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Abstract. Semantic specifications of programming languages typically
have poor modularity. This hinders reuse of parts of the semantics of
one language when specifying a different language – even when the two
languages have many constructs in common – and evolution of a lan-
guage may require major reformulation of its semantics. Such drawbacks
have discouraged language developers from using formal semantics to
document their designs.
In the PLanCompS project, we have developed a component-based ap-
proach to semantics. Here, we explain its modularity aspects, and present
an illustrative case study: a component-based semantics for Caml Light.
We have tested the correctness of the semantics by running programs on
an interpreter generated from the semantics, comparing the output with
that produced on the standard implementation of the language.
Our approach provides good modularity, facilitates reuse, and should
support co-evolution of languages and their formal semantics. It could
be particularly useful in connection with domain-specific languages and
language-driven software development.

Keywords: modularity, reusability, component-based semantics, funda-
mental constructs, funcons, modular SOS

1 Introduction

Various programming constructs are common to many languages. For instance,
assignment statements, sequencing, conditional branching, loops and procedure
calls are almost ubiquitous among languages that support imperative program-
ming; expressions usually include references to declared variables and constants,
arithmetic and logical operations on values, and function calls; and blocks are
provided to restrict the scope of local declarations. The details of such constructs
often vary between languages, both regarding their syntax and their intended
behaviour, but sometimes they are identical.

Many constructs are also ‘independent’, in that their contributions to pro-
gram behaviour are unaffected by the presence of other constructs in the same
language. For instance, consider conditional expressions ‘E1 ?E2 :E3’. How they
are evaluated is unaffected by whether expressions involve variable references,
side effects, function calls, process synchronisation, etc. In contrast, the be-
haviour of a loop may depend on whether the language includes break and
continue statements.
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1.1 Modularity and Reusability

We consider a semantic specification framework to have good modularity when
independent constructs can be specified separately, once and for all. Such frame-
works support verbatim reuse of the specifications of common independent con-
structs between different language specifications. They also reduce the amount
of reformulation needed when languages evolve.

Poor Modularity. It is well known that various semantic frameworks do not have
good modularity. A particularly familiar example of a framework with poor mod-
ularity is structural operational semantics (SOS) [56]. As a simple illustration of
the lack of modularity, consider specifying the evaluation of conditional expres-
sions in the small-step SOS style developed by Plotkin:

E1 → E′1
E1 ?E2 :E3 → E′1 ?E2 :E3

(1)

true ?E2 :E3 → E2 (2)

false ?E2 :E3 → E3 (3)

The transition formula E → E′ asserts the possibility of a step of the computa-
tion of the value of E such that, after making the step, E′ remains to be evalu-
ated. The inference rule (1) specifies that computing the value of ‘E1 ?E2 :E3’
may involve computing the value of E1; the axioms (2, 3) specify how the com-
putation proceeds after E1 has computed the value true or false. If the compu-
tation of the value of E1 does not terminate, neither does that of ‘E1 ?E2 :E3’;
if it terminates with a value other than true or false, the computation of
‘E1 ?E2 :E3’ is stuck: it cannot make any further steps.

However, suppose we are specifying the semantics of a simple imperative
language that includes also expressions of the form ‘I =E’, intended to assign
the value of E to a simple variable named I and return the value. We might
specify the evaluation of such assignment expressions as follows.

ρ ` (E, σ)→ (E′, σ′)

ρ ` (I =E, σ)→ (I =E′, σ′)
(4)

ρ ` (I =V, σ)→ (V, σ[ρ(I) 7→ V ]) (5)

The environment ρ above represents the current bindings of identifiers (e.g., to
declared imperative variables) and the store σ represents the values currently
assigned to such variables. The formula ρ ` (E, σ)→ (E′, σ′) asserts that, after
making the step, E′ remains to be evaluated (or has been fully evaluated) and
σ′ reflects any side-effects. Axiom (5) specifies that when the value V of E has
been computed, it is also the value of the enclosing expression; the resulting
store reflects the assignment of that value to the variable bound to I in ρ.

Conventional SOS requires the semantics of all constructs in the same syn-
tactic category to be specified using the same form of transition formulae. This
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is intrinsically a non-modular requirement. In the above example, it means we
have to reformulate rules (1–3) as follows – in effect, weaving the extra argu-
ments (here ρ, σ and σ′) of the required transition formulae into the original
rules.

ρ ` (E1, σ)→ (E′1, σ
′)

ρ ` (E1 ?E2 :E3, σ)→ (E′1 ?E2 :E3, σ′)
(6)

ρ ` (true ?E2 :E3, σ)→ (E2, σ) (7)

ρ ` (false ?E2 :E3, σ)→ (E3, σ) (8)

Different SOS rules would be needed for specifying conditional expressions
in other languages. For example, in a pure functional language, the transition
formulae could be simply ρ ` E → E′; in a process language, they would involve
labels on transitions, e.g., E a−→ E′. The notation used to specify a language
construct depends not only on the features of that particular construct, but also
on the features of all the other constructs in the language. This flagrant disregard
for modularity in conventional SOS implies that it is simply not possible to
specify once and for all the semantics of conditional expressions (or any other
programming constructs).

A Hindrance to Reuse. Several semantic frameworks are just as non-modular
as SOS, whereas others have a somewhat higher degree of modularity (as dis-
cussed in Sect. 5). However, a further and almost universal feature of semantic
descriptions of programming languages affects potential reuse of their parts: the
common practice of using notation from the concrete syntax of a language when
defining its semantics. For instance, the SOS rules for conditional expressions
above might be based on a grammar including the following productions:

E : exp ::= exp ? exp : exp | true | false (9)

Such grammars provide a concise and suggestive specification of the abstract
syntax (i.e., compositional structure) of programs, and are generally preferred
to the original style of abstract syntax specification developed by McCarthy [36].
These grammars are typically highly ambiguous, but parsing and disambiguation
are usually handled as a preliminary step before the semantics, so ambiguity is
not a problem. However, the use of concrete terminal symbols to distinguish lan-
guage constructs entails that our SOS rules for ‘E1 ?E2 :E3’ cannot be directly
reused for a language using different concrete syntax for conditional expressions,
e.g., ‘ifE1 thenE2 elseE3’.

Without support for both modularity and reuse, the development and sub-
sequent revision of a formal semantics for a major programming language is
inherently a huge effort, often regarded as disproportionate to its benefits [23].

1.2 Fundamental Constructs (Funcons)

Our component-based approach to semantics addresses both modularity and
reusability. Its crucial novel feature is the introduction of an open-ended collec-
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tion of so-called fundamental constructs, or funcons. Many of the funcons cor-
respond closely to simplified language constructs. But in contrast to language
constructs, each funcon has a fixed interpretation, which we specify, once and
for all,3 using a modular variant of SOS called MSOS [42]. For example, the
collection includes a funcon written ‘if-true(E1, E2, E3)’, whose interpretation
corresponds directly to that of the language construct ‘E1 ?E2 :E3’ considered
above.

Language Specification. To specify the semantics of a language, we translate
all its constructs to funcons. Thanks to the closeness of funcons to language
constructs, the translation is generally rather simple to specify. For instance, the
translation of ‘E1 ?E2 :E3’ could be trivial, simply using ‘if-true’ to combine
the translations of E1, E2, E3; translation of conditional expressions that have
a different type of condition (e.g., test for zero) involves inserting operations to
test the value of E1.

Each funcon has both static and dynamic semantics. A single translation of
a language to funcons therefore defines both the static and dynamic semantics of
the language. Sometimes it is necessary to adjust the induced static semantics
by inserting further funcons, e.g., our ‘if-true’ funcon requires its second and
third arguments to have a common type, but the intended static semantics of
‘E1 ?E2 :E3’ might require inclusion between the minimal types of E2 and E3.
Funcons for making such static checks have vacuous dynamic semantics.

Defining the semantics of a language by translating it to funcons is some-
what analogous to defining the semantics of a full language by translation to a
kernel sublanguage whose semantics is defined directly, as for Standard ML [38].
However, the direct definition of a kernel language is language-specific, and does
not provide reusable components.

Funcon Specification. The funcon specifications are expected to be highly
reusable components of language specifications. Their crucial feature is that
when funcons are combined in a language specification, or when a new fun-
con is added to the open-ended collection, the specifications never require any
changes. MSOS has particular advantages in that respect, but it should be pos-
sible to specify funcons also using other highly modular frameworks, e.g., the K
framework [58], as illustrated in [50].

When the syntax or semantics of a language construct changes, however, the
specification of its translation to funcons has to change accordingly (since we
never change the semantics of funcons) so the translation specification itself is
inherently not so reusable. We explain all this further, and provide some simple
introductory examples, in Sect. 2.

Case Study. The main contribution of this paper is in Sect. 3, where we illustrate
the modularity and practical applicability of our approach by presenting excerpts

3 The specifications of the current collection of funcons will not be finalised until we
have tested their use in two further major case studies, as discussed in Sect. 6.
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from a moderate-sized case study: a component-based semantics of Caml Light
[32]. This language is used for teaching functional programming, but also has
imperative features. For selected language constructs, we give conceptual ex-
planations of the funcons involved in their translations, and present the MSOS
specifications of the semantics of the funcons. We have made the complete case
study available online [12]. The PLanCompS project [55] is carrying out two
further major case studies to demonstrate the extent to which funcons can be
reused in specifications of different languages.

Tool Support. We have tested the correspondence between our component-based
semantics of Caml Light and the standard implementation of the language [32,
version 0.75], by running programs using a (modular!) interpreter generated from
the MSOS specifications of the funcons [2,3,44]. Although the focus of this paper
is on the features of component-based language specifications, we describe and
illustrate our current tool support, which involves Spoofax [28] and Prolog, in
Sect. 4. Further tool support is being developed by the PLanCompS project.

Related Work. We discuss related work and alternative approaches in Sect. 5,
then conclude and outline further work in Sect. 6. This paper is an extended
and improved version of a Modularity ’14 conference paper [13].

2 Component-Based Semantics

In this section, we first explain the general concepts underlying fundamental
constructs (funcons), giving some simple examples. We then consider how to
specify translations from programming languages to funcons. Finally, we recall
MSOS (a modular variant of SOS) and show how we use it to specify, once and
for all, the static and dynamic semantics of each funcon as a highly reusable
component of language specifications.

2.1 Funcon Notation

As mentioned in Sect. 1.2, many funcons correspond closely to simplified pro-
gramming language constructs. However, each funcon has fixed syntax and se-
mantics. For example, executing the funcon term written assign(E1, E2) always
has the effect of evaluating the funcon term E1 to a variable, E2 to a value (in
any order, possibly with interleaving), then assigning the value to the variable;
its static semantics requires the type of E1 to be that of a variable for storing val-
ues of the type of E2. In contrast, a language construct written ‘E1 =E2’ may be
interpreted as an assignment or as an equality test, depending on the language,
and the details of the interpretation may differ (e.g., regarding the possibility
of coercions, composite variables, or failure). In a logic programming language,
‘E1 =E2’ is interpreted as unification, which differs more fundamentally.
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Sorts and Signatures. We can introduce a notion of well-formedness for fun-
con terms, based on sorts and signatures. The signature of a funcon determines
its name, how many arguments it takes (if any), the sort of each argument, and
the sort of the result. In our approach signatures provide also a form of strictness
annotation, relying on a notion of lifting, introduced below. We consider a funcon
term to be well-sorted when each of its argument terms (if any) is well-sorted
and is of the sort required by its lifted signature.

