVM models the size of the training set used to train the pre-

reordering model was limited by RAM size. In the neural network models

we use an online training algorithm that loads the training examples from

the disk at the fly, hence we can use a much bigger dataset. We extract

approximately 300,000 sentence pairs from the Moses training set based on

a heuristic confidence measure of word-alignment quality (Huang, 2009;

Navratil et al., 2012). We randomly removed 2,000 sentences from this filtered

dataset to form a validation set for early stopping, the rest were used for

training the pre-reordering model.

Results

The hidden state size s was set to 100 for the RNN models and 30 for the GRU

model, validation was performed every 2,000 training examples. After 50

consecutive validation rounds without improvement, training was stopped

and the set of training parameters that resulted in the lowest validation cross-

entropy were saved.

Training took approximately 1.5 days for the unlexicalized Base RNN-RM,

2.5 days for the lexicalized Base RNN-RM and unlexicalized Base GRU-RM

and 5 days for the unlexicalized Fragment RNN-RM on a 24-core machine

without GPU (CPU load never rose to more than 400%).

Decoding was performed with a beam size of 4 (we found that any beam

size above 1 doesn’t affect accuracy by much). Decoding the whole corpus

took about 1.0-1.2 days for all the models except Fragment RNN-RM for

which it took about 3 days. We were able to parallelize decoding on multiple

cores and multiple machines, hence it didn’t take a significant wall-clock
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reordering BLEU improvement

none 62.10

unlex. Base RNN-RM 64.03 +1.93

lex. Base RNN-RM 63.99 +1.89

unlex. Fragment RNN-RM 64.43 +2.33

unlex. Base GRU-RM 64.78 +2.68

Figure 4.3: Recurrent neural network monolingual reordering scores. All improve-

ments are significant at 1% level.

time, except in the case of the Fragment RNN-RM system.

Effects on monolingual reordering score are shown in fig. 4.3, effects on

translation quality are shown in fig. 4.4.

We also measured correlations between tree non-locality (w.r.t. the

"pseudo-oracle" permutation, as discussed in chapter 3) and translation

quality improvement and between dependency non-projectivity and

translation quality improvement.

We performed these tests w.r.t. our richest model (unlexicalized Fragment

RNN-RM).

We found that:

• BLEU+1 improvement correlates positively with maximum NTL dis-

tance: Spearman’s rank correlation coefficient = 0.210, p-value = 3.26e-3.

Linear regression slope = 1.06e-4, intercept = -0.0480, r-value = -0.0660,

p-value = 6.22e-2.

• BLEU+1 improvement correlates positively with the number of non-

projective relations: Spearman’s rank correlation coefficient = 0.185, p-

value = 7.57e-3. Linear regression slope = -2.62e-4, intercept = 1.75e-16,

r-value = -0.0211, p-value = 3.68e-1.

• Only Spearman’s correlations are significant, suggesting a non-linear

effect.
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Test set system BLEU improvement

Europarl baseline 33.00

Europarl "oracle" 41.80 +8.80

Europarl Collins 33.52 +0.52

Europarl unlex. Base RNN-RM 33.41 +0.41

Europarl lex. Base RNN-RM 33.38 +0.38

Europarl unlex. Fragment RNN-RM 33.54 +0.54

Europarl unlex. Base GRU-RM 34.15 +1.15

news2013 baseline 18.80

news2013 Collins NA NA

news2013 unlex. Base RNN-RM 19.19 +0.39

news2013 lex. Base RNN-RM 19.01 +0.21

news2013 unlex. Fragment RNN-RM 19.27 +0.47

news2013 unlex. Base GRU-RM 19.28 +0.48

news2009 baseline 18.09

news2009 Collins 18.74 +0.65

news2009 unlex. Base RNN-RM 18.50 +0.41

news2009 lex. Base RNN-RM 18.44 +0.35

news2009 unlex. Fragment RNN-RM 18.60 +0.51

news2009 unlex. Base GRU-RM 18.58 +0.49

Figure 4.4: Recurrent neural network translation scores. All improvements are

significant at 1% level.
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4.3.5 Discussion and analysis

All our models significantly improve over the phrase-based baseline, per-

forming as well as or almost as well as Collins et al. (2005a) and improving

over it in one case, which is an interesting result since our models doesn’t

require any specific linguistic expertise.

Surprisingly, the lexicalized version of Base RNN-RM performed worse

than the unlexicalized one. This goes contrary to expectation as neural

language models are usually lexicalized and in fact often use nothing but

lexical features. We speculate that this may be due the relative small hidden

state size that we used, as RNN models in the literature tend to use hidden

state size in the range of 250 - 1,000. Due to time constraints and hardware

limitations, we were not able to test our models in this regime.

The unlexicalized Fragment RNN-RM was quite accurate but very expen-

sive both during training and decoding.

We believe that it should be considered more a proof of concept than a

practical algorithm, at least in the short term.

The unlexicalized Base GRU-RM performed very well, especially on

the Europarl dataset (where all the scores are much higher than the other

datasets) and it never performed significantly worse than the unlexicalized

Fragment RNN-RM which is much slower.

We also performed exploratory experiments with different feature sets

(such as lexical-only features) but we couldn’t obtain a good training error.

Larger network sizes should increase model capacity and may possibly

enable training on simpler feature sets.

4.4 Conclusions

We presented two classes of statistical syntax-based pre-reordering systems

for machine translation.

Our systems processes source sentences parsed with non-projective depen-

dency parsers and permutes them into a target-like word order, suitable for

translation by an appropriately trained downstream phrase-based system.
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The models we proposed are completely trained with machine learning

approaches and is, in principle, capable of generating arbitrary permutations,

without the hard constraints that are commonly present in other statistical

syntax-based pre-reordering methods.

