951 research outputs found

    Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator

    Get PDF
    We consider the problem of recovering the initial data (or initial state) of infinite-dimensional linear systems with unitary semigroups. It is well-known that this inverse problem is well posed if the system is exactly observable, but this assumption may be very restrictive in some applications. In this paper we are interested in systems which are not exactly observable, and in particular, where we cannot expect a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in (Automatica 46:1616–1625, 2010) and prove that it always converges towards the observable part of the initial state. We give necessary and sufficient condition to have an exponential rate of convergence. Numerical simulations are presented to illustratethe theoretical results

    Quantum Control Landscapes

    Full text link
    Numerous lines of experimental, numerical and analytical evidence indicate that it is surprisingly easy to locate optimal controls steering quantum dynamical systems to desired objectives. This has enabled the control of complex quantum systems despite the expense of solving the Schrodinger equation in simulations and the complicating effects of environmental decoherence in the laboratory. Recent work indicates that this simplicity originates in universal properties of the solution sets to quantum control problems that are fundamentally different from their classical counterparts. Here, we review studies that aim to systematically characterize these properties, enabling the classification of quantum control mechanisms and the design of globally efficient quantum control algorithms.Comment: 45 pages, 15 figures; International Reviews in Physical Chemistry, Vol. 26, Iss. 4, pp. 671-735 (2007

    On the exact boundary controllability of semilinear wave equations

    Full text link
    We address the exact boundary controllability of the semilinear wave equation ttyΔy+f(y)=0\partial_{tt}y-\Delta y + f(y)=0 posed over a bounded domain Ω\Omega of Rd\mathbb{R}^d. Assuming that ff is continuous and satisfies the condition lim suprf(r)/(rlnpr)β\limsup_{\vert r\vert\to \infty} \vert f(r)\vert /(\vert r\vert \ln^p\vert r\vert)\leq \beta for some β\beta small enough and some p[0,3/2)p\in [0,3/2), we apply the Schauder fixed point theorem to prove the uniform controllability for initial data in L2(Ω)×H1(Ω)L^2(\Omega)\times H^{-1}(\Omega). Then, assuming that ff is in C1(R)\mathcal{C}^1(\mathbb{R}) and satisfies the condition lim suprf(r)/lnprβ\limsup_{\vert r\vert\to \infty} \vert f^\prime(r)\vert/\ln^p\vert r\vert\leq \beta, we apply the Banach fixed point theorem and exhibit a strongly convergent sequence to a state-control pair for the semilinear equation

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations

    Get PDF
    A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)

    Optimal trajectory tracking

    Full text link
    This thesis investigates optimal trajectory tracking of nonlinear dynamical systems with affine controls. The control task is to enforce the system state to follow a prescribed desired trajectory as closely as possible. The concept of so-called exactly realizable trajectories is proposed. For exactly realizable desired trajectories exists a control signal which enforces the state to exactly follow the desired trajectory. For a given affine control system, these trajectories are characterized by the so-called constraint equation. This approach does not only yield an explicit expression for the control signal in terms of the desired trajectory, but also identifies a particularly simple class of nonlinear control systems. Based on that insight, the regularization parameter is used as the small parameter for a perturbation expansion. This results in a reinterpretation of affine optimal control problems with small regularization term as singularly perturbed differential equations. The small parameter originates from the formulation of the control problem and does not involve simplifying assumptions about the system dynamics. Combining this approach with the linearizing assumption, approximate and partly linear equations for the optimal trajectory tracking of arbitrary desired trajectories are derived. For vanishing regularization parameter, the state trajectory becomes discontinuous and the control signal diverges. On the other hand, the analytical treatment becomes exact and the solutions are exclusively governed by linear differential equations. Thus, the possibility of linear structures underlying nonlinear optimal control is revealed. This fact enables the derivation of exact analytical solutions to an entire class of nonlinear trajectory tracking problems with affine controls. This class comprises mechanical control systems in one spatial dimension and the FitzHugh-Nagumo model.Comment: 240 pages, 36 figures, PhD thesi
    corecore