
 Eindhoven University of Technology

MASTER

A relational approach to static semantic checking

van der Meer, A.P.

Award date:
2008

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/38f0e9b6-1e47-4f29-b88e-8b5bee6aa636

A relational approach to

static semantic checking

A. P. van der Meer

Master Thesis
October 21, 2008

Supervisors

Drs. ing. B.J. Arnoldus
Prof. dr. M.G.J. van den Brand

Drs. H.P.J. van Geldrop - van Eijk
Dr. R. Kuiper

Department of Mathematics and Computer Science

Abstract

Correct static semantics are a crucial part of all software. This thesis investigates a relational
approach to static semantic checking. This approach means that we first extract information,
then analyse it afterwards. So-called facts extracted from the program under scrutiny are
inserted into a database. Constraints and queries can then be used to identify errors. In
this thesis, a fact extractor is presented that can extract the required information. The fact
extractor is based on grammar annotations. We have chosen to focus on the Java programming
language and have created a prototype that checks for a number of Java errors. We describe
the database schema used in the prototype and major implementation issues we encountered.
Finally, we discuss a possible application of the method in the area of templates.

Acknowledgements

I am grateful for for all the support I have received from many people in the writing of this
thesis. I want to to thank prof. dr. M.G.J. van den Brand for suggesting the topic of this
thesis to me and allowing me to research it as my graduation project. I thank drs. ing. B. J.
Arnoldus for his advice and support during the whole project, and drs. H.P.J. van Geldrop-
van Eijk for her insightful comments and criticism. Finally, I want to thank my parents and
family for their support, especially during the more stressful times.

1

Contents

1 Introduction 5
1.1 Problem statement . 6
1.2 Outline of this thesis . 6

2 Fact extraction 7
2.1 Introduction . 7
2.2 Methods of fact extraction . 7

2.2.1 Regular expressions . 7
2.2.2 Parse Trees . 9
2.2.3 Parser Generators . 10

2.3 Fact extraction by universal parse tree traversal 11
2.3.1 Introduction . 11
2.3.2 Tree traversal . 11
2.3.3 Grammar of annotations . 12

2.4 Conclusion . 13

3 Static semantics of Java 14
3.1 Selection of checks . 15

4 Database schema 17
4.1 Introduction . 17
4.2 Base structure . 17

4.2.1 Scope Table . 17
4.2.2 Type & Interface Tables . 20
4.2.3 Expression Table . 21
4.2.4 FieldDec, Typeinfo, Variable & Arraydec Tables 22
4.2.5 Method & Parameter Tables . 23
4.2.6 Import Tables . 23
4.2.7 Modifiers Table . 24
4.2.8 Package Table . 24

4.3 Relationships between tables . 24
4.4 Relation between errors and tables . 24

5 Implementation 27
5.1 Introduction . 27
5.2 SQL . 27
5.3 Enriching the database . 28

2

5.4 Reference errors . 29
5.5 Type errors . 31
5.6 Declaration errors . 32
5.7 Contradictions . 33
5.8 Inheritance and interface errors . 33
5.9 Miscellaneous . 33

6 Prototype results 35
6.1 Literals . 35
6.2 Inheritance . 35
6.3 Types . 35
6.4 Modifiers . 36
6.5 Enum . 36
6.6 Interfaces . 36
6.7 Generics . 36
6.8 Exceptions . 36
6.9 Constructors . 37
6.10 Initialization . 37
6.11 Instances & Inner classes . 37
6.12 Control flow . 37
6.13 Ambiguity . 37
6.14 Accessibility . 37
6.15 Annotations . 38

7 Future work: Templates 39
7.1 Introduction . 39
7.2 Repleo . 39
7.3 Base language errors . 40
7.4 Template specific errors . 42
7.5 Ambiguities . 43

8 Related work 44

9 Conclusion 47

A SDF Grammar of annotations 52

B Java compile-time error tables 54
B.1 Literals . 54
B.2 Inheritance . 54
B.3 Types . 55
B.4 Modifiers . 56
B.5 Enum . 57
B.6 Interfaces . 57
B.7 Generics . 58
B.8 Exception . 59
B.9 Constructors . 59
B.10 Initialization . 60

3

B.11 Instances & Inner classes . 60
B.12 Control flow . 60
B.13 Ambiguity . 61
B.14 Accessibility . 61
B.15 Annotations . 62

C Template Listings 63

4

Chapter 1

Introduction

This thesis discusses a relational approach to implement a static semantic checker. This
idea was inspired by the desire to check templates for semantic errors, like incorrect variable
references and method calls. A template is, in general, a program fragment that is used to
create many copies of some design easily. In particular, the templates used here consist of
source code with holes that can be filled in various ways. This makes it possible to create
many variations, simply by changing the way the holes are filled.

Because a template is ideally used many times, it is important there are no errors in
it. The advantages of a template are greatly reduced if every variation has to be debugged
separately. If an error is detected in the output of a template engine, it can quite easily
be unclear what the cause of the error is. It can be the template, the input data or even
the template engine. The possible errors in a template can be classified as syntactical or
semantical. A syntactical error means that the source code does not conform to the context-
free grammar of the programming language. Repleo[5] is an example of a template engine
that can check templates for syntactical errors. For this reason, we use Repleo as our example
template system in this thesis. A semantic error means that the code does not have a sensible
meaning that can be executed by a computer. Existing semantic checkers, in most cases part
of a compiler, cannot deal with the placeholders in a template. Furthermore, they are usually
aimed at one specific language, while template engines are available for many languages.
Finally, there are a number of template specific semantic errors that a semantic checker not
designed with templates in mind does not cover.

Semantic checking as mentioned above is quite a large area. In this thesis, we will focus
on the static semantics of the Java programming language[12]. The part of the semantics of a
programming language that can be verified without executing the code for the given program.
Most semantic checkers restrict themselves to static semantic checks. Java was chosen as the
target programming language because it is widely used and offers extensive reflection facilities.
In addition, there are many template systems that focus on Java. In particular, Repleo can
check the syntax of Java templates. There are certainly easier, less complex languages that
could have been chosen, but that would have carried the risk that significant issues for real-
world problems would be missed. If the approach can handle the complexity of Java, it should
be able to handle many other programming languages. The main disadvantage of Java is that,
due to the complexity of the language, covering all possible errors is not a reachable goal in
the available time. This is compounded by the fact that no clear description exists what
should be considered erroneous in a Java program. The Java Language Specification contains

5

an informal description of the language, but errors are described throughout the document,
and not listed separately. Therefore, this thesis only discusses some of the more common error
types, that were considered interesting cases. In particular, language features like generics
and nested classes are mostly ignored in order to simplify the discussion.

1.1 Problem statement

The goal of this work is to research whether a relational approach to semantic checking
offers an advantage over more traditional methods, like attribute grammars. We expect the
relational approach to have an advantage in modularity and simplicity of the checks. This
includes the construction of a prototype. In any program that checks for errors, soundness
and completeness are important concerns. As mentioned above, completeness as in finding
all possible errors in a Java program, is not possible given the time constraints. It should be
possible to demonstrate that checks for individual errors are sound and complete. A formal
proof is difficult to give, since the errors themselves are not formally defined in the language
specification. The main questions of this thesis are: does a relational approach to static
semantic checking work, can it be made sound and complete and does it offer an advantage
in modularity and simplicity over attribute grammars?

1.2 Outline of this thesis

The structure of the first part of this thesis follows roughly the structure of the process of
the relational approach used. The first step is fact extraction, during which data is gathered.
The next step is insertion into the database. During this step some initial checks are done to
ensure relational integrity. The third step is where more detailed checks take place, to test
for more complicated errors.

The first step, fact extraction, is discussed in Chapter 2. Chapter 3 describes the checks
that we want to implement in more detail. The fourth chapter contains information on the
database schema used to store the facts once they are extracted, while Chapter 5 discusses the
implementation of the checks themselves. The prototype is discussed in Chapter 6. Chapter
7 contains a discussion of potential future work, specifically relating to templates. Finally,
Chapter 8 treats related work and 9 some conclusions concerning the relational approach.

6

Chapter 2

Fact extraction

2.1 Introduction

The source code of a computer program, or indeed almost any text contains a large amount
of information. In this case, we are interested in some specific parts of that information, but
not all of it. The solution is fact extraction. In the fact extraction process, small packages
of information called facts are constructed based on the contents of the text. In principle, it
can be done with any text, but here, we will focus on extracting facts from Java source code.
For example, consider the example program in Listing 2.1.
In Listing 2.1, source code is listed, with comments indicating some examples of places where
facts can be extracted. The term ”fact” is used here to describe several pieces of information
taken from the source code and combined into a single item. For example, the ”variable
declaration” fact might consist of the name of the variable, the type, the modifiers and where
it is declared. It must be noted that a fact is rarely useful in isolation, so nearly all facts will
reference other facts to indicate the relations between them.

In order to extract the desired facts from source code, we need to identify which informa-
tion each fact should contain and where that information can be found. Ideally, these two
concerns should be orthogonal, so that the choice of the extraction method has no influence
on the definition of facts. In practice, each extraction method imposes its own set of limi-
tations on the way facts are defined. For example, in some fact descriptions consist of code
that constructs the desired facts, while others are more declarative. Therefore, this chapter
starts with a discussion of various fact extraction techniques, followed by a more extensive
description of the chosen method and how facts are defined in it.

2.2 Methods of fact extraction

2.2.1 Regular expressions

A simple method of extracting facts from given source code is looking for specific patterns,
described by regular expressions. Regular expressions are used by regular expression proces-
sors to examine texts and find matches. For example, if an assignment consist of a variable
name followed by an assignment symbol and then an expression, it is possible to construct a
regular expression to find that pattern without constructing the whole parse tree. However,
the source code may contain occurrences of the pattern, for example in string constants, that

7

Listing 2.1: Fact extraction example
1 Package Customer ; // Package d e c l a r a t i on
2 import java . u t i l . ∗ ; // Import d e c l a r a t i on
3
4 public class CustomerData {// Class d e c l a r a t i on
5 private Random randGen = new Random () ; // Class re f e rence ,
6 // cons t ruc t o r c a l l , v a r i a b l e d e c l a r a t i on
7 private St r ing name ; // Class re f e rence , v a r i a b l e d e c l a r a t i on
8 int id ; // v a r i a b l e d e c l a r a t i on
9

10 int SetName(St r ing customerName) { // Method Dec lara t ion
11 id = randGen . next Int () ; // Var iab l e assignment ,
12 // v a r i a b l e re f e rence , method c a l l
13 name = customerName ; // Var iab l e assignment , v a r i a b l e r e f e r ence
14 return id ; // Var iab l e r e f e r ence
15 }
16
17 St r ing GetName(int customerID) { // Method d e c l a r a t i on
18 i f (id==customerID) { // Var iab l e r e f e r ence
19 return name ; // Var iab l e r e f e r ence
20 }
21 else {
22 return null ; // Constant expre s s i on
23 }
24 }
25 }

8

are not actually assignments. This would lead to a false positive. An example of a fact ex-
tractor that uses this technique for function calls is mkfunctmap[15]. Mkfunctmap is a Perl
script that scans C code for function calls. The advantages here are that the resulting fact
extractor is quite small and easy to implement, as long as only a limited set of simple fact
types has to be extracted. The approach also has several drawbacks. The fact extractor is not
very flexible and without the full information of the parse tree, the chance of false positives
and false negatives is quite high[25].

2.2.2 Parse Trees

Based on the previous section, we conclude that pattern matching based fact extraction is
not suitable for our needs. We want to extract a variety of facts, which would likely require a
separate pattern each. In principle, this is not unacceptable, but in order to avoid significant
false positives and false negatives, we would need patterns that are quite large and complex.
Simple patterns are just not powerful enough to express what is required to avoid errors. A
solution is to move from patterns to grammars. Grammars are a more more powerfull and
precise method of describing languages. A grammar can be used by a parser to parse a text,
creating a so-called parse tree that describes the structure of a text in terms of the grammar.

Compiler parse trees

One tool that usually constructs a parse tree is a compiler. An advantage is that precisely
identifies the language that the fact extractor accepts, namely to exactly the language that
the compiler accepts. For a language like C, with many dialects, that can be very useful.

On the other hand, it is not always possible to access the parse tree created by the compiler.
While for example the gcc compiler from version 3 onwards can dump parse trees from several
phases of the compilation process, earlier versions require modification[3]. Many commercial
licenses prohibit program modifications like this. Furthermore the parse tree format itself
might well be protected by copyrights and patents. Another problem is that what is useful
for a compiler is not always useful for fact extraction. The compiler needs details of system
libraries to create object code, like for example memory sizes of types, while for fact extraction
those are usually irrelevant. Finally, the reliance on a specific compiler reduces the flexibility
of the fact extractor.