Practical constraints depend on the choice of features and are therefore quite

flexible, allowing a tradeoff between accuracy and speed.

In our experiments with the SVM walk-based model we used a greedy

reordering algorithm, inspired by transition-based dependency parsing,

which is quite fast but has not turned out to be accurate enough to improve

over the baseline.

In our experiments with the neural network models we managed to

achieve translation quality improvements comparable or better to the best

hand-coded pre-reordering rules.

Moreover, we have shown that reordering tree non-locality and dependency

non-projectivity significantly affect the translation quality of a real syntax-

based system, thereby confirming our research hypothesis.



Chapter 5

Translation reranking using

source-side dependency syntax and

graph echo state networks

In this chapter we introduce a class of syntax-aware and syntax-free rerank-

ing methods to select a most promising translation from a N-best list of

candidate translations.

Specifically, we investigate the question of whether reranking on the basis

of non-projective dependency features is feasible, although we also introduce

and investigate some syntax-free models in the process.

We describe an approach that uses features computed by processing

vector word embeddings of the source and translated sentences by a class

of structural neural networks which can make use of both the dependency

structure and the alignment structure of the sentence pair.

We also describe an approach which uses machine learning over hand-

coded syntactic features derived from a dependency parse of the source

sentences and from information (in particular, word-alignments) reported by

the translation engine.
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5.1 Reranking using graph echo state networks

Neural language models (section: 2.4.2) are powerful tools to model the

linguistic phenomena producing medium-long range correlations between

different words in a sentence or between source and target words in a

sentence pair.

In this section we propose a class of monolingual and bilingual neural

language models based on graph neural networks, particularly graph echo

state networks (section: 2.1.3). These models are an extension of the mono-

lingual RNN language models of Mikolov et al. (Mikolov et al., 2010) and its

bilingual variants (Auli et al., 2013).

We will then describe the results of reraking experiments with these models

on the Italian-to-English language pair.

5.1.1 Sequence graph monolingual language model

Given a sentence x of Lx words, plus a special terminator symbol "</s>",

perhaps the simplest way to represent it as a graph (Vx, Ex) is to consider the

words as vertexes linked by directed edges in a chain preserving their order:

Vx ≡ 1, . . . , Lx, Ex ≡ (j, j + 1), ∀j ∈ 1, . . . , Lx (5.1)

We can use this graph to compute the sentence probability as a global

property regression task using a graph neural network: for each vertex, a

fixed-size (s) reservoir of neural units is instantiated, which is fed with a

vectorial representation of its corresponding word (e.g. a word embedding)

and the state of its left neighboor and right neighboor, multiplied by suitable

parameter matrices ΘEDGELEFT and ΘEDGERIGHT , respectively.

Starting from the null initial state, the system is allowed to evolve for several

time steps until convergence, then the states of all the vertex reservoirs are

combined (by summing or averaging) and feed to a generalized linear model

(e.g. a logistic softmax) which computes the sentence probability.

Formally, let v(t) ∈ Rs×Lx+1 be the global state vector of the network

at time t, which is the concatenation of per-vertex (per-word) state vectors
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v(t, j) ∈ Rs:

v(t, j) ≡ v1+s·(j−1):s·(j)(t) (5.2)

then the state evolution of the network is:

v(t, j) = π(1)(Θ(1) · xj +ΘEDGELEFT · v(t− 1, j− 1)+ΘEDGERIGHT · v(t− 1, j+ 1))

(5.3)

where π(1)(·) is the activation function for the hidden layer, xj is the vectorial

word embedding of word xj and assuming ∀j, v(0, j) = 0⊗s and ∀t, v(t, 0) =

v(t, Lx + 2) = 0⊗s.

The network is run until convergence, which always occurs if it has the

echo state property (Gallicchio and Micheli, 2011b). Then the per-vertex state

vectors are summed or averaged1, obtaining a fixed-dimensional global

feature vector ṽ = ∑Lx+1
j=1 v(∞, j) or ṽ = 1

Lx+1 ∑Lx+1
j=1 v(∞, j), which is feed

to the readout layer.

Note that this model is quite similar to an RNN language model, where

we can consider the input words to be linked together in a chain graph with

edges representing conditional dependence relations. However, the RNN

model differs from our model in the way the computation is performed:

• In the RNN model, at each time step t, one input word is fed into the

network, starting from a padding token, and the probability of the next

word is computed. Once the input words have been exhausted, the

sentence probability is computed just as the product of the individual

word probabilities, according to a chain-rule decomposition.

• In our graph-based language model, all the input words are fed

simultaneously in the network, and its state is left to evolve until

convergence, then this state is reduced from a s · Lx + 1-dimensional

vector to a s-dimensional feature vector by the combination operation

and a global estimation of the sentence probability is made by the

readout layer.
1summing is theoretically more appropriate, since it enables the model to be sensitive

to the sentence length. However, in a reranking setting, the sentence length is already

represented by a separate feature, and averaging reduces the magnitude of the variance of

the neural network features across the training examples, which may facilitate training.



158
Translation reranking using source-side dependency syntax and graph echo state

networks

Note that while in a RNN the estimated probability at each word is influ-

enced only by its left context, in our model it is influenced both by the left

and the right context.

Given a training corpus of sentences x(1), . . . , x(m), we could fully train

all the parameters in our model by converting the problem to a supervised

learning task (using, for instance, noise-contrastive estimation (Gutmann and

Hyvärinen, 2010)) and estimating the parameters using a backpropagation-

based technique (Scarselli et al., 2009).

