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ABSTRACT

An environment for the Common Algebraic Speci�cation Language CASL consists of several independent

tools. A number of CASL tools have been built using the algebraic speci�cation formalism ASF+SDF and the

ASF+SDF Meta-Environment. CASL supports user-de�ned syntax which is non-trivial to process: ASF+SDF

o�ers a powerful parsing technology (Generalized LR). Its interactive development environment facilitates rapid

prototyping complemented by early detection and correction of errors. A number of core technologies developed

for the ASF+SDF Meta-Environment can be reused in the context of CASL. Furthermore, an instantiation of a

generic format developed for the representation of ASF+SDF speci�cations and terms provides a CASL-speci�c

exchange format.
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1. INTRODUCTION

CASL (Common Algebraic Specification Language) [11] is a new algebraic specification formalism developed
as part of the Common Framework Initiative (COFI). It is a generic algebraic specification formalism incorpo-
rating features of most existing algebraic specification languages. To complement the CASL formalism itself,
a set of tools to support development of CASL specifications is planned. For this purpose, existing tools and
technologies will be reused wherever possible.

The algebraic specification formalism ASF+SDF [13] and the ASF+SDF Meta-Environment [24] have been
deployed to prototype CASL’s concrete syntax. The user-defined (also known as mixfix) syntax of CASL calls
for a two-pass approach. In the first pass, the skeleton of a CASL specification is derived in order to extract
user-defined syntax rules. In a second pass these syntax rules are used to parse the expressions using them.
ASF+SDF offers the advantages of its underlying powerful parsing technology (GeneralizedLR parsing) and
its interactive development environment that enables early detection of errors, such as lexical and syntactic
ambiguities, in the syntax definition of a language. TheGLR parsing technology eliminates the need to worry
about parse table conflicts, which are especially annoying for languages whose syntax definition is still ‘on the
move’.

At present, two versions of the ASF+SDF Meta-Environment coexist. One is described in [24]; we refer
to this environment as thetraditional one. The other is a next-generation ASF+SDF Meta-Environment [9]
under active development; we refer to this enviroment ascurrent. The main difference between traditional and
current environments is architectural organization: the former is monolithic, the latter consists of a suite of
independent components communicating via a software coordination architecture [4]. The ASF+SDF Meta-
Environment uses a common exchange format, ASFIX , to represent parse trees for specifications and terms. It
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contains all relevant information, including applied production rules, layout, and comments. ASFIX stands for
ASF+SDF fixed format; it is based on ATERMS [8].

Components from the current ASF+SDF Meta-Environment can be (re)used in the context of other systems
– such as a CASL environment – in a flexible way.

This paper discusses the following topics:

� Various techniques involved in implementing a CASL parser using ASF+SDF language technology.

� A mapping, CASFIX , from the concrete syntax of CASL to an abstract syntax in ATERMS.

� Treatment of user-defined annotations.

1.1 Overall Architecture of a CASLParsing Environment
The overall architecture of a full CASL parser, including user-defined syntax, based on ASF+SDF technology
is depicted by Figure 1.
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Figure 1: CASL Parser Architecture

‘Skeleton CASFIX ’ is the abstract syntax tree of a CASL specification in which the user-defined syntax
expressions are not yet parsed (see Section 2.1). TheSyntaxExtraction tool extracts definitions of user-
defined syntax from this abstract syntax tree, flattens parsed CASL specifications and retrieves all visible sorts,
operator definitions, and variables. This tool is based on the ATERM library and implemented inC. The syntax
information obtained this way is fed to theParserGenerator tool (details in Section 3.1) to generate a
parse table.

The expressions that are yet to be parsed, also present in the abstract syntax tree, are extracted by theEx-
pressionExtraction tool and consecutively parsed using theSGLR parser (discussed in Section 3.2),
instantiated with the corresponding parse table that was just generated. In case of a successful parse a syntax
tree is constructed in a representation (CASFIX , described in Section 4) tailored specifically to the needs of
CASL.