Custom parsers

As mentioned earlier, a full parser is necessary to extract all information needed to check
errors. Since a parser written to be used in a compiler does not really output the data in a
useful form, an obvious solution is to create a separate parser. This is a common approach in
the reverse engineering, used in tools like Rigi[31] and CIA++[13] for C/C++. Most of these
tools are language-specific, though there are examples, like Columbus[11], that are intended
to be more universal. In the case of Columbus, this is achieved using plugins. It should be
noted that the set of C plugins, called CAN, appears to be the most-used and most-developed.

The main disadvantage of tools like these is that they are mostly intended for reverse
engineering, and do not provide output that can be used directly for our purpose. The
advantage is that the parser for the target language is already made and tested, but we would
need a way to process the output of this parser. Since most custom parsers support only one
input language and have their own output format, that does not seem a big improvement.

9

2.2.3 Parser Generators

If it is not worth the effort to adapt or adapt to a custom parser, we could try generating
a custom parser instead. That is the province of parser generators like Yacc[17], Antlr[26]
or JavaCC[20]. Closely related to this are universal parsers. In fact, what is generated by
most parser generators is a parse table that is used by a corresponding universal parser to
parse the desired grammar. The input of parser generators consists of a description of the
grammar with production rules, combined with so-called semantic actions that are executed
by the parser whenever it finds a node of the appropriate type. We could use this facility to
construct the appropriate fact or facts for each node. The advantage is that this approach
is quite powerful, since we construct facts using a full imperative language. This comes at a
price, the complexity is quite large. Creating references to other facts, for example, does not
seem possible without adding our own administration. While we can of course use subroutines
and libraries to streamline the definitions, but it still seems more complicated than necessary.

JastAdd

Another approach to parser generation is JastAdd[10]. JastAdd is described as a system for
the modular description of compiler tools and languages. It is based on a combination of
Java with abstract syntax trees (AST). Each nonterminal is represented by an abstract class.
In turn, each production rule that corresponds to a given nonterminal is represented by an
actual class, that extends the nonterminal class. Finally, in the AST each node is represented
by an object, of the class that corresponds to the production rule that was used to parse it.
The grammar can be extended by adding extra (abstract) classes to it, and behaviour can
be added to existing classes by defining aspects. In addition, JastAdd has some declarative
features in the form of attributes and rewriting. While the latter is of no interest to the
present discussion, the former provides the support for references that YACC and JavaCC
lacked. To be precise, attributes in JastAdd are based on ReCRAGs, Rewritable Circular
Reference Attribute Grammars. As the name suggest, these allow for the references we need.
The disadvantage is that while it is possible to define new grammars in JastAdd, this is an
extensive job and most existing grammars seem to focus on Java. Also, while aspects allow
for code to be reused, it is likely a separate aspect would have to be written for each fact,
which is not very convenient.

ASF+SDF

Another parser generator that deserves mentioning is ASF+SDF[8]. ASF+SDF is presented
as a language definition formalism. It consists of a Syntax Definition Formalism (SDF) to
which a term rewriting language, Algebraic Specification Formalism (ASF) was added to
express semantics. We will discuss each of these components below.

SDF is a formalism intended for the definition of grammars for a variety of computer-based
languages, even ones that were not designed with grammars in mind. A grammar written
in SDF describes the syntax of a language with production rules, possible with annotations.
Annotations can be used to add information to the parse tree. For example, it is common
practice to add a so-called cons-annotation to each production rule, to simplify their identifi-
cation. The grammar rules can be split into several modules, that are combined in the final
grammar. This way, parts of grammars can also be reused. Once a SDF grammar has been

10

created for a language, this definition can be used to generate a parse table. The scanner-
less generalized LR parser SGLR can parse terms using any parse table created in this way.
The output of this process is the corresponding parse tree of the term in UPTR[33] format,
complete with annotations from the grammar added to the appropriate nodes.

In order to add semantics to and manipulate the parse trees created by the SGLR parser,
ASF was created. ASF takes a parse tree as input, applies a set of equations and produces
an output parse tree. This process can be used to define a fact extractor: the equations that
form a traversal rewrite the parse tree to the desired facts. This approach is used to collect
the facts for RScript[18]. It can be used for any SDF grammar and the modularity makes it
is possible to have a set of equations for each fact and merge the results later. The drawback
is that the equations can get quite complicated. This can (in part) be solved by increased
modularity, but that carries a significant penalty in performance, due to the overhead of
extracting each fact separately. If, for example, twenty types of facts each have their own
traversal, the entire code has to be traversed twenty times. Furthermore, it is not easy to
create references between facts without losing a lot of the modularity.

Based on this, we can conclude that ASF is not really suited to our needs. That does
not mean that we cannot use SDF separately, and indeed, SDF offers several attractive
properties. There are SDF grammars of a number of languages, the same grammars are used
by the Repleo template engine[5] that formed part of the inspiration for this project. The
annotations provide a way to define facts in a direct, declarative way. We do need a separate
implementation of a tree traversal to find the annotations in the tree and determine the
appropriate values. This will be discussed in the next section, together with the annotations
that describe the facts.

2.3 Fact extraction by universal parse tree traversal

2.3.1 Introduction

We now have determined that we want to use SDF grammars with annotations to define
facts. There can be other annotations added to the grammar, like constructors, but we will
ignore those for moment. This section first describes the (simple) tree traversal that is used
to locate annotations in the tree, and then the grammar of the language that is used to write
annotations.

2.3.2 Tree traversal

The annotations inserted into the parse tree describe how a particular type of node must be
treated. In order to extract all facts from a parse tree, the fact extractor must check every
node in the tree for annotations. This is done with a tree traversal. The traversal starts in the
top node of the tree. The extractor first checks if the node has any extractfact annotations. If
that is the case, the required facts are created and filled with the requested information from
this node. The fact is then emitted by the extractor. The traversal proceeds to visit each of
the child nodes, and so on. If any new information has to be added to facts that already has
been emitted, an update is issued. This means the receiver of the facts must be able to locate
the fact to be updated. The current implementation assumes that a field called id can serve
as a key, because we insert the facts directly into a database. Other solutions are certainly
possible.

11

2.3.3 Grammar of annotations

The fact extractor constructs a list of facts based on annotations in the grammar. An example
of such an annotation is:

VarDecId -> VarDec {cons("VarDec"),
extractfact("variable","new",
["$self.getID->ID","fielddec.ID->declaration",
"$0.toString->name", "$self.getOffset->position",
"scope.ID->scope"])}

This annotation could be used for the variable declaration fact from Listing 2.1. Upon reach-
ing the VardDecId node with this annotation, the traversal creates a new record of type
variable. It then creates five fields, ID, declaration, name, position and scope, and inserts the
appropriate values into them. Some, like fielddec.ID in the example, are based on values
extracted earlier, others, like $self.getID or $0.toString, are filled with data from the
parser or the extractor. The annotations that trigger the traversal have the following form:

extractfact(type,action,fields)

type describes the type of the fact.

action describes whether a new fact is created or the fields are added to an existing fact.
In the latter case, the fact extractor decides which fact the update is applied to based
on the type of the field and a field called id, assuming it exists. New facts are created
before the fact extractor visits the subtrees, updates are handled after the subtrees have
been processed. We will discuss the reasons later.

fields contains a list of field descriptions. Field descriptions describe the actual content of
a fact. A field description consist of a source and a target. During the traversal, the
source is evaluated and added to the fact with target as a label. A source can be a
constant, which can be put into the fact directly. Another option is to refer to a field
of a fact that has been created earlier. This is done by naming the type of fact and
the field name. A final option is to use a node and an operation. These can be used,
for example, to get the value of a node, to get a position that is related to a fact or to
relate different facts:

toString returns the string that is represented by the node.
getID returns an unique identifier assigned by the parser.
getLevel returns the number of facts of the current type between the node and the

root. It can be used to determine the depth of the node in the tree, and is used
for example in Section 4.2.3 to fill the expression table.

getScope returns a number that can be used for scope calculations. Details of this are
discussed in Section 4.2.1. A major property of this operation is that the value
returned depends on when it is executed during the traversal. In order to get
both numbers necessary for comparisons, one has to be retrieved in a new fact and
one has to be added by an update. This is the reason updates are done ofter the
children of a node have been visited: to create an opportunity to get the necessary
data.

12

getCons returns the value of the cons annotations, that is added to the production
rules of many grammars when the grammar is created. These are often added to a
grammar by its authors. This function exists mostly for completeness reasons and
it is not used in the prototype implementation.

getPosition and derived operations return position information about the node in
the original file. GetPosition returns a string that describes all details, individual
components can be extracted with the other operations.

A SDF grammar of the annotations can be found in Appendix A.

2.4 Conclusion

In this chapter, we have discussed the fact extraction process that provides the fundamental
data for the static semantic checks. We have concluded that a fact extractor based on SDF
grammars using annotations gives us the flexibility and ease of use. Fact definitions can be
quite compact, because they are declarative in nature. We have implemented fact extractor
in Java that traverses the parse tree and processes each annotation.

13

Chapter 3

Static semantics of Java

Before we can check the static semantics of any language, we have to define what static
semantics actually is. The semantics of a programming language is that part of the language
that is concerned with the meaning of programs when executed. Static semantics refer to
the part of semantics that can be analysed without actually executing the program. A static
semantics analyser checks whether the meaning of a program can be properly determined.
For example, a wrong variable reference means a necessary value cannot be determined when
needed.

The static semantic checker concept developed in this thesis originally was intended for
software templates. The set of errors in a software template is a combination of the errors
in the static part of the template combined with the errors in the template code. Due
to time constraints, it was not possible to look at all possible programming languages and
their errors. As programming language, we choose to restrict ourselves to Java. Java offers
an extensive reflection system that should make gathering context information easier. In
particular information about code that is not directly part of the program itself, like libraries
that are accessed, can be acquired easily. Furthermore, Java is statically typed, which allows
the investigation of typechecking.

The second restriction we chose was to check pure Java programs, without template code,
first. If the checker cannot deal with that, it obviously cannot deal with the added complexity
of the template code. Chapter 7 of this thesis discusses template-related issues in more detail.
Even with this restriction, Java is still a very large programming language, with a number of
complex features.

In order to simplify the development and presentation of the errors, we choose to ignore
nested classes, annotations and generics. The first feature is not widely used, and it compli-
cates the treatment of classes and references. Additionally, the checks that specifically deal
with nested classes are rather complicated and obscure. Annotations are rather new and
specifically defined not to affect the execution in any way. Finally, generics are more widely
used, but again they complicate the checks and part of their intended purpose is covered by
templates.

After all these restrictions, we can discuss what will be treated in this thesis. One problem
is that there is no clear, self-contained list of Java errors. The Java language definition[12]
lists a large number of compiler errors, but they are scattered all over the text and do not
have a formal definition. While there is a more formal definition of the semantics of Java[2],
it does not include a definition of errors. There is a set of Java Compatibility Test Tools[27],

14

that include compiler compatibility and presumably tests for compile-time errors. The tools
have been developed by the Java Community Process, and unfortunately access is limited.
Because of this, we have chosen not to use the Test Tools.

In order to make sure that the selection of errors discussed in this thesis is a representative
sample, we have to classify the errors. Examples of all classes of errors can be found in listing
3.1. We have also created a list of Java errors based on the language description, which can
be found in Appendix B.

3.1 Selection of checks

Type errors The static type system of Java is one of the main features of the language.
All expression must be assigned a type, otherwise successful compilation is impossible.
Since expressions form the main part of a Java program, any serious static semantic
checker has to check for this type of errors. One specific issue with the type system is
that, as the name implies, it is a system, where each part depends on the other parts.
An example of a type error is in the if-statement in listing 3.1 in line 16. There, the
expression in the guard of the if-statement is an assignment. In Java, assignment are
considered expressions that have a type as any other, so this is syntactically correct.
The type of an assignment is defined as the type of the variable that is assigned to, in
this case an int, while the guard can only be a boolean expression.

Reference errors The actual code of a Java program contains a multitude of references, to
variables, to methods and to types. If the target of the reference cannot be found, or
there are multiple equally valid targets, the compiler needs values that it cannot find.
This is an area where a relational approach offers an advantage, since each reference is in
effect a relation between two pieces of code, represented by facts. The example program
in listing 3.1 contains two reference errors, one in line 5 that references a constructor
that does not exist, and one in line 10 that references a variable that does not exist.

Declaration errors Just about every Java program declares classes, interfaces, methods
and/or fields. Every declaration needs a unique identifier in order to reference without
ambiguity. An obvious example is two variables in the same scope that have the same
name, like in lines 14 and 15 of the example in listing 3.1. It is not as simple as that,
since Java allows for a certain amount of hiding and overriding, but errors like these
can still be easily made.