However, we can avoid this computationally expensive full parameter train-

ing by using the reservoir computing approach: we randomly initialize the

edge parameter matrices while enforcing that they provide the echo state

property which is required to avoid chaotic behavior. Since the degree of each

vertex is always equal to one or two, this is accomplished by constraining

their norm:

max
ψ∈LEFT,RIGHT

∣∣∣ΘEDGEψ

∣∣∣ < 1
2

(5.4)

assuming a hyperbolic tangent activation function in the reservoir units.

We could also randomize the input matrix, or we can just chose it to provide

s-dimensional word embedding vectors.

The only layer of the model which needs training is the output layer which

computes the sentence probabilities from the combined state vectors.

Actually, if we are interested in performing reranking for SMT, we do not

even have to train the readout layer as a separate component:

In a n-best reranking task, we are presented with a training set 2 of source

sentences f (1), . . . , f (m), each with its N-best translations e(i,1), . . . , e(i,N). For

each pair, we also have a fixed-dimensional vector of numeric features

φ(i,k) ∈ Rs′ used by the decoder to compute the model score of the sentence

pair.

For each pair f (i), e(i,k), we can just compute the combined s-dimensional

feature vector for e(i,k) and concatenate it with φ(i,k). These extended feature

vectors are then used to train a generalized linear model specific for reraking

using an SMT tuning algorithm such as MERT or structured k-best MIRA.

2possibly corresponding to the tuning set of a statistical machine translation system
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Mary reads her favourite book  .

Figure 5.1: A graph neural network for a monolingual language model. Each word

corresponds to vertex which shares a (directed) edge only with the vertexes of the

adjacent words.

This is similar to a conventional RNN model.

We define this approach as the Sequence GraphESN language model (Sequence

GESN-LM).

5.1.2 Bilingual graph language model

In a reranking task, for each sentence pair ( f , e) we usually also get the

bidirectional word alignments WA f ,e between source and target words

computed by the decoder. We can make use of these alignments to condition

the language model on source words as well as target words.

We build sentence graphs as above for both the source and the target

sentences. Then we include edges of a different type to represent word

alignments. Note that since the graph is bipartite w.r.t. this type of edges,

we do not have to use two different parameter matrices to distinguish the

endpoints. A single matrix ΘEDGEALIGN suffices.

Formally, denote the per-vertex state vectors as v(t, j, α), where α ∈ f , e

and let ¬ f ≡ e, ¬e ≡ f .

The state evolution of the neural network is:

v(t, j, α) = π(1)(Θ(1) · xj + ΘEDGELEFT · v(t− 1, j− 1, α) + ΘEDGERIGHT · v(t− 1, j + 1, α)+

+ ΘEDGEALIGN ∑
j′ :(j,j′)∈WAα,¬α

v(t− 1, j′,¬α))

(5.5)

The combined feature vector is computed by summing or averaging only

on the target-side vertex state vectors, since these are the ones which

represent most of the relevant information: ṽ = ∑Le+1
j=1 v(∞, j, e) or ṽ =

1
Le+1 ∑Le+1

j=1 v(∞, j, e).

In the reservoir approach we randomize the parameter matrix while

enforcing the echo state condition on the norm.
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Note that we have a problem here: in principle, each word on one side of

the pair could be aligned with any arbitrary number of words on the other

side. This means that the degree of the resulting graph is bounded by the

sentence pair lengths, not by a constant hyperparameter as we would like.

We can address this issue heuristically by just setting a maximum number of

alignment edges per word d and drop supernumerary edges on the basis of

their displacement distance: alignments between words at similar positions

in the source and target sentences are preferred to those between far words.

This yields the ESN condition:

max
ψ∈LEFT,RIGHT,ALIGN

∣∣∣ΘEDGEψ

∣∣∣ < 1
2 + d

(5.6)

Alternatively, instead of pruning the word alignment edges, we could

average their contributions by modifying eq. 5.5:

v(t, j, α) = π(1)(Θ(1) · xj + ΘEDGELEFT · v(t− 1, j− 1, α) + ΘEDGERIGHT · v(t− 1, j + 1, α)+

+ ΘEDGEALIGN · d
|{j′ : (j, j′) ∈WAα,¬α}| ∑

j′ :(j,j′)∈WAα,¬α

v(t− 1, j′,¬α))

(5.7)

in this case d becomes a hyperparameter which controls a tradeoff between

the influence of alignment edges and word adjacency edges.

This model, which we define as Bilingual GraphESN language model (Bilin-

gual GESN-LM) bears some similarity with the bilingual RNN language

model of Auli et al. (Auli et al., 2013), which extends a target-side Mikolov

RNN language model with source-side features. Their model represents the

source sentence either as a bag-of-words, discarding the position between

its words, or, for each target word, as a set of fixed-size context windows

around the respective aligned source words. Our model, takes into account

an unbounded context, for both source and target words, while retaining

positional information.
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Mary legge il suo libro preferito .

Mary reads her favourite book  .

Figure 5.2: A graph neural network for sentence pair ranking. In addition to

adjacency edges, there are other, undirected, edges of a different type, representing

the bidirectional word alignment relations produced by the decoder.

5.1.3 Tree-to-string dependency bilingual graph language

model

For a sentence pair ( f , e), in addition to the word alignments WA f ,e we

may also have access to a dependency parse graph g f of the source sentence:

a tree (or forest) over the words of sentence f , whose edges represent

syntactic dependency relations. For the most common languages, obtaining

dependency parse graphs can be quite easy, as very accurate and fast parsers

are available.

Incorporating source-side syntactic information in a reranking model can

be useful, especially if the upstream translation system was a phrase-based

decoder which did not make use of such information. Syntactic information

can help to resolve complex long-distance reordering and concordance

issues, which can’t be captured by a fixed-size context language model and

may be difficult even for a RNN or GraphESN language model due to the

echo state property.