Finally, theTermReplacement tool, which is the inverse ofExpressionExtraction , substitutes the
parsed CASL term for its unparsed counterpart. This tool is also based on the ATERM library and implemented
in C.

1.2 Related Work
Related work can be divided into two areas. The first is related to tackling user-defined syntax in general and
the second is related to parsers developed for CASL.

Other Approaches to Parsing User-Defined SyntaxIt is impossible to list all systems that deal with for-
malisms allowing user-defined syntax exhaustively. We restrict ourselves to those systems that arguably relate
to the work on CASL.
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The first system we mention is the traditional ASF+SDF Meta-Environment. The algebraic specification
formalism ASF+SDF [3, 17, 13] is used, notably for language prototyping. By means of an SDF definition, the
lexical and context-free grammar of a language are specified, whereas the ASF definition serves to define the
semantics. The SDF part corresponds to signatures in ordinary algebraic specification formalisms. However,
syntax is not restricted to plain prefix notation: arbitrary context-free grammars can be defined. The syntax
defined in the SDF-part of a module is available for the definition of equations. Therefore, equation syntax
is user-defined. In a two-pass approach the SDF definition is parsed, obtaining the definitions necessary for
parsing the equations. The parsing technology used to deal with this user-defined syntax isGLR [33, 31, 34].

The second system, ASD [12], is closely related to ASF+SDF. Again a two-pass approach is used to generate
parsers for the user-defined syntax occurring in Action Semantics specifications [29]. In the first pass the
user-defined syntax definitions are collected. These are then processed by an ASF+SDF specification and
transformed into another SDF definition. The resulting definition is then used to parse the expressions that may
contain user-defined syntax.

The third system is CIGALE [35], a parser for ASSPEGIQUE [5]. CIGALE supports incremental grammar
definition, and offers a great flexibility in syntax. It is not derived from standard techniques like Earley [15] or
LR [1]. At its core lies a restrictive backtracking algorithm.

Finally, we mention the parser used in the ELAN system [6]. ELAN is a specification language based on
rewriting logic with additional features, notably strategies. The parser used in the ELAN system is based on
the Earley parsing technology. One drawback of ELAN is the way constraints imposed by the Earley parser
are visible in the ELAN specification; for example, rewrite rules are grouped according to the ‘sort’ of the left-
and right-hand side in the syntax definition.

Other CASL Parsers Several efforts towards implementing a parser for CASL have been undertaken. The
following ones are currently available:

� The parser developed by Frederic Voisin. This parser is based on SYNTAX [7], aLEX/YACC-style
parser generator. This CASL parser is comparable to the ASF+SDF-based skeleton parser described in
Section 2.1; it also does not parse expressions in user-defined syntax.

� The HOL-CASL parser [28] is a full two-pass CASL parser. It performs skeleton parsing, using a func-
tional implementation ofLEX/YACC; user-defined syntax is then parsed using theIsabelle parser, which
is based on the Cocke-Younger-Kasami algorithm [19]. The CYK-parser is not very efficient;GLR usu-
ally performs better for the most common cases. Except for specifications of very limited size, the
difference in performance can on average be expected to be of significant practical relevance.

� The CASL parser by Bastian Kleineidam1, developed using JAVA 2 and JAVA CC3 at the Max-Planck-
Institut für Informatik (Saarbr¨ucken).

� A parser frontend has been developed in order to be able to employ theINKA theorem prover4 [20] for
CASL specifications. This parser is based onLEX/YACC technology. TheINKA theorem prover derives
proof obligations from CASL specifications, and assists in finding proofs.

2. DEVELOPING A CASL GRAMMAR USING ASF+SDF TECHNOLOGY

Generic language technology such as ASF+SDF can be applied at several stages when developing tools for
CASL. The first stage, probably the most obvious one, is set at the level of defining the concrete syntax of
CASL.

