557 research outputs found

    Executed movement using EEG signals through a naive bayes classifier

    Get PDF
    Recent years have witnessed a rapid development of brain-computer interface (BCI) technology. An independent BCI is a communication system for controlling a device by human intension, e.g., a computer, a wheelchair or a neuroprosthes is, not depending on the brain’s normal output pathways of peripheral nerves and muscles, but on detectable signals that represent responsive or intentional brain activities. This paper presents a comparative study of the usage of the linear discriminant analysis (LDA) and the naive Bayes (NB) classifiers on describing both right- and left-hand movement through electroencephalographic signal (EEG) acquisition. For the analysis, we considered the following input features: the energy of the segments of a band pass-filtered signal with the frequency band in sensorimotor rhythms and the components of the spectral energy obtained through the Welch method. We also used the common spatial pattern (CSP) filter, so as to increase the discriminatory activity among movement classes. By using the database generated by this experiment, we obtained hit rates up to 70%. The results are compatible with previous studies

    Brain-Computer Interfaces using Machine Learning

    Get PDF
    This thesis explores machine learning models for the analysis and classification of electroencephalographic (EEG) signals used in Brain-Computer Interface (BCI) systems. The goal is 1) to develop a system that allows users to control home-automation devices using their mind, and 2) to investigate whether it is possible to achieve this, using low-cost EEG equipment. The thesis includes both a theoretical and a practical part. In the theoretical part, we overview the underlying principles of Brain-Computer Interface systems, as well as, different approaches for the interpretation and the classification of brain signals. We also discuss the emergent launch of low-cost EEG equipment on the market and its use beyond clinical research. We then dive into more technical details that involve signal processing and classification of EEG patterns using machine leaning. Purpose of the practical part is to create a brain-computer interface that will be able to control a smart home environment. As a first step, we investigate the generalizability of different classification methods, conducting a preliminary study on two public datasets of brain encephalographic data. The obtained accuracy level of classification on 9 different subjects was similar and, in some cases, superior to the reported state of the art. Having achieved relatively good offline classification results during our study, we move on to the last part, designing and implementing an online BCI system using Python. Our system consists of three modules. The first module communicates with the MUSE (a low-cost EEG device) to acquire the EEG signals in real time, the second module process those signals using machine learning techniques and trains a learning model. The model is used by the third module, that takes control of cloud-based home automation devices. Experiments using the MUSE resulted in significantly lower classification results and revealed the limitations of the low-cost EEG signal acquisition device for online BCIs

    Enhanced Epileptic Seizure diagnosis using EEG Signals with Support vector machine and Bagging Classifiers

    Get PDF
    Many approaches have been proposed using Electroencephalogram (EEG) to detect epilepsy seizures in their early stages. Epilepsy seizure is a severe neurological disease. Practitioners continue to rely on manual testing of EEG signals. Artificial intelligence (AI) and Machine Learning (ML) can effectively deal with this problem. ML can be used to classify EEG signals employing feature extraction techniques. This work focuses on automated detection for epilepsy seizures using ML techniques. Various algorithms are investigated, such as  Bagging, Decision Tree (DT), Adaboost, Support vector machine (SVM), K-nearest neighbors(KNN), Artificial neural network(ANN), Naïve Bayes, and Random Forest (RF) to distinguish injected signals from normal ones with high accuracy. In this work, 54 Discrete wavelet transforms (DWTs) are used for feature extraction, and the similarity distance is applied to identify the most powerful features. The features are then selected to form the features matrix. The matrix is subsequently used to train ML. The proposed approach is evaluated through different metrics such as F-measure, precision, accuracy, and Recall. The experimental results show that the SVM and Bagging classifiers in some data set combinations, outperforming all other classifier

    Towards a wearable system for predicting the freezing of gait in people affected by Parkinson's disease

    Get PDF
    Some wearable solutions exploiting on-body acceleration sensors have been proposed to recognize Freezing of Gait (FoG) in people affected by Parkinson Disease (PD). Once a FoG event is detected, these systems generate a sequence of rhythmic stimuli to allow the patient restarting the march. While these solutions are effective in detecting FoG events, they are unable to predict FoG to prevent its occurrence. This paper fills in the gap by presenting a machine learning-based approach that classifies accelerometer data from PD patients, recognizing a pre-FOG phase to further anticipate FoG occurrence in advance. Gait was monitored by three tri-axial accelerometer sensors worn on the back, hip and ankle. Gait features were then extracted from the accelerometer's raw data through data windowing and non-linear dimensionality reduction. A k-nearest neighbor algorithm (k-NN) was used to classify gait in three classes of events: pre-FoG, no-FoG and FoG. The accuracy of the proposed solution was compared to state of-the-art approaches. Our study showed that: (i) we achieved performances overcoming the state-of-the-art approaches in terms of FoG detection, (ii) we were able, for the very first time in the literature, to predict FoG by identifying the pre-FoG events with an average sensitivity and specificity of, respectively, 94.1% and 97.1%, and (iii) our algorithm can be executed on resource-constrained devices. Future applications include the implementation on a mobile device, and the administration of rhythmic stimuli by a wearable device to help the patient overcome the FoG