We can use include this syntactic information in our model as additional

edges of a new type: For each pair of source words ( f j, f j′) if f j is the parent

of f j′ in g f , we add a set of feedback connections from the reservoir of

vertex f j to the reservoir of vertex f j′ parametrized by matrix ΘEDGEPARENT .

Since dependency edges are directed, we also need to add connections in the

opposite way, from f j′ to f j, parametrized by another matrix ΘEDGECHILD .

Note that while each word has at most one parent, it may have in principle
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Figure 5.3: A graph neural network for sentence pair ranking with source-side

dependency syntax. In addition to adjacency edges and word alignment edges,

there are directed edges of yet another type, representing the syntactic dependency

relations between the source words, produced by a stand-alone parser.

an arbitrary number of children. As in the case of alignment edges, we may

prune these dependency edges at some maximum degree dDEP, based on

distance between parent and child, or we may average their contributions.

This yields the following ESP condition:

max
ψ∈LEFT,RIGHT,ALIGN,PARENT,CHILD

∣∣∣ΘEDGEψ

∣∣∣ < 1
3 + dALIGN + dDEP

(5.8)

This condition may be too much constraining for the target-side vertices,

which do not have dependency edges. Thus, we may have separate versions

of the word adjacency and alignment matrices for the source and target sides

of the graph, splitting the ESN constraint in two inequalities:

max
ψ∈LEFT,RIGHT,ALIGN,PARENT,CHILD

∣∣∣ΘEDGEψ, f
∣∣∣ < 1

3 + dALIGN + dDEP

max
ψ∈LEFT,RIGHT,ALIGN

∣∣∣ΘEDGEψ,e
∣∣∣ < 1

2 + dALIGN

(5.9)

State evolution is performed until convergence according to equations

analogue to (eq. 5.5 or eq. 5.7), then per-target-vertex state vectors are

combined in a feature vector ṽ which is feed to the readout layer.

We define this model as Dependency-Bilingual GraphESN language model (DB-

GESN-LM).
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5.1.4 Experiments

Setup We performed experiments using the different versions of the

graph-based language model (Sequence GESN-LM, Bilingual GESN-LM and

Dependency-Bilingual GESN-LM) described above.

We set up an Italian-to-English phrase-based translation system using

Moses (Koehn et al., 2007).

Due to time constraints, we didn’t experiment on the German-to-English

language pair. Our choice to use the Italian-to-English language pair instead

of German-to-English was mainly driven by the consideration that since

reranking operates downstream a phrase-based decoder, the long-distance

distortions of German-to-English would be bottlenecked by the limited

reordering distance of the decoder, and therefore the reranker would have

to operate on candidate translation of limited quality. The Italian-to-English

language pair has less long-distance distortions, presumably enabling more

high quality candidate hypotheses to reach the n-best list that the reranker

operates upon.

We trained the baseline phrase-based system using a parallel corpus

assembled from Europarl v7 (Koehn, 2005), JRC-ACQUIS v2.2 (Steinberger

et al., 2006) and additional bilingual articles crawled from online newspaper

websites 3, totaling 3,081,700 sentence pairs, which were split into a 3,075,777

sp. phrase-table training corpus, a 3,923 sp. tuning corpus, and a 2,000 sp.

test corpus.

We computed word alignments using Giza++ (Och and Ney, 2003) in

standard configuration, and a KenLM 5-gram language model (Heafield,

2011) for English.

We trained and tuned Moses using two configurations: the default configu-

ration and the configuration with sparse features (the "word translation" and

"phrase translation" feature sets described in (Chiang et al., 2009)). For both

configurations we performed model parameter tuning using k-best batch

MIRA (Cherry and Foster, 2012).

This setup is similar to two of the configurations used in the WMT2013 state-

3Corriere.it and Asianews.it
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of-the-art Edinburgh system (Durrani et al., 2013) and therefore constitutes a

strong baseline.

For the Sequence GESN-LM language model, we used English word

embeddings computed with an MLP language model (Collobert and Weston,

2008). Specifically, we used the 25-dimensional word embedding computed

by Turian et al. (Turian et al., 2010). For the Bilingual GESN-LM and DB-

GESN-LM we additionally used Italian word embeddings trained in the

same way from a dump of the Italian Wikipedia.

The input-to-hidden matrices Θ(1) was randomly initialized with values in

the range [−0.01, 0.01] and the feedback matrices ΘEDGEψ were randomly

initialized with a contractivity hyperparameter of 0.99. We used 30 units in

each per-vertex reservoir. For the Bilingual GESN-LM and DB-GESN-LM, the

echo state property on the feedback matrices were enforced by per-vertex

averaging of the contributions of different edges of the same type.

Each GESN-LM reranker was trained on the 3,923 sentence pairs corpus

used to tune the baseline model: we perform a 1000-best decoding of this

corpus just as we were doing an additional round of tuning. For each source

sentence f (i) in this corpus, and for each translation e(i,k) in the 1000-best

list, we apply the reservoir of the GraphESN to the translation until the

state converges, we combine the per-vertex state vectors by summing them

and concatenate the resulting feature vector w̃(i,k) to the feature vector φ(i,k)

produced by the decoder4. Once we have computed these extended feature

vectors for all the sentence pairs, we run another round of k-best batch MIRA

to compute a new vectors of parameters over both these extended features.

In order to translate a new sentence, we first 1000-best decode it with

the original decoder, compute for each translation the feature vector w̃,

concatenate it with the decoder feature vector φ, and compute the dot

product with the new parameter vector. The translation with the highest

resulting score, is the 1-best output of the reranker system.

Significance was assessed using paired bootstrap resampling (Koehn, 2004b).