1http://www.mpi-sb.mpg.de/ ˜ calvin/
2http://www.javasoft.com
3http://www.suntest.com/javacc/
4 http://www.dfki.de/vse/systems/inka/
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Using theEBNF definition provided by the CASL language summary [11] an SDF definition5 has been
developed. Figure 2 shows a tiny fragment of this SDF definition. It should be noted thatEBNF can be mapped
to SDF in a straightforward manner, requiring no complex grammar transformations whatsoever.

"{" "}" -> Basic-Spec
Basic-Item+ -> Basic-Spec

Sig-Items -> Basic-Item
"free" Datatype-S { Datatype-Decl ";"}+ Opt-Semi -> Basic-Item
"generated" Datatype-S {Datatype-Decl ";"}+ Opt-Semi -> Basic-Item
"generated" "{" Sig-Items+ Opt-Semi "}" Opt-Semi -> Basic-Item
Var-S {Var-Decl ";"}+ Opt-Semi -> Basic-Item
Var-S {Var-Decl ";"}+ "."

{Labelled-Formula "."}+ Opt-Semi -> Basic-Item
Axiom-S {Labelled-Formula ";"}+ Opt-Semi -> Basic-Item

Figure 2: Fragment of the SDF Definition of CASL

This SDF definition does not cope with every aspect, particularly not with user-defined syntax; see Section 3.

2.1 Skeleton Parser
Based on theEBNF definition in [11] the concrete syntax of CASL has been defined. Furthermore, a mapping
from concrete syntax to abstract syntax (CASFIX , see Section 4), has been defined in ASF+SDF. Using the
parser generator that is part of the ASF+SDF Meta-Environment, a stand-alone parser for CASL has been
generated (see Figure 3). At this point it does not yet handle user-defined syntax. This parser, therefore, can be

SDF Parse
Table

Syntax
Definition

SGLR
Parser

AsFix
Parser

Generator
Parse
Table

Figure 3: CASL Parse Table Generation

viewed as a skeleton parser that can be invoked as a first-phase parser (shown in Figure 4). By using this parser
and applying the CASFIX mapping, the concrete syntax for CASL specifications is obtained. Expressions that

CASL Parse
Table

Casl
Text

SGLR
Parser

Skeleton
CasFix

Figure 4: CASL Skeleton Parser

may contain user-defined syntax are not parsed, and are represented as unstructured character sequences, to be
analyzed in more detail at some later point, in CASFIX .

Figure 5 provides an exemplary CASL specification; Figure 6 reveals its CASFIX representation. Note the
unparsed-formula s in Figure 6 which represent the expressions yet to be parsed later on, as discussed in
Section 3.

3. PARSING CASL USING ASF+SDF TECHNOLOGY

There are several ways of implementing a CASL parser by means of ASF+SDF technology. One approach is
extensively studied and described in [37]. ASF equations are used to parse expressions in user-defined syntax.
This approach has proved feasible, but too slow for most practical purposes. Another approach is described
in [12] where ASF+SDF is used to build tools for Action Semantics [14]. A parser for Action Semantics [29]

5Available athttp://www.cwi.nl/ ˜ markvdb/cofi/zcasl-sdf2.html .
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spec Monoid =
sort Elem
ops n : Elem;

__*__ : Elem *Elem -> Elem, assoc, unit n
%% Alternatively, just specify the corresponding axioms:

vars x,y,z : Elem
.

n*x=x
.

x*n=x
.

(x*y)*z=x*(y*z)

Figure 5: Monoid, a small CASL Fragment

exemplifies this. We propose an alternative approach, based on reusing components of the current ASF+SDF

Meta-Environment, most notably the parse table generator and theSGLR parser.
The approach in which CASL specifications are parsed using ASF+SDF technology is directly analogous to

the approach taken in the ELAN project [6] for parsing user-defined syntax.

3.1 Parser Generator
The parser generator, part of the current ASF+SDF Meta-Environment, is one of the components that can be
(re-)used to generate parse tables for user-defined syntax in CASL.

