95 research outputs found

    Reusable components of semantic specifications

    Get PDF

    Development of parsing tools for Casl using generic language technology

    Get PDF
    An environment for the Common Algebraic Specification Language CASL consists of independent tools. A number of CASL have been built using the algebraic formalism ASF+SDF and the+SDF Meta-Environment. CASL supports-defined syntax which is non-trivial to: ASF+SDF offers a powerful parsing(Generalized LR). Its interactive environment facilitates rapid complemented by early detection correction of errors. A number of core developed for the ASF+SDF-Environment can be reused in the context CASL. Furthermore, an instantiation of a format developed for the representation ASF+SDF specifications and terms provides a-specific exchange format

    Reusable Components of Semantic Specifications

    Get PDF
    Semantic specifications of programming languages typically have poor modularity. This hinders reuse of parts of the semantics of one language when specifying a different language – even when the two languages have many constructs in common – and evolution of a language may require major reformulation of its semantics. Such drawbacks have discouraged language developers from using formal semantics to document their designs. In the PLanCompS project, we have developed a component-based approach to semantics. Here, we explain its modularity aspects, and present an illustrative case study: a component-based semantics for Caml Light. We have tested the correctness of the semantics by running programs on an interpreter generated from the semantics, comparing the output with that produced on the standard implementation of the language. Our approach provides good modularity, facilitates reuse, and should support co-evolution of languages and their formal semantics. It could be particularly useful in connection with domain-specific languages and language-driven software development

    From napkin sketches to reliable software

    Get PDF
    In the past few years, model-driven software engineering (MDSE) and domain-specific modeling languages (DSMLs) have received a lot of attention from both research and industry. The main goal of MDSE is generating software from models that describe systems on a high level of abstraction. DSMLs are languages specifically designed to create such models. High-level models are refined into models on lower levels of abstraction by means of model transformations. The ability to model systems on a high level of abstraction using graphical diagrams partially explains the popularity of the informal modeling language UML. However, even designing simple software systems using such graphical diagrams can lead to large models that are cumbersome to create. To deal with this problem, we investigated the integration of textual languages into large, existing modeling languages by comparing two approaches and designed a DSML with a concrete syntax consisting of both graphical and textual elements. The DSML, called the Simple Language of Communicating Objects (SLCO), is aimed at modeling the structure and behavior of concurrent, communicating objects and is used as a case study throughout this thesis. During the design of this language, we also designed and implemented a number of transformations to various other modeling languages, leading to an iterative evolution of the DSML, which was influenced by the problem domain, the target platforms, model quality, and model transformation quality. Traditionally, the state-space explosion problem in model checking is handled by applying abstractions and simplifications to the model that needs to be verified. As an alternative, we demonstrate a model-driven engineering approach that works the other way around using SLCO. Instead of making a concrete model more abstract, we refine abstract models by transformation to make them more concrete, aiming at the verification of models that are as close to the implementation as possible. The results show that it is possible to validate more concrete models when fine-grained transformations are applied instead of coarse-grained transformations. Semantics are a crucial part of the definition of a language, and to verify the correctness of model transformations, the semantics of both the input and the output language must be formalized. For these reasons, we implemented an executable prototype of the semantics of SLCO that can be used to transform SLCO models to labeled transition systems (LTSs), allowing us to apply existing tools for visualization and verification of LTSs to SLCO models. For given input models, we can use the prototype in combination with these tools to show, for each transformation that refines SLCO models, that the input and output models exhibit the same observable behavior. This, however, does not prove the correctness of these transformations in general. To prove this, we first formalized the semantics of SLCO in the form of structural operational semantics (SOS), based on the aforementioned prototype. Then, equivalence relations between LTSs were defined based on each transformation, and finally, these relations were shown to be either strong bisimulations or branching bisimulations. In addition to this approach, we studied property preservation of model transformations without restricting ourselves to a fixed set of transformations. Our technique takes a property and a transformation, and checks whether the transformation preserves the property. If a property holds for the initial model, which is often small and easy to analyze, and the property is preserved, then the refined model does not need to be analyzed too. Combining the MDSE techniques discussed in this thesis enables generating reliable and correct software by means of refining model transformations from concise, formal models specified on a high level of abstraction using DSMLs