4there is no separate GraphESN readout layer
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Configuration BLEU-c BLEU

Moses 28.77 29.58

Moses + sparse feats. 29.02 29.82

Moses + Sequence GESN-LM 29.14 (+0.37) 29.96 (+0.38)

Moses + sparse feats. + Sequence GESN-LM 29.19 (+ 0.17) 30.00 (+ 0.18)

Moses + Bilingual GESN-LM 29.28 (+0.51) 30.10 (+0.52)

Moses + sparse feats. + Bilingual GESN-LM 29.32 (+ 0.30) 30.12 (+ 0.30)

Moses + DB-GESN-LM 29.42 (+0.65) 30.46 (+0.64)

Moses + sparse feats. + DB-GESN-LM 29.41 (+ 0.39) 30.23 (+ 0.41)

Figure 5.4: Experimental results. BLEU and case-insensitive BLEU scores over a

2,000 sp. it-en test corpus. All improvements are significant at p-value < 0.01 except

the Moses + sparse feats. + Sequence GESN-LM which are however significant at

p-value < 0.05 level.

Results The results of these experiments are shown in fig. 5.4.

We obtain consistent improvements in BLEU scores (Papineni et al., 2002).

The improvements are smaller in the configuration with sparse features:

this may be due to the small size of the corpus used to train the GESN-LM

language models, which may cause some overfitting.

Note however, that even if we used a small training (tuning) set and a

small model capacity (25-dimensional word embeddings, 30 hidden units

per word), we still obtain significant improvements 5.

From a performance point of view, the system is very fast: in our im-

plementation written in Python-Theano (Bergstra et al., 2010), the overhead

of the reranker is about 0.5 seconds per sentence during translation and 1.0

seconds per sentence during training, on a (24-core) 6 Intel(R) Xeon(R) CPU

X5675 @ 3.07GHz machine with no GPU.
5Retraining under a different random initialization of the reservoir parameters yields a

difference in BLEU scores in the order of 0.01 percent points.
6although the machine has 24 cores, CPU usage doesn’t exceed 200%. We don’t

parallelize over sentences, although this is doable in principle.
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5.1.5 Future work

Due to the fact that the GraphESN-LM formalism is very flexible, it is easy

to conceive further variants of the models described above, incorporating

almost any possible kind of additional information which may be available.

For instance, if reliable target-side dependency syntax is available, as in

the case of using a string-to-tree or tree-to-tree dependency decoder as the

upstream translations system, we can include this information as additional

edges in the GraphESN-LM, obtaining a string-to-tree or a tree-to-tree neural

language model. This can be considered a combination between neural

networks and the syntactical language models described in section 2.4.3,

which used generative or discriminative log-linear models, often requiring

substantial feature engineering.

Adaptation of the reservoir parameters could be performed using noise-

contrastive estimation, extending the approach used by Mnih and Teh (Mnih

and Teh, 2012) for simplified MLP language models: given a monolingual

corpus of sentences x(i) we build a supervised corpus where all the original

sentences are included as positive examples, and negative examples are

generated by sampling from a noise distribution: a simpler n-gram or MLP

language model. Training this model using an appropriate, cross-entropy-

bases loss, yields in the limits of a large training set, an estimator of the

language model probability P(x).

5.2 Reranking using source phrase dependency

features

In addition to the GraphESNLM reranking model, we experimented with a

linear reranking model based on manually engineered phrase-level source

dependency features.

Dependency features have been used in the past for both direct translation

and reranking, usually in a string-to-tree or a tree-to-tree configuration.

These approaches generally require the decoder to be specifically designed to
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produce suitable dependency structures on its output, or to use a specialized

target-side parser capable of parsing potentially ungrammatical and unid-

iomatic sentences (such as the translation lattice phrase dependency parser

of Gimpel and Smith (2013)).

In our work we investigated a tree-to-string N-best reranking model

suitable for use with a standard phrase-based decoder (such as Moses) and

a standard source-side dependency parser (such as DeSR (Attardi, 2006)).

Using only off-the-shelf tools makes this system interesting for language

pairs with limited target-side resources.

Source phrase dependency model

Dependency relations in a conventional dependency tree are syntactical rela-

tions between individual words. A phrase-based decoder, instead, operates

in terms of phrase-pairs.

Each N-best candidate translation ei of a source sentence f is defined by its

derivation, which describes how f has been segmented into source phrases,

how these source phrases have been reorederd and for each source phrase

which corresponding target phrase has been chosen.

In our system we want to rerank the candidate translations according to a

model of the quality of their derivations7.

Specifically, we focus on the quality of phrase segmentation and reordering.

Segmentation features The source phrases produced by the segmentation

performed by the decoder do not necessarily correspond to subtrees in the

dependency parse tree (or forest) g f of the sentence. And if the dependency

parse is not projective, subtrees or even more weakly constrained structures

(such as the "well-formed" dependency structures of Shen et al. (2008,

2010)) do not necessarily correspond to contiguous phrases in any possible

segmentation.

There is a mismatch between the non-syntactic phrases the decoder operates

7A candidate target sentence may appear multiple times in the N-best list, each time with

a different derivation. We consider these different candidate translations for our purposes.
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upon and dependency structures defined in terms of their topological prop-

erties in the dependency graph.

This mismatch, however, is not necessarily detrimental to translation

quality. In fact, restricting the decoder to operate only on syntactically

reasonable phrases actually reduces the translation quality, suggesting that

automatically segmented phrases based on a phrase table heuristically de-

rived from a word-aligned parallel corpus and syntactically segmented

phrases based on parse graph properties carry different kinds of information.

It can be therefore beneficial to combine these different kinds of information

using features in a machine learned representation, specifically a linear

model with parameters tuned using standard techniques.

Cherry (2008) used global cohesion features which count the number of

interruptions in the derivation of the translations, defined as the number of

times the decoder chose a source phrase that was not contiguous in the source

dependency tree up to a reordering between sibling vertices. They used their

model directly in the decoder obtaining a significant increase of translation

quality (BLUE score).