It generates parse tables, suitable for later perusal by theSGLR parse table interpreter (see Section 3.2) from
SDF syntax definitions. Unlike previous ASF+SDF parser generation technology, the current implementation
does not use incremental and lazy techniques [18].

The process of generating parse tables consists of two distinct phases. In the first one the SDF definition is
normalized to an intermediate, rudimentary, formalism:Kernel-SDF. In the second phase this Kernel-SDF is
transformed to a parse table.

Grammar Normalization The grammar normalization phase, which derives a Kernel-SDF definition, consists
of the following steps:

� A modular SDF specification is transformed into a flat specification.

� Lexical grammar rules are transformed to context-free grammar rules.

spec-defn(
SIMPLE-ID(WORDS("Monoid")),
genericity(params(SPEC*([])),imports(SPEC*([]))),
BASIC-SPEC(basic-spec(

BASIC-ITEMS*([
SIG-ITEMS(sort-items(SORT-ITEM+([

sort-decl(SORT+([TOKEN-ID(TOKEN(WORDS("Elem")))]))]))),
SIG-ITEMS(op-items(OP-ITEM+([

op-decl(OP-NAME+([ID(TOKEN-ID(TOKEN(WORDS("n"))))]),
total-op-type(sorts(SORT*([])),

TOKEN-ID(TOKEN(WORDS("Elem")))),
OP-ATTR*([])),

op-decl(OP-NAME+([
ID(MIXFIX-ID(token-places(TOKEN-OR-PLACE+([

"__",TOKEN(SIGNS(["*"])),"__"]))))]),
total-op-type(sorts(SORT*([TOKEN-ID(TOKEN(WORDS("Elem"))),

TOKEN-ID(TOKEN(WORDS("Elem")))]))
TOKEN-ID(TOKEN(WORDS("Elem")))),

OP-ATTR*([associative,unit-op-attr("n")]))]))),
local-var-axioms(

VAR-DECL+([var-decl(VAR+([var(WORDS("x")),var(WORDS("y")),var(WORDS("z"))]),
TOKEN-ID(TOKEN(WORDS("Elem"))))]),

FORMULA+([unparsed-formula(" n * x = x "){label(ID*([])},
unparsed-formula(" x * n = x "){label(ID*([])},
unparsed-formula(" ( x * y ) * z = x * ( y * z ) "){label(ID*([])}

]))]))))

Figure 6: Monoid in CASFIX : Skeletal
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� Priority and associativity definitions are transformed to lists of pairs, where each pair consists of two
production rules for which a priority or associativity relation holds. The transitive closure of the priority
relations between grammar rules is made explicit in these pairs.

Parse Table Generation The actual parse table is derived from the Kernel-SDF definition. To do so, a straight-
forward SLR(1) approach is taken. However, shift/reduce or reduce/reduce conflicts are not considered prob-
lematic, and are simply stored in the table. Some extra calculations are consequently performed to reduce the
number of conflicts in the parse table. Based on the list of priority relation pairs the table is filtered; see [25]
for more details. The resulting table contains a list of all Kernel-SDF production rules, a list of states with the
actions and gotos, and a list of all priority relation pairs. The parse table is represented as an ordinary ATERM.

3.2 Scannerless GeneralizedLR Parsing
Even though parsing is often considered a solved problem in computer science, every now and then new ideas
and combinations of existing techniques pop up.SGLR (Scannerless GeneralizedLR) parsing is a striking
example of a combination of existing techniques that results in a remarkably powerful parser.

GeneralizedLRParsing for Context-Free GrammarsThe ability to cope with arbitrary context-free grammars
is of pivotal importance if one wishes to allow a modular syntax definition formalism. Due to the fact that
LR(k)-grammars are not closed under union, a more powerful parsing technique is required. GeneralizedLR-
parsing [33, 31] (GLR-parsing) is a natural extension toLR-parsing, from this perspective. The saving grace
of GLR-parsing lies in the fact that it does not require the parse table to be conflict-free. Allowing conflicts to
occur in parse tables,GLR is equipped to deal with arbitrary context-free grammars. One of the advantages of
this approach in the context of CASL is the simple, direct, mapping from the definition of the concrete syntax
in EBNF into an SDF definition of same.

