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Reconstructing initial data using observers:

error analysis of the semi-discrete and fully discrete

approximations

Ghislain Haine · Karim Ramdani

Abstract A new iterative algorithm for solving initial data inverse problems from
partial observations has been recently proposed in Ramdani et al. (Automatica 46(10),
1616–1625, 2010). Based on the concept of observers (also called Luenberger observ-
ers), this algorithm covers a large class of abstract evolution PDE’s. In this paper, we
are concerned with the convergence analysis of this algorithm. More precisely, we
provide a complete numerical analysis for semi-discrete (in space) and fully discrete
approximations derived using finite elements in space and an implicit Euler method
in time. The analysis is carried out for abstract Schrödinger and wave conservative
systems with bounded observation (locally distributed).

Mathematics Subject Classification (2000) Primary 35Q93; Secondary 35L05 ·
35J10 · 65M22

1 Introduction

The goal of this paper is to present a convergence analysis for the iterative algorithm
recently proposed in Ramdani et al. [24] for solving initial state inverse problems from
measurements over a time interval. This algorithm is based on the use back and forth
in time of observers (sometimes called Luenberger observers or Kalman observers;
see for instance Curtain and Zwart [6]). Inspired by the works of Mathias Fink on time
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reversal [9,10], Phung and Zhang [22] used this algorithm in the particular case of the
Kirchhoff plate equation with distributed observation, while Ito et al. [15] considered
more general evolution PDE’s with locally distributed observation. Let us mention
also Auroux and Blum [1] who implemented a similar algorithm in the context of data
assimilation. More generally, during the last decade, observers have been designed
for linear and nonlinear infinite-dimensional systems in many works, among which
we can mention for instance Deguenon et al. [8], Guo and Guo [13], Guo and Shao
[14] in the context of wave-type systems, Lasiecka and Triggiani [19], Smyshlyaev
and Krstic [26] for parabolic systems and Krstic et al. [17] for the non linear viscous
Burgers equation.
Let us first briefly describe the principle of the reconstruction method proposed

in [24] in the simplified context of skew-adjoint generators and bounded observa-
tion operator. We will always work under these assumptions throughout the paper.
Given two Hilbert spaces X and Y (called state and output spaces respectively), let
A : D (A) → X be skew-adjoint operator generating a C0-group T of isometries
on X and let C ∈ L(X, Y ) be a bounded observation operator. Consider the infinite
dimensional linear system given by

{

ż(t) = Az(t), ∀t > 0,
y(t) = Cz(t), ∀t ∈ [0, τ ]. (1.1)

where z is the state and y the output function (throughout the paper, the dot symbol is
used to denote the time derivative). Such systems are often used as models of vibrating
systems (e.g., the wave equation, the beam equation,…), electromagnetic phenomena
(Maxwell’s equations) or in quantum mechanics (Schrödinger’s equation).
The inverse problem considered here is to reconstruct the initial state z0 = z(0) of

system (1.1) knowing (the observation) y(t) on the time interval [0, τ ] (see Fig. 1).
Such inverse problems arise in many applications, like thermoacoustic tomography
Kuchment and Kunyansky [18] or data assimilation Puel [23]. To solve this inverse
problem, we assume here that it is well-posed, i.e. that (A, C) is exactly observable
in time τ > 0. In other words, we assume that there exists kτ > 0 such that

τ∫

0

‖y(t)‖2dt ≥ k2τ‖z0‖2, ∀ z0 ∈ D(A).

For instance, in the case of the wave equation on a bounded domain�, this inequality
holds provided we observe the state on O × (0, τ ) where O ⊂ � and τ are chosen
such that the geometric optics condition of Bardos et al. [2] holds. For similar results
related to other equations, see for instance Burq [3], Burq and Lebeau [4] and Jaffard
[16] and the monograph of Lions [20].
Following Liu [21, Theorem 2.3.], we know that A+ = A − C∗C (respectively

A− = −A − C∗C) generate an exponentially stable C0-semigroup T
+ (respectively

T
−) on X . Then, we introduce the following initial and final Cauchy problems, called
respectively forward and backward observers of (1.1)



Fig. 1 An initial data inverse
problem for evolution PDE’s:
How to reconstruct the initial
state (light grey) for a PDE set
on a domain � from partial
observation onO × [0, τ ]
(dark grey)?