We propose a set of multiple features which operate strictly at source

phrase level, inspired by the concept of phrase dependency relations of Gimpel

and Smith (2013), but generalized to suit our purposes:

Given a source phrase f̄ j in a derivation, we define the set of its parent

phrases PARENTS( f̄ j) as the set of other phrases in the same derivation

which contain at least one word that is a parent of some word in f̄ j:

PARENTS( f̄ j) ≡
{

f̄ ′j |j′ 6= j ∧ ∃k, k′ : f̄ j′,k′ = PARENT( f̄ j,k)
}

CHILDREN( f̄ j) ≡
{

f̄ ′j | f̄ j ∈ PARENTS( f̄ ′j )
} (5.10)

where f̄ j,k is the k-th word of the j-th source phrase.

We also define the sets of left parents PARENTSL( f̄ j), right parents

PARENTSR( f̄ j), left children CHILDRENL( f̄ j) and right children

CHILDRENR( f̄ j). Note that only word dependency relations that cross

the phrase boundaries are relevant to the definition of these phrase

dependency relations.

We propose the following segmentation phrase feature functions:
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• No parents PARENTS( f̄ j) = ∅, no left parents PARENTSL( f̄ j) = ∅,

no right parents PARENTSR( f̄ j) = ∅, one-sided parents

PARENTSL( f̄ j) = ∅ ∨ PARENTSR( f̄ j) = ∅.

• Unambiguous (no more than one) parents |PARENTS( f̄ j)| ≤ 1, Unam-

biguous left parents |PARENTSL( f̄ j)| ≤ 1, Unambiguous right parents

|PARENTSL( f̄ j)| ≤ 1.

• Unique parent |PARENTS( f̄ j)| = 1.

• No children CHILDREN( f̄ j) = ∅, no left children CHILDRENL( f̄ j) =

∅, no right children CHILDRENR( f̄ j) = ∅, one-sided children

CHILDRENL( f̄ j) = ∅ ∨ CHILDRENR( f̄ j) = ∅.

The idea is that when phrase segmentation breaks the syntactic structures

these features should be able to detect it, and the model will penalize (or

possibly, reward) different types of breakages using parameters automati-

cally learned during tuning.

Distortion features In addition to segmentation scoring features, we propose

another set of features, still based on phrase dependency relations, which

model the reordering between the source phrases of the derivation.

Specifically, we consider couples of source phrases which are aligned 8 to

target phrases which are contiguous in target order.

Let f̃ j ≡ ( f̄a(j−1), f̄a(j)) be one of such couples. We define the following,

mutually exclusive, feature functions:

• Unique parent-child PARENTS( f̄a(j)) = { f̄a(j−1)}.

• Unique child-parent PARENTS( f̄a(j−1)) = { f̄a(j)}.

• Siblings with unique parent ∃j′ : PARENTS( f̄a(j)) =

PARENTS( f̄a(j−1)) = f̄ j′

• None of the above.
8phrase alignments returned by the decoder are always one-to-one
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furthermore we define the inversion feature function a(j− 1) > a(j) which is

included both as an individual feature and in logical conjunction with each

of the feature functions defined above, resulting in a total of nine boolean

distortion feature functions.

The rationale of these features is that they detect reordering operations

which swap syntactic structures related by a dependency relation between

themselves or with a shared parent structure.

This is similar to the kind reordering operations between structures allowed

in the synchronous dependency insertion grammar model of Ding and Palmer

(2005) or the aforementioned well-formed structures of Shen et al. (2010), but

these approaches require target dependencies to be available and strictly

constrain the reordering operation that can be performed, while our model

only requires source dependencies and generates "soft" constraints whose

strength is regulated by the automatically tuned parameters.

Scoring model The feature functions defined in the two previous paragraphs

can be combined in a vector feature function g( f , e, j) which computes the

segmentation and distortion features of source phrase f̄a(j) under derivation

e (the distortion features of phrase f̄a(1) are all defined equal to zero since this

phrase has no previous phrase in target order).

We sum the values of these features phrase-wise to obtain a derivation

feature vector:

w̃( f , e) ≡
Lx(e)

∑
j=1

g( f , e, j) (5.11)

where Lx(e) is the number of phrases in the segmentation of derivation e.

In order to perform reranking, this vector is then concatenated with

the feature vector produced by the decoder φ( f , e) and multiplied by the

parameter vector θ to obtain the final reranking score:

h( f , e) ≡ θT · (w̃( f , e), φ( f , e)) (5.12)

where the parameter vector θ is trained using a standard machine translation

tuning technique such as k-best batch MIRA (Cherry and Foster, 2012).
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Configuration BLEU-c BLEU

Moses + sparse feats. 29.02 29.82

Moses + sparse feats. + dep. feats. 29.17 (+ 0.15) 29.97 (+ 0.15)

Figure 5.5: Experimental results. BLEU and case-insensitive BLEU scores over a

2,000 sp. it-en test corpus. Improvements are significant at the p-value < 0.05 .

Experiments

Setup We tested our model in a Italian-to-English 1000-best translation

reranking task.

The experimental setup is the same used to test the GraphESNLM models

(section 5.1.4), although we only used the Moses configuration with sparse

features.

Non-projective dependency parse trees (actually, forests) for the Italian

source sentences have been computed using the transition-based DeSR

parser (Attardi, 2006) in the state-of-the-art tree revision configuration (At-

tardi and Ciaramita, 2007).

Results The results of these experiments are shown in fig. 5.5.

We obtain a small but significant BLUE score improvement, similar to the

improvement obtained by the Sequence GraphESNLM approach, which is

based on completely different principles.

We also performed other experiments with slightly different feature function

configurations but we obtained lower scores, although never lower than the

baseline score of the decoder.

