5,983 research outputs found

    Recovery of surface orientation from diffuse polarization

    Get PDF
    When unpolarized light is reflected from a smooth dielectric surface, it becomes partially polarized. This is due to the orientation of dipoles induced in the reflecting medium and applies to both specular and diffuse reflection. This paper is concerned with exploiting polarization by surface reflection, using images of smooth dielectric objects, to recover surface normals and, hence, height. This paper presents the underlying physics of polarization by reflection, starting with the Fresnel equations. These equations are used to interpret images taken with a linear polarizer and digital camera, revealing the shape of the objects. Experimental results are presented that illustrate that the technique is accurate near object limbs, as the theory predicts, with less precise, but still useful, results elsewhere. A detailed analysis of the accuracy of the technique for a variety of materials is presented. A method for estimating refractive indices using a laser and linear polarizer is also given

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Full text link
    In this paper we present a differential approach to photo-polarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.Comment: To appear at International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 201

    Polarized 3D: High-Quality Depth Sensing with Polarization Cues

    Get PDF
    Coarse depth maps can be enhanced by using the shape information from polarization cues. We propose a framework to combine surface normals from polarization (hereafter polarization normals) with an aligned depth map. Polarization normals have not been used for depth enhancement before. This is because polarization normals suffer from physics-based artifacts, such as azimuthal ambiguity, refractive distortion and fronto-parallel signal degradation. We propose a framework to overcome these key challenges, allowing the benefits of polarization to be used to enhance depth maps. Our results demonstrate improvement with respect to state-of-the-art 3D reconstruction techniques.Charles Stark Draper Laboratory (Doctoral Fellowship)Singapore. Ministry of Education (Academic Research Foundation MOE2013-T2-1-159)Singapore. National Research Foundation (Singapore University of Technology and Design

    Utilizing radiation for smart robotic applications using visible, thermal, and polarization images.

    Get PDF
    The domain of this research is the use of computer vision methodologies in utilizing radiation for smart robotic applications for driving assistance. Radiation can be emitted by an object, reflected or transmitted. Understanding the nature and the properties of the radiation forming an image is essential in interpreting the information in that image which can then be used by a machine e.g. a smart vehicle to make a decision and perform an action. Throughout this work, different types of images are used to help a robotic vehicle make a decision and perform a certain action. This work presents three smart robotic applications; the first one deals with polarization images, the second one deals with thermal images and the third one deals with visible images. Each type of these images is formed by light (radiation) but in a way different from other types where the information embedded in an image depends on the way it was formed and how the light was generated. For polarization imaging, a direct method utilizing shading and polarization for unambiguous shape recovery without the need for nonlinear optimization routines is proposed. The proposed method utilizes simultaneously polarization and shading to find the surface normals, thus eliminating the reconstruction ambiguity. This can be useful to help a smart vehicle gain knowledge about the terrain surface geometry. Regarding thermal imaging, an automatic method for constructing an annotated thermal imaging pedestrian dataset is proposed. This is done by transferring detections from registered visible images simultaneously captured at day-time where pedestrian detection is well developed in visible images. Histogram of Oriented Gradients (HOG) features are extracted from the constructed dataset and then fed to a discriminatively trained deformable part based classifier that can be used to detect pedestrians at night. The resulting classifier was tested for night driving assistance and succeeded in detecting pedestrians even in the situations where visible imaging pedestrian detectors failed because of low light or glare of oncoming traffic. For visible images, a new feature based on HOG is proposed to be used for pedestrian detection. The proposed feature was augmented to two state of the art pedestrian detectors; the discriminatively trained Deformable Part based models (DPM) and the Integral Channel Features (ICF) using fast feature pyramids. The proposed approach is based on computing the image mixed partial derivatives to be used to redefine the gradients of some pixels and to reweigh the vote at all pixels with respect to the original HOG. The approach was tested on the PASCAL2007, INRIA and Caltech datasets and showed to have an outstanding performance

    Shape-from-shading using the heat equation

    Get PDF
    This paper offers two new directions to shape-from-shading, namely the use of the heat equation to smooth the field of surface normals and the recovery of surface height using a low-dimensional embedding. Turning our attention to the first of these contributions, we pose the problem of surface normal recovery as that of solving the steady state heat equation subject to the hard constraint that Lambert's law is satisfied. We perform our analysis on a plane perpendicular to the light source direction, where the z component of the surface normal is equal to the normalized image brightness. The x - y or azimuthal component of the surface normal is found by computing the gradient of a scalar field that evolves with time subject to the heat equation. We solve the heat equation for the scalar potential and, hence, recover the azimuthal component of the surface normal from the average image brightness, making use of a simple finite difference method. The second contribution is to pose the problem of recovering the surface height function as that of embedding the field of surface normals on a manifold so as to preserve the pattern of surface height differences and the lattice footprint of the surface normals. We experiment with the resulting method on a variety of real-world image data, where it produces qualitatively good reconstructed surfaces

    A synoptic study of Sudden Phase Anomalies (SPA's) effecting VLF navigation and timing

    Get PDF
    Sudden phase anomalies (SPA's) observed on VLF recordings are related to sudden ionospheric disturbances due to solar flares. Results are presented for SPA statistics on 500 events observed in New York during the ten year period 1961 to 1970. Signals were at 10.2kHz and 13.6kHz emitted from the OMEGA transmitters in Hawaii and Trinidad. A relationship between SPA frequency and sun spot number was observed. For sun spot number near 85, about one SPA per day will be observed somewhere in the world. SPA activity nearly vanishes during periods of low sun spot number. During years of high solar activity, phase perturbations observed near noon are dominated by SPA effects beyond the 95th percentile. The SPA's can be represented by a rapid phase run-off which is approximately linear in time, peaking in about 6 minutes, and followed by a linear recovery. Typical duration is 49 minutes

    Polarisation photometric stereo

    Get PDF
    © 2017 This paper concerns a novel approach to fuse two-source photometric stereo (PS) data with polarisation information for complete surface normal recovery for smooth or slightly rough surfaces. PS is a well-established method but is limited in application by its need for three or more well-spaced and known illumination sources and Lambertian reflectance. Polarisation methods are less studied but have shown promise for smooth surfaces under highly controlled capture conditions. However, such methods suffer from inherent ambiguities and the depolarising effects of surface roughness. The method presented in this paper goes some way to overcome these limitations by fusing the most reliable information from PS and polarisation. PS is used with only two sources to deduce a constrained mapping of the surface normal at each point onto a 2D plane. Phase information from polarisation is used to deduce a mapping onto a different plane. The paper then shows how the full surface normal can be obtained from the two mappings. The method is tested on a range of real-world images to demonstrate the advantages over standalone applications of PS or polarisation methods

    Light environment - A. Visible light. B. Ultraviolet light

    Get PDF
    Visible and ultraviolet light environment as related to human performance and safety during space mission
    • …
    corecore