{

ż+(t) = A+z+(t) + C∗y(t), ∀t ∈ [0, τ ],
z+(0) = 0,

(1.2)

{

ż−(t) = −A−z−(t) − C∗y(t), ∀t ∈ [0, τ ],
z−(τ ) = z+(τ ).

(1.3)

Note that the states z+ and z− of the forward and backward observers are com-
pletely determined by the knowledge of the output y. If we set Lτ = T

−
τ T

+
τ , then by

[24, Proposition 3.7], we have η := ‖Lτ‖L(X) < 1 and by [24, Proposition 3.3], the
following remarkable relation holds true

z0 = (I − Lτ )
−1z−(0). (1.4)

In particular, one can invert the operator (I − Lτ ) using a Neumann series and get the
following expression for the initial state

z0 =
∞
∑

n=0
L

n
τ z−(0). (1.5)

Thus, at least theoretically, the reconstruction of the initial state is given by the above
formula. Note that the computation of the first term in the above sum requires to solve
the two non-homogeneous systems (1.2) and (1.3), while the terms for n ≥ 1 involve
the resolution of the two homogeneous systems associated with (1.2) and (1.3) (i.e. for
y ≡ 0). In practice, the reconstruction procedure requires the discretization of these
two systems and the truncation of the infinite sum in (1.5) to keep only a finite number
of back and forth iterations. For instance, if we consider a space semi-discretization
corresponding to a mesh size h (typically a finite element approximation), one can
only compute



z0,h =
Nh∑

n=0
L

n
h,τ z−

h (0), (1.6)

where

– Lh,τ = T
−
h,τ T

+
h,τ , where T

±
h,τ ∈ L(X) are suitable space discretizations of T

±
τ ,

– z−
h (0) ∈ Xh is an approximation of z−(0) in a suitable finite dimensional subspace

Xh of X ,
– Nh is a suitable truncation parameter.

Similarly, if a full discretization described by a mesh size h and a time step 1t is
considered, one can compute

z0,h,1t =
Nh,1t
∑

n=0
L

n
h,1t,K

(

z−
h

)0
. (1.7)

where

– Lh,1t,K = T
−
h,1t,K T

+
h,1t,K , where T

±
h,1t,K are suitable space and time discretiza-

tions of T
±
τ ,

–
(

z−
h

)0 ∈ Xh is an approximation of z−(0),
– Nh,1t is a suitable truncation parameter.

For the sake of clarity, the precise definition of the spaces and discretizations used
will be given later in the paper.
Our objective in this work is to present a convergence analysis of z0,h and z0,h,1t

towards z0. A particular attention will be devoted to the optimal choice of the trun-
cation parameters Nh and Nh,1t for given discretization parameters (mesh size h and
time step 1t). Let us emphasize that our error estimates (see (2.8), (2.27), (3.15) and
(3.25)) provide in particular an upper bound for the maximum admissible noise under
which convergence of the algorithm is guaranteed. As usually in approximation error
theory of PDE’s, some regularity assumptions are needed to obtain our error esti-
mates. Namely, our result allows us to reconstruct only initial data contained in some
subspace of X (namely D

(

A2
)

).
Let us emphasize that similar error estimates have been recently obtained by Cîndea

et al. [5] in the context of control problems. Using Russel’s “stabilizability implies
controllability” principle, the authors derived a new approximation method of exact
controls for second order wave type systems with bounded input operator. The con-
vergence analysis is carried out in the case of a Galerkin type semi-discretization.
Let us now make some comments on the type of observation for which we have

been able to prove convergence results. First of all, we assume throughout the paper
that C ∈ L(X, Y ) is a bounded observation operator (locally distributed observation).
This assumption is crucially used many times in the proofs and it seems difficult to
extend our result to the case of unbounded observation. However, the reconstruction
algorithm seems to be still efficient in this case, as it can be seen from the numerical
results given in [24].