We distinguish between value sorts and computation sorts. The pre-defined
value sorts include booleans (the values false and true), ints (the unbounded
integers), unit (the single value null), ids (identifiers), and variables (imperative
variables). Generic pre-defined value sorts include lists(X) (finite lists of values of
sort X) and maps(X,Y ) (finite maps from values of sort X to values of sort Y ).
New value sorts (such as records and vectors) can be defined using algebraic data
types, instantiation of generic sorts, and subsort inclusion.

Values for us are intrinsically independent of the computational context in
which they occur. For any value sort X, computes(X) is the computation sort
of funcon terms which, whenever their executions terminate normally, compute
values of sortX. The following computation sorts reflect fundamental conceptual
distinctions commonly found in programming languages.

– The sort of expressions (exprs) is for funcons that compute arbitrary values,
possibly with side-effects.

– The sort of declarations (decls) is for funcons that compute environments,
which are maps from identifiers to values.

– The sort of commands (comms) is for funcons that are executed for their
effects, computing always the same null value.

The computation sorts exprs, decls and comms abbreviate instances of com-
putes(X); if needed, further sort abbreviations could be introduced. Impor-
tantly, the effects of computations of sort computes(X) are completely uncon-
strained: they may include abrupt termination, assignment, spawning concurrent
processes, communication, synchronisation, etc. Note that a computation sort
computes(X) always includes the value sort X as a subsort, since we regard
values as terminated computations.

Table 1 shows the signatures of some funcons. The funcons if-true (con-
ditional choice), scope (local binding), seq (sequencing) and supply (value-
passing) are polymorphic: the sort variable X in a signature may be instantiated
(uniformly) with any value sort.

Lifting. Value sorts in signatures can always be lifted to computation sorts.
For example, consider the value operation not(booleans) : booleans. By lifting
the signature to not(exprs) : exprs we can use not as a funcon, applying it to any
expression E. The value of not(E) is computed by first computing the value of
E, then (provided that this is a value of sort booleans) applying the unlifted not
operation. The same principle applies to funcons with a single value sort argu-
ment, such as assigned-value: its lifted signature is assigned-value(exprs) : exprs,
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Funcon sorts

comms = computes(unit)

decls = computes(environments)

exprs = computes(values)

Funcon signatures

assign(variables, values) : comms

assigned-value(variables) : exprs

bind-value(ids, values) : decls

bound-value(ids) : exprs

effect(values) : comms

given : exprs

if-true(booleans, computes(X), computes(X)) : computes(X)

scope(environments, computes(X)) : computes(X)

seq(unit, computes(X)) : computes(X)

supply(values, computes(X)) : computes(X)

while-true(exprs, comms) : comms

Table 1. Some funcon sorts and signatures

and the computation of the argument value is followed by applying the original
funcon to it. For funcons such as if-true and scope, which have one or more fur-
ther arguments with explicit computation sorts, the computation of those argu-
ment(s) depends on the funcon itself. An extreme case of this is while-true(E,C),
where the computations E and C generally need to be repeated, depending on
the values computed by E.

When we lift value operations and funcons (such as assign) with two or more
value sort arguments, those argument values may be computed in any order,
allowing also interleaving of side-effects. We can use the funcons supply and
given to insist on a particular order of funcon argument evaluation. For example,
supply(E2, assign(E1, given)) always evaluates E2 before E1. The funcon given
refers to the value computed by the first argument of the closest-enclosing supply.

Although lifting of value operations to funcons is reminiscent of functional
programming, the argument computations themselves need not be purely func-
tional: they may throw exceptions, assign to variables, spawn concurrent pro-
cesses, or even diverge, and their interleaving may give rise to nondeterminism.
In Sect. 2.3, we shall see how MSOS allows us to specify the interleaving of com-
putations without making any assumptions at all about their possible effects.
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Well-Typedness. The lifted signatures of funcons and value operations deter-
mine a set of well-sorted funcon terms for each sort. However, the well-sortedness
of a funcon term is independent of its context, and it does not exclude terms
whose computation leads to the value of an argument not being of the required
sort. For example, consider if-true(E,C1, C2), which is well-sorted whenever E is
of sort exprs and C1, C2 are both of sort comms: after evaluating E, the computa-
tion gets stuck unless the value of E is true or false. In contrast, if-true(E,C1, C2)
is well-typed in a particular context only if E is guaranteed to compute a Boolean
value whenever it terminates normally. The well-typedness of funcon terms is re-
quired by their static semantics, which is considered in Sect. 2.4.

2.2 Language Semantics

We next consider how to specify a translation from a programming language to
funcons. Each funcon has not only dynamic semantics (as illustrated in Sect. 2.3)
but also static semantics (see Sect. 2.4), so a single translation of complete
programs to funcon terms determines both the static and dynamic semantics of
the programs.

The starting point for specifying a translation to funcons is a context-free
grammar for the abstract syntax of the source language. We define functions
mapping abstract syntax trees generated by the grammar to terms of the appro-
priate computation or value sorts. The functions are compositional: the trans-
lation of a composite language construct is a combination of the translations of
its components. We specify the translation functions inductively, by equations
(much as in denotational semantics).

The following examples illustrate how to specify the translation of some sim-
ple language constructs to funcons. Their main purpose is to show the form of the
equations used to define the translation functions. Section 3 provides excerpts
from a component-based semantics for a complete language, demonstrating how
our approach scales up, and how to translate some less straightforward language
constructs to funcons.

Expressions. Let exp be the nonterminal symbol for expressions in some pro-
gramming language. We specify that the function expr [[_ ]] translates abstract
syntax trees generated by exp to funcon terms of sort exprs thus:

expr [[_ : exp ]] : exprs

Note that language constructs are always inside [[ · · · ]], and funcons outside,
so clashes of notation between them are insignificant. Let the meta-variable E,
optionally subscripted and/or primed, range over abstract syntax trees generated
by exp.

Recall the conditional expressions specified in SOS in Sect. 1. When their
conditions are Boolean-valued, the intended semantics of these expressions cor-
respond exactly to the semantics of the funcon if-true (lifted from booleans to
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exprs in its first argument), so we can specify their translation very simply in-
deed:

expr [[E1 ?E2 :E3 ]] = if-true(expr [[E1 ]], expr [[E2 ]], expr [[E3 ]]) (10)

The variant where E1 is a numerical expression can be specified by inserting the
appropriate value operations to compute true when the value of E1 is non-zero,
and false otherwise:

expr [[E1 ?E2 :E3 ]] = if-true(not(equal(expr [[E1 ]], 0)),
expr [[E2 ]], expr [[E3 ]])

(11)

Notice that the well-sortedness of the terms in the above equation comes from
lifting the value operations not and equal to the computation sort exprs. Lifting
also allows the following straightforward translation of equality test expressions.

expr [[E1 ==E2 ]] = equal(expr [[E1 ]], expr [[E2 ]]) (12)

To specify left-to-right evaluation of ‘E1 ==E2’, we can use the funcons supply
and given, as follows.

expr [[E1 ==E2 ]] = supply(expr [[E1 ]], equal(given, expr [[E2 ]])) (13)

When identifiers I in expressions can refer only to (imperative) variables, we can
translate them as follows:

expr [[ I ]] = assigned-value(bound-value(id [[ I ]])) (14)

Here id [[_ ]] translates identifiers in a language to elements of our pre-defined
value sort ids. The funcon assigned-value requires its argument to compute a
variable, and gives the value currently assigned to that variable. When identifiers
might also refer to other sorts of values, we use a funcon (not illustrated here)
that gives the same result as assigned-value when the value of its argument is
a variable, and otherwise simply returns the value.

Statements. Let stm be the nonterminal symbol for statements S in some pro-
gramming language. The corresponding sort of funcons is comms (commands),
so we use the following translation function.

comm [[_ : stm ]] : comms

An assignment statement ‘I =E ;’ corresponds to a straightforward combination
of the assign and bound-value funcons:

comm [[ I =E ; ]] = assign(bound-value(id [[ I ]]), expr [[E ]]) (15)

The following translation of assignment expressions illustrates repeated use of a
previously computed value, which is first assigned, then returned as the result:

expr [[ I =E ]] = supply(expr [[E ]], seq(assign(bound-value(id [[ I ]]), given),
given))

(16)
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The combination of assignment expressions and the following expression state-
ments (which discard the value of E) allows the specification of assignment
statements in (15) to be derived.

comm [[E ; ]] = effect(expr [[E ]]) (17)

Our translation of if-else statements uses the same polymorphic if-true funcon
as that of conditional expressions above:

comm [[ if(E )S1 elseS2 ]] = if-true(expr [[E ]], comm [[S1 ]], comm [[S2 ]])
(18)

For if-then statements, we can exploit the usual ‘desugaring’, which we specify
by the following equation.

comm [[ if(E )S ]] = comm [[ if(E )S else { } ]] (19)

Provided that we do not introduce circularity between such equations, they
give the effect of translating a language to a kernel sublanguage, followed by
translation of the kernel constructs to funcons. When the grammar of the kernel
is of particular interest, we could exhibit it, and separate the specification of
desugaring from the specification of the translation of the kernel to funcons.

The translation of the empty statement ‘{ }’ used above is just as simple as
one might expect:

comm [[ { } ]] = null (20)

While-statements with Boolean conditions correspond exactly to our while-true
funcon (without any lifting, since the computations of both the expression E and
the statementS may need to be repeated):

comm [[ while(E )S ]] = while-true(expr [[E ]], comm [[S ]]) (21)

Our final illustrative example of specifying translations demonstrates a technique
used frequently in our Caml Light case study in Sect. 3. Statement sequences
may consist of more than two statements, but our seq funcon for sequencing com-
mands takes only two arguments. In the following equation, we use ‘· · · ’ formally
as a meta-variable ranging over stm∗ (possibly-empty sequences of statements).

comm [[S1 S2 · · · ]] = seq(comm [[S1 ]], comm [[S2 · · · ]]) (22)

To translate a sequence of just two statements, ‘S1 S2 · · · ’ matches ‘· · · ’ with the
empty sequence, and we can then regard ‘S2 · · · ’ as a single statement, whose
translation is specified by our other equations. To translate a sequence of three
or more statements, ‘S1 S2 · · · ’ matches ‘· · · ’ with a non-empty sequence, and
we can use the above equation recursively to translate ‘S2 · · · ’. For instance, the
above equations translate a sequence of the form ‘S1 S2 S3’ to a funcon term
seq(C1, seq(C2, C3)), where each Ci is the translation of the single statement Si.

We give many further examples of specifying translations from language con-
structs to funcons in Sect. 3.
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2.3 Dynamic Semantics of Funcon Notation

The preceding subsections illustrate how we use sorts and signatures to specify
the syntax of funcon notation, and how we specify translation functions that
map programs to funcon terms. We now explain and illustrate how to specify
the dynamic semantics of funcons, once and for all, using a modular form of
operational semantics; Section 2.4 does the same for their static semantics.

Modular SOS (MSOS). Modular SOS [42] is a simple variant of structural
operational semantics (SOS) [56]. It allows a particularly high degree of reuse
without any need for reformulation. The specification of each language construct
in MSOS is independent of the features of the other constructs included in the
language. This is achieved by incorporating all auxiliary entities used in tran-
sition formulae (environments, stores, etc.) in labels (L) on transitions. Thus
transition formulae for expressions are always of the form E

L−→ E′ (and simi-
larly for other sorts of language constructs).