Contradictions Each Java program consists of at least one class, with one or more methods.
Each of these has a number of properties, like visibility, that are determined by its
declaration. This class of errors deals with problems that arise when the declaration
provides multiple values for a certain property, or does not meet the requirements for
one it claims to have. An example of the first is a method that is declared to be public
and private. In that case, it is not clear who is allowed access to the method. One
example of the second is a method that is declared to return an integer, but can execute
without returning a value at all. The method SetName in listing 3.1 is an example of
this. In that case, the method does not meet the requirements of a property it claims
to have. Another example is a method that is declared both abstract and final. No
method can meet the requirements for both these properties at the same time, so the
combination makes no sense.

15

Inheritance and interface errors Nearly any Java class1 has to extend exactly one other
class, called the superclass, and can be implementing any number of interfaces. This
is not unrestricted, for example, a class cannot extend itself. These errors are related
to reference errors, because a class that is extended has to exist and allow itself to be
extended. Because there are some specific restrictions, however, it makes sense to create
a separate class for this group of errors. The class in the example program in listing 3.1
obviously tries to extend itself, which is an inheritance error.

Miscellaneous Finally, there are some errors that do not really fit in the other classes, but
do not really merit a class of their own. Most errors in this class deal with literals
and exceptions. Other examples include control flow errors, like unreachable code. By
definition, these errors are only loosely related. The initial value that is assigned to the
variable id in the example program is too big to fit in a Java integer, which are capped
by the language definition at 231 (2147483647), so that is a miscellaneous error.

Listing 3.1: Error example
1 Package Customer ;
2 import java . u t i l . ∗ ;
3
4 public class CustomerData extends CustomerData {// Inhe r i t ance error
5 private Random randGen = new RAndom() ; // Method re f e r ence error
6 private St r ing name ;
7 int id = 7777777777; // Misc . e r ror
8
9 int SetName(St r ing customerName) { // Contrad ic t ion error

10 id = randen . next Int () ; // Var iab l e r e f e r ence error
11 name = customerName ;
12 }
13
14 St r ing GetName(int customerID) {
15 int customerID // Dec lara t ion error
16 i f (id=customerID) { // Type error
17 return name ;
18 }
19 else {
20 return null ;
21 }
22 }
23 }

1The exception being Java.lang.object, the primordial class.

16

Chapter 4

Database schema

4.1 Introduction

Fact extraction is the first step in a larger process, not a goal in itself. In fact, it may be
the case not all data that is needed for the analysis of the program can be extracted by fact
extraction. Java is an example of this, because for example on-demand imports cannot be
resolved without reflection. In a language like C, this would be less of an issue, because
the preprocessor adds the text of all imports to the source code, so the fact extractor can
access it. Before the fact extraction starts, we have to determine which facts can and have
to be extracted. Once the fact extraction from a program is complete, the rest of the data
needed is acquired and the facts are processed to identify errors. Ideally, the structure of the
facts extracted is such that the desired information can be extracted easily. However, the
annotations that define the facts to be extracted follow the structure of the grammar. Since
in our current setup, the facts are inserted directly into the database, this influences the way
the data is stored. The data cannot always be gathered in a way that is the most convenient
for the implementation of checks. In this chapter, we will describe the structure of the tables
in the database we use to store the information from the fact extractor. Figure 4.1 shows the
overall structure of the database.

4.2 Base structure

4.2.1 Scope Table

One of the central tables in the database is the scope table. Details of the scope table fields
are described in Table 4.1. Information about scopes is needed to resolve references correctly.
In a syntactically correct Java program, scopes are always properly nested, so they form a
tree structure. In order to determine if for example a reference can refer to a declaration, it
must be inside the scope of that declaration. In order to simplify this process, the scope table
contains all the scope information of the program. In particular, the scope field contains both
numbers needed for nesting comparison, in order to make usage in constraints possible. Other
tables reference the scope table to indicate their place in the tree. In addition to the nesting,
some declarations are allowed to hide others. This means some additional information is
needed, to indicate if this is allowed. We discuss the nesting problem first.

17

Figure 4.1: The main structure of the database.

Image Field Description
id key
type type of scope
lscope begin of scope
rscope end of scope
level level of scope
scope combined scope info
parent parent scope

Table 4.1: Scope table details

18

Nesting

One issue is that facts are emitted in a linear fashion. Any tree information must be added
to the facts explicitly. The simplest way to extract this is to give each scope a reference
to its parent scope, as in Figure 4.2. This extracts the full structure of the program, so
all information is there. The disadvantage is that the question whether one scope contains
another cannot be answered directly. It requires knowledge of all ancestors, so the parent
relation has to be traversed recursively. This is a task that databases are not really suited for
and a significant performance penalty seems inevitable, because scope comparisons are likely
to occur frequently. So, it is worthwhile to add information to the scope table if that can
be used to speed up that kind of operation. Another possible method is to construct paths

Figure 4.2: Tree with parent references

describing all ancestors for each scope, as in Figure 4.3. The paths can be constructed inside
the database by repeatedly selecting the nodes that do not have paths yet but have parents
that do. For each node, a path can then be constructed based on the path of the parent. If
the path of a scope is a prefix for the path of another scope, then the first scope contains the
second, otherwise it cannot contain it. This is similar to regular string comparison which all
database systems should be able to perform. The efficiency does depend on the length of the
path, since the longer the paths get, the longer it takes to compare them. This highlights
another, slight, disadvantage: the size of the path, like the number of ancestors in the first
solution, cannot be predicted beforehand. The larger the program, the longer the paths are
likely to be, but that is only a rough guideline. This could lead to problems if the paths do
not fit in the space provided. The table can be defined such that paths can be any size in the
database, but at the cost of a speed penalty, because another layer of indirection is needed.
The third method is to give each scope a pair of numbers that mark its begin and end, as
in Figure 4.4. The numbers can be generated based on the traversal or based on position
information, as long as the rule holds that a scope begins before any scope it contains and
ends after any scope it contains. The question how two given scopes relate can then be
answered trivially, by determining if the begin of one is smaller than the begin of the other,

19

Figure 4.3: Tree with parent references and path strings

and vice versa for the end. This is easily implemented and obviously takes only constant time
to calculate. Note that we assume the structure is static, since any new nodes that are added
could invalidate large parts of the tree at once.

Hiding

However, in Java, some variable declarations are allowed to hide others. That means that
knowing that the scope of one variable declaration is in the same scope as another one with
the same name is not enough to declare it illegal. Hiding also complicates resolving variable
references, because there can be multiple candidate declarations. If we traverse the references
between the scopes each time, we can solve this by simple stopping at the right time. However,
if we use paths or numbering, we don’t have enough information to do that. A solution to
this is adding a level to each scope. By giving scopes that do not conflict different levels, the
database can determine if two variables conflict. In the current situation, there are only two
levels of scope: class scopes and method scopes. A variable declared within the scope of a
method can hide a variable that is declared in the scope of a class. So, only two levels are
needed, and they can be assigned by the fact extractor directly. If we have to consider nested
classes, a separate fact is necessary to determine the current level. That information can then
be inserted into the scope facts.

4.2.2 Type & Interface Tables

The Type table, described in Table 4.2 stores information on classes and interfaces in the
database. This may seem surprising, since classes and interfaces are similar, but not synony-
mous. However, in Java, classes and interfaces are treated the same in many places, including
reflection. So, it is more convenient to treat them the same, and in this case, the fact ex-
tractor can accommodate that. In addition to storing both classes and interfaces, this table
also stores information about local types, that are located in the file from which the facts

20

Figure 4.4: Tree with parent references and scope numbers

have been extracted, and nonlocal types, from outside the file. The nonlocal information is
all gathered by reflection, not by the fact extractor, so it could easily be put in its own table.
However, since it doesn’t matter to Java where a given type is located, it makes more sense to
keep all types in the same place. One issue is that the full canonical name of a type cannot be
determined by the fact extractor. That name is necessary to refer to classes unambiguously.
So, the database has to be enriched with this information, gathered by extraction, before
checking can begin. As mentioned above the table Interface is not the equivalent of class
for interfaces, but instead it contains information about implementation of interfaces. This
creates a minor nomenclature problem: in Java, classes implement interfaces, while interfaces
extend other interfaces. Since the Class table contains both interfaces and classes, neither
is the obvious choice to use to indicate the interface implemented/extended. In this case,
extends was chosen over implements because it felt more appropriate, but other choices are
possible.

4.2.3 Expression Table

Java is, like C and C++, an expression-oriented language. Thus, the expression table forms
a core part of the schema. Details are in Table 4.3. The text field of each expression contains
its text, taken from the source code. This value is mostly used in case of variable references,
where the name of the variable referenced is needed. Other uses include the value of literals.
Whether an expression is a variable reference can be determined by its kind. The kind field
describes the nature of the expression represented, for example a constant, a variable reference
or an addition.

The most important property of an expression for static semantic checking is its type.
Apart from a few basic cases the type of an expression cannot be extracted by the fact
extractor, so computing the types of all other expressions is one of the main tasks of the
semantic checker. For many expressions, the type depends on the types of its subexpressions.

21

Image Field Description
id key
simplename simple name of type
canonicaltype canonical name of type
simplesuper simple name of supertype
canonicalsuper canonical name of supertype
local true if the class comes directly from the source file
interface true if the type is an interface
scope reference to scope class sits in
id key
class identifier of type that extends
extends identifier of type that is extended

Table 4.2: Type and Interface table details

Image Field Description
id key
text text of the expression in the code
type canonical type of the expression
kind kind of expression
level level of expression
pos position of expression in the code
parent parent expression
scope reference to the scope the expression is in

Table 4.3: Expression table details

The parent links can be used to collect these types, if they have been computed. This implies
that expressions must be typed in a strict order, such that all subexpressions have been typed
before a parent expression is processed. For this end the level field is used. This contains
information extracted about the position of the expression in the tree. By ensuring that the
level of an expression is always lower than any of its subexpressions, the checker can ensure
that the correct order is maintained.

4.2.4 FieldDec, Typeinfo, Variable & Arraydec Tables

These tables are discussed together because of their strong connection, with details in Table
4.4. One of the basic principles of the fact extractor is that there can be only a constant
number of facts per node. However, in Java, it is possible to declare multiple variables in
one, shorthand, declaration. To bridge this gap, the information is split over several facts.
Variable contains information on the names of the declared variables, fielddec links them to
the corresponding type and typeinfo contains the actual type information. If generics, where
types can be parameterized, were to be added to the checker, this part of the schema would
have to be extended. The main difficulty is that the canonical names of the types used as
arguments have to be determined to complete the canonical name of the generic type itself.
Typeinfo does not contain the required information at this point.

22

Image Field Description
id key
kind kind of declaration

id key
type type of declaration
pos position of declaration in source code
declaration reference to the declaration corresponding to this type

id key
name name of variable
pos position of declaration in source code
declaration reference to the declaration corresponding to this type
scope reference to the scope of this variable
variable reference to the base variable

Table 4.4: FieldDec, Typeinfo, Variable and Arraydec table details

Finally, Arraydec contains information about the dimensions of declared arrays. Since it is
not possible to declare arrays with a set range in Java, the fact extractor can do little more that
emit one fact per array symbol it finds with a link to the corresponding variable. The checker
can determine the number of dimensions of each variable by counting the corresponding
records in the Arraydec table.

4.2.5 Method & Parameter Tables

The Method table stores information about the methods declared in the classes and interfaces
in the Type table, both local and non-local. The two main properties of a method stored here
are its name and its return type. The third part, the parameters that are needed to invoke
it, is stored in the Parameter table. Details of the tables can be found in Table 4.5. The
Parameter table is unusual in that all information in it is gathered from either reflection or
the Variable-table group, not extracted by the fact extractor. For local classes and interfaces,
the parameters are first extracted in the same way as the rest of the variable declarations.
The parameters can then be identified by using the FieldDec kind property, and by using the
pos fields the ordering can be identified.

4.2.6 Import Tables

Types in Java are usually not referred by their full canonical name, but by their simple name.
Imports are needed to determine the full name for those cases. Fortunately, the full name
declared in the import can be extracted in parts, so single imports can be resolved directly
by comparing the simple names to the ones given. The on-demand imports require reflection,
to determine which classes and interfaces are available in the package that is imported.

23

Image Field Description
id key
name name of the method
returntype canonical returntype of the method
class reference to the class the method belongs to
id key
method reference to the method the parameter belongs to
canonicaltype canonical type of the parameter
rank rank used to order parameters

Table 4.5: Method and Parameter table details

Image Field Description
id key
name canonical name of imported type
class simple name of imported type
ondemand indicates if the import is ondemand
scope reference to the scope the import is in

Table 4.6: Import table details

4.2.7 Modifiers Table

Most declarations in Java can have several modifiers. The Modifier table has a field for each
kind of modifier. Details of the table can be found in Table 4.7. Since many modifiers are
applicable to several types of declarations, they are grouped together in the grammar and
have to be extracted together. This means the Modifiers table, though not directly linked to
one specific table, in fact references several tables: Class, Variable and Method.