In addition to the boundedness of C , we assume that C∗C ∈ L
(

D
(

A2
))

∩
L (D (A)). The fact that C∗C ∈ L (D (A)) ensures that the contraction property
for T

+ and T
− is still satisfied when restricted to D (A) and D

(

A2
)

(see Lemma 1
of the Appendix). Let us point out that this is proved for the damped wave equation
in Cîndea et al. [5, Proposition 2.5]. Moreover, we also have ‖Lτ‖D(A) < 1 and
‖Lτ‖D(A2) < 1 (by application of [27, Proposition 2.10.4]). The second technical

assumption C∗C ∈ L
(

D
(

A2
))

appears naturally in our analysis, but not in the one
carried out in Cîndea et al. [5]. Indeed, this assumption is used to bound a term which
does not appear in the context of control problems they considered. Finally, let us
point out that these assumptions are in particular satisfied when the locally distributed
observation is obtained via a smooth cut-off function.

Remark 1 Using an implicit Euler method preserves the dissipative properties of the
high frequency part of the solution (see (2.30) and (3.30)). This is the main reason for
which we did not use an explicit or midpoint Euler scheme, but we do not know if this
restriction is only technical or not.

The paper is organized as follows: in Sect. 2 we provide a convergence analysis of
the algorithm for an abstract Schrödinger type system, by considering successively the
semi-discretization (Sect. 2.1) and the full discretization (Sect. 2.2). In Sect. 3, similar
results are given for an abstract wave system. Once again, we tackle successively the
semi-discretization (Sect. 3.1) and the full discretization (Sect. 3.2). However, since
the proofs are very similar to those of the Schrödinger case, they will not be given
with full details. Finally, the Appendix is devoted to the proof of two technical lemmas
which are used several times throughout the paper.
Throughout the paper, we denote by M a constant independent of τ , of the initial

state z0 and of the discretization parameters h and1t , but which may differ from line
to line in the computations.

2 Schrödinger equation

Let X be a Hilbert space endowed with the inner product 〈·, ·〉. Let A0 : D (A0) → X

be a strictly positive self-adjoint operator and C ∈ L(X, Y ) a bounded observation
operator, where Y is an other Hilbert space. The norm in D(Aα

0 ) will be denoted
by ‖ · ‖α . We assume that there exists some τ > 0 such that (i A0, C) is exactly
observable in time τ . Thus by Liu [21, Theorem 2.3.], A+ = i A0 − C∗C (resp.
A− = −i A0 − C∗C) is the generator of an exponentially stable C0-semigroup T

+

(resp. T−). We want to reconstruct the initial value z0 of the following system

{

ż(t) = i A0z(t), ∀t > 0,
y(t) = Cz(t), ∀t ∈ [0, τ ]. (2.1)

Throughout this section we always assume that z0 ∈ D
(

A20

)

. Thus by applying The-
orem 4.1.6 of Tucsnak and Weiss [27], we have

z ∈ C
(

[0, τ ],D
(

A20

))

∩ C1 ([0, τ ],D (A0)) .



The forward and backward observers (1.2) and (1.3) read then as follows

{

ż+(t) = i A0z
+(t) − C∗Cz+(t) + C∗y(t), ∀t ∈ [0, τ ],

z+(0) = 0,
(2.2)

{

ż−(t) = i A0z
−(t) + C∗Cz−(t) − C∗y(t), ∀t ∈ [0, τ ],

z−(τ ) = z+(τ ).
(2.3)

Clearly, the above systems can be rewritten in the general form of an initial value
Cauchy problem (simply by using a time reversal for the second system)

{

q̇(t) = ±i A0q(t) − C∗Cq(t) + F(t), ∀t ∈ [0, τ ],
q(0) = q0,

(2.4)

where we have set

– for the forward observer (2.2) : F(t) = C∗y(t) = C∗Cz(t) and q0 = 0,
– for the backward observer (2.3) : F(t) = C∗y(τ − t) = C∗Cz(τ − t) and

q0 = z+(τ ) ∈ D
(

A20

)

.