The MSOS notation for labels ensures automatic propagation of all unmen-
tioned auxiliary entities between the premise(s) and conclusion of each rule.
For this to work, the labels on adjacent steps of a computation are required to
be composable, and a set of unobservable labels is distinguished.4 This allows
the following MSOS rules for the dynamic semantics of conditional expressions
‘E1 ?E2 :E3’ to be used both for imperative and for purely functional languages,
without any reformulation:

E1
L−→ E′1

(E1 ?E2 :E3)
L−→ (E′1 ?E2 :E3)

(23)

(true ?E2 :E3)
τ−→ E2 (24)

(false ?E2 :E3)
τ−→ E3 (25)

The variable τ varies over all unobservable labels, whereas L ranges over arbitrary
labels. By not mentioning specific auxiliary entities, the rules assume neither
their presence nor their absence, ensuring reusability – even when expression
evaluation can throw exceptions or spawn concurrent processes. This also makes
the rules significantly simpler, and easier to read (some conventional rules in the
literature almost hurt ones eyes to look at!) and reduces the likelihood of making
clerical mistakes when formulating them.

4 In fact labels in MSOS are the morphisms of a category, and the unobservable labels
are identity morphisms, as explained in [42]. However, models of MSOS specifications
correspond to ordinary labelled transition systems.
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The MSOS rules for assignment expressions are as follows.

E
L−→ E′

(I =E)
L−→ (I =E′)

(26)

(I =V )
ρ,σ,σ′=σ[ρ(I) 7→V ],τ−−−−−−−−−−−−−→ V (27)

The notation used on the transition arrow in (27) above indicates that when
assignment expressions are included in a language, the labels on transitions are
to have at least an environment ρ and a pair of stores σ, σ′. The inclusion of τ
in the label specifies that any further components must be unobservable, which
is necessary to ensure that executing this simple assignment expression cannot
have further effects (e.g., assigning to other variables, printing, or throwing an
exception).5

If we include the above conditional expressions and assignment expressions
in the same language, no changes at all are needed to their MSOS rules – in
marked contrast to the weaving required in SOS, as illustrated in Sect. 1.

Implicitly-Modular SOS (I-MSOS) [49] This combines the benefits of MSOS
regarding modularity and reusability with the familiar notational style of or-
dinary SOS: auxiliary entities not actually mentioned in a rule are implicitly
propagated between its premise(s) and conclusion, just as in MSOS, but without
the notational burden of putting an explicit label on every transition relation.

All that is needed is to declare the notation used for the transition formulae
being specified (which is in any case normal practice in SOS descriptions of pro-
gramming languages, e.g. [54]), distinguishing any required auxiliary arguments
from the syntactic source and target of transitions. Here, we do this by insisting
on some notational conventions commonly followed in SOS:

– Environments ρ (and any other entities that are preserved by successive
transitions) are written before a turnstile, e.g., env ρ ` _→ _ .

– Stores σ (and any other entities that can be updated by transitions) are writ-
ten after the syntactic source and target, e.g., (_ , storeσ)→ (_ , storeσ′).

– Signals ε (and any other entities emitted by transitions) are written as labels
above transition symbols, e.g., _ exception ε−−−−−−→ _ .

The entities are tagged with distinct markers (such as env, store and exception)
to ensure that they cannot be confused with other entities needed in the same
position.

5 For an assignment that might throw an exception, the corresponding MSOS rule
would make explicit the conditions under which that occurs, and incorporate the
exception flag in the label.
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The I-MSOS rules for conditional expressions can be formulated exactly as
the SOS rules (1–3) given in Sect. 1. The I-MSOS rules for assignment expressions
are as follows.

E → E′

(I =E)→ (I =E′)
(28)

env ρ ` (I =V, storeσ)→ (V, storeσ[ρ(I) 7→ V ]) (29)

Notice that entities such as environments ρ and stores σ can (and should!) be
omitted whenever a rule does not involve inspecting or updating them.

It is straightforward to generate MSOS rules directly from I-MSOS rules
(and label categories from transition formulae declarations). The label patterns
in a generated rule involve only those auxiliary entities explicitly mentioned
in the original I-MSOS rule. The foundations of MSOS [42], together with its
recently developed modular bisimulation theory and congruence format [11],
provide correspondingly modular foundations for I-MSOS specifications.

I-MSOS Specifications of Funcons The I-MSOS rules given below specify
the dynamic semantics of all the funcons whose signatures are listed in Table 1
(page 7). In these rules, the (optionally subscripted or primed) meta-variables
C range over comms, D over decls, E over exprs, V over values, and X over
arbitrary computations (including their computed values).

When specifying the dynamic semantics of a funcon using small-step I-MSOS
rules, the so-called ‘congruence’ rules for evaluation of any lifted arguments can
be generated from the signature and left implicit, which dramatically improves
the conciseness of our specifications. The elimination of the many tedious con-
gruence rules that would be needed in small-step SOS specifications of funcons
is a major advantage of our approach, and the resulting conciseness of small-step
I-MSOS specifications is competitive with that of specifications using the pop-
ular framework of reduction semantics, based on evaluation contexts [19]. This
feature of I-MSOS is closely related to (and was inspired by) the use of strictness
annotations in the K framework [58].

The funcon if-true(V,X1, X2) is generic: X1, X2 can be of the same arbitrary
computation sort (usually expressions or commands). Its first argument is gen-
erally lifted from booleans to exprs. Since the rule specifying the evaluation of
the lifted argument is implied by the signature, only the following two rules need
to be explicitly specified.

if-true(true, X1, X2)→ X1 (30)

if-true(false, X1, X2)→ X2 (31)
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seq(C,X) is generic in its second argument, whereas its first argument is
always a command (lifted from the value sort unit in the signature). The funcon
first executes C. The value null is computed by all commands on normal termina-
tion, so all we need to specify is that when that has happened, the computation
continues with X:

seq(null, X)→ X (32)

effect(E) is the command funcon which evaluates the expression E and then
discards the value. The argument is lifted to expressions from a value sort, so
here again the rule specifying the evaluation of the argument is left implicit.

effect(V )→ null (33)

while-true(E,C) involves repeated evaluation of the expression E, and repeated
execution of the command C, so the signature cannot involve lifting from value
sorts. The execution of this funcon is specified simply by the obvious unfolding
rule, exploiting the existence of the funcons if-true and seq.6

while-true(E,C)→ if-true(E, seq(C,while-true(E,C)),null) (34)

assign(E1, E2) is a command funcon that simply updates the imperative variable
V1 computed by E1 to the value V2 computed by E2.

V1 ∈ dom(σ)

(assign(V1, V2), storeσ)→ (null, storeσ[V1 7→ V2])
(35)

Notice that the rules above for assignment mention stores σ but not environ-
ments ρ. It is characteristic that, in contrast to many language constructs, each
funcon generally involves only one kind of auxiliary entity.

The assignment funcon is compatible with shared-memory access by concur-
rent threads: the steps specified above are atomic updates, and can be serialised.

The expression funcon assigned-value(E) inspects the value currently stored
in the variable computed by E, without changing it.

(assigned-value(V ), storeσ)→ (σ(V ), storeσ) (36)

bind-value(I, E) is a declaration funcon used to compute the single-point envi-
ronment that maps I to the value of E.

bind-value(I, V )→ {I 7→ V } (37)

bound-value(I) is an expression funcon that inspects the value currently bound
to the identifier I; the result is undefined (and the rule inapplicable, which
would lead to a stuck computation) if I is not in the domain of the current
environment ρ.

env ρ ` bound-value(I)→ ρ(I) (38)
6 In small-step semantics, the use of auxiliary funcons for specifying while-true appears
to be unavoidable.
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scope(D,X) executes the declaration D to compute an environment ρ1, then
binds the identifiers in the domain of ρ1 locally in the computation X, letting
these bindings override the bindings represented by the current environment ρ.
This funcon is lifted in its first argument, whereas the rule for the computa-
tion of its second argument has to be explicitly specified, since the environment
is not merely propagated. Rule (40) applies only when V is a value, which is
independent of the current context.

env (ρ1/ρ) ` X → X ′

env ρ ` scope(ρ1, X)→ scope(ρ1, X ′)
(39)

scope(ρ1, V )→ V (40)

given is an expression which gives the value computed by the closest-enclosing
supply. The rules specifying these funcons below are essentially simplified ver-
sions of the above rules for bound-value and scope, with given corresponding
to the value currently bound to a fixed pseudo-identifier, propagated by a cor-
responding auxiliary entity.

givenV ` given→ V (41)

givenV ` X → X ′

given_ ` supply(V,X)→ supply(V,X ′)
(42)

supply(V1, V2)→ V2 (43)

This concludes the specification of the dynamic semantics of all the funcons
whose signatures are shown in Table 1. The rules have been validated indirectly:
by generating Prolog clauses from them, then using those clauses to execute
programs in various languages according to their translations to funcons, as
described in Sect. 4.

Most of the funcons specified above are (re)used in the Caml Light case
study presented in Sect. 3, together with some more advanced funcons involving
abstractions, patterns and exceptions. Before that, let us see how to specify the
static semantics of funcons.

2.4 Static Semantics of Funcon Notation

For a program in some programming language, its static semantics represents
analysis that is supposed to be done on the (parsed) program text before running
the program. In many languages, the scopes of identifier bindings are determined
by the structure of the program, and the required analysis checks that there are
no unbound occurrences. Such languages may also be statically typed, i.e., the
type of values potentially computed by each expression in the program can be
determined, and checked to be consistent with the type of values required by the
context of the expression. When the types of identifiers are not given explicitly
in the program, the analysis needs to infer them. The outcome of the analysis of
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an entire program is either its type, or an indication that some part of it is not
well-typed.

Running a program usually involves executing only certain parts of it, in
a particular order, possibly with iteration, procedure activation, abrupt termi-
nation, etc. Small-step (I-M)SOS is particularly well-suited to specifying the
dynamic semantics of such programs. In contrast, static analysis of a program
generally involves the analysis of each of its parts just once, in no particular
order, to carry out all the required checks; this motivates the use of the big-step
style of (I-M)SOS for specifying static semantics [27].

The static semantics of a language is specified by a typing relation between
expressions E, types T , and typing contexts Γ (mapping identifiers to their
types), conventionally written ‘Γ ` E : T ’; further arguments of the typing rela-
tion (e.g., store types, type variable assignments) may be introduced, if needed.
We can informally read the relation as saying that expression E has type T
in context Γ . When the typing relation is sound in relation to evaluation, this
means that E can only compute a value of type T when the environment can be
typed by Γ . An environment ρ is typed by Γ whenever Γ maps each identifier I
in the domain of ρ to the type of the value ρ(I). The typing relation can be in-
ductively specified using typing rules [54], which are similar in form to big-step
SOS rules. Using I-MSOS, we can formulate our typing rules omitting auxiliary
entities whenever they merely need to be propagated.

I-MSOS Specifications of Funcons The I-MSOS rules given below specify
the static semantics of all the funcons whose signatures are listed in Table 1
(page 7). The meta-variable T ranges over the value sort types, which provides
notation for type constants and constructors independently of language syntax.