4.2.8 Package Table

The Package table is the smallest of the tables, because there can be only one package dec-
laration in a given file. That declaration is, however, necessary to determine the canonical
name of the local classes and interfaces. Details of the table can be found in Table 4.8.

4.3 Relationships between tables

Table 4.9 shows the direct relations between the various tables and the reasons behind them.

4.4 Relation between errors and tables

Table 4.10 shows how error categories are related to the database tables. As can be seen in
the grid, most database tables are used by most, if not all error groups. This is not surprising,
since the categories were grouped on error characteristics, not on the structure of Java. There
are several exceptions, like import. The import table is used in the beginning of the checking

24

Image Field Description
id key
public indicates presence of public modifier
protected indicates presence of protected modifier
private indicates presence of private modifier
static indicates presence of static modifier
abstract indicates presence of abstract modifier
native indicates presence of native modifier
final indicates presence of final modifier
strictfp indicates presence of strictfp modifier
synchronized indicates presence of synchronized modifier
transient indicates presence of transient modifier
volatile indicates presence of volatile modifier

Table 4.7: Modifiers table details

Image Field Description
name package name
scope reference to the scope of this package

Table 4.8: Package table details

Table Linked to Cause
Typeinfo Fielddec Each type has a declaration
Variable Fielddec Each variable has a declaration
Arraydec Variabledec Each array declaration corresponds to a variable
Variable Scope Each variable has a scope
Expression Expression Most expressions have a parent
Expression Scope Each expression is in a scope
Package Scope Each package has a scope
Type Scope Local types have a scope
Interface Type Some types extend interfaces
Method Type Each method belongs to a type
Parameter Method Each parameter belongs to a method

Table 4.9: Relations between tables

25

Type Reference Declaration Contradiction Inheritance & Interface Misc
Scope X X X X X
Class X X X X X X
Interface X X X X X
Expression X X X X
Fielddec X X X X X
Typeinfo X X X X X
Variable X X X X X X
Array X X X X
Method X X X X X X
Parameter X X X X X
Import X X X
Modifiers X X X X X X
Package X X X X

Table 4.10: Relevance of tables to error categories

process, to determine which type is imported from where. After that, the table is of lesser
relevance to the checking process. The checker focuses on errors in the file under scrutiny,
while the import table is mostly concerned with components outside the file.

26

Chapter 5

Implementation

5.1 Introduction

Once the fact extractor has completed its pass over the source code and delivered all facts
that have been found to the database, the next step is to enrich and query this information to
perform the actual checks. In particular, since not all information we need can be extracted,
the rest has to be gathered here. We have created a prototype static semantic checker to
demonstrate how various checks could be implemented. The various errors each have different
requirements, so a number of techniques are required to cover all of them. This chapter
discusses these techniques, classified according to the errors that are their primary targets.
Some checks can be done while the data is inserted into the database, while most can only
be done after all data has been inserted. In practice, we found some information is used
by multiple checks, so the checker does some preliminary work after the fact extractor has
finished its job, but before the main group of checks is executed. Most checks are implemented
using a combination of code and SQL, with a few that need SQL queries or contstraints only.
While the constraints have an advantage in conceptual elegance, data that does not meet the
constraints cannot be inserted at all. This can hinder other checks, that expect a value that
is not there. Thus, constraints have been used only sparingly.

5.2 SQL

SQL is a database language designed to express both manipulation and retrieval of informa-
tion and its structure from relational databases. SQL arose from a language called Sequel
that was developed by IBM in the early 1970s[30]. The name SQL is usually taken to be an
acronym for Structured Query Language, even if it can do more than just query data. It is
used in this thesis to express the queries used in semantics checks. SQL can be divided into
three parts, the Data Definition Language, DDL, Data Control Language, DCL and the Data
Manipulation Language, DML. The first is used to define and modify tables and their rela-
tions. The second is used to control access to the database. It is not described in this thesis.
The third, most relevant, part is used to retrieve, insert, manipulate and remove records from
the existing tables. The DML offers several types of queries, the two types used here are the
select and update queries. The checker prototype also uses some insert queries, which are
not discussed here. A select query is used to retrieve records from the database and has the
following form:

27

SELECT F1 . . . Fm FROM t1 . . . tn WHERE P

In SQL, keywords are usually written in uppercase or bolded, while tables and fields are
written in lowercase. In the select query, F1 . . . Fm stands for a list of fields that we want
retrieved from the database, t1 . . . tn stands for a list of tables these fields belong to, and
P stands for a predicate that indicates which records should be returned. P can consist of
comparisons, functions or even subqueries, combined by logical operators. If t1 . . . tn contains
multiple tables, all possible combinations of records are considered for selection. Thus, in
order to combine information from multiple tables, we must include a requirement in P that
guarantees that only records that belong together can be selected together. If we want to use
the same table multiple times, we have to give it a new name with the as operator, to avoid
ambiguity. Finally, if we want all fields from a given set of tables, we can use the wildcard ∗
instead.

An update query is used to modify records in the database. An update query has the
following form:

UPDATE t1 SET F1 = V1 . . . Fn = Vn WHERE P

In the update query, t1 stands for the table that is to be updated. In the list F1 =
V1 . . . Fn = Vn, Fn stands for the fields that have to be updated and Vn stands for the new
values for the fields. These values can be constants, but also the results of subqueries. In the
latter case, the subquery must return a single value as its result, otherwise the update fails.
The predicate P can be used to limit the updates to a subset of the records in the table, like
in the selection query.

5.3 Enriching the database

The preliminary work that has to be done consists mostly of moving some of the raw data
in the database to a more convenient place, converting it into a form that is more useful to
the checker, and to address some defaults. The defaults are the easiest, and cover properties
like the canonical name of local classes, which is based on the package name and the simple
name, and the implicit import of the java.lang package that contains basic classes.

One of the most important steps is to add the canonical names of the types used in the
program. The canonical names are needed to make sure that the data collected about the
types later on is correct. All types in Java have both a canonical name and a simple name.
A canonical name is the full name, that should uniquely designate a specific type. A simple
name can be derived from a canonical name, is shorter and in practice used more often, but
it is only valid in the context of a set of imports. An import can be seen as resolving a simple
name to a canonical name, so the name now identifies a unique type. If the checker would use
the simple names, as they occur in the program code, there is a possibility that because the
checker has a different set of imports than the target program, the simple name is resolved
to the wrong canonical name, which results in errors.

So, the canonical names of all types have to be determined. For imports that import only
a single type, like for example java.lang.Random, this is easy. The database can be queried
directly for the import that matches a given simple type. However, there are also so-called

28

Field Value
id 10
name java.util.Random
class Random
ondemand false
scope 1

Table 5.1: Import data example

on-demand imports, that can import multiple types. In that case, no simple name is given,
so the only way to discover if a given simple name matches an on-demand import is to use
reflection. Reflection cannot be done by the database, so the checker has to query for a
list of types that still need names, and then call the reflection functionality that determines
if a type with a given name exists using all possible on-demand imports to determine the
right canonical name. If a simple type can be matched by multiple on-demand imports, it is
ambiguous, which is an error. The easiest way to detect this error is to require that the simple
names in the imports table are unique. Once the correct canonical name has been found, it
is added to the database. In the example in Listing 3.1 this would result in an entry in the
table import with java.util.Random as class and Random as name, like in the example in
Table 5.1.

The next step is significantly easier. The checker needs information about parameters
both as targets of variable references, and to determine which method is called for a given
name and arguments. During the fact extraction, only the information for the first part can be
extracted easily. In order to simplify the rest of the process, the information for the parameter
table for local methods has to be extracted from the variable, fielddec and typeinfo. This can
be done with a straightforward insert query, so no intervention by the checker is needed. For
non-local methods, the parameter information can be retrieved via reflection, so no special
action is necessary.

5.4 Reference errors

References form a major part of all programs and though most of those will be correct, an
error is still easily made. The way to approach a reference error depends on the type of the
target, for example a method or a variable, that is referenced. The actual discovery of errors
in variable and method references will be done during type checking, because the results are
needed there.

Variables are referenced by the correct name, which can be matched by the database
directly, in the correct scope. Java allows variables to hide some other declarations, so the
scoping has to consider the different kinds of scopes and select the closest declaration. The
query that is used to link variable references to their declarations is given in Listing 5.1.
Some example values are in Table 5.4. The query consists of two main parts, the update
part that selects the expressions that need their types determined (i.e. the type field of the
record is null), and a select part that selects the appropriate type where possible. The final
canonical types are retrieved from the import table, based on the information retrieved from
the typeinfo, variable and scope table. The comparison in the first line of the inner WHERE

29

Listing 5.1: Variable reference query
1 UPDATE exp r e s s i on SET
2 type=(SELECT DISTINCT import . name
3 FROM import , type in fo , va r i ab l e , scope as vscope , scope as escope
4 WHERE import . c l a s s=type in f o . type
5 AND t ype in f o . d e c l a r a t i on=va r i ab l e . d e c l a r a t i on
6 AND exp r e s s i on . t ex t=va r i ab l e . name
7 AND vscope . id=va r i ab l e . scope
8 AND escope . id=expr e s s i on . scope
9 AND s cope conta in (vscope . scope , escope . scope))

10 WHERE exp r e s s i on . type IS NULL

Expression
id text type kind level pos parent scope
35 number name 3 140 34 10

Import
id name class ondemand scope
6 java.lang.Integer Integer false 1

TypeInfo
id type pos declaration
16 Integer 123 15

Variable
id name pos declaration scope
18 number 129 15 2
Scope

id lscope rscope level scope parent
2 2 100 1 (2,100) 1
10 15 78 2 (15,78) 2

Table 5.2: Variable reference database example

clause is used to determine the correct import, and the one in the second line is used to find
the right type by the variable. The third line makes sure that the variable name matches the
expression text. The next two lines determine the scopes of the expression and the variable
declaration. Whether the scopes match is determined by the final comparison made in the
selections part, where the appropriate scopes are compared using the scope contain function.
Pure equality is not enough here, because the level field would make correct combinations
unequal, while the two-sided nature of the equality would allow incorrect combinations. The
function scope contain(scope a, scope b) is defined to be true only when scope b is inside
scope a, and not vice versa. The code for this function is given in Listing 5.2 in C code. In
the example in Table 5.4, query identify the variable number as the reference target and set
the type of he expression to java.lang.Integer.

Method invocations are the second type of reference. Which method is referenced by a
given invocation is determined by the base type, name and the arguments. In particular, the
types of the arguments matter. Because of that, methods are treated mostly in the Section
5.5. There, a comparison can be made with the methods used to type operators. As far as
reference errors go, any situation where the type assignment process cannot identify the type

30

Listing 5.2: Scope contain function
1 Datum
2 scope conta in (PG FUNCTION ARGS)
3 {
4 Scope ∗a = (Scope ∗) PG GETARG POINTER(0) ;
5 Scope ∗b = (Scope ∗) PG GETARG POINTER(1) ;
6
7 PG RETURN BOOL((a−>x <= b−>x) && (a−>y >= b−>y)) ;
8 }

of a method can be considered a reference error. Either a method is referenced that does not
exist, or multiple candidates exist.

Type references are the third type of reference. They occur for example in variable dec-
larations, in class declarations, as super classes and interfaces, and in static method calls.
An example is the type of the variable in line 5 of the example program in Table 3.1. The
last ones are a bit more troublesome, because unlike most type references, which are resolved
and checked in the beginning of the checking process, they are not known at the beginning of
the process. Java handles a possible ambiguity between variable names and type names by
grouping them under one grammar node, this means they are extracted in the same manner.
To determine what a given name refers to, variables are given priority. If no variable with a
given name exist, the checker must look for a type definition of that name. When everything
else fails, the name must be of a package per the language description.

5.5 Type errors

Finding type errors is one of the main tasks of the checker, and in order to do it, a type needs
to be determined for all expressions. In many cases, the type of an expression depends on
the types of one or more subexpressions. However, there are number of expression types, like
constants and variable references, that can be typed directly. These provide the inputs for
the other expressions. For constants, the type can even be added by the fact extractor, since
all types of constants have their own nodes in the grammar, so they can each have their own
extraction rule. Variables are a little more complicated, because there are possible reference
errors to consider. The query used to resolve the types of variables are discussed in the section
above.