The parse result, then, might not be a single parse tree; in principle, a forest consisting of an arbitrary number
of parse trees is yielded. Ambiguity produces multiple parse trees, each of which embodies a parse alterna-
tive. In case of anLR(1) grammar, theGLR algorithm collapses intoLR(1), and exhibits similar performance
characteristics. As a rule of thumb, the simpler the grammar, the closerGLR performance will be toLR(1)
performance.

Eliminating the Scanner TheGLR parser in the traditional ASF+SDF Meta-Environment uses a scanner, just
like any conventionalLR(k) parser. The use of a scanner in combination withGLR parsing leads to a certain
tension between scanning and parsing. The scanner may sometimes have several ways of splitting up the input:
a so-called lexical ambiguity occurs. In CASL, compound identifiers like ‘s[t[u]] ’ exhibited this problem
(forcing one to modify the specification to something like ‘s[t[u] ] ’). The CASL syntax was adapted to
get rid of this unwanted need to modify valid specifications. In case of lexical ambiguities, a scanner must take
some decision; at a later point, when parsing the tokens as offered by the scanner, the selected tokenization
might turn out to be not quite what the parser expected, causing the parse to fail.

ScannerlessGLR parsing [34] solves this problem by unifying scanner and parser. In other words, the scanner
is eliminated by simply considering all elementary input symbols (e.g. octets) as input tokens for the parser.
Each character becomes a separate token, and ambiguities on the lexical level are dealt with by theGLR algo-
rithm. This way, in a scannerless parser lexical and context-free syntax are integrated into a single grammar,
describing the defined language entirely and exhaustively. Neither knowledge of the (usually complex) inter-
face between scanner and parser nor knowledge of operational details of either is required for an understanding
of the defined grammar. In the case of CASL, which is a language of which both the lexical as well as the
context-free syntax are rather complex, scannerless parsing technology proved beneficial.

3.3 Parsing User-Defined Syntax
The CASFIX representation (see Section 4) of a CASL specification contains all information necessary for fur-
ther analysis. Operator definitions, defined sorts, variables and the like can be extracted. Using this additional
information a new, enriched, parse table that includes the user-defined syntax can then be constructed.
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sorts Elem
syntax

<START>[\256] -> <Start>
<LAYOUT?-CF><Elem-CF><LAYOUT?-CF> -> <START>
"n" -> <Elem-CF>
<Elem-CF><LAYOUT?-CF>"*"<LAYOUT?-CF><Elem-CF> -> <Elem-CF> {assoc}
"("<LAYOUT?-CF><Elem-CF><LAYOUT?-CF>")" -> <Elem-CF>
<<Elem-CF>-VAR> -> <Elem-CF>
[\110] -> "n"
[\42] -> "*"
[\40] -> "("
[\41] -> ")"
"x" -> <<Elem-CF>-VAR>
"y" -> <<Elem-CF>-VAR>
"z" -> <<Elem-CF>-VAR>
[\120] -> "x"
[\121] -> "y"
[\122] -> "z"

-> <LAYOUT?-CF>
<LAYOUT-CF> -> <LAYOUT?-CF>

Figure 7: Monoid in Kernel-SDF

To be able to make all this happen, the following issues must be addressed:

� CASL is a modular specification formalism with a powerful import mechanism, it allows parameteriza-
tion of modules and renaming.

� Operator definitions can be global or local, and so can a module import.

� Variables may be defined local to the axioms or globally defined. Globally defined variables are visible
for the subsequent axioms of the enclosing specification. Any subsequent declaration (global or local) of
a variable with the same name overrides a previous one.

� Axioms, operator definitions and variable definitions can be intermingled, as long as operators and vari-
ables are defined before they are used.