The funcon if-true(E,X1, X2) requires E to have type booleans, and X1

and X2 to have the same arbitrary type T , all in the same typing context Γ
(which I-MSOS lets us leave implicit):

E : booleans X1 : T X2 : T

if-true(E,X1, X2) : T
(44)

seq(C,X) requires C to be a well-typed command, which corresponds to it
having the singleton type unit. The funcon then has the same type as X:

C : unit X : T

seq(C,X) : T
(45)

effect(E) merely requires E to be a well-typed expression:

E : T

effect(E) : unit
(46)

while-true(E,C) requires E to have type booleans:

E : booleans C : unit
while-true(E,C) : unit

(47)
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An imperative variable for storing values of a specific type T has the type
variables(T ). The funcon command assign(E1, E2) requires the types of E1 and E2

to match accordingly:

E1 : variables(T ) E2 : T

assign(E1, E2) : unit
(48)

assigned-value(E) allows E to have any variable type:

E : variables(T )
assigned-value(E) : T

(49)

For languages where identifiers might be bound to constant values as well as
to variables, whether to use assigned-value or not depends on the type of the
identifier. Assuming that the types of identifiers are statically determined, the
static semantics of funcons could subsequently eliminate irrelevant alternatives.7

bind-value(I, E) is a declaration, and its type is the single-point typing con-
text that maps I to the type of E:

E : T

bind-value(I, E) : {I 7→ T}
(50)

bound-value(I) has the type determined by the current typing context Γ (which
I-MSOS allowed us to leave implicit in all the above rules). If I is not in the
domain of Γ , Γ (I) is undefined, and the rule cannot be applied.

envΓ ` bound-value(I) : Γ (I) (51)

scope(D,X) adjusts the typing context used for X to account for the local
bindings computed by D:

envΓ ` D : Γ1 env(Γ1/Γ ) ` X : T

envΓ ` scope(D,X) : T
(52)

It is important here that we require environments to map identifiers to values
(not computations), and for our values to be context-free. These requirements
suffice to ensure that the typeability of a dynamic environment is preserved by
overriding. Consequently, given this typing rule for scope, the corresponding
dynamic rules (39, 40) are safe with respect to type preservation.

The static semantics of given and supply is related to that of bound-value
and scope in the same way as their dynamic semantics. It involves the introduc-
tion of a read-only entity that shows the type of value provided by supply.

givenT ` given : T (53)

givenT1 ` E : T givenT ` X : T ′

givenT1 ` supply(E,X) : T ′
(54)

7 Static semantics sometimes requires such so-called partial evaluation.
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This concludes the specification of the static semantics of all the funcons
whose signatures are shown in Table 1. Under these static semantics, each dy-
namic rule is safe from the point of view of type preservation. Therefore, the
typing rules for the funcons that we have considered in this section are sound in
relation to their dynamic semantics: when a funcon term has type T in a typ-
ing context Γ , the values it computes on normal termination in an environment
typed by Γ are always of type T .

3 An Illustrative Case Study: Caml Light

Caml Light descends from Caml, a predecessor of the language OCaml, and is
similar to the core of Standard ML [38]. It has first-class functions, assignable
state, exception handling mechanisms, and pattern matching. It is statically
typed, and supports algebraic data types and polymorphism.

The syntax and semantics of Caml Light are specified in its reference man-
ual [32]. It contains a formal context-free grammar of ‘concrete abstract syntax’:
this generates Caml Light programs, but disambiguation details are abstracted
away. However, the explanation it gives of the intended semantics of Caml
Light programs is completely informal.

In this section, after introducing the syntax of Caml Light, we illustrate our
approach by presenting excerpts from a component-based semantics of the lan-
guage. Section 3.1 gives an overview of the required values and funcons; Sect. 3.2
gives examples of specifying the translation of Caml Light into combinations
of funcons; Sect. 3.3 specifies the dynamic semantics of the funcons; Sect. 3.4
specifies their static semantics; and Sect. 3.5 specifies the translation of Caml
Light constructs that involve funcons which only have static significance. The
complete specification of the translation of Caml Light to funcons is provided
in the Appendix, and the sources of the full specifications can be found online
[12].

Caml Light is a language built around expressions which compute values,
including numbers, strings, function abstractions, tuples and lists. Commands
(or statements) are not a separate syntactic category, but rather expressions that
compute a particular null value, written (). Expressions are given a type, which
includes ground types (e.g. int), tuple types (e.g. int*int) and function types
(e.g. int->int). Commands and () have type unit.

Some example Caml Light programs can be found in Table 2. First, we
see a recursively defined Fibonacci function fib. The function is defined using
the function constructor, introducing a closed function abstraction. Identifiers
may be bound to particular values within an expression using let bindings,
and recursive functions using the let rec construct. Formal arguments can
also appear as parameters before the ‘=’, as in the definitions of append and
insertion_sort.

As well as expressions, values and types, Caml Light supports matching val-
ues against patterns which bind identifiers. This is demonstrated in the append
example, where the first argument zs is matched against two patterns: the empty
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example.ml

let rec fib = function n ->
  if n < 2 then n else fib(n-1) + fib(n-2) ;;

let rec append zs ys = 
  match zs with
  | []    -> ys
  | x::xs -> x :: (append xs ys) ;;

let insertion_sort a =
  for i = 1 to vect_length a - 1 do
    let val_i = a.(i) in
    let j = ref i in
    while !j > 0 & val_i < a.(!j - 1) do
      a.(!j) <- a.(!j - 1);
      j := !j - 1
    done;
    a.(!j) <- val_i
  done;;

Page 1

Table 2. Some example Caml Light programs

list [], and the list-constructor pattern x::xs, which binds x to the head and
xs to the tail of a nonempty list.

Caml Light also supports imperative behaviour, as can be seen in the
insertion_sort example, acting on an array. Arrays are mutable: their con-
tent may be updated. A single assignable reference cell is constructed using ref,
and it may be accessed using explicit dereferencing ‘!’ and updated using ‘:=’.
In this example we also see two different looping constructs.

An extract of the Caml Light reference grammar [32] is given in Table 3.

3.1 Further Funcon Notation

In Sect. 2, we introduced some basic funcons for commands, declarations and
expressions. We next consider the further funcons used in our Caml Light case
study, involving abstractions, patterns and exception handling. They are listed
in Table 4, with their signatures. We discuss their semantics informally, focusing
on dynamic semantics; see Sects. 3.3 and 3.4 for their formal specifications.

Abstractions. A value of sort funcs is an abstraction encapsulating an ex-
pression that computes a value which may depend on the value of an argument
supplied by application. Dependence of the expression on the current environ-
ment may occur only when its execution is forced (by applying the abstraction)
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Lexical syntax

I : ident
Int : integer-literal

Float : float-literal
Char : char-literal
String : string-literal

Context-free syntax

T : typexpr ::= ’ ident | typexpr -> typexpr | typexpr (* typexpr)+

| typeconstr | typexpr typeconstr
| ( typexpr (, typexpr)∗ ) typeconstr

C : constant ::= integer-literal | float-literal | char-literal | string-literal
| false | true | [ ] | ( )

P : pattern ::= ident | _ | pattern as ident
| ( pattern ) | ( pattern : typexpr )

| pattern|pattern | constant | pattern (, pattern)+

| [ ] | [ pattern (; pattern)∗ ] | pattern :: pattern
E : exp ::= ident | constant | ( exp ) | begin exp end

| ( exp : typexpr ) | exp (, exp)+

| exp :: exp | [ exp (; exp)∗ ] | [| exp (; exp)∗ |]
| exp exp | prefix-op exp | exp infix-op exp
| not exp | exp & exp | exp or exp
| exp .( exp ) | exp .( exp ) <- exp

| if exp then exp (else exp)?

| while exp do exp done

| for ident = exp (to | downto) exp do exp done

| exp ; exp
| match exp with simple-matching
| function simple-matching
| try exp with simple-matching

| let (rec)? let-binding (and let-binding)∗ in exp
SM : simple-matching ::= pattern -> exp (| pattern -> exp)∗

LB : let-binding ::= pattern = exp

Table 3. An extract of the Caml Light reference grammar [32], with EBNF replaced
by (·)∗, (·)+, (·)? and the nonterminal expr renamed to exp



21

Abstraction sorts

funcs = abs(values, values)

patts = abs(values, environments)

Funcon and abstraction signatures

abs(exprs) : funcs

any : patts

apply(funcs, values) : exprs

bind(ids) : patts

catch(exprs, funcs) : exprs

catch-else-rethrow(exprs, funcs) : exprs

close(funcs) : exprs

closure(computes(X), environments) : computes(X)

else(computes(X), computes(X)) : computes(X)

fail : computes(X)

match(values, patts) : decls

only(values) : patts

patt-abs(patts, exprs) : funcs

patt-union(patts, patts) : patts

prefer-over(abs(X,Y ), abs(X,Y )) : abs(X,Y )

throw(values) : computes(X)

Table 4. Funcon signatures (see also Table 1)

or when a closure is formed (by copying the current environment into the expres-
sion). Static scoping is obtained by computing the closure of each abstraction
when it is created; application of abstractions otherwise gives dynamic scoping.

Abstractions A can be constructed using patt-abs(P,E), which abstracts
an expression E over a pattern P . When no matching of the given value is
needed, abs(E) allows E to refer to it using the funcon given. Abstractions can
be turned into self-contained function closures using the close funcon, to ensure
static scoping. Abstractions may be applied to argument values using the apply
funcon. An application of the abstraction prefer-over(A1, A2) applies A1 to the
given argument value, applying A2 only if that fails. (Failure is a kind of abrupt
termination, considered in more detail in Sect. 3.3.)

Patterns. A value of sort patts is an abstraction encapsulating a declaration
that computes an environment from a given value. An example pattern is any,
which matches any value and produces no bindings, modelling the ‘_’ wildcard
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in Caml Light. The funcon only takes a value and matches just that value,
again producing no bindings. The pattern bind(I) matches any value, and binds
I to it. Compound patterns may be constructed out of more primitive patterns.

Exceptions. The computation throw(V ) terminates abruptly, and so can be
seen to compute a value of any sort, vacuously. The catch funcon handles abrupt
termination of its first argument by applying a function to the thrown value.
The catch-else-rethrow funcon abbreviates a variant on this: it rethrows the
exception should it fail to be in the domain of the handler.

3.2 Caml Light Semantics

We translate Caml Light (abstract syntax trees) into funcon terms. The sig-
natures of the translation functions are listed in Table 5. For Caml Light,
computed values include ground constants (integers, Booleans, strings, floats,
chars) as well as records (maps, wrapped in a data constructor), variants for
disjoint unions (a single value tagged with a constructor), tuples, and function
abstractions.

Semantics

id [[_ : ident ]] : ids

type [[_ : typexpr ]] : types

value [[_ : constant ]] : values

patt [[_ : pattern ]] : patts

expr [[_ : exp ]] : exprs

func [[_ : simple-matching ]] : funcs

decl [[_ : let-binding ]] : decls

Table 5. Translation function signatures

We next show some of the equations specifying the translation of Caml
Light programs to funcon terms. We will first consider dynamic semantics,
specifying a translation which captures the intended runtime behaviour. Often,
this translation will also capture the static semantics correctly (since each funcon
by design has a natural combination of dynamic and static semantics). When
it does not, we need to add funcons to the translation to reflect the intended
compile-time behaviour, as we illustrate in Sect. 3.5.
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Conditional. Caml Light’s conditional construct on Booleans is translated
straightforwardly into the if-true funcon we have already seen:

expr [[ ifE1 thenE2 elseE3 ]] = (55)
if-true(expr [[E1 ]], expr [[E2 ]], expr [[E3 ]])

Here we are lifting the funcon if-true in the first argument to computations that
might compute a Boolean, and similarly when lifting is applied to pure data
operations, such as not. The static semantics of the translation of a complete
program to funcons checks that the arguments are in fact of type booleans.

expr [[ notE ]] = not(expr [[E ]]) (56)

We also use the if-true funcon in the translation of other Caml Light con-
structs, such as the conditional conjunction operator:

expr [[E1 &E2 ]] = if-true(expr [[E1 ]], expr [[E2 ]], false) (57)

Sequencing. The sequencing construct of Caml Light is translated as follows:

expr [[E1 ;E2 ]] = seq(effect(expr [[E1 ]]), expr [[E2 ]]) (58)

Here, we explicitly discard the computed value of the first expression.