For expressions that need types of subexpressions to determine their own type, the in-
volvement of the checker is bigger. The various rules about how a given expression depends
on the subexpressions is really too complicated to encode in the database as stored procedures
or the like. That means that all the database does is provide a list of expressions that still
need work in the right order, and the appropriate subexpressions when asked. The checker
processes the list of expressions and assigns the appropriate types. Based on the operator
encountered, it can decide to query for data on the children, using the query:

SELECT ∗ FROM expression WHERE expression.parent=?? ORDER BY expression.pos

31

This query consists of two parts, a static part and a dynamic part. The dynamic part
consists of the question marks and is filled in with the identifier of the current expression,
based on an earlier query. The static parts take this identifier and retrieve those expressions
who have the current expressions as their parent, i.e. the children of this expression. The
position is used to determine the left- and righthand child of the operator, which is needed
for some expression.

For most operators, this means applying unary or binary numeric promotion, for others,
it is only a check if the subexpressions meet the required type and setting the type if those
are correct. In the example, the checker will see that the type of the left subexpression of the
assignment in line 16 of Table 3.1 is int, and assigns that type to the assignment.

The most complicated part of this process is handling method calls. For most operators,
the relation between the ”input” types and the output types is quite straightforward and
implementation as database functions would be a serious options. Method calls have no
obvious relation between input and output, especially if there are multiple possible candidates
and the call has to be disambiguated. A further complication is that the reflection facility in
Java does not address this directly. It offers a way to directly get information about methods
when given a signature, but only for public methods and without taking polymorphism into
account. In order to solve this, and to bridge the difference between non-local and local classes,
the reflection facilities are used to get all declared methods for each class and insert these
into the method table. Because this covers only declared methods, this has to be repeated for
all superclasses and so on. This way, the checker has to look in only one table to determine
the candidate functions for each call. Based on that list, it can determine the final function
by comparing the parameter types to the types of the actual arguments. One consequence
of this is that the queries of this part are too fragmented to be described easily, there is too
much information retrieved by reflection that would appear to arrive out of the blue.

5.6 Declaration errors

Declaration errors occur when two different declarations of variables, classes or methods are
individually correct, but in combination create an ambiguity. This is an error type where
the use of a database should provide a notable advantage. In practice, it is not easy to
make full use of what the database offers, because the rules are more complicated than what
it was designed for. Declaration errors effectively arise from uniqueness constraints, which
are also a feature of many database systems. The problem arises when values the database
would consider equal are not equal according to the programming language. The first aspect
lies in comparing strings. A variable reference can only target variable declarations with
the same name, which is essentially a string comparison. The questions is: is the value
’name’ equivalent to the value ’Name’?. In programming languages like Java, that are case
sensitive, it is not, which corresponds nicely to the string comparison that the database uses
in the constraints. Other programming languages like Pascal, however, are case insensitive,
so ’name’ and ’Name’ can be interchanged at will. In that case we need to either create a
new data type, with a case-insensitive equality, or somehow convert the appropriate string to
lowercase, so the default equality works again.

A second issue is scope. In most programming languages, multiple variables with the same
name are no problem, as long as the scopes they are declared in do not conflict. The scope
data type described earlier provides the equality that we need. We would probably need a

32

separate type for each programming language, because of different scope rules.
The third issue lies in comparing method signatures. If the programming language is not

polymorphic, this boils down to simply comparing the names of methods and the types of
the parameters, in the appropriate order. However, Java is polymorphic. Two methods that
have the same name and parameters in the same class are still not allowed, but overriding
of inherited methods is. The main consequence is that the database is not suited for this
comparison, so it has to be done by the checker. In fact, the checker has to try to imitate the
compiler as much as possible here.

5.7 Contradictions

A contradiction occurs when a declaration claims to have a certain property, for example via
a modifier, that it does not actually have. Certain modifiers are not allowed to be combined,
like abstract and final, because the end results makes no sense. These can be determined
by querying the database directly for that combination. Other error types require expression
information, like the return types of methods. The type of the returned expression must be
a subtype of or identical to the type declared as return type in the method declaration. In
the example program, the checker would discover that there are no expressions that return a
value in the scope of the method declaration, which is an obvious error.

5.8 Inheritance and interface errors

Inheritance is an important feature of the Java language. Apart from the primordial class
java.lang.Object itself classes in Java inherit or override methods from another class. In-
heritance effectively combines several classes and interfaces into one, and the result of that
combination must be consistent and unambiguous. The base of inheritance is formed by a
tree structure, which is a major complication. Accessing the information of the classes in-
dividually is no problem, the database takes care of that, but the tree structure has to be
handled by the checker in some way. The main complication is that methods from all ancestor
classes have to be considered to check if all overriding or hiding methods do so correctly and
without creating problems. Furthermore, most of the information required must be gathered
via reflection, because usually files will contain only one class, which means that a class that
is extended or an interface that is implemented must be non-local.

Thus, determining the details needed to check for inheritance errors requires the full
canonical names. After that, the signatures of all methods of the interfaces and superclasses
need to be compared to discover if they are correctly implemented or do not override or hide
incorrectly. For example, if a method overrides a method from a superclass, the return type
of that method must be substitutable for the return type of the overridden method.

5.9 Miscellaneous

As always, there are a number of errors that do not fit in the above categories. As mentioned
earlier, their diverse nature makes it hard to discuss implementation details. In the Listing
3.1 program, there is a error related to integer size. The given initial value is to large to fit
into an integer. The semantic checker can get a list of literals that are too large by using the

33

following query:

SELECT ∗ FROM expression WHERE expression.kind=’IntLiteral’
AND str to integer(expression.text) > 2147483647

In the example in Table 5.9, the only the second row would be selected, because the value is
to large, while to other value is fine. Thus, an error can be reported for that expression.

Another approach to this could be to simple extract the list of literals for each type, and
then try to insert the values into a variable of the appropriate type. That would increase the
amount of work that has to be done by the checker, but it would be much easier to test for
some errors like floating point denormalization.

Expression
id text type kind level pos parent scope
35 2147483647 java.lang.int IntLiteral 2 140 34 10
68 2147483648 java.lang.int IntLiteral 3 289 114 25

Table 5.3: Literal database example

34

Chapter 6

Prototype results

To asses the theory and feasibility of the design proposed in the previous chapters, we have
designed a prototype. There was not enough time to implement all possible checks, so we
focused on type checking and other basic errors. In this chapter we present the results of the
prototype. Because there are too many errors to discuss individually, we do so in groups of
related errors. The full list of errors can be found in Appendix B. In Appendix B, implemented
checks are indicated by a +, unimplemented by a - and checks with a different mark have a
comment in the appropriate section below.

6.1 Literals

Errors in literals are easy to check. Each type of literal has its own grammar rule, so they
can be extracted and gathered easily. For integer and long literals, the value of the literal can
be compared to the bound directly. For float literals, it is easier to let the checker test if the
value fits in a float variable. Both kinds of checks have been implemented

6.2 Inheritance

Errors concerning inheritance are much harder to check. For each class that is declared in
the source file, the ancestor class and interfaces must be determined and checked to discover
if an illegal declaration is made. Direct inheritance errors, like trying to extend a final class,
can be detected by looking at the base information available for the type. Most of these have
been implemented.

For others, like overriding and hiding, method information must be gathered to determine
if the methods of the child type conflict with the methods of the parents. Not all of these
checks have been implemented, because the process to determine whether two methods can
conflict is quite messy, which makes errors in these checks more likely, while also making it
harder to test.

6.3 Types

Type checks depend greatly on a correct implementation of the type system. If that system
works, many checks boil down to checking if the types of a certain set of expressions meet a

35

basic criterion. Most of that category of checks have been implemented.
There are also a number of checks that are much more complex. In one case, marked

with 0, we have no clear idea what would constitute an incorrect program, which makes it
impossible to test or to implement. The check marked by 1 is actually a group of checks,
grouped in order to save table space. These checks deal with the typing of all operators. Since
some operators have a page or more of rules, we choose not to implement all of them.

6.4 Modifiers

Like most type checks, modifier checks are mostly very similar. Several of these have been
implemented, while others have been ignored because of the amount of effort required. An
example of the last is the check that abstract or native methods cannot have implementations.
This information is not stored in the database, though it could be added if desired. We have
chosen not to do so, given that the check would be trivial once the schema have been adapted.

6.5 Enum

The enum construction in Java is essentially a special form of inheritance from the Enum class,
that has several special properties. Because of this, many of the errors are inheritance errors,
for the special case of the Enum class. Thus, we have chosen not to implement them. The
errors that have been implemented are either direct consequences of other errors or trivial.

6.6 Interfaces

Many of the Interface-specific errors deal with generics. Since we have chosen not to consider
generics, we cannot implement these errors. An exception is what we considered the most
interesting interface check, that requires that a non-abstract class implements all interface
methods. This check has been implemented.

6.7 Generics

Again, because we have chosen to ignore generics, these errors cannot be checked. If the
checker had to be extended to handle generics, the steps that involve resolving types have
to be updated to account for type parameters. In particular, bounds and wildcards must
be handled and the full canonical names of the type parameters must be known in order to
check if they meet a bound that is present. When that is done, most checks can be derived
from those that are already present. A small number of checks require more attention, like
the checks to determine what can and cannot refer to the type parameters, because it is more
strict than normal scope rules.

6.8 Exceptions

If an error occurs, an exception can be thrown. The exception is passed on until it is caught.
This results in three types of exception errors, errors concerning what can be thrown, errors

36

concerning reporting what can be thrown and errors concerning catching. Of the three types,
only the first has been partly implemented, since it follows from the type checking.

6.9 Constructors

Constructors are a special class of methods, that is called when a new object is created.
Constructors have some special restrictions concerning where they can be called and what
they are allowed to call. We have not paid specific attention to these, because they further
complicate the method resolution system, so they have not been implemented.

6.10 Initialization

Java has the requirement that each variable must be initialized before it is used. In addition,
there are a number of restrictions on how variables can be initialized, especially if you use
a static initializer. We have not implemented any errors in this category, because they deal
with context issues that are not handled by the current implementation of the checker.

6.11 Instances & Inner classes

It it possible classes in Java to define classes inside other classes. These classes have special
access to the fields and methods the so-called enclosing class(es). Most of the errors in this
category deal with restrictions on such references. Other errors include using a reference
to a superclass in a place where there is no such class. Because we choose to ignore inner
classes, and the specialized nature of the others, none of the errors in this category have been
implemented.

6.12 Control flow

Control flow forms a core part of any program. Thus, the control flow structure must be
correct for a program to be meaningful. In particular, Java requires that all code is reachable
according to a specific algorithm. Because of the complications of that algorithm, we have
chosen not to implemented these errors. If they were to be implemented, a modification to
the database model, like more detailed statement information, could be useful.

6.13 Ambiguity

References form another core part of any program. If it is unclear what a reference refers to,
the compiler doesn’t know how to handle that reference. This category contains errors that
deal with references that have multiple possible interpretations. A number of these have been
implemented.

6.14 Accessibility

Like the previous section, this category deals with incorrect references. In this case, references
where the target cannot be found. In a sense, these are closely related to type errors, because

37

the target of a reference must be known to determine its type. Thus, many of these have
been implemented.

6.15 Annotations

Annotations are a recent addition to Java. They are intended to provide information to
developers, and have no effect on the execution of the program. Since we choose to ignore
annotations, we have not implemented these errors.

38

Chapter 7

Future work: Templates

7.1 Introduction

As mentioned in the introduction, one of the consideration that lead to this study of the
relational approach to static semantic checking was that it would allow the checker to be
extended to handle templates easily. Due to time constraints, the focus moved away from
templates, but based on the results of the work done on checks for the Java programming
language, we can still discuss what kind of modifications would be needed to check templates
and what kind of template-specific errors could be tested for. The prototype checker does
not feature checks for these errors. In order to simplify this discussion, we will focus on
the Repleo[5] template engine. The Repleo engine is based on SDF grammars, just like the
fact extractor, which guarantees that the grammar used to describe the templates is directly
available for annotation. In the next section, we will give a short description of Repleo.
The next section discusses the changes that have to be made to the checker to deal with
placeholders. The third section deals with template-specific issues. Finally, the last section
contains a discussion of ambiguities, which describes how to deal with a specific problem
caused by one of the template constructs.

7.2 Repleo

Repleo[5] is a system to build template engines and related tools based on SDF grammars.
The grammar of a given programming language is extended into a grammar for templates
of that language by combining it with a set of modules that describe the grammar of the
placeholders. Each module describes a generic placeholder, that is instantiated to replace a
given node. In effect, we can define for each node in the grammar if and how we want to
allow it to be replaced by a placeholder. How the placeholders look depends on the template
grammar, but a recommended method is to use <% and %> pairs to mark placeholders clearly.
If we take the example Java template grammar provided by Repleo as an example, we could
use the (intentionally shoddy) template in Listing 7.1 with the input data in Table 7.1 to
get the running example. Tables 7.2 and 7.3 are examples if input data that would create
incorrect results. Listings of what the exact result would be can be found in Appendix
C. In the example template, we can see two of three types of placeholders: substitution and
repetition. The first type, substitution placeholders, are the most common. Each substitution
refers to the input data to get their value. The second type of placeholder is the repetition.