    A computer aided analysis scheme for detecting epileptic seizure from EEG data

    Get PDF
    This paper presents a computer aided analysis system for detecting epileptic seizure from electroencephalogram (EEG) signal data. As EEG recordings contain a vast amount of data, which is heterogeneous with respect to a time-period, we intend to introduce a clustering technique to discover different groups of data according to similarities or dissimilarities among the patterns. In the proposed methodology, we use K-means clustering for partitioning each category EEG data set (e.g. healthy; epileptic seizure) into several clusters and then extract some representative characteristics from each cluster. Subsequently, we integrate all the features from all the clusters in one feature set and then evaluate that feature set by three well-known machine learning methods: Support Vector Machine (SVM), Naive bayes and Logistic regression. The proposed method is tested by a publicly available benchmark database: ‘Epileptic EEG database’. The experimental results show that the proposed scheme with SVM classifier yields overall accuracy of 100% for classifying healthy vs epileptic seizure signals and outperforms all the recent reported existing methods in the literature. The major finding of this research is that the proposed K-means clustering based approach has an ability to efficiently handle EEG data for the detection of epileptic seizure

    Detecting head movement using gyroscope data collected via in-ear wearables

    Get PDF
    Abstract. Head movement is considered as an effective, natural, and simple method to determine the pointing towards an object. Head movement detection technology has significant potentiality in diverse field of applications and studies in this field verify such claim. The application includes fields like users interaction with computers, controlling many devices externally, power wheelchair operation, detecting drivers’ drowsiness while they drive, video surveillance system, and many more. Due to the diversity in application, the method of detecting head movement is also wide-ranging. A number of approaches such as acoustic-based, video-based, computer-vision based, inertial sensor data based head movement detection methods have been introduced by researchers over the years. In order to generate inertial sensor data, various types of wearables are available for example wrist band, smart watch, head-mounted device, and so on. For this thesis, eSense — a representative earable device — that has built-in inertial sensor to generate gyroscope data is employed. This eSense device is a True Wireless Stereo (TWS) earbud. It is augmented with some key equipment such as a 6-axis inertial motion unit, a microphone, and dual mode Bluetooth (Bluetooth Classic and Bluetooth Low Energy). Features are extracted from gyroscope data collected via eSense device. Subsequently, four machine learning models — Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes, and Perceptron — are applied aiming to detect head movement. The performance of these models is evaluated by four different evaluation metrics such as Accuracy, Precision, Recall, and F1 score. Result shows that machine learning models that have been applied in this thesis are able to detect head movement. Comparing the performance of all these machine learning models, Random Forest performs better than others, it is able to detect head movement with approximately 77% accuracy. The accuracy rate of other three models such as Support Vector Machine, Naïve Bayes, and Perceptron is close to each other, where these models detect head movement with about 42%, 40%, and 39% accuracy, respectively. Besides, the result of other evaluation metrics like Precision, Recall, and F1 score verifies that using these machine learning models, different head direction such as left, right, or straight can be detected

    Optimized Biosignals Processing Algorithms for New Designs of Human Machine Interfaces on Parallel Ultra-Low Power Architectures

    Get PDF
    The aim of this dissertation is to explore Human Machine Interfaces (HMIs) in a variety of biomedical scenarios. The research addresses typical challenges in wearable and implantable devices for diagnostic, monitoring, and prosthetic purposes, suggesting a methodology for tailoring such applications to cutting edge embedded architectures. The main challenge is the enhancement of high-level applications, also introducing Machine Learning (ML) algorithms, using parallel programming and specialized hardware to improve the performance. The majority of these algorithms are computationally intensive, posing significant challenges for the deployment on embedded devices, which have several limitations in term of memory size, maximum operative frequency, and battery duration. The proposed solutions take advantage of a Parallel Ultra-Low Power (PULP) architecture, enhancing the elaboration on specific target architectures, heavily optimizing the execution, exploiting software and hardware resources. The thesis starts by describing a methodology that can be considered a guideline to efficiently implement algorithms on embedded architectures. This is followed by several case studies in the biomedical field, starting with the analysis of a Hand Gesture Recognition, based on the Hyperdimensional Computing algorithm, which allows performing a fast on-chip re-training, and a comparison with the state-of-the-art Support Vector Machine (SVM); then a Brain Machine Interface (BCI) to detect the respond of the brain to a visual stimulus follows in the manuscript. Furthermore, a seizure detection application is also presented, exploring different solutions for the dimensionality reduction of the input signals. The last part is dedicated to an exploration of typical modules for the development of optimized ECG-based applications