From a speed point of view, the reranker adds a negligible overhead the

the runtime of the decoder, even in our unoptimized Python implementation.

5.2.1 Future work

Just like any discriminative system based on hand-coded feature functions,

feature engineering is crucial. Different configurations of the feature func-

tions could be tried.
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In particular, in our model we did not use dependency type (deprel) tags,

POS tags and morphological information even though they were available.

It may be interesting to investigate features that combine this type of

information with the purely topological relations that we used.

These combined features, however, would be sparse, and when concatenated

with the already sparse decoder feature could generate a model with a

large number of parameters which would be at risk of overfitting without

a sufficiently large training (tuning) corpus. Due to time constraints, we used

a small corpus of 3,923 sentence pairs, which would have been unsuitable for

training a model with a very large number of parameters.

It can be observed that our model decomposes in terms of couples of

target-consecutive phrases. This means that it could be used directly for

decoding rather than reranking, by integrating in a phrase-based translation

system without increasing the size of the state signatures (compared to the

state signatures used by the lexicalized distortion model which is integrated

in the standard configuration of Moses).

Using this model for decoding rather than reranking could possibly further

increase translation quality (by decreasing the search error caused by prun-

ing) and reduce the runtime (by eliminating the need to generate the 1000-

best list).

Finally, this model could be combined with the GraphESNLM mod-

els to exploit the benefits of both human-engineered features and non-

linear pseudo-random reservoir features. Hopefully, these features would

be largely uncorrelated (specifically in the case of the simplest target-only

GraphESNLM), giving to the final linear model a better ability to separate

good translations from bad ones.



Chapter 6

Conclusions and future work

In this thesis we investigated the problem of statistical machine translation

from various angles. We experimented with pre- and post-processing tech-

niques for word reordering and candidate translation reranking, respectively.

We focused our research on syntax-based approaches which make use of

non-projective dependency grammars, which are believed to be well suited to

represent the syntactic structure of non-analytic languages such as German,

Italian, Czech or Bulgarian.

We also made significant use of a variety of discriminative machine learning

techniques, in order to leverage the success that these approaches had in

recent years and develop flexible systems capable of being deployed for

multiple language pairs without the need of significant language-specific

engineering.

6.1 Characterization of German-to-English

reordering as transitions on a dependency

tree

We investigated preprocessing schemes that permute the words of the source

sentences attempting to put them into an order which is idiomatic for the

target language.

These approaches aim at facilitating the job of the main translation engine
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by reliving it of the hard combinatorial problem of long-distance reordering,

which is difficult for a phrase-based decoder, allowing it to focus its compu-

tational resources on target word selection.

We introduced an automaton model which enables us to describe the

generation of arbitrary permutations of dependency-parsed source sentences

in terms of walks on the dependency tree.

This model allows us to statistically characterize these permutations in terms

of properties of the executions of the automaton that generates them.

We hypothesized that for certain language pairs such as German-to-

English, where the syntax of the source language is naturally modeled using

non-projective dependency relations and where word alignments often occur

at long distance, an explicit modeling of non-projectivity and tree non-

local reordering can benefit syntax-based reordering and therefore machine

translation.

We statistically analyzed the occurrence of these linguistic phenomena in

the German-to-English language pair, how they correlate with themselves,

with phrase-based translation quality and with the "pseudo-oracle perfor-

mance gap", a heuristic quasi-upper bound to the improvement of translation

quality that be achieved by performing pre-reordering.

We also specifically analyzed the impact of non-projective relations using

some dependency-based variations of hand-coded pre-reordering rules.

We concluded that designing a syntax-based system which can process

non-tree-local reordering and dependency non-projectivity is likely to be a

promising approach.

6.2 Pre-reordering for machine translation using

transition-based walks on dependency parse

trees

We proposed two classes of novel syntax-based reordering approaches which

can process non-projective dependency trees and generate non-tree-local

permutations.
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The first approach is based on a direct instantiation of the tree walker

automaton model introduced in the previous chapter.

We implemented a greedy classifier-driven transition-based reorderer, in-

spired by the success of greedy classifier-driven transition-based dependency

parsers such as DeSR.

We found that the accuracy of our system is not sufficient to improve the full

translation quality over the baseline phrase-based Moses decoder.

We attributed this failure to reordering being an inherently harder combina-

torial problem than parsing, making greedy approaches unsuitable. While

more advanced search techniques might succeed where the greedy failed,

the evidence that we observed from an error analysis suggest us that the

optimization problems posed by this approach might be intrinsically quite

difficult.

The second approach is a novel class of recurrent neural network ar-

chitectures similar to recurrent neural language models. These models can

incrementally score, and therefore generate, arbitrary permutation of source

sentences based on generally non-projective dependency features.

We applied these models to German-to-English pre-reordering and subse-

quent phrase-based translation, obtaining significant performance improve-

ments over the baseline Moses decoder.

We were able to obtain performance improvements comparable to, or in

some cases even better than those of the best hand-coded linguistically-

informed pre-reordering rules.

Moreover, we verified that these gains correlate with non-projectivity and

tree non-locality. These results, building upon those of the previous chapter,

confirm our overarching research hypothesis that these neglected linguistic

phenomena are relevant to translation quality, at lest for the German-to-

English language pair.
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6.3 Translation reranking using source-side

dependency syntax and graph echo state

networks

The main decoder of a translation system has to tradeoff accuracy of its

scoring model for efficiency of its search process. For this reason, it is often

possible to improve the overall translation quality by making the decoder

generate a candidate list of candidate translations of a sentence that score

high according to its coarse model, and then reranking them with a more

accurate downstream scoring model.

In this chapter we wanted to investigate the viability of reranking based

on the topological features of the source-side non-projective dependency

parse graph.