39

They allow the template to be used to create classes with a varying number of fields and
corresponding functions. Each repetition must provide a base name, that should indicate the
fields that should be repeated. The third main placeholder type is selection, which allows
the user of the template to choose between different pieces of code based on input values.
Selection is not present in the given example.

Listing 7.1: Template example
1 Package Customer// Package d e c l a r a t i on
2 import java . u t i l .∗ // Import d e c l a r a t i on
3
4 public class <%record / classname%> {// Su b s t i t u t i o n
5 private Random randGen = new Random () ;
6 <%foreach record / f i e l d do%> // Repe t i t i on
7 private St r ing <%at t r i bu t e%>; // Su b s t i t u t i o n
8 int id ;
9 <%od%>

10
11 <%foreach record / f i e l d do%> // Repe t i t i on
12 int <%setname%>(<%type%> <%parameter%>) { // 3 x Su b s t i t u t i o n
13 id = randGen . next Int () ;
14 <%at t r i bu t e%> = <%parameter%>; // 2 x Su b s t i t u t i o n
15 return id ;
16 }
17
18 <%type%> <%getname%>(int customerID) { // 2 x Su b s t i t u t i o n
19 i f (id==customerID) { // Var iab l e r e f e r ence
20 return <%at t r i bu t e% >; // Var iab l e r e f e r ence
21 }
22 else {
23 return null ; // Constant expre s s i on
24 }
25 <%od%>
26 }

7.3 Base language errors

In principle, even a piece of program code without placeholders can be considered a template.
It would be a very simple one, with only one possible variation, but it can be parsed according
to the template grammar. More practically, in many templates, like in the example template,
the amount of base language code will be much larger than the amount of placeholders. Thus,
it is very well possible that a template contains errors that are not related to any placeholders
and it is desirable to find them. The relational approach meets this requirement, since the
template code can be skipped during fact extraction by not adding any annotations to those
nodes, or the template facts can be ignored during analysis.

40

Data structure
record([
classname(”CustomerName”),
field ([
attribute(”name”),
setname(”SetName”),
parameter(”customerName”),
getname(”GetName”),
type(”String”)]
)])

Table 7.1: Correct example

Data structure
record([
classname(”CustomerData”),
field ([
attribute(”name”),
setname(”SetName”),
parameter(”customerName”),
getname(”GetName”),
type(”String”)]
),
field ([
attribute(”age”),
setname(”SetAge”),
parameter(”customerAge”),
getname(”GetAge”),
type(”Integer”)]
)])

Table 7.2: Repetition example

Data structure
record([
classname(”CustomerID”),
field ([
attribute(”id”),
setname(”SetID”),
parameter(”customerID”),
getname(”GetID”),
type(”String”)]
)])

Table 7.3: Duplicate name example

41

A more interesting situation is where the placeholders do play a role. In the exam-
ple, the placeholder <%attribute%> in line 14 must refer to a declared variable. In this
case, that requirement is met, the repetition starting in line 6 guarantees a variable named
<%attribute%> is declared for each field, in this case only one. In order to identify this
relation, the checker must know when two placeholders always yield an identical value. If
only substitution exists, directly comparing the names of the placeholders could be sufficient.
If repetition is added, a more advanced scheme involving normalization is required. Apart
from this issue, the situation is not fundamentally different from the non-template case. The
scope rules still apply etc. In the same way, if we tried to assign id to <%field/attribute%>,
it would be incorrect, because id is an int and <%field/attribute%> is a String, no matter
what name it actually has.

In the example, the type of the variable <%field/attribute%> is declared as String in
line 6, but the combination of line 12 and 14 requires it to be of type <%field/type%>, in
order to make the assignment correct. Using the input data in Table 7.1, this is no problem
because <%field/type%> represents the value String too, so the types match in this case. If
we used the data in Table 7.2, the resulting code would have a type error. This demonstrates
an issue that often pops up, namely that an certain piece of template is incorrect for nearly
all input values, but not all. In this case, the class java.lang.String has been declared final in
the standard Java library, so the the values String or java.lang.String are the only valid input
values for <%field /attribute%>. Even though this could be an intended effect, we would
consider this a clear error. A related error would be when one of the methods contained a
static reference to a variable, say name. It could be that one of the variables declared by the
repetition creates the appropriate target for that reference, but it seems that in most cases
this is not what was intended.

A vaguer case is implicit in the first repetition. Each of the <%field/attribute%> values
must be different from each other and from the other variables declared, id and randGen. In
contrast to the errors described in the previous paragraph in this case most of the values do
not cause any problems. Table 7.3 gives a specific example where it does create an error. If
every instance of this construct would be treated as an error, very few templates would be
fault-free. On the other hand, if the list of variables is quite long, there are more possibilities
for conflicts. Another factor is that variables are not named randomly, which also increases
the chances of a duplicate. An obvious compromise is to create a list of restrictions, in some
format, that can be used to check if a given set of input data can be used without causing
an ambiguity. This is a deviation compared to the other checks suggested here, but it does
allow for errors to be detected as early as possible. What form these restrictions could take
depends on the template engine, because support of the engine is necessary to guarantee that
the restrictions are applied to all input data.

7.4 Template specific errors

In addition to errors that follow from the base language code that is present in any template,
there are errors that are specific to placeholders. One example arises in cases like the repetition
in line 6 of the example. If the variable name was not a placeholder, but a constant, a number
of variables with identical names would be declared. This is close to the last error described
in the previous section, but the chance of this error causing problems is much larger. If the
intention was to create zero or one declaration, a selection placeholder would be a better

42

choice.
More than the substitution and repetition, selection forms a problem for the checker. A

selection creates a situation where there are multiple pieces of code, each with associated
facts. This leads to a situation that is akin to ambiguities, which will be discussed below.

Another potential problem lies in the naming system. If the placeholder name <%field/
attribute%> was used outside a repetition, it would suggest that well-formed input data has
one value for that name. If it is used in a repetition, it suggest there can be multiple values
for that name, or none. If both occur in the same program, that could be a reason to emit
an error.

7.5 Ambiguities

Ambiguities have been mentioned before in this thesis. In this section, we will discuss syntactic
ambiguities, where there are multiple correct parse trees. Many parsers refuse to accept this,
and output an error instead of a set of parse tree or even any parse tree. The SGLR parser
does output a set of parse trees, called a parse forest. In the parse forest, the various trees
are merged as much as possible. Ambiguity nodes represent the location of the ambiguity
in the parse tree, with the various alternate trees as subtrees. This gives us the option to
consider the various ambiguities in the checker. Each parse tree in the forest has, of course,
its own set of corresponding facts. To handle ambiguities, the checker must make sure that
facts for different options of the same ambiguity do not interfere with each other. It is, for
example, not an error if two variables with the same name occur in two different versions of
an ambiguity, because the two will never occur in the same result parse tree.

In order to represent ambiguities in the fact database, we need a way to mark facts in
such a way that the checking process is not hindered by irrelevant combinations. We have to
consider that ambiguities can be nested, which suggests that we use a path structure or the
labelling method used for scopes. The problem is that each ambiguity can have an arbitrary
number of alternatives. That means that we have to record the alternative chosen as well.
It is not enough to simply determine the subtree-relation, because that does not distinguish
between separate ambiguities and separate alternatives of the same ambiguity.

Just because an ambiguity has various syntactical options, does not mean they all are
semantically meaningful. Since a semantically incorrect alternative can never be part of a
semantically correct parse tree, we can safely choose to eliminate that alternative, which
potentially eliminates the ambiguity altogether. There is even the option to do this during
the insertion process, so the ambiguous facts are not even inserted in the database.

43

Chapter 8

Related work

Static semantic checking is done by any modern compiler. In most cases, the theory behind
the implementation of the checkers is that of attribute grammars, which originated in a 1967
article by D. Knuth[19]. In this article, Knuth describes how the semantics of a language
defined by a context-free grammar can be defined by assigning attributes to non-terminal
symbols. In the most basic form of attribute grammars, the values of the attributes are de-
termined by semantic rules based on their direct descendants only. Knuth’s main contribution
is the introduction of inherited and synthesized attributes. Synthesized attributes are still
based on direct descendants, but inherited attributes are based on direct ancestors. While it
can be demonstrated that synthesized attributes are sufficient to express all possible semantics
for any derivation tree, the resulting semantic rules are often much more complicated. In the
paper, Knuth discusses the property of well-definedness. A collection of semantic rules that
is well-defined will always lead to definitions for all attributes in all nodes of the derivation
tree. Knuth shows that this property can be reduced to that of non-circularity, which can be
easily checked for a given collection of semantic rules.

In Chapter 6 of the classic compiler book by Aho, Sethi and Uhlman[1], attribute gram-
mars are used to check the static semantics of a program and determine the semantics in-
formation needed for compilation. In particular, type checks, flow-of-control checks for dead
code and uniqueness checks for ambiguities are discussed. The type checks are based on type
rules that are used to determine the type of each expression. In practice, the main issue is
the construction of lists of declared variables or similar information, which are then passed
down through the tree where they are used to check for errors.

If we take a more recent book, like the one by A. W. Appel[4] from 1997, we find that
Chapter 5 discusses type checks, but no other static semantic checks are discussed in the
book. In fact the main subject of the chapter is symbol tables, and how they should be used
to handle scoping. These symbol tables are then used to determine the types of variable
references.

In general, we can say that attribute grammars combine the distribution of the information
throughout the tree with the actual checks. In contrast, in the relational approach we try
to separate these aspects more. This closer connection to the parse tree has advantages,
because the information in the node is available directly and we do not need to extract it
specifically if we need it. On the other, an attribute grammar is always closely tied to a
particular grammar and not very modular in nature. If, for example, we wanted to check for
template errors specifically, we would add the actual rules to the template nodes only, but

44

the rest of the nodes still need information to distribute the information throughout the tree.
Of course, attribute grammars can be extended in a number of ways. This is the approach
taken in JastAdd. The question is which extensions to use. JastAdd uses attribute grammars
extended in several different ways, including references [14], circularity[24] and rewriting[9],
and there are more options available[23]. Each extension may be able to solve a number of
problems, they also have their own problems, under which a lack of support.

In this thesis, we apply the relational method to static semantics. The same approach can
be used for related tasks, like software metrics[29] and program slicing[32]. In the first case,
a relational approach is used to standardize software metrics and their extraction. Software
metrics are numeric values that are calculated based on a piece of software and used to
manage, gain understanding or guide improvement that piece. The process used in the article
is very similar to the process used here. First, a parser is used to extract facts that are put
into a database. These facts are then queried with SQL, which produces the desired metrics.
The data model described in the article is focussed on classes, interfaces and methods, which
are all stored in a single table called entity. The other tables are filled with the relations
between the various entities and their metrics. Concepts like variables or expressions are not
extracted. This means that the schema presented is not useful for static semantic checking.

In the second paper, the relational approach is applied to program slicing. A program
slice is a part of a program, that has been selected based on some criterion. Usually, this
criterion is some instruction in the program, and those parts of the program that affect that
instructed (backward slicing) or affected by that instruction (forward slicing). The paper
discussed describes a method of extracting slices by first parsing the program using SGLR,
then enriching the information in the parse tree using ASF and finally a script written in
RScript is used for the final traversal. ASF was discarded for this paper because it was
considered to complex to express all facts as tree traversals. This concern is also mentioned
in the paper, where it was partly addressed by using a mapping of nodes to a generic set of
constructs, so work could be reused easier. Despite that, the complexity of the traversals is
still a problem, even though the slicer also ignores types. Because no database is used in this
approach, there is no clear relation schema we can compare.

Fact extraction is more than just a part of a relational approach. It is used in areas
like reverse engineering, and various programs to do it exist, like Columbus[11], Rigi[31] and
SourceML[7]. Articles discussing the theory behind fact extractors are much rarer. One
notable one is [22], which discusses various levels of completeness that fact extractors can
achieve. The four levels described are source complete, syntax complete, compiler complete
and semantically complete. In order, the first requires that the full program, including whites-
pace, can be constructed based on the fact database, the second that the syntax tree can be
recovered, the third that the assembly code can be recovered and the last that the behaviour
can be recovered. If we look at our fact extractor, source completeness can be trivially reached,
if desired, by extracting the correct facts. The article claims that the other levels are implied
by source completion. On the other hand, the fact base created for the semantic checker is
not complete on any level, because control structures are extracted only indirectly. Of course,
recreating a source program might be important in reverse engineering, it is debatable how
relevant it is to other uses of a fact extractor. In a subsequent paper[21] by the same au-
thor, fact extraction is defined as a series of transformations, going from source grammar to
schema. The goal is to connect the extracted facts closer to the source grammar and to make
verification possible. In our case, the fact extractor extracts facts based on annotations in
the source grammar. This immediately establishes the desired link between facts and source

45

grammar. The transformations in the article are not useful to us, because they focus on tree
structures, while we want our facts emitted in a list.