    Analysis of EEG Signals for the Detection of Erroneous Commands During the Control of a Powered Wheelchair

    Get PDF
    openI potenziali di errore (ErrP) sono segnali neurofisiologici generati dagli utenti quando percepiscono errori nelle loro azioni e durante l’interazione con le interfacce cervello-computer (BCI), in seguito a una risposta errata della BCI. Questo lavoro si concentra sull’identificazione e la rilevazione dei segnali ErrP durante il controllo discreto di una sedia a rotelle motorizzata. Nove soggetti sani hanno partecipato volontariamente all’esperimento. I segnali dell’elettroencefalogramma (EEG) dei soggetti sono stati acquisiti mentre controllavano la sedia a rotelle motorizzata utilizzando un joystick lungo un percorso predefinito. Durante le sessioni di controllo sono stati introdotti intenzionalmente errori casuali per suscitare i potenziali di errore. I segnali EEG sono stati analizzati per identificare e caratterizzare gli ErrP e, infine, costruire un classificatore in grado di rilevarli. I risultati mostrano una differenziazione tra le risposte neurali corrispondenti ad azioni corrette ed errate, confermando la presenza di segnali ErrP distinti in seguito a comandi errati durante il controllo discreto della sedia a rotelle. È stato sviluppato con successo un classificatore in grado di rilevare questi segnali ErrP per ogni comando dato alla sedia a rotella, dimostrando una promettente accuratezza nell’identificazione degli errori in tempo reale. Inoltre, è stata riconosciuta la variabilità individuale dell’attività neurale tra i soggetti, evidenziando la necessità di una calibrazione soggetto-specifica e dell’ottimizzazione dei parametri del sistema. Le direzioni future prevedono l’estensione di questa ricerca ad ambienti più complessi e privi di percorsi predefiniti, per simulare scenari realistici, e la verifica dell’efficacia del sistema con persone con disabilità motorie, che saranno gli utenti finali.Error Potentials (ErrPs) are neurophysiological signals generated by users when they perceive errors in their actions and during interaction with brain-computer interfaces (BCIs), following an incorrect response of the BCI. This work focuses on identifying and detecting ErrP signals during the discrete control of a powered wheelchair. Nine healthy subjects voluntarily participated in the experiment. Electroencephalogram (EEG) signals were acquired from the subjects while they controlled the powered wheelchair using a joystick along a predefined path. Random errors were intentionally introduced during the control sessions to elicit ErrP responses. The EEG signals were analyzed to identify, to characterize the ErrPs, and ultimately to construct a classifier capable of detecting them. The results show a differentiation between the neural responses corresponding to correct and erroneous actions, confirming the presence of distinct ErrP signals following incorrect commands during the discrete control of the wheelchair. A classifier was successfully developed and trained to detect these ErrP signals on a trial-by-trial basis, showcasing promising accuracy in identifying real-time errors. Furthermore, individual variability in neural activity among subjects was acknowledged, highlighting the necessity for personalized calibration and optimization of system parameters. Future directions involve extending this research to more complex environments without predefined paths to simulate realistic scenarios and testing the system’s efficacy with individuals having motor impairments, who are the final end-users

    Clinical Brain-Computer Interface Challenge 2020 (CBCIC at WCCI2020): Overview, methods and results

    Get PDF
    In the field of brain-computer interface (BCI) research, the availability of high-quality open-access datasets is essential to benchmark the performance of emerging algorithms. The existing open-access datasets from past competitions mostly deal with healthy individuals’ data, while the major application area of BCI is in the clinical domain. Thus the newly proposed algorithms to enhance the performance of BCI technology are very often tested against the healthy subjects’ datasets only, which doesn’t guarantee their success on patients’ datasets which are more challenging due to the presence of more nonstationarity and altered neurodynamics. In order to partially mitigate this scarcity, Clinical BCI Challenge aimed to provide an open-access rich dataset of stroke patients recorded similar to a neurorehabilitation paradigm. Another key feature of this challenge is that unlike many competitions in the past, it was designed for algorithms in both with-in subject and cross-subject categories as a major thrust area of current BCI technology is to realize calibration-free BCI designs. In this paper, we have discussed the winning algorithms and their performances across both competition categories which may help develop advanced algorithms for reliable BCIs for real-world practical applications
    • …
    corecore