We proposed a reranking model based on phrase dependency features on

source-parsed sentence pairs: a source sentence is dependency-parsed, trans-

lated with a phrase-based decoder to a list of 1000 candidate translations. The

source sentence and each candidate translation form a sentence pair that we

score with our model.

We compute this score using features that take into account how the phrase

segmentation operated by the decoder cuts the dependency parse of the

source sentence and how these phrases are reordered in the translation w.r.t.

their dependency relations, an approach similar to Gimpel and Smith (2013).

The model also includes standard phrase-based features directly derived

from the decoder and is trained using batch MIRA.

We obtained a significant quality improvement over the baseline decoder on

the Italian-to-English language pair.

We also proposed a class of reranking models based on graph echo

state networks (GraphESN), a type of reservoir computing neural network for

prediction problems with a graph input (Gallicchio and Micheli, 2010).

Each candidate sentence pair is mapped to a graph which is applied to a

GraphESN model, obtaining a per-vertex state vector, which is reduced to a

fixed-dimensional per-sentence-pair vector, which is then used as a feature
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vector, together with standard phrase-based features, for a linear scoring

model, trained with batch MIRA.

The specifics of these graph echo state networks language models (GESN-

LMs) depend on the way the graph is obtained from a sentence pair.

We proposed a monolingual approach which only considers target words

as a sequence graph, a bilingual model which also includes the sequence

of source words with source-target word-alignment edges, and finally a

tree-to-string bilingual model which additionally includes edges representing

dependency relations on the source sentence, obtained from a parser. We

tested these obtaining a significant quality improvement over the baseline

decoder on the Italian-to-English language pair, specifically the more

complex models which take into account bilingual and syntactic relations

yield better performances.

GraphESNs, being a reservoir computing approach, use untrained, ran-

domly initialized recurrent neural networks. This greatly reduces training

complexity compared to conventional recurrent neural networks, and in

particular allowed us to keep the adaptable part of our scoring model linear,

which enabled training with batch MIRA.

However, it may be possible that adapting the recurrent connections param-

eters yields a significant accuracy improvement. Devising a suitable training

scheme for such model would be an interesting line of research.

We consider the success of our approach as a confirmation of our

hypothesis that reranking based on non-projective topological features of the

source sentences is viable.

6.4 Final considerations

The reranking that we introduced models yielded good results in terms

of translation quality with a small computational cost. They are also the

methods that required less engineering efforts, and are arguably the most

innovative techniques used in this thesis.

Therefore, we believe that in the short-term these methods, specifically the
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GESN-LMs, are the most promising line of research stemming from this

thesis, in terms of expected return on effort.

In the medium or long-term, we expect the quality improvements of n-

best-list reranking approaches (in general, not just those derived from our

research) to level off, because these methods are fundamentally limited by

the quality of the translations that the upstream decoder is able to place into

the candidate translations list.

Word-lattice reraking schemes may remain viable for a longer time, as they

rerank over exponentially larger parts of the translation space, however

some empirical studies failed to notice a significant difference with n-best-

list reranking in terms of translation quality (Auli et al., 2013).

Our reordering methods, specifically the one based on recurrent neural

networks, are also very effective and innovative. Specifically, Fragment-RNN

is able to fully exploit the dependency reordering automaton model although

at a considerable computational cost. Base-GRU is simpler but performs

better and is more efficient, and may be probably be considered mature

enough for practical applications. Further development of these models

appears to be a promising short-term/medium-term goal.

Eventually, performance of statistical reordering approaches is likely to

become limited by the fact that they are trained on heuristic reference per-

mutations, which, while reasonable, are not really theoretically principled,

and the fact that reordering does not help with some forms of long-distance

dependencies, such as grammatical agreement or split translations, that

phrase-based downstream decoders have troubles dealing with.

Regarding the main translation engine, we believe that designing sub-

stantially new algorithms for decoding might be probably not be worth the

effort at this point, at least unless significantly novel discrete optimization

ideas are imported into the field currently dominated by beam search

dynamic programming phrase-based or parser-derived algorithms.

However, research on the scoring models used for decoding seems an

highly promising research area for the medium and long-term.

Including new features to translation model requires careful engineering due

to the model quality vs. hypothesis recombination opportunities tradeoffs.
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Therefore, reordering and reraking approaches can be considered as "test

beds" for new features to include in translation models: if a feature performs

well in a reordering or reranking approach it may be worth to try to adapt it

for a use in the main decoder, thus restricting the tradeoff engineering effort

to the most promising features.

More specifically, our recurrent neural network reordering models don’t

appear to be easily integrable in a standard phrase-based decoder due

to the fact that the state of recurrent neural networks doesn’t decompose

over sequences. However, in the future we may investigate other neural

network architectures that replace state recurrence with fixed-size context

windows, which could be used in a phrase-based decoder without disrupting

hypothesis recombination. These models also have the advantage of being

less computationally expensive, both during training and during decoding.

We haven’t investigated these approaches yet because we were more in-

teresting in addressing the research question of whether dependency non-

projectivity and non-tree-local reordering were relevant to an actual sta-

tistical syntax-based system, hence we went straight to recurrent neural

networks because they are known to deliver state of the art performance

on sequence prediction problems. Now that the question is arguably settled,

the investigation of context-window approaches can be certain a promising

approach.

In a similar vein, echo state networks and GraphESN could be also plausible

research approaches to be investigated in this aspect.

In conclusion, in this thesis we presented a variety of statistical machine

translation methods focused on exploiting syntactical information repre-

sented as source-side non-projective dependency parse trees, and making

use of several discriminative machine learning techniques. We believe that

these approaches may have the potential to be expanded into future lines of

research and to be applied to practical machine translation systems.
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