Pattern Matching. We translate Caml Light’s simple matching construct
SM to a function abstraction using func [[_ ]]. Our analysis of a match expression
is as an application of such an abstraction to the matched expression, inserting
prefer-over to take into account what happens when the pattern fails to match
the given value:

expr [[ matchE withSM ]] = (59)
apply(prefer-over(func [[SM ]], abs(throw(cl-match-failure))),

expr [[E ]])

The funcon cl-match-failure is Caml Light-specific, and is defined simply as
a convenient abbreviation for the (translated) Match_failure constructor of
Caml Light’s built in exn type.

Function Application. The funcon apply corresponds directly to Caml
Light’s call-by-value function application:

expr [[E1 E2 ]] = apply(expr [[E1 ]], expr [[E2 ]]) (60)

The signature of apply indicates that it should be applied to a function abstrac-
tion and an argument value; it is lifted here to computations. We would specify
call-by-name semantics by forming a (parameterless closed) abstraction from the
argument expression, to prevent its premature evaluation.
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Function Abstraction. Caml Light is a functional language, and we repre-
sent functions as abstraction values.

expr [[ functionSM ]] = (61)
prefer-over(func [[SM ]], abs(throw(cl-match-failure)))

Simple Matchings. We will next see how func [[_ ]] translates simple match-
ings to abstractions. For a single body, the patt-abs funcon captures matchings
accurately; sequences of simple matchings are combined using prefer-over. We
use the close funcon to specify static bindings.

func [[P ->E ]] = close(patt-abs(patt [[P ]], expr [[E ]])) (62)

func [[P ->E |SM ]] = prefer-over(func [[P ->E ]], func [[SM ]]) (63)

Declarations. Local declarations are provided in Caml Light by the ‘let-in’
construct, corresponding to the scope funcon:

expr [[ letLB inE ]] = scope(decl [[LB ]], expr [[E ]]) (64)

Let-bindings are translated to declarations.

decl [[P =E ]] = (65)
match(expr [[E ]],

prefer-over(patt [[P ]], abs(throw(cl-match-failure))))

An identifier expression refers to its bound value.

expr [[ I ]] = bound-value(id [[ I ]]) (66)

The preceding two equations account for dynamic semantics. To accurately
model Caml Light’s let-polymorphism, further details are required, which we
outline in Sect. 3.5 (113).

Catching Exceptions. Caml Light’s try construct corresponds directly to
the catch-else-rethrow funcon:

expr [[ tryE withSM ]] = catch-else-rethrow(expr [[E ]], func [[SM ]]) (67)

Also here, further details are required to capture Caml Light’s static semantics,
see Sect. 3.5 (112).

Basic Patterns. We have notation corresponding directly to basic patterns.

patt [[ I ]] = bind(id [[ I ]]) (68)
patt [[ _ ]] = any (69)
patt [[C ]] = only(value [[C ]]) (70)
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Compound Data. Caml Light expressions include tupling. We represent
tuple values using the tuple-empty and binary tuple-prefix data constructors.
These are lifted to computations in the usual way. We use a small auxiliary
translation function expr-tuple [[_ ]]:

expr [[E1 ,E2 · · · ]] = expr-tuple [[E1 ,E2 · · · ]] (71)

expr-tuple [[E ]] = tuple-prefix(expr [[E ]], tuple-empty) (72)

expr-tuple [[E1 ,E2 · · · ]] = tuple-prefix(expr [[E1 ]], expr-tuple [[E2 · · · ]]) (73)

Compound Patterns. Patterns may also be combined using sequential choice,
reusing the prefer-over funcon.

patt [[P1 |P2 ]] = prefer-over(patt [[P1 ]], patt [[P2 ]]) (74)

One may also bind an identifier to the value matched by a pattern:

patt [[P as I ]] = patt-union(patt [[P ]],bind(id [[ I ]])) (75)

Built-In Operators. In Caml Light, many built-in operators (e.g., assign-
ment, dereferencing, allocation, and raising exceptions) are provided in the initial
library as identifiers bound to functions (and may be rebound in programs). We
reflect this by using the funcon scope to provide an initial environment to the
translations of entire Caml Light programs.

3.3 Dynamic Semantics of Further Funcon Notation

In Sect. 2.3 we explained and illustrated how to define the dynamic semantics of
the simple funcons introduced in Sect. 2.1. We now define the dynamic semantics
of the further funcons introduced in Sect. 3.1, which involve abstractions, pat-
terns and exceptions. See Table 4 (page 21) for the signatures of these funcons.

Abstractions. An abstraction abs(X) is a value constructed from a computa-
tion X that may depend on a given argument value. The funcon apply takes a
computed abstraction value abs(X) and an argument value V :

apply(abs(X), V )→ supply(V,X) (76)

(The funcon supply was introduced in Sect. 2.) The apply funcon is lifted in
both arguments.

When an abstraction abs(X) is applied, evaluation of bound-value(I) in X
gives the value currently bound to I, which corresponds to dynamic scopes for
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non-local bindings. To specify static scoping, we use the close funcon, which takes
an abstraction and returns a closure formed from it and the current environment.

env ρ ` close(abs(X))→ abs(closure(X, ρ)) (77)

The auxiliary funcon closure (not used when specifying translations) sets the
current environment for any computation X:

env ρ ` X → X ′

env_ ` closure(X, ρ)→ closure(X ′, ρ)
(78)

closure(V, ρ)→ V (79)

Thus, whether a language is statically or dynamically scoped may be specified in
its translation to funcons simply by the presence or absence of the close funcon
when forming abstractions.

Patterns. A pattern can be seen as a form of abstraction: while a function
computes a value depending on a given value, a pattern computes an environment
depending on a given value. Matching the value of an expression E to a pattern
P computes an environment. It corresponds to the application of P to E:

match(E,P )→ apply(P,E) (80)

The funcon patt-abs(P,X) is similar to abs(X), except that it takes also a
pattern P that is matched against the given value to compute an environment.
This allows nested abstractions to refer to arguments at different levels, using
the identifiers bound by the respective patterns. The following rule defines the
dynamic semantics of patt-abs using the abs constructor:

patt-abs(P,X)→ abs(scope(match(given, P ), X)) (81)

Patterns may be constructed in various ways. For example, the pattern
bind(I) matches any value and binds the identifier I to it:

bind(I)→ abs(bind-value(I, given)) (82)

The wildcard pattern any also matches any value, but computes the empty
environment:

any→ abs(∅) (83)

Other patterns do not match all values. An extreme example is the pattern
only(V ), matching just the single value V or executing the funcon fail, which is
defined below (87).

only(V )→ abs(if-true(equal(given, V ), ∅, fail)) (84)
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The definition of the operation prefer-over on abstractions and (as a special
case) on patterns involves the funcon else, which is defined below (88–90).

prefer-over(abs(X), abs(Y ))→ abs(else(X,Y )) (85)

For patterns, prefer-over corresponds to ordered alternatives, as found in Caml
Light.

Another way to combine two patterns, also found in Caml Light, is con-
junctively, requiring them both to match, and uniting their bindings. This cor-
responds to the funcon patt-union:

patt-union(abs(X), abs(Y ))→ abs(map-union(X,Y )) (86)

Here, the data operation map-union is lifted to computations.

Failure and Back-Tracking. The funcon fail emits the signal ‘failure true’ and
then makes a transition to the funcon stuck (which has no further transitions).

fail failure true−−−−−−→ stuck (87)

The funcon else allows recovery from failure. The signal ‘failure false’ indicates
that the computation is proceeding normally, and is treated as unobservable.

X
failure false−−−−−−→ X ′

else(X,Y )
failure false−−−−−−→ else(X ′, Y )

(88)

X
failure true−−−−−−→ X ′

else(X,Y )
failure false−−−−−−→ Y

(89)

else(V, Y )
failure false−−−−−−→ V (90)

Exceptions. We specify exception throwing and handling in a modular way
using the emitted signals ‘exception some(V )’ and ‘exception none’ (the latter is
unobservable).

throw(V )
exception some(V )−−−−−−−−−−−→ stuck (91)

If the first argument of the funcon catch signals an exception some(V ), it applies
its second argument (an abstraction) to V .

X
exception none−−−−−−−−→ X ′

catch(X,Y )
exception none−−−−−−−−→ catch(X ′, Y )

(92)

X
exception some(V )−−−−−−−−−−−→ X ′

catch(X,Y )
exception none−−−−−−−−→ apply(Y, V )

(93)

catch(V, Y )
exception none−−−−−−−−→ V (94)
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The following funcon abbreviates a useful variant of catch: exceptions are
propagated when the application of the abstraction to them fails.

catch-else-rethrow(E,A)→ (95)
catch(E,prefer-over(A, abs(throw(given))))

For funcons whose I-MSOS rules do not mention the exception entity, exceptions
are implicitly propagated to the closest enclosing funcon that can handle them.
When the translation of a program to funcons involves throw, it needs to be
enclosed in catch, to ensure that (otherwise-)unhandled exceptions cause abrupt
termination.

3.4 Static Semantics of Further Funcon Notation

In Sect. 2.4 we explained and illustrated how to define the static semantics of the
simple funcons introduced in Sect. 2.1. We now define the static semantics of the
further funcons introduced in Sect. 3.1, complementing the dynamic semantics
defined in Sect. 3.3. See Table 4 (page 21) for the signatures of these funcons.

Abstractions. As mentioned in Sect. 3.3, an abstraction abs(X) has dynamic
scopes for its non-local bindings. When the abstraction is applied, the compu-
tation X is forced, and these bindings have to be provided by the context of the
application.8 The type of abs(X) is of the form abs(Γ, T1, T2), and reflects the
potential dependence of X not only on the argument value supplied by apply,
but also on the bindings available at application time. Abstractions are them-
selves values, so their types are specified independently of the current context in
the following rule:

envΓ, givenT1 ` X : T2
env_, given_ ` abs(X) : abs(Γ, T1, T2)

(96)

Notice that an abstraction can have many types; in particular, when X does
not refer to the given value at all, the argument type T1 is arbitrary, and when
X does not refer to non-local bindings, Γ is arbitrary, so it can be the empty
context ∅.

The abstraction computed by the expression close(abs(X)) is closed, hav-
ing static scopes for non-local bindings. More generally, a well-typed expression
close(E) has a type of the form abs(∅, T1, T2) in a context that provides all
required non-local bindings for the abstraction computed by E.9

envΓ ` E : abs(Γ1, T1, T2) Γ1 ⊆ Γ
envΓ ` close(E) : abs(∅, T1, T2)

(97)

8 In effect, non-local bindings correspond to implicit parameters.
9 The notation abs(T1, T2) for abstraction types in the conference version of this paper
[13] abbreviates abs(∅, T1, T2).
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Combining rules (96) and (97) we obtain a derived rule corresponding to the
usual typing rule for abstractions with static scopes:

envΓ, givenT1 ` X : T2
envΓ, given_ ` close(abs(X)) : abs(∅, T1, T2)

(98)

The typing rule for application specifies that the abstraction must be closed,
but otherwise is the same as the usual rule for static bindings:

E1 : abs(∅, T2, T ) E2 : T2
apply(E1, E2) : T

(99)

This approach to assigning static types to dynamically scoped abstractions
is similar to the handling of implicit parameters proposed in [34]. However,
while they extend statically scoped lambda calculus with implicit variables, we
introduce types of dynamically scoped abstractions that can be specialised to
statically scoped ones.

Patterns. A pattern is a closed abstraction that (when it matches a given value)
computes an environment. The type of a pattern P is of the form abs(∅, T, Γ ),
where Γ determines the types of the identifiers bound when P is matched to a
value of type T .