The import mechanism necessitates inspecting all imported modules when parsing a module: all global
definitions, which may have been affected by an imported module, must be retrieved.

Definitions of sorts, predicates, and operations involve formulae and terms; moreover, variables may be
declared by explicit quantifiers within formulae (which can also occur within conditional terms). Because of
this fact, each axiom, in principle, might require constructing a new parse table. The speed of parse table
generation is therefore of significant practical relevance.

A parse table built to cope with syntax introduced by a particular axiom is constructed from the respective
sets of visible sorts, operator definitions, and variables as they pertain to that particular axiom. The generation
process consists of two steps. In the first step (the normalization step) the Kernel-SDF grammar is derived.
In the second step the parse table is produced from the Kernel-SDF grammar. The first step, the grammar
normalization step, is the most interesting from the current perspective, because it is at this point that the
appropriate set of extra production rules must be added, in order to recognize layout as well as the overall
structure of formulas. The complete set of context-free grammar rules that have to be added can be found in
[11].

The Kernel-SDF syntax for the Monoid example is given in Figure 7. Note that this Figure does not reveal
all details: for brevity, the Kernel-SDF definition ofLAYOUTis omitted.

Using this Kernel-SDF specification, it is fairly straightforward to construct a parse table for the unparsed
expressions. After a successful parse of such an unparsed expression, the obtained CASFIX representation must
be substituted for the unparsed expression in the original abstract syntax tree, yielding a more detailed abstract
syntax tree.

3.4 Drawbacks and Shortcomings
The architecture of the CASL parser presented in Section 1.1 is fairly complex at first glance. The need to
translate parse trees, as produced by theSGLR parser, to CASFIX format is mainly responsible for this. One
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could conceive of a parser implementation with a parameterized output format: such a parser could generate
arbitrary representations of syntax trees in a flexible way. In the context of CASL, specifically, it could be
instantiated to produce CASFIX directly.

However, the currentSGLR implementation cannot (yet) boast of this feature: its output is the rich and
versatile ASFIX format. Therefore, an translation from ASFIX to CASFIX must be performed at every stage.
In this translation, some of the wealth of the ASFIX representation is lost: it carries only the abstract syntax
minus layout. Note that comments are considered layout in the CASL language definition, and are consequently
also discarded here.

4. REPRESENTINGCASL TERMS USINGASF+SDF TECHNOLOGY

In order to make CASL a viable formalism for the specification of (complex) systems, a powerful suite of
tools to create, manipulate, proof, typeset, and execute CASL specifications is needed. Reuse of existing
tools is preferred over reinventing the wheel. However, existing tools are idiosyncratic, typically: they define
their own interfaces and representation formats. This observation indicates a need for a common intermediate
exchange format, that enables efficient integration of existing tools. Such an intermediate format should allow
the storage by a tool of auxiliary information that may be invisible for others. To satisfy these requirements,
the COFI community has decided to use ATERMS [8] as its exchange format.

As an alternative possibility, SGML has also been taken in account while considering exchange format
options [30]. If this choice had to be redone at present, some other formats, among which abstract syntax
definition language (ASDL) [36, 16] and eXtensible Markup Language (XML) [38] deserves explicit mention,
would merit consideration.

ATERMS were originally developed to represent parse trees within the ASF+SDF Meta-Environment.

4.1 ATERMS

ATERMS is a generic formalism for the representation of structured information. It is both human-readable
and easy to process automatically. A number of libraries that implement the functionality of creating and ma-
nipulating terms provide an API for the ATERMS formalism. The primary application area of ATERMS is the
exchange of information between components of a programming environment, such as a parser, a (structure)
editor, a compiler, and so on. The following data are typically represented as ATERMS: programs, specifi-
cations, parse tables, parse trees, abstract syntax trees, proofs, and the like. A generic storage mechanism,
calledannotation, accommodates associating extra information that may be of relevance somehow to specific
ATERMS under consideration.

Examples of objects that are typically represented as ATERMS are:

� constants: abc .

� numerals: 123 .