A more specific and recent fact-extraction article is [6]. This article describes DeFacto, a
fact extractor that also uses the SDF annotations to guide and universal fact extractor. The
extracted facts are then processed using RScript to get the required results. Obviously, the
annotations used are at a first glance quite similar to the annotations used here. A major
difference is that explicitly supports lists, allowing one annotation to extract multiple facts at
once. This allows some facts to be extracted in a more convenient way. A limitation is that
only source code text can be extracted. This means, for example, that there are no facilities
to help with the scope issues identified in Section 4.2.1. In the prototype, DeFacto uses the
facilities of Rscript to deal with this. In the article, the DeFacto prototype is compared with
ASF+SDF and JastAdd. In both cases, the authors conclude that the DeFacto approach is
more succinct and simpler.

In addition, there are several methods for structuring the fact extracted. These are referred
to as source models or schemas. Two examples of schemas are the Datrix schema[16] and
the Reprise schema[28]. Datrix is a schema intended for C, C++ and similar programming
languages. In the article, an E/R schema is discussed for C, C++ and Java. The E/R schema
is used to describe the graphs that a legal datrix parser can produce. Similarly, Reprise is
also a a graph-based format. The graph nature of these formats makes them more similar to
the parse trees that they are based on, but less useful to us because relational databases are
not really suited to deal with facts stored in this manner. This is the reason why we chose
not to use either format.

46

Chapter 9

Conclusion

In this paper, we have discussed a relational approach to static semantic checking. The
research questions are to discover if a relational approach to static semantic checking could
be made sound and complete and would offer advantages over methods based on attribute
grammars. We think we have shown that static semantic checking using relational tools is
possible. We have yet to discuss two fundamental properties of a static semantic checker:
soundness and completeness. In order to make the research possible in the available time, we
have chosen to restrict ourselves to a subset of the Java programming language. Even then,
the number of errors that can be present in a program in Java is so large that we could not
treat them all. So, we can only sensibly talk about the soundness and completeness of a check
for a specific error. Obviously, the completeness depends on how the check is implemented.
Despite the fact that there is no formal definition available of Java errors, we can compare the
checker to the compiler. The fact extractor can extract any information from the source code
that the compiler can, and the semantic checker can use reflection to the library information
available to the compiler. Thus, it should be possible to define checks in such a way that all
errors are found, and only actual errors are found. We have done limited tests by comparing
the prototype to the response of a compiler, but without official test cases that evidence is of
limited use.

Even if it is possible to make the checks sound and complete, that does not mean that it
is easy construct them such that this is the case. This is in effect the third research question,
and the answer unfortunately appears to be no. In particular, the database is not really suited
to handling tasks related to inheritance and method resolution, where the comparisons in the
database are not sufficient. This means we have to use the checker to resolve that, but that
complicates matters and means we have to keep converting data from and to the database
format. Effectively, we have to reconstruct some of the processes from the Java compiler.
The different structure of the checker makes it hard to ensure the process is the same as
that of the compiler, and that that the errors are complete and sound. If we look at method
resolution, we can see that the information that identifies a method, its signature, is spread
of multiple tables: Method and Parameter. That is natural from a extraction perspective
or a database perspective, but not from a language perspective. It is clear to us that this
structure complicates method resolution, but we have no clear idea how to improve this
while maintaining a natural database structure. It must be said that inheritance or method
resolution are not straightforward issues in the Java compiler either. Because we did not look
at other programming languages, we cannot say what the root cause of the complexity is: the

47

relational approach, Java, both, or even our understanding of either. At the moment, all we
can say is that there is friction between what the database can provide and what the checker
needs.

If we compare this to attribute grammars, we can see that the attribute grammars follow
the structure of the tree more, like the compiler. That also means that attribute grammars
are more tied to the structure of the grammar. One of the goals of the relational approach
was to increase the modularity, and we think that is partly achieved. Once all information
has been extracted or added to the tree, any check that is desired can be executed in any
order. In particular, if any check detects an error, this has little effect on the other checks.
This increases the flexibility of the checker. On the other hand, the checks are still quite
programming-language specific. The other goal, simplicity, has not been reached. The details
of the programming language and the limitations of the database cause a lot of work for the
checker, and that results in complexity. Due to this, the prototype checker was a lot more
limited than we had hoped.

One consequence of that was that the prototype does not include template support. Based
on our experience of implementing the base language checks and the discussion of possible
template checks, we can draw some conclusions though. In order to handle templates, first
extraction annotations have to be added to the template grammar, based on the annotations
of the base language grammar. This leads to alterations of the database schema, to store the
template nodes or information to distinguish them from normal nodes. Thirdly, checks will
have to be altered to handle placeholders instead direct values. Decisions have to be made
about how placeholders and comparisons involving them should be handled. It may be that
syntactically different placeholder names actually refer to the same input value, in that case
normalization is required. Creating a special type, like the one introduced for scopes, can be
a great help here. Finally, there are template-specific checks must be implemented. Ideally,
these are independent of the source language and can be reused. In practice, adjustments are
likely to be necessary when database schemas differ between base languages.

48

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques
and Tools, chapter 6. Addison-Wesley, 1986.

[2] Jim Alves-Foss and Fong Shing Lam. Dynamic denotational semantics of java. In Formal
Syntax and Semantics of Java, pages 201–240, London, UK, 1999. Springer-Verlag.

[3] G. Antoniol, M. Di Penta, G. Masone, and U. Villano. Compiler hacking for source code
analysis. Software Quality Control, 12(4):383–406, 2004.

[4] Andrew W. Appel. Modern Compiler Implementation in Java: Basic Techniques, chap-
ter 5. Campridge University Press, 97.

[5] Jeroen Arnoldus, Jeanot Bijpost, and Mark van den Brand. Repleo: a syntax-safe
template engine. In Proceedings of the Sixth international conference on Generative
programming and component engineering, pages 25–32, New York, NY, USA, 2007. ACM.

[6] H.J.S. Basten and P. Klint. Defacto: Language-parametric fact extraction from source
code. In Proceedings of the First International Conference on Software Language Engi-
neering, to be published.

[7] Michael L. Collard, Huzefa H. Kagdi, and Jonathan I. Maletic. An xml-based lightweight
c++ fact extractor. In Proceedings of the 11th IEEE International Workshop on Program
Comprehension, page 134, Washington, DC, USA, 2003. IEEE Computer Society.

[8] A. Van Deursen, J. Heering, H. A. De Jong, M. De Jonge, T. Kuipers, P. Klint, L. Moo-
nen, P. A. Olivier, J. J. Vinju, E. Visser, and J. Visser. The asf+sdf meta-environment: a
component-based language development environment. In Compiler Construction, volume
2027 of LNCS, pages 365–370. Springer-Verlag, 2001.

[9] Torbjörn Ekman and Görel Hedin. Rewritable reference attributed grammars. In Pro-
ceedings of European Conference Object-Oriented Programming, volume 3086 of LCNS.
Springer-Verlag, 2004.

[10] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler. SIGPLAN
Not., 42(10):1–18, 2007.

[11] Rudolf Ferenc, Árpád Beszédes, Ferenc Magyar, and Tibor Gyimóthy. A short introduc-
tion to columbus/can. Technical report, University of Szeged, 2001.

[12] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison-Wesley, 2005.

49

[13] Judith E. Grass and Yihfarn Chen. The c++ information abstractor. In Proceedings of
the USENIX C++ Conference, pages 265–277, 1990.

[14] Görel Hedin. Reference attribute grammars. Informatica, (24):301–317, 2000.

[15] James Hoagland. http://hoagland.org/mkfunctmap.html. Retrieved on 17-11-2008, 1995.

[16] Richard C. Holt, Ahmed E. Hassan, Bruno Laguë, Sébastien Lapierre, and Charles Leduc.
E/r schema for the datrix c/c++/java exchange format. In Proceedings of the Seventh
Working Conference on Reverse Engineering, page 284, Washington, DC, USA, 2000.
IEEE Computer Society.

[17] Stephen C. Johnson. Yacc: Yet another compiler-compiler. In Unix Programmer’s Man-
ual, volume 2b. 1979.

[18] Paul Klint. Rscript tutorial. available at http://homepages.cwi.nl/ paulk/publications/rscript-
tutorial.pdf. Retrieved on 17-11-2008, 2005.

[19] Donald E. Knuth. Semantics of context-free languages. Theory of Computing Systems,
2(2):127–145, June 1968.

[20] Viswanathan Kodaganallur. Incorporating language processing into java applications: A
javacc tutorial. IEEE Softw., 21(4):70–77, 2004.

[21] Yuan Lin and Richard C. Holt. Formalizing fact extraction. Electronic Notes in Theo-
retical computer Science, 94:93–102, 2004.

[22] Yuan Lin, Richard C. Holt, and Andrew J. Malton. Completeness of a fact extrac-
tor. In Proceedings of the 10th Working Conference on Reverse Engineering, page 196,
Washington, DC, USA, 2003. IEEE Computer Society.

[23] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. Extending attribute grammars with
collection attributes–evaluation and applications. In Proceedings of the Seventh IEEE
International Working Conference on Source Code Analysis and Manipulation, pages
69–80, Washington, DC, USA, 2007. IEEE Computer Society.

[24] Eva Magnusson and Görel Hedin. Circular reference attributed grammars — their eval-
uation and applications. Sci. Comput. Program., 68(1):21–37, 2007.

[25] Gail C. Murphy, David Notkin, and Erica S. −C. Lan. An empirical study of static
call graph extractors. In ACM Transactions on Software Engineering and Methodology,
pages 90–99, 1998.

[26] Terence J. Parr and Russell W. Quong. Antlr: A predicated-ll(k) parser generator.
Software Practice and Experience, 25:789–810, 1995.

[27] Java Community Process. http://www.jcp.org/en/resources/tdk. Retrieved on 17-11-
2008, 2008.

[28] David S. Rosenblum and Alexander L. Wolf. Representing semantically analyzed c++
code with reprise. In Proceedings of the USENIX C++ Conference, pages 119–134, 1991.

50

[29] Marco Scotto, Alberto Sillitti, Giancarlo Succi, and Tullio Vernazza. A relational ap-
proach to software metrics. In Proceedings of the 2004 ACM symposium on Applied
computing, pages 1536–1540, New York, NY, USA, 2004. ACM.

[30] Abraham Silberschatz, Henry F. Horth, and S. Sudarshan. Database System Concepts,
chapter 4. McGraw-Hill Higher Education, 2002.

[31] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller. Rigi: a visualization
environment for reverse engineering. In Proceedings of the 19th international conference
on Software engineering, pages 606–607, New York, NY, USA, 1997. ACM.

[32] Ivan Vankov. Relational approach to program slicing. Master’s thesis, University of
Amsterdam, 2005.

[33] Jurgen J. Vinju. Uptr: a simple parse tree representation format. In Software Transfor-
mation Systems Workshop. October 2006.