The typing rule for match is similar to that for apply (99):

E : T P : abs(∅, T, Γ )
match(E,P ) : Γ

(100)

The typing rule for patt-abs(P,X) is similar to that for abs(X) (96), except
that the environment in which X is typed is updated with the type of the
environment computed by P :

envΓ, givenT ` P : abs(∅, T1, Γ2) env(Γ2/Γ1), givenT1 ` X : T2
envΓ, givenT ` patt-abs(P,X) : abs(Γ1, T1, T2)

(101)

The typing rules for patterns are as follows:

bind(I) : abs(∅, T, {I 7→ T}) (102)

any : abs(∅, T, ∅) (103)

V : T

only(V ) : abs(∅, T, ∅)
(104)

P1 : abs(∅, T, Γ1) P2 : abs(∅, T, Γ2)

patt-union(P1, P2) : abs(∅, T,map-union(Γ1, Γ2))
(105)

The funcon prefer-over is applicable to arbitrary abstractions, not just pat-
terns, and so has a more general typing rule:

P1 : abs(Γ1, T1, T2) P2 : abs(Γ2, T1, T2) Γ1 ⊆ Γ Γ2 ⊆ Γ
prefer-over(P1, P2) : abs(Γ, T1, T2)

(106)
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Failure and Back-Tracking. The funcon fail may have any type. The funcon
else requires both its arguments to have the same type.

fail : T (107)

X1 : T X2 : T

else(X1, X2) : T
(108)

Exceptions. The static semantics of the funcon throw allows it and its argu-
ment to have any type. The funcons catch and catch-else-rethrow check that
the abstraction used to handle thrown exceptions computes values of the same
type as normal termination.

E : T ′

throw(E) : T
(109)

X : T E : abs(∅, T ′, T )
catch(X,E) : T

(110)

X : T E : abs(∅, T ′, T )
catch-else-rethrow(X,E) : T

(111)

3.5 Caml Light Static Semantics

The translation specified in Sect. 3.2 appears to accurately reflect the dynamic
semantics of Caml Light programs. The funcons used in the translation also
have static semantics, which provides a ‘default’ static semantics for the pro-
grams. In most cases, this agrees with the intended static semantics of Caml
Light – but not always. In the latter cases, we modify the translation by in-
serting additional funcons which affect the static semantics, but which leave the
dynamic semantics unchanged. We consider some examples. The signatures of
the extra funcons involved are shown in Table 6.

Funcon signatures

generalise-decl(decls) : decls

instantiate-if-poly(exprs) : exprs

restrict-domain(abs(X,Y ), types) : abs(X,Y )

Table 6. Signatures of some funcons for adjusting static semantics
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Catching Exceptions. The translation of tryE withSM in Sect. 3.2 (67)
allows any value to be thrown as an exception and caught by the handler. In
Caml Light, however, the values that can be thrown and caught are restricted to
those included in the type exn, so static semantics needs to check that func [[SM ]]
has type exn->X for some X. This can be achieved using restrict-domain(E, T ),
which checks that the type of E is that of an abstraction with argument type T ,
but otherwise (statically and dynamically) behaves just like E. The modified
translation equation is:10

expr [[ tryE withSM ]] = (112)
catch-else-rethrow(expr [[E ]],

restrict-domain(func [[SM ]],bound-type(id [[ exn ]])))

Using Polymorphism. Caml Light has polymorphism, where a type may
be a type schema including universally quantified variables. The interpretation
of identifier binding inspection using just the bound-value funcon (66) does not
account for instantiation of polymorphic variables. We can rectify this as follows:

expr [[ I ]] = instantiate-if-poly(bound-value(id [[ I ]])) (113)

The funcon instantiate-if-poly takes all universally quantified type variables in
the type of its argument, and allows them to be instantiated arbitrarily; it does
not affect the dynamic semantics.

Generating Polymorphism. Expressions with polymorphic types in Caml
Light arise from let definitions, where types are generalised as much as possible,
up to a constraint regarding imperative behaviour known as value-restriction
[60]. The appropriate funcon is generalise-decl, which finds all generalisable
types in its argument environment and explicitly quantifies them, universally.
Whether this generalisation should be applied is determined entirely by the
outermost production of the right-hand side (E) of the let definition.

decl [[P =E ]] = generalise-decl(decl-mono [[P = E ]]) (114)
if E is generalisable

decl [[P =E ]] = decl-mono [[P = E ]] (115)
if E is not generalisable

The translation funcon decl-mono [[_ ]] is the same as the version of decl [[_ ]]
specified in Sect. 3.2 (65) for dynamic semantics.

decl-mono [[P =E ]] = (116)
match(expr [[E ]],

prefer-over(patt [[P ]], abs(throw(cl-match-failure))))
10 When I is bound to a type, bound-type(I) corresponds to bound-value(I), but it is

evaluated as part of static semantics.
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3.6 The Full Caml Light Case Study

There is not sufficient space here to present all of our component-based semantics
of the Caml Light language. The complete translation for the subset of Caml
Light presented in Table 3 is given in the Appendix. Our translation of the
following further constructs, together with the specifications of all the required
funcons, is available online [12].

Values: records, with and without mutable fields; variant values.
Patterns: variant patterns; record patterns.
Expressions: operations on variants and records; function abstractions with

multiple-matching arguments.
Global definitions: type abbreviations; record types; variant types; exception

definitions.
Top level: module implementations; the core library.

We have not yet given semantics for modules (interfaces, directives, and refer-
ences to declarations qualified by module names).

This concludes the presentation of illustrative excerpts from our Caml Light
case study. Our confidence in the accuracy of the specifications of the translation
and of the funcons used in it is based partly on the simplicity and perspicuity of
the specifications, as illustrated above, partly on our tool support for validating
them, which is described in the next section.

4 Tool Support

This section gives an overview of the tools we have used in connection with the
case study presented in Sect. 3. These tools support parsing programs, trans-
lating programs to funcon terms, generating an interpreter from funcon spec-
ifications, and running programs on generated interpreters. They also support
developing and browsing the specifications of funcons and languages.

The main technical requirement for such tools is to be consistent with the
foundations of our specifications. Using the tools to run programs in some spec-
ified language (and comparing the results with running the same programs on
some reference implementation) then tests the correctness of the language specifi-
cation. With our component-based approach, the language specification consists
of the equations for translating programs to funcons, together with the static
and dynamic rules of the funcons used in the translation.

The PLanCompS project is currently developing integrated tools to support
component-based language specification, but these are not yet ready for use in
case studies. We have therefore used a combination of several existing tools to
develop and test our specification of Caml Light: SDF for parsing programs;
ASF+SDF and Stratego for translating programs to funcons; Prolog for parsing
I-MSOS specifications and generating Prolog code from them, and for executing
funcon terms; and Spoofax for generating editors for our specification languages.
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The rest of this section summarises what the various tools do, and illustrates
the support they have provided for our specification of Caml Light (CL). All
our source code is available for download along with the CL specification.

4.1 Parsing Programs

The syntax of CL is defined in its reference manual [32] by a highly ambiguous
context-free grammar in EBNF (see Table 3, page 20) together with some tables
and informal comments regarding the intended disambiguation. We originally
extracted the text of the grammar from the HTML version of the reference
manual and converted it (semi-automatically) to SDF [61], which supports the
specification of arbitrary context-free grammars.

We used the existing tool support for SDF to generate a scannerless GLR
parser for CL, which was able to parse various test programs. To obtain a
unique parse-tree for a program, however, expressions generally needed addi-
tional grouping parentheses. SDF supports several ways of specifying disam-
biguation, including relative priorities, left/right associativity, prefer/avoid an-
notations, and follow-restrictions. These allowed us to express most of the in-
tended disambiguation without introducing auxiliary nonterminal symbols, al-
beit with some difficulty (e.g., we ended up using position-specific non-transitive
priorities). A closer investigation by colleagues working on disambiguation tech-
niques led to the quite surprising result that SDF’s disambiguation mechanisms
are actually inadequate to specify one particular feature of expression grouping
that is required by CL [1]. Fortunately, it appears that CL programmers tend to
insert grouping parentheses to avoid potential misinterpretation in such cases,
so although we know that ambiguity could arise when using our parser, we have
not found practical programs for which that happens.

One of the initial advantages of using SDF was its support by the ASF+SDF
Meta-Environment [8], which provided an IDE with some pleasant features. How-
ever, ASF+SDF is no longer maintained or developed, so we recently switched to
Spoofax [28] for generating a CL parser from our SDF grammar. Our Spoofax
editor project for CL supports parsing of CL programs while editing them in
Eclipse, and we use the Spoofax command-line interface when running test suites.

4.2 Translating Programs to Funcons

After parsing a CL program, we need to be able to translate it to funcons.
ASF+SDF [8] allowed such translation rules to be specified as term rewrit-
ing equations, based on the CL syntax together with notation for translation
functions, meta-variables, and funcons, all specified in SDF. When we switched
from ASF+SDF to Spoofax, we started to use Stratego [62] for specifying term
rewriting. Fortunately, it was possible to re-express our ASF+SDF equations
quite naturally as Stratego rules, by exploiting its support for concrete syntax;
see Fig. 1 for some examples.

Figure 2 shows a funcon term resulting from pressing the ‘Generation’ button
after parsing a CL program in the Spoofax editor. To obtain funcon terms in
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generate.str

  to-funcons:
    |[ expr[: ~E1 or ~E2 :] ]| ->
    |[ if_true(expr[: ~E1 :], true, expr[: ~E2 :]) ]|
  to-funcons:
    |[ expr[: if ~E1 then ~E2 :] ]| ->
    |[ expr[: if ~E1 then ~E2 else ( ) :] ]|
  to-funcons:
  |[ expr[: if ~E1 then ~E2 else ~E3 :] ]| -> 
  |[ if_true(expr[: ~E1 :], expr[: ~E2 :], expr[: ~E3 :] ) ]|
  to-funcons:
    |[ expr[: while ~E1 do ~E2 done :] ]| ->
    |[ while_true(expr[: ~E1 :], effect(expr[: ~E2 :])) ]|

Page 7

Fig. 1. Some Stratego rules for transforming CL to funcons

the format used by our Prolog-based tools, we invoke a pretty-printer generated
from SDF3 templates for funcon signatures.

4.3 Translating I-MSOS Rules to Prolog

A notation called MSDF had previously been developed for specifying transition
rules for funcons in connection with teaching operational semantics using MSOS
[44], along with a definite clause grammar (DCG) for parsing MSDF, and Prolog
code for transforming each MSDF rule to a Prolog clause (MSDF is used also in
the Maude MSOS Tool [10]). The PLanCompS project has developed a variant
of MSDF called CSF for specifying I-MSOS rules for funcons. CSF is parsed using
a DCG when translating rules to Prolog; we also have a Spoofax editor for CSF,
based on an SDF grammar. Figure 3 shows an example of a CSF specification.

As with the original version of MSDF, we use a Prolog program to transform
parsed CSF rules to Prolog clauses (supporting not only transitions but also
typing assertions and equations) and to run funcon terms. A shell script invokes
the Prolog program to generate Prolog code from our current collection of CSF
specifications of funcons and values in a few seconds; further scripts run entire
test suites. When all the generated clauses are loaded together with a small
amount of fixed runtime code (mainly for MSOS label composition), funcon
terms can be executed.