� literals: "abc" or "123" .

� lists: [] , [1, "abc", 3] , or [1, 2, [3, 2], 1] .

� functions: f("a") , g(1,[]) , or h("1", f("2"), ["a","b"]) .

� annotations: f("a") f[g,g(2,["a"]]) g or "1" f[l,[1,2]],[s,"ab"] g.

ATERMS can be qualified as anopen, simple, efficient, concise, andlanguage independentsolution for the
exchange of data structures between distributed applications.

ATERMSLibraries In order to employ ATERMS and to provide their associated operations, libraries of prede-
fined functions are available. Currently, implementations in the programming languagesC and JAVA exist.

Files that contain ATERMS can either be stored in a compact binary format or in a significantly more space-
consuming textual format. In textual format, ATERMS can easily be processed by common off-the-shelf tools,
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like LEX/YACC. Both theC and JAVA library implementations provide facilities to parse and unparse ATERMS.
TheC version also provides functions for mapping the textual form into the binary one and vice versa.

Furthermore, both library implementations ensure maximal sharing when creating and manipulating terms
– unless this feature is explicitly disabled. Both implementations perform automatic garbage collection, thus
freeing storage associated to terms that are no longer in use.

The ATERMS library is documented extensively in its user manual [22].

4.2 CASFIX

By using CASL-specific ‘keywords’ as ATERM AFuns, the abstract syntax as defined in the CASL language
summary [11] can be represented in ATERMS in a straightforward manner.

It should be noted that there are many ways of defining the abstract syntax of CASL in terms of ATERMS.
We will restrict ourselves to describing the approach decided upon by the COFI working group.

The selected approach is based on creating a unique ATERM construct for each abstract syntax rule. This
results in a relatively large number of differentAFuns, but has the benefit of making the representation of
abstract syntax trees more compact.

The ‘translation’ of abstract rules into equivalent ATERM constructs is fairly simple, as the following trans-
lation rule illustrates:

SORT ::= "rule" MEMBER1 MEMBER2
)

rule(<MEMBER1>,<MEMBER2>)

There are several design issues to be addressed. The principal ones are how to deal with so-called ‘chain rules’,
and how list structures are to be represented.

AFun Instantiation CASL-specific function names give rise to instantiating anAFun:

"basic-spec" -> AFun
"forall" -> AFun
"op-defn" -> AFun
: : :

Function names are taken from the abbreviated abstract syntax definition in [11].
Additionally, specificAFuns are introduced to represent the anonymous abstract syntax rules (the chain

rules), e.g.:

BASIC-ITEMS ::= SIG-ITEMS

An AFun is introduced e.g.:

"SIG-ITEMS" -> AFun

Finally, AFuns to represent lists are introduced, e.g.:

"BASIC-ITEMS*" -> AFun

Mapping Rules The mapping from the abstract syntax of CASL to an ATERMS equivalent is based on the
type of the abstract syntax rule.

� Rules with only a terminal in their right-hand side:

QUANTIFIER :: "forall"
)

forall

The terminal is mapped onto an ATERM consisting of a singleAFun: forall .
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� Rules consisting of a constructor and a list of simple nonterminals:

OP-ITEM ::= "op-defn" OP-NEMA OP-HEAD TERM
)

op-defn(<OP-NAME>,<OP-HEAD>,<TERM>)

The abstract syntax rule is transformed into an ATERM consisting of theAFun op-defn with three
argument ATERMS for OP-NAME, OP-HEAD, andTERM.

� Chain rules:

BASIC-ITEMS ::= SIG-ITEMS
)

SIG-ITEMS(<SIG-ITEMS>)

The sort name on the right hand side is used as theAFun.

� Rules with a constructor and one or more lists:

BASIC-SPEC ::= "basic-spec" BASIC-ITEMS*
)

basic-spec(BASIC-ITEMS*([<BASIC-ITEMS>]))

This ATERMS expression should be read as follows:basic-spec is an AFun that indicate that a
node of typebasic-spec is constructed. TheAFun BASIC-ITEMS* indicates a node that contains
a (possibly empty) list ofBASIC-ITEM s. Square brackets delimit the actual list; list elements are
separated by commas.