51

Appendix A

SDF Grammar of annotations

module annotations

imports basic/NatCon
imports basic/StrCon
imports basic/Whitespace
imports basic/IdentifierCon

hiddens
context-free start-symbols
Extract

exports
sorts Extract Type Action Fact Source Data Target

context-free syntax
"extractfact(" Type "," Action "," "["{Fact "," }* "]"")" ->

Extract {cons("ExtractCon")}

StrCon -> Type {cons("TypeCon")}

"\"new\"" -> Action {cons("NewCon")}
"\"use\"" -> Action {cons("UseCon")}

"\"" "’" StrCon "’" "->" Target "\""-> Fact {cons("ConstFact")}
"\"" Source "." Data "->" Target "\""-> Fact {cons("NodeFact")}

"$self" -> Source {cons("SelfSource")}
"$" NatCon -> Source {cons("ArgsSource")}

"toString" -> Data {cons("StrData")}
"getID" -> Data {cons("IDData")}
"getPos" -> Data {cons("PosData")}
"getFileName" -> Data {cons("FileName")}

52

"getBeginLine" -> Data {cons("BeginLine")}
"getEndLine" -> Data {cons("EndLine")}
"getBeginColumn" -> Data {cons("BeginColumn")}
"getEndColumn" -> Data {cons("EndColumn")}
"getOffset" -> Data {cons("Offset")}
"getLength" -> Data {cons("Length")}
"getConstructor" -> Data {cons("Constructor")}
"getLevel" -> Data {cons("Level")}
"getScope" -> Data {cons("Scope")}

IdCon -> Target {cons("Target")}

53

Appendix B

Java compile-time error tables

B.1 Literals

Page Description Category Implemented
23 Integer literal too large Miscelanuous +
24 Long literal too large Miscelanuous +
26 Float literal too large Miscelanuous +
26 Float literal too small Miscelanuous +
26 Float literal is small and denormalized Miscelanuous +

B.2 Inheritance

Page Description Category Implemented
177 Abstract class not implementable Inheritance & Interface -
178, 184 Final class cannot be extended Inheritance & Interface +
179 Throwable cannot be extended by generic

class
Inheritance & Interface -

184 Enum cannot be extended Inheritance & Interface +
184 Object can have no superclass Inheritance & Interface +
184 Cannot extend generic class with incorrect

or wildcard type parameters
Inheritance & Interface -

185 Class cannot depend on itself Inheritance & Interface +
217 Cannot override or hide final method Inheritance & Interface +
225 Cannot override static method Inheritance & Interface +
225 Static method cannot hide instance

method
Inheritance & Interface +

225 Overriding or hiding method must have
compatible return type

Inheritance & Interface +

227 Conflicting override-equivalent methods Inheritance & Interface -
228, 229 Conflicting inherited methods Inheritance & Interface -
262 Interface cannot depend on itself Inheritance & Interface +

54

B.3 Types

Page Description Category Implemented
62 Intersection type invalid Type 0
94 Type conversion not possible in this con-

text
Type +

90 Incompatible classes in class conversion Type +
99 Ilegal conversion chain Type +
102,103,104 Invalid cast: incompatible classes Type +
289, 431 Array element type must be reifiable Type +
290, 432 Array index must be indexed by int-values Type +
372 If guard must be boolean Type +
373 First expression of assertion must be

boolean
Type +

373 Second expression of assertion must not
be void

Type +

377 Switch expression must be char, byte,
short, int, Character, Byte, Short, Integer
or enum

Type +

381 While guard must be boolean Type +
382 Do guard must be boolean Type +
384 For guard must be boolean Type +
387 Enhanced for source must be iterable Type +
395 Can only synchronize reference type Type -
396 Can only catch Throwable or subclass Type -
472 void type must be top-level of expression Type +
482 Array reference must reference array Type -
485-491, 496, 502-515 Operator not applicable Type 1
491 Illegal cast expression Type +

55

B.4 Modifiers

Page Description Category Implemented
169 Top level type may not be protected, pri-

vate or static
Declaration +

175, 197, 214, 260 Duplicate modifier Declaration -
181 Inner class can only declare static mem-

bers that are compile-time constants
Declaration -

197, 214, 238, 241 Only one of Public, Protected, Private al-
lowed

Contradiction +

201 Field cannot be final and volatile Contradiction +
214 Method cannot be abstract and private,

static, final, native, strictfp, synchronized
Contradiction +

214 Method cannot be native and strictfp Contradiction +
216, 472 Attempt to invoke abstract method Contradiction +
223 Abstract or native method cannot have

implementation
Contradiction +

223 Non-abstract and non-native method
must be implemented

Contradiction -

228 Method cannot be overriden by method
with weaker access

Contradiction +

241 Enum constructor cannot be public or
protected

Contradiction -

312 Main must be public, static and void Contradiction +
362 Local class cannot be public, protected,

private or static
Contradiction -

56

B.5 Enum

Page Description Category Implemented
176 Abstract method in non-Abstract non-

Enum class
Contradiction +

176, 250 Enum cannot be declared abstract Contradiction -
176, 250 Enum must have constants to have ab-

stract method
Declaration -

176, 250 All Enum constants must implement ab-
stract method

Declaration -

176, 250 Enum constant may not declare abstract
method

Declaration -

184 Enum cannot be extended Inheritance +
249, 424, 425 Enum cannot be instantiated Type -
250 Enum cannot be final Contradiction -
251 Enum cannot have finalizer Contradiction -
252 Enum constructors, instance initializer

blocks or instance variable initializer ex-
pressions cannot reference a static field of
that type that is not a compile-time con-
stant

Reference -

252 Constructors, instance initializer blocks or
instance variable initializer expressions of
an enum constant cannot refer to itself or
to en enum constant of the same type de-
clared to the right of it

Reference -

242 Subclasses of Enum cannot invoke con-
structor of superclass explicitly

Reference -

B.6 Interfaces

Page Description Category Implemented
186 Cannot implement generic interface with

incorrect or wildcard type parameters
Type -

186 Interface cannot be implemented multiple
times

Inheritance & Interface +

188 Non-abstract class must implement all in-
terface methods

Inheritance & Interface +

189 Generic interface cannot be implemented
multiple times

Inheritance & Interface +

260 Interface cannot have same simple name
as enclosing class or interface

Declaration -

57

B.7 Generics

Page Description Category Implemented
50 Only one class or type variable in bound Declaration -
50 Type erasures of types in bound must be

pairwise different
Inheritance & Interface -

51 Incorrect number of type parameters Reference -
51 Incompatible type parameter type Type -
59 Type members cannot be used raw Type -
59 Cannot pass type parameter to a non-

static type member of a raw type that is
not inherited

Reference -

89 Unchecked warning Type -
179 Cannot reference type parameter in static

member declaration or static initializer
Reference -

261 Fields and type members of generic inter-
faces cannot refer to type parameter

Reference -

262 Interface cannot depend on self Inheritance & Interface -
125, 263, 264 Interface must be compatible with Object Inheritance & Interface -
264 Field cannot be redeclared Declaration -
264 Member reference ambiguous Reference -
265 Initialization expression of an interface

field cannot refer to itself or forward
Reference -

265 Initialization expression of an interface
field cannot use super or this unless in
anonymous class

Reference -

267 Interface cannot declare multiple override-
equivalent methods

Declaration -

267 Interface cannot declare final method Contradiction -
268 Interface cannot inherit multiple override-

equivalent methods unless one is return-
substitutable for the others

Inheritance & Interface -

421 Type variable, parameterized type or ar-
ray of either have no class literal

Type -

58

B.8 Exception

Page Description Category Implemented
202 Exception thrown but not caught or re-

ported
Miscellaneous -

221, 393 Can only throw Throwable Type +
221 Exception must be caught or declared Miscelanuous -
222, 226 Overriding method cannot throw incom-

patible exception
Miscelanuous -

238 Exceptions thrown by instance initializers
must be declared in constructors

Miscelanuous -

393, 394 Requirements of thrown exception Miscelanuous -
398 Cannot catch exception that is not thrown Miscelanuous -

B.9 Constructors

Page Description Category Implemented
241 Duplicate constructors Declaration -
242 Constructor cannot invoke itself Reference -
244 Explicit constructor invocation cannot

reference instance variables or methods,
this or super

Reference -

245 Qualified superclass constructor invoca-
tion only in non-static inner class

Reference -

246 Qualified superclass constructor invoca-
tion of incorrect type

Reference -

246 Inner class not member of enclosing class Reference -
247 No constructor without arguments or

throws clause in superclass
Reference -

421 This only in instance method, constructor
or initializer

Reference -

425 Cannot instantiate anonymous final class Contradiction -
425 Abstract class cannot be instantiated Contradiction -

59

B.10 Initialization

Page Description Category Implemented
71, 397, 527-551 Cannot reassign to final variable Contradiction -
199 Blank final must be initialized Declaration -
202, 239 Static initializer cannot throw exception

or use return
Declaration -

202 Class variable initializer cannot reference
instance variables, this or super

Reference -

203 Restriction on use of fields during initial-
ization

Reference -

239 Instance initializer must end normally,
cannot return

Declaration -

367 Variable used before initialization Reference -
527-551 Variable not definitely assigned before use Miscellaneous -

B.11 Instances & Inner classes

Page Description Category Implemented
422, 439, 441, 471 No such enclosing class Reference -
425 Qualified class creation expression must

be simple name of non-final inner mem-
ber of primary

Reference -

426, 427 Determination of enclosing instance Reference -
426, 427 Cannot create instance of non-static local

or unqualified inner member class in static
context

Reference -

438, 441 Object cannot use super Reference -
473 Illegal target reference Reference -

B.12 Control flow

Page Description Category Implemented
223, 392 Method of type void must return normally Contradiction -
223, 392 Method of non-void type T must return

expression of type T
Contradiction -

377 Case label must have correct type and
non-null

Type -

378 No duplicate case label or default Contradiction -
388 Break without switch, while for or do Contradiction -
389 Break with nonexistent label Reference -
391 Continue without while, do and for Contradiction -
391 Continue must target while, do or for Contradiction -
391 Continue with nonexistent label Reference -
402 Unreachable code Miscellaneous -

60

B.13 Ambiguity

Page Description Category Implemented
123, 207 Field reference ambiguous Reference +
132 Ambiguous type Reference +
134 Ambiguous identifier Reference -
135, 136 Illegal qualified expression name Reference -
137, 444, 447 No such method Reference +
137 Illegal qualified method name Reference -
154, 167 Duplicate package member or type Reference +
162 Duplicate import of distinct type Reference +
162, 164 Duplicate import of type and static mem-

ber
Reference +

162, 164 Conflict between import and declaration Declaration -
196 Duplicate field Declaration +
210, 212 Class cannot declare override-equivalent

members
Declaration -

211 Duplicate formal parameter Declaration +
362 Duplicate local class declaration Declaration -
365, 366, 397 Duplicate local variable declaration Declaration +
370 Duplicate label Contradiction -
435 Ambiguous field reference Reference +
449 Ambiguous method call Reference +

B.14 Accessibility

Page Description Category Implemented
44 Type member not accessible Reference +
130 Ambiguous name cannot be reclassified Reference +
131 Package not in scope Reference -
132 Qualified package name not in scope Reference -
143 Cannot access non-public field Reference -
160 Cannot import from unnamed package Reference -
161, 163, 164, 165 Cannot find accessible type to import Reference +
184 Class type not accessible Reference +
216 Class method cannot reference type vari-

ables, instance variables, this and super
Reference -

238 Static class contains non-static reference Reference -
262 Interface not accessible Reference +
421 Class not accessible or in scope Reference -
424 Class or interface not accessible Reference +
435 Cannot access field of non-reference type Reference -
435 Can only access accessible fields Reference -
441 Cannot statically call interface method Reference -
471, 472 Cannot call instance method in static con-

text
Reference -

61

B.15 Annotations

Page Description Category Implemented
272 Annotation name already used Declaration -
272 Annotation target must match Annota-

tion.Target
Contradiction -

273 Return type not allowed in annotation Declaration -
273 Annotation must be compatible with Ob-

ject and annotation.Annotation
Declaration -

274 Annotation of type T cannot contain T Declaration -
274, 283 Annotation of incompatible type Type -
278 Target type cannot appear twice Declaration -
279 Unwarranted override annotation Miscelleous -
281 Missing annotation element Declaration -
281 Duplicate annotation Declaration -
283 Annotation type not accessible Reference -
283 Method not present in type Reference -

62

Appendix C

Template Listings

Listing C.1: Duplicate data template listing
1 Package Customer// Package d e c l a r a t i on
2 import java . u t i l .∗ // Import d e c l a r a t i on
3
4 public class CustomerID{
5 private Random randGen = new Random () ;
6 private St r ing id ;
7 int id ;
8
9 int SetID (St r ing customerID) {

10 id = randGen . next Int () ;
11 id = customerID ;
12 return id ;
13 }
14
15 St r ing GetID (int customerID) {
16 i f (id==customerID) {
17 return id ;
18 }
19 else {
20 return null ;
21 }
22 }

63

Listing C.2: Repetition data template listing
1 Package Customer// Package d e c l a r a t i on
2 import java . u t i l .∗ // Import d e c l a r a t i on
3
4 public class CustomerData {
5 private Random randGen = new Random () ;
6 private St r ing name ;
7 int id ;
8 private St r ing age ;
9 int id ;

10
11 int SetName(St r ing customerName) {
12 id = randGen . next Int () ;
13 name = customerName ;
14 return id ;
15 }
16
17 St r ing getName (int customerID) {
18 i f (id==customerID) {
19 return name ;
20 }
21 else {
22 return null ;
23 }
24
25 int SetAge (In t eg e r customerAge) {
26 id = randGen . next Int () ;
27 age = customerAge ;
28 return id ;
29 }
30
31 In t eg e r GetAge (int customerID) {
32 i f (id==customerID) {
33 return age ;
34 }
35 else {
36 return null ;
37 }
38 }

64

	Abstract
	Contents
	Chapter 1Introduction
	Chapter 2Fact extraction
	Chapter 3Static semantics of Java
	Chapter 4Database schema
	Chapter 5Implementation
	Chapter 6Prototype results
	Chapter 7Future work: Templates
	Chapter 8Related work
	Chapter 9Conclusion
	Bibliography
	Appendix ASDF Grammar of annotations
	Appendix BJava compile-time error tables
	Appendix CTemplate Listings