Directly interpreting small-step transition rules for funcons is inherently in-
efficient [3]: each step of running a program searches for a transition from the
top of the entire program, and the term representing the program gets repeat-
edly unfolded in connection with recursive function calls. The number of Prolog
inference steps is sometimes alarmingly high, but we have managed to execute a
wide range of CL test programs. We intend to apply semantics-preserving trans-
formation of small-step rules to so-called ‘pretty-big-step’ rules following [2] to
remove this source of inefficiency.
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Fig. 2. A CL program and the generated funcon term
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if_true#3.csf

Funcon if_true(booleans,X,X) : X

Rules:

if_true(true,X,Y) --> X

if_true(false,X,Y) --> Y

B : booleans, X : T, Y : T
--------------------------
    if_true(B,X,Y) : T

Page 1

Fig. 3. A CSF specification

4.4 A Component-Based Semantics Specification Language

We are developing CBS, a unified specification language designed for use in
component-based semantics. CBS allows specification of abstract syntax gram-
mars (essentially BNF with regular expressions), the signatures and equations
for translation functions, and the signatures and rules for values and funcons,
so it can replace our current combination of SDF, Stratego and CSF. Use of
CBS should provide considerably greater notational consistency, and improve
the readability of our specifications.

We have used Spoofax to create an editor for CBS, exploiting name reso-
lution to check that all the notation used in a CBS project has been uniquely
defined (possibly in a different file) and to hyperlink uses of funcons to their
specifications. Figure 4 illustrates the use of the CBS editor to check the specifi-
cation of a small imperative language for notational consistency in the presence
of CBS specifications of the required funcons and values.

We are currently re-specifying CL in CBS. We intend to generate SDF and
Stratego code from the CBS specification of the translation of CL to funcons,
and Prolog rules from the CBS specifications of the individual funcons. We would
also like to generate LATEX source code from CBS, to ensure consistency between
examples provided in articles such as this, and the specifications that we have
tested.

We expect our current case study of component-based semantics (C#) to be
developed entirely in CBS, supported by tools running in Spoofax. Further tools
currently being developed in the PLanCompS project are to integrate support
for CBS with recent advances in GLL parser generation and disambiguation [26],
aiming to provide a complete workbench for language specification.

5 Related Work

The component-based framework presented and illustrated in the previous sec-
tions was inspired by features of many previous frameworks. In this section, we
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Fig. 4. CBS in use on IMP, a small imperative language
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mainly consider its relationship to semantic frameworks that have a high degree
of modularity.

Algebraic Specification. Heering and Klint proposed in the early 1980s to struc-
ture complete definitions of programming languages as libraries of reusable com-
ponents [22]. This motivated the development of ASF+SDF [4], which provided
strong support for modular structure in algebraic specifications. However, an
ASF+SDF definition of a programming language did not, in general, permit the
reuse of the individual language constructs in the definitions of other languages.
The main hindrances to reuse in ASF+SDF were coarse modular structure (e.g.,
specifying all expression constructs in a single module), explicit propagation of
auxiliary entities, and direct specification of language constructs. Other algebraic
specification frameworks (e.g., OBJ [20]) emphasised finer modular structure,
but still did not provide reusable components of language specifications. These
issues are illustrated and discussed further in [48].

Monads. At the end of the 1980s, Moggi [39] introduced the use of monads and
monad transformers in denotational semantics. (In fact Scott and Strachey had
themselves used monadic notation for composition of store transformations in
the early 1970s, and an example of a monad transformer can also be found in
the VDM definition of PL/I, but the monadic structure was not explicit [47].)
Monads avoid explicit propagation of auxiliary entities, and monad transformers
are highly reusable components. Various monad transformers have been defined
(e.g., see [35]) with operations that in many cases correspond to our funcons;
monads can also make a clear distinction between sets T of values and sets of
computations M(T ) of values in T .

One drawback of monad transformers with respect to modularity is that
different orders of composition can lead to different semantics. For example, one
order of composition of the state and exception monad transformers preserves
the state when an exception is thrown, whereas the other restores it. In contrast,
the semantics of our funcons is independent of the order in which they are added.
The concept of monad transformers inspired the development of MSOS [42], the
modular variant of SOS that we use to define funcons.

An alternative way of defining monads has been developed by Plotkin and
Power [57] using Lawvere theories instead of monad transformers. Recently,
Delaware et al. [14] presented modular monadic meta-theory, combining modular
datatypes with monad transformers, focusing on modularisation of theorems and
proofs. Both these frameworks assume some familiarity with Category Theory.
In contrast, the foundations of our component-based framework involve MSOS,
where labels happen to be morphisms of categories, but label composition can
easily be explained without reference to Category Theory.

Abstract State Machines. Kutter and Pierantonio [30] proposed the Montages
variant of abstract state machines (ASMs) with a separate module for each
language construct. Reusability was limited partly by the tight coupling of com-
ponents to concrete syntax.
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Börger et al. [6,7] gave modular ASM semantics for Java and C#, identifying
features shared by the two languages, but did not define components intended
for wider reuse.

ASM specifications generally make widespread use of ad-hoc abbreviations
for patterns of rules, and sometimes redefine these abbreviations when extend-
ing a described language. In our component-based approach, in contrast, the
specifications of the funcons remain fixed, and it is only the specification of the
translation to funcons that may need to change when extending the language.

Action Semantics. This framework combined features of denotational, opera-
tional and algebraic semantics. It was developed initially by Mosses and Watt
[40,41,51]. The notation for actions used in action semantics can be regarded as a
collection of funcons. Action notation supported specification of sequential and
interleaved control flow, abrupt termination and its handling, scopes of bind-
ings, imperative variables, asynchronous concurrent processes, and procedural
abstractions, but the collection of actions was not extensible. Actions were rel-
atively primitive, being less closely related to familiar programming constructs
than funcons (e.g., conditional choice was specified using guards, and iteration
by an ‘unfolding’). Various algebraic laws allowed reasoning about action equiva-
lence. Although action semantics was intended for specifying dynamic semantics,
Doh and Schmidt [16] explored the possibility of using it also for static semantics.

The modular structure of specifications in action semantics was conventional,
with separate sections for abstract syntax, auxiliary entities, and semantic equa-
tions. Doh and Mosses [15] proposed replacing it by a component-based struc-
ture, defining the abstract syntax and action semantics of each language con-
struct in a separate module, foreshadowing the modular structure of funcon
specifications (except that static semantics was not addressed).

Iversen and Mosses [24] introduced so-called Basic Abstract Syntax (BAS),
which is a direct precursor of our current collection of funcons. They specified a
translation from the Core of Standard ML to BAS, and gave action semantics
for each BAS construct, with tool support using ASF+SDF [9]. However, hav-
ing to deal with both BAS and action notation was a drawback. Mosses et al.
[25,43,45,46] reported on subsequent work that led to the present paper.

TinkerType. Levin and Pierce developed the TinkerType system [33] to sup-
port reuse of conventional SOS specifications of individual language constructs.
The idea was to have a variant of the specification of each construct for each com-
bination of language features. To define a new language with reuse of a collection
of previously specified constructs, TinkerType could determine the union of
the auxiliary entities needed for their individual specifications, and assemble the
language definition from the corresponding variants. This approach alleviated
some of the symptoms of poor reusability in SOS.

Ott. Another system supporting practical use of conventional SOS is Ott [59],
which allows for specifications to be compiled to the languages of various theorem
provers, including HOL (based on classical higher-order logic). Ott facilitates
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use of SOS, providing a metalanguage that supports variable binding and sub-
stitution; however, it does not provide support for reusable components.

Owens et al. [52,53] used Ott to specify a sublanguage of OCaml corre-
sponding closely to Caml Light. Owens [53] used the HOL code automatically
generated from the language specification to prove a type soundness theorem.
The dynamic semantics is formulated in terms of small-step rules, relying on
congruence rules to specify order of evaluation. The approach departs from tra-
ditional SOS [56] in using substitution rather than environments; Ott requires
binding occurrences of variables to be annotated as such in the abstract syn-
tax. The need for renaming of bound value variables is avoided by not reducing
under value variable binders, and by relying on the assumption that well-typed
programs have no free value variables (i.e., they are context-independent). The
static semantics uses De Brujin indices to represent type variables, and relies on
substitution to deal with type variables in explicit type annotations. The use of
labels to avoid explicit mention of the store is similar to MSOS. Some of the
choices of techniques used in the specification are motivated by the HOL proofs
– notably, their use of congruence rules instead of evaluation contexts, and of
De Brujin indices.

The OCaml Light specification is comparatively large: 173 rules for the
static semantics and 137 rules for the dynamic semantics. It is interesting to
observe that out of the 61 rules that are given for expression evaluation [52,
Sect. 4.9], 18 are congruence rules, and 17 are exception propagation rules. Ul-
timately, little more than a third of the rules are reductions; these are the only
ones which would need to be explicitly stated using an approach that takes full
advantage of strictness annotations and of MSOS labels. For example, the Ott
rules for evaluating if-else expressions are the following:

` e1
L−−→ e′1

` if e1 then e2 else e3
L−−→ if e′1 then e2 else e3

ifthenelse_ctx

` if (%prim raise) v then e1 else e2 −→ (%prim raise) v
if_raise

` if true then e2 else e3 −→ e2
ifthenelse_true

` if false then e2 else e3 −→ e3
ifthenelse_false

The above specification can be compared to that for the if-true funcon (Fig. 3).
In the Ott specification, the first rule (ifthenelse_ctx) is a congruence rule, and
the second one (if_raise) is an exception propagation rule. Only the last two
rules above are reduction rules, corresponding to our (30, 31). Note the use of
the label L to thread the state in the first rule (as in MSOS), and the absence
of environments (due to their use of substitution).

In the Ott typing rule below, E is a typing context, and σT is an assignment
of types to type variables (needed in connection with polymorphism, to deal with
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explicit type annotations).

σT&E ` e1 : bool σT&E ` e2 : t σT&E ` e3 : t

σT&E ` if e1 then e2 else e3 : t
ifthenelse

This is similar to the corresponding static rule in our semantics (44). As a purely
notational difference, we leave the typing context implicit, following the I-MSOS
presentation style. The assignment to type variables is also left implicit in our
treatment of polymorphism, see Sect. 3.5.

Evaluation Contexts. Ott supports also reduction semantics based on evalua-
tion contexts. This framework is widely used for proving meta-theoretic results
(e.g., type soundness).11 The semantics of Standard ML presented in [21,31]
uses an elaborative approach based on the translation of the source language to
a type system (the internal language) and on a reduction semantics (relying on
evaluation contexts), formalised and proved to be type sound in Twelf. Concise-
ness is achieved by defining the semantics on the internal language, rather than
on the source one. However, the internal language is designed for the translation
from a particular source (Standard ML in this case), and it is not particularly
oriented toward extensibility and reuse.

The PLT Redex tool [18] runs programs by interpreting their reduction se-
mantics, and has been used to validate language specifications [29]. However, it
is unclear whether reduction semantics could be used to define reusable compo-
nents whose specifications never need changing when combined – in particular,
adding new features may require modification of the grammar for evaluation
contexts.

Compared to a conventional small-step SOS, the specification of the same
language by evaluation rules and the accompanying evaluation-context gram-
mar is usually relatively concise. This is primarily because each congruence rule
in the SOS corresponds to a single production of the evaluation context gram-
mar; moreover, exception propagation is usually specified by inference rules in
SOS, but by a succinct auxiliary evaluation context grammar in reduction se-
mantics. However, our I-MSOS specifications of funcons avoid the need for many
congruence rules, and exception propagation is implicit, which may well make
our specifications even more concise than a corresponding reduction semantics.

Rewriting Logic and K. Competing approaches with a high degree of inherent
modularity include Rewriting Logic Semantics [37] and the K framework [58].
Both frameworks have well-developed tool support, which allows not only exe-
cution of programs according to their semantics, but also model checking. K has
been used to specify major programming languages such as C [17] and Java [5].

The lifting of funcon arguments from value sorts to computation sorts is
closely related to (and was inspired by) strictness annotations in K. It appears

11 The lack of HOL support for evaluation contexts discouraged Owens from using
them for his OCaml Light case study [53].
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possible to specify individual funcons independently in K, and to use the K Tools
to translate programming languages to funcons [50], thereby incorporating our
component-based approach directly in that framework.