    Assessing and improving the quality of model transformations

    Get PDF
    Software is pervading our society more and more and is becoming increasingly complex. At the same time, software quality demands remain at the same, high level. Model-driven engineering (MDE) is a software engineering paradigm that aims at dealing with this increasing software complexity and improving productivity and quality. Models play a pivotal role in MDE. The purpose of using models is to raise the level of abstraction at which software is developed to a level where concepts of the domain in which the software has to be applied, i.e., the target domain, can be expressed e??ectively. For that purpose, domain-speci??c languages (DSLs) are employed. A DSL is a language with a narrow focus, i.e., it is aimed at providing abstractions speci??c to the target domain. This makes that the application of models developed using DSLs is typically restricted to describing concepts existing in that target domain. Reuse of models such that they can be applied for di??erent purposes, e.g., analysis and code generation, is one of the challenges that should be solved by applying MDE. Therefore, model transformations are typically applied to transform domain-speci??c models to other (equivalent) models suitable for di??erent purposes. A model transformation is a mapping from a set of source models to a set of target models de??ned as a set of transformation rules. MDE is gradually being adopted by industry. Since MDE is becoming more and more important, model transformations are becoming more prominent as well. Model transformations are in many ways similar to traditional software artifacts. Therefore, they need to adhere to similar quality standards as well. The central research question discoursed in this thesis is therefore as follows. How can the quality of model transformations be assessed and improved, in particular with respect to development and maintenance? Recall that model transformations facilitate reuse of models in a software development process. We have developed a model transformation that enables reuse of analysis models for code generation. The semantic domains of the source and target language of this model transformation are so far apart that straightforward transformation is impossible, i.e., a semantic gap has to be bridged. To deal with model transformations that have to bridge a semantic gap, the semantics of the source and target language as well as possible additional requirements should be well understood. When bridging a semantic gap is not straightforward, we recommend to address a simpli??ed version of the source metamodel ??rst. Finally, the requirements on the transformation may, if possible, be relaxed to enable automated model transformation. Model transformations that need to transform between models in di??erent semantic domains are expected to be more complex than those that merely transform syntax. The complexity of a model transformation has consequences for its quality. Quality, in general, is a subjective concept. Therefore, quality can be de??ned in di??erent ways. We de??ned it in the context of model transformation. A model transformation can either be considered as a transformation de??nition or as the process of transforming a source model to a target model. Accordingly, model transformation quality can be de??ned in two di??erent ways. The quality of the de??nition is referred to as its internal quality. The quality of the process of transforming a source model to a target model is referred to as its external quality. There are also two ways to assess the quality of a model transformation (both internal and external). It can be assessed directly, i.e., by performing measurements on the transformation de??nition, or indirectly, i.e., by performing measurements in the environment of the model transformation. We mainly focused on direct assessment of internal quality. However, we also addressed external quality and indirect assessment. Given this de??nition of quality in the context of model transformations, techniques can be developed to assess it. Software metrics have been proposed for measuring various kinds of software artifacts. However, hardly any research has been performed on applying metrics for assessing the quality of model transformations. For four model transformation formalisms with di??fferent characteristics, viz., for ASF+SDF, ATL, Xtend, and QVTO, we de??ned sets of metrics for measuring model transformations developed with these formalisms. While these metric sets can be used to indicate bad smells in the code of model transformations, they cannot be used for assessing quality yet. A relation has to be established between the metric sets and attributes of model transformation quality. For two of the aforementioned metric sets, viz., the ones for ASF+SDF and for ATL, we conducted an empirical study aiming at establishing such a relation. From these empirical studies we learned what metrics serve as predictors for di??erent quality attributes of model transformations. Metrics can be used to quickly acquire insights into the characteristics of a model transformation. These insights enable increasing the overall quality of model transformations and thereby also their maintainability. To support maintenance, and also development in a traditional software engineering process, visualization techniques are often employed. For model transformations this appears as a feasible approach as well. Currently, however, there are few visualization techniques available tailored towards analyzing model transformations. One of the most time-consuming processes during software maintenance is acquiring understanding of the software. We expect that this holds for model transformations as well. Therefore, we presented two complementary visualization techniques for facilitating model transformation comprehension. The ??rst-technique is aimed at visualizing the dependencies between the components of a model transformation. The second technique is aimed at analyzing the coverage of the source and target metamodels by a model transformation. The development of the metric sets, and in particular the empirical studies, have led to insights considering the development of model transformations. Also, the proposed visualization techniques are aimed at facilitating the development of model transformations. We applied the insights acquired from the development of the metric sets as well as the visualization techniques in the development of a chain of model transformations that bridges a number of semantic gaps. We chose to solve this transformational problem not with one model transformation, but with a number of smaller model transformations. This should lead to smaller transformations, which are more understandable. The language on which the model transformations are de??ned, was subject to evolution. In particular the coverage visualization proved to be bene??cial for the co-evolution of the model transformations. Summarizing, we de??ned quality in the context of model transformations and addressed the necessity for a methodology to assess it. Therefore, we de??ned metric sets and performed empirical studies to validate whether they serve as predictors for model transformation quality. We also proposed a number of visualizations to increase model transformation comprehension. The acquired insights from developing the metric sets and the empirical studies, as well as the visualization tools, proved to be bene??cial for developing model transformations

    Unit testing for domain-specific languages, in

    Get PDF
    Abstract. Domain-specific languages (DSLs) offer several advantages by providing idioms that are similar to the abstractions found in a specific problem domain. However, a challenge is that tool support for DSLs is lacking when compared to the capabilities offered in general-purpose languages (GPLs), such as Java and C++. For example, support for unit testing a DSL program is absent and debuggers for DSLs are rare. This limits the ability of a developer to discover the existence of software errors and to locate them in a DSL program. Currently, software developers using a DSL are generally forced to test and debug their DSL programs using available GPL tools, rather than tools that are informed by the domain abstractions at the DSL level. This reduces the utility of DSL adoption and minimizes the benefits of working with higher abstractions, which can bring into question the suitability of using DSLs in the development process. This paper introduces our initial investigation into a unit testing framework that can be customized for specific DSLs through a reusable mapping of GPL testing tool functionality. We provide examples from two different DSL categories that serve as case studies demonstrating the possibilities of a unit testing engine for DSLs

    Generating uniform user-interfaces

    Get PDF
    • …
    corecore