The full mapping can be found on theWWW6.

4.3 Annotations
The term ‘annotation’ is overloaded. First of all, the ATERMS support annotations; in that context, it means
that nodes in the abstract syntax tree are extended with additional information which is invisible, but can still
be accessed by explicit demand. This annotation mechanism can be used by all kinds of tools to store extra
information, e.g. a parser can store position information, or pretty printers can store font information.

Secondly, annotations can also occur within a CASL specification, see [11, 27, 32]. There exist annotations
related to labels, displaying, parsing, and semantics.

Examples of syntactical annotations are%left assoc , %right assoc , and%prec ; examples of se-
mantical annotations are%cons and%def . For the exact meaning of these annotations we refer to [32]. The
%cons, %def , %left assoc , and%right assoc annotations can only occur at a restricted number of
positions in a CASL specification.

Some annotations, such as the%prec , may occur in arbitrary places in a CASL specification. The CASL
language summary [11] is not very specific about where the various types of annotations may occur. If these
locations are fixed, the concrete syntax of CASL can be adapted in order to deal with these annotations, how-
ever, it is also possible to consider annotations as a kind of layout. The latter approach would prevent the need
to adapt the CASL syntax every time a new annotation is introduced.

Annotations occurring in well-defined locations in CASL specification must also be encoded in the CASFIX

representation at the appropriate nodes, with the correct name, as generally approved upon.
In order to prevent excessive use of annotations both at the CASL syntax level as well as at the tool level,

annotations have to be approved by the COFI community. Naturally, it is allowed for a tool to add an ‘internal’
annotation temporarily, but such an annotation may not be exported to the outside world.

6 http://www.cwi.nl/ ˜ markvdb/cofi/casl.html



11

5. CONCLUSIONS

Generic language technology provided by ASF+SDF proved to be helpful for prototyping the concrete syntax of
CASL. The straightforward mapping fromEBNF to SDF enabled us to interact directly with the concrete syntax
definition of CASL. Serious lexical and syntactical ambiguities were detected at an early stage. This flexibility
is based on theSGLR parsing technology which removes the need for (complex) grammar transformations.

Although ASF+SDF proved to be a useful vehicle for prototyping the concrete syntax of CASL, a num-
ber of shortcomings can be identified. Firstly, the user-defined syntax of CASL proved to be challenging for
ASF+SDF; see [37] for details. The CASL syntax proved to be an interesting test case for the development
of both SGLR parser and the parser generator: the complexity of the CASL syntax continuously pushed the
envelope, putting a heavy burden on ambiguity-handling mechanisms. As larger parts of the syntax were com-
pleted, and more complex examples were held against the current state of technology, it was rapidly adapted,
tweaked, corrected, and revised.

Secondly, although the CASL syntax is described entirely in SDF and specifications can be parsed inside
the Meta-Environment, the existence of a straightforward translation to other parser generator formalisms like
LEX/YACC [26, 21], JAVA CC, etc., is not guaranteed, mainly because of the limitation of the latter to the class
of LALR grammars. Using the powerful and efficient parsers provided by current ASF+SDF technology, the
need to migrate from SDF to LEX/YACC-like formalisms becomes less pressing.

The development of parsers for CASL and the definition of an exchange format formed the first steps on
the long path that lead to the creation of new tools and the adaptation of existing ones. Although the current
ASF+SDF Meta-Environment is entirely based on ATERMS, it is still a question whether ATERMS are indeed
powerful enough to contain all information needed by any conceivable CASL-tool – past, present and future.
However, previous experience, including experiments carried out in Bremen [28], Nancy [23], and Edinburgh
[2], suggest a positive answer; future experiments, with more, and more complex, tools built upon ATERMS

foundations, will help gain a firmer grasp on this subject.
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