6 Conclusions and Further Work

We regard our Caml Light case study as significant evidence of the applicability
and modularity of our component-based approach to semantics. The key novel
feature is the introduction of an open-ended collection of fundamental constructs
(funcons). The abstraction level of the funcons we have used to specify the
semantics of Caml Light appears to be optimal: if the funcons were closer to the
language constructs, the translation of the language to funcons would have been
a bit simpler, but the I-MSOS rules for the funcons would have been considerably
more complicated; lower-level funcons (e.g., comparable to the combinators used
in action semantics [40,41]) would have increased the size and decreased the
perspicuity of the funcon terms used in the translation. Some of the funcons
presented here do in fact correspond very closely to Caml Light language
constructs (e.g., eager function application and pattern-matching) but we regard
that as a natural consequence of the clean design of this particular language, and
unlikely to occur when specifying a language whose design is less principled.

Caml Light is a real language, and we have successfully tested our semantics
for it by generating funcon terms from programs, running them using Prolog code
generated from the I-MSOS rules that define the funcons, then comparing the
results with those given by running the same programs on the latest release of the
Caml Light system (which is the de facto definition of the language). The test
programs and funcon terms are available online [12] together with the generated
Prolog code for each funcon. We have checked that our test programs exercise
every translation equation, and that running them uses every applicable rule of
every funcon, so we are reasonably confident in the accuracy of our specifications.

The work reported here is part of the PLanCompS project [55]. Apart from
developing and refining the component-based approach to language specification,
PLanCompS is developing a chain of tools specially engineered to support its
practical use.

Ongoing and future case studies carried out by the PLanCompS project will
test the reusability of our funcons. We are already reusing many of those intro-
duced for specifying Caml Light in a component-based semantics for C#. The
main test will be to specify the corresponding Java constructs using essentially
the same collection of funcons as for C#. We expect the approach to be equally
applicable to domain-specific languages, where the benefits of reuse in connec-
tion with co-evolution of languages and their specifications could be especially
significant.

We are quite happy with the perspicuity of our specifications. Lifting value
arguments to computation sorts has eliminated the need to specify tedious ‘con-
gruence’ rules in the small-step I-MSOS of funcons. The funcon names are rea-
sonably suggestive, while not being too verbose, although there is surely room
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for improvement. When the PLanCompS project has completed its case studies,
it intends to finalise the definitions of the funcons it has developed, and estab-
lish an open-access digital library of funcons and language specifications. Until
then, the names and details of the funcons presented here should be regarded as
tentative.

In conclusion, we consider our component-based approach to be a good ex-
ample of modularity in the context of programming language semantics. We do
not claim that any of the techniques we employ are directly applicable in soft-
ware engineering, although component-based specifications might well provide a
suitable basis for generating implementations of domain-specific languages.

Acknowledgments. Thanks to Erik Ernst and the anonymous referees for helpful
comments and suggestions for improvement. The reported work was supported
by EPSRC grant (EP/I032495/1) to Swansea University for the PLanCompS
project.

Appendix

This appendix contains the translation equations for the subset of Caml Light
presented in Table 3, from which the illustrative examples in Sect. 3 are drawn.
Our translation of the full Caml Light language is available online [12].

Markup for formatting the equations given below was inserted manually in
the Stratego rules used to translate Caml Light programs to funcons. A few
equations overlap; in Stratego we apply the more specific ones when possible.

Global names

id [[ I ]] = id(′I ′)

Type expressions

type [[ ( T ) ]] = type [[ T ]]

type [[ I ]] = bound-type(id [[ I ]])

type [[ T1 -> T2 ]] = abs(∅, type [[ T1 ]], type [[ T2 ]])

type [[ T I ]] = instantiate-type(type [[ I ]], type-list [[ T ]])

type [[ ’ I ]] = typevar(′I ′)
type [[ T1 * T2 ]] = tuple-type2(type [[ T1 ]], type [[ T2 ]])

type [[ T1 * T2 * T3 · · · ]] = tuple-type-prefix(type [[ T1 ]], type [[ T2 * T3 · · · ]])

type [[ (T1 , T2 · · · ) I ]] = instantiate-type(type [[ I ]], type-list [[ T1 , T2 · · · ]])

type-list [[ T ]] = list1(type [[ T ]])

type-list [[ T1 , T2 · · · ]] = list-prefix(type [[ T1 ]], type-list [[ T2 · · · ]])
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Constants

value [[ Int ]] = Int

value [[ Float ]] = Float

value [[ Char ]] = char(Char)
value [[ String ]] = String

value [[ false ]] = false
value [[ true ]] = true
value [[ [ ] ]] = list-empty
value [[ ( ) ]] = null

Patterns

patt [[ ( P ) ]] = patt [[ P ]]

patt [[ I ]] = bind(id [[ I ]])

patt [[ _ ]] = any
patt [[ P as I ]] = patt-union(patt [[ P ]], bind(id [[ I ]]))

patt [[ ( P : T ) ]] = patt-at-type(patt [[ P ]], type [[ T ]])

patt [[ P1 | P2 ]] = patt-non-binding(prefer-over(patt [[ P1 ]], patt [[ P2 ]]))

patt [[ P1 :: P2 ]] = list-prefix-patt(patt [[ P1 ]], patt [[ P2 ]])

patt [[ [ P ] ]] = patt [[ P :: [ ] ]]

patt [[ [ P1 ; P2 · · · ] ]] = patt [[ P1 :: [ P2 · · · ] ]]

patt [[ C ]] = only(value [[ C ]])

patt [[ P1 , P2 · · · ]] = patt-tuple [[ P1 , P2 · · · ]]

patt-tuple [[ P ]] = tuple-prefix-patt(patt [[ P ]], only(tuple-empty))
patt-tuple [[ P1 , P2 · · · ]] = tuple-prefix-patt(patt [[ P1 ]], patt-tuple [[ P2 · · · ]])

Expressions

expr [[ I ]] = instantiate-if-poly(follow-if-fwd(bound-value(id [[ I ]])))

expr [[ C ]] = value [[ C ]]

expr [[ ( E ) ]] = expr [[ E ]]

expr [[ begin E end ]] = expr [[ E ]]

expr [[ ( E : T ) ]] = typed(expr [[ E ]], type [[ T ]])

expr [[ E1 , E2 · · · ]] = expr-tuple [[ E1 , E2 · · · ]]

expr-tuple [[ E ]] = tuple-prefix(expr [[ E ]], tuple-empty)
expr-tuple [[ E1 , E2 · · · ]] = tuple-prefix(expr [[ E1 ]], expr-tuple [[ E2 · · · ]])

expr [[ E1 :: E2 ]] = list-prefix(expr [[ E1 ]], expr [[ E2 ]])

expr [[ [ E ] ]] = expr [[ E :: [ ] ]]

expr [[ [ E1 ; E2 · · · ] ]] = expr [[ E1 :: [ E2 · · · ] ]]
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expr [[ [| |] ]] = vector-empty
expr [[ [| E |] ]] = vector1(alloc(expr [[ E ]]))

expr [[ [| E1 ; E2 · · · |] ]] =

vector-append(expr [[ [| E1 |] ]], expr [[ [| E2 · · · |] ]])

expr [[ E1 E2 ]] = apply(expr [[ E1 ]], expr [[ E2 ]])

expr [[ - E ]] = int-negate(expr [[ E ]])

expr [[ -. E ]] = float-negate(expr [[ E ]])

expr [[ ! E ]] = expr [[ prefix ! E ]]

expr [[ E1 IO E2 ]] = expr [[ prefix IO E1 E2 ]]

expr [[ E1 .( E2 ) ]] = expr [[ vect_item E1 E2 ]]

expr [[ E1 .( E2 ) <- E3 ]] = expr [[ vect_assign E1 E2 E3 ]]

expr [[ not E ]] = not(expr [[ E ]])

expr [[ E1 & E2 ]] = if-true(expr [[ E1 ]], expr [[ E2 ]], false)
expr [[ E1 or E2 ]] = if-true(expr [[ E1 ]], true, expr [[ E2 ]])

expr [[ if E1 then E2 ]] = expr [[ if E1 then E2 else ( ) ]]

expr [[ if E1 then E2 else E3 ]] = if-true(expr [[ E1 ]], expr [[ E2 ]], expr [[ E3 ]])

expr [[ while E1 do E2 done ]] = while-true(expr [[ E1 ]], effect(expr [[ E2 ]]))

expr [[ for I = E1 to E2 do E3 done ]] =

apply-to-each(patt-abs(bind(id [[ I ]]), effect(expr [[ E3 ]])),

int-closed-interval(expr [[ E1 ]], expr [[ E2 ]]))

expr [[ for I = E1 downto E2 do E3 done ]] =

apply-to-each(patt-abs(bind(id [[ I ]]), effect(expr [[ E3 ]])),

list-reverse(int-closed-interval(expr [[ E2 ]], expr [[ E1 ]])))

expr [[ E1 ; E2 ]] = seq(effect(expr [[ E1 ]]), expr [[ E2 ]])

expr [[ try E with SM ]] =

catch-else-rethrow(expr [[ E ]],

restrict-domain(func [[ SM ]], bound-type(id [[ exn ]])))

expr [[ let VD in E ]] = scope(decl [[ VD ]], expr [[ E ]])

expr [[ match E with SM ]] =

apply(prefer-over(func [[ SM ]], abs(throw(cl-match-failure))), expr [[ E ]])

expr [[ function SM ]] = prefer-over(func [[ SM ]], abs(throw(cl-match-failure)))

Pattern Matching

func [[ P -> E | SM ]] = prefer-over(func [[ P -> E ]], func [[ SM ]])

func [[ P -> E ]] = close(patt-abs(patt [[ P ]], expr [[ E ]]))
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Let Bindings

decl [[ rec LB · · · ]] =

generalise-decl(recursive-typed(bound-ids [[ LB · · · ]], decl-mono [[ LB · · · ]]))

bound-ids [[ LB1 and LB2 · · · ]] =

map-union(bound-ids [[ LB1 ]], bound-ids [[ LB2 · · · ]])

bound-ids [[ I = E ]] = map1(id [[ I ]], unknown-type)
bound-ids [[ ( I : T ) = E ]] = map1(id [[ I ]], type [[ T ]])

decl [[ LB1 and LB2 · · · ]] = map-union(decl [[ LB1 ]], decl [[ LB2 · · · ]])

decl [[ P = E ]] = generalise-decl-if-true(val-res [[ E ]], decl-mono [[ P = E ]])

decl-mono [[ LB1 and LB2 · · · ]] =

map-union(decl-mono [[ LB1 ]], decl-mono [[ LB2 · · · ]])

decl-mono [[ P = E ]] =

match(expr [[ E ]], prefer-over(patt [[ P ]], abs(throw(cl-match-failure))))

val-res [[ function SM ]] = true
val-res [[ C ]] = true
val-res [[ I ]] = true
val-res [[ [| |] ]] = true
val-res [[ (E : T) ]] = val-res [[ E ]]

val-res [[ E1 , E2 ]] = and(val-res [[ E1 ]], val-res [[ E2 ]])

val-res [[ E1 , E2 , E3 · · · ]] = and(val-res [[ E1 ]], val-res [[ E2 , E3 · · · ]])

val-res [[ E1 :: E2 ]] = and(val-res [[ E1 ]], val-res [[ E2 ]])

val-res [[ [ E ] ]] = val-res [[ E ]]

val-res [[ [ E1 ; E2 · · · ] ]] = and(val-res [[ E1 ]], val-res [[ [ E2 · · · ] ]])

val-res [[ E ]] = false
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