2.1 Space semi-discretization

2.1.1 Statement of the main result

We use a Galerkin method to approximate system (2.4). More precisely, consider a

family (Xh)h>0 of finite-dimensional subspaces of D

(

A
1
2
0

)

endowed with the norm

in X . We denote πh the orthogonal projection fromD

(

A
1
2
0

)

onto Xh . We assume that

there exist M > 0, θ > 0 and h∗ > 0 such that we have for all h ∈ (0, h∗)

‖πhϕ − ϕ‖ ≤ Mhθ ‖ϕ‖ 1
2
, ∀ϕ ∈ D

(

A
1
2
0

)

. (2.5)

Given q0 ∈ D
(

A20

)

, the variational formulation of (2.4) reads for all t ∈ [0, τ ] and all

ϕ ∈ D

(

A
1
2
0

)

as follows

{ 〈q̇(t), ϕ〉 = ±i 〈q(t), ϕ〉 1
2

− 〈C∗Cq(t), ϕ〉 + 〈F(t), ϕ〉 ,

q(0) = q0.
(2.6)

Suppose that q0,h ∈ Xh and Fh are given approximations of q0 and F respectively in
the spaces X and L1 ([0, τ ], X). For all t ∈ [0, τ ], we define qh(t) ∈ Xh as the unique
solution of the variational problem

{ 〈q̇h(t), ϕh〉 = ±i 〈qh(t), ϕh〉 1
2

− 〈C∗Cqh(t), ϕh〉 + 〈Fh(t), ϕh〉 ,

qh(0) = q0,h .
(2.7)

for all ϕh ∈ Xh .



The above approximation procedure leads in particular to the definition of the semi-
discretized versions T

±
h of the semigroups T

± that we will use. Indeed, we simply
set

T
+
t q0 ≃ T

+
h,t q0 = qh(t) T

−
t q0 ≃ T

−
h,t q0 = qh(τ − t)

where qh is the solution of Eq. (2.7) with the corresponding sign and for Fh = 0 and
q0,h = πhq0. The approximation of Lτ = T

−
τ T

+
τ follows immediately by setting

Lh,τ = T
−
h,τ T

+
h,τ .

Assume that yh is an approximation of the output y in L1([0, τ ], Y ) and let z+
h and

z−
h denote the Galerkin approximations of the solutions of systems (2.2) and (2.3),
satisfying for all t ∈ [0, τ ] and all ϕh ∈ Xh

{ 〈

ż+
h (t), ϕh

〉

= i
〈

z+
h (t), ϕh

〉

1
2

−
〈

C∗Cz+
h (t), ϕh

〉

+ 〈C∗yh(t), ϕh〉,
z+

h (0) = 0.
{ 〈

ż−
h (t), ϕh

〉

= i
〈

z−
h (t), ϕh

〉

1
2

+
〈

C∗Cz−
h (t), ϕh

〉

− 〈C∗yh(t), ϕh〉,
z−

h (τ ) = z+
h (τ ).

Thus, our main result in this subsection reads as follows.

Theorem 1 Let A0 : D (A0) → X be a strictly positive self-adjoint operator and

C ∈ L(X, Y ) such that C∗C ∈ L
(

D
(

A20

))

∩ L (D (A0)). Assume that the pair

(i A0, C) is exactly observable in time τ > 0 and set η := ‖Lτ‖L(X) < 1. Let

z0 ∈ D
(

A20

)

be the initial value of (2.1) and z0,h be defined by (1.6).
Then there exist M > 0 and h∗ > 0 such that for all h ∈ (0, h∗)

‖z0 − z0,h‖ ≤ M





(
ηNh+1

1− η
+ hθτ N 2h

)

‖z0‖2 + Nh

τ∫

0

‖C∗ (y(s) − yh(s)) ‖ds



 .

A particular choice of Nh leads to an explicit error estimate (with respect to h) as
shown in the next Corollary (the proof is left to the reader because of its simplicity)

Corollary 1 Under the assumptions of Theorem 1, we set

Nh = θ
ln h

ln η
.

Then, there exist Mτ > 0 and h∗ > 0 such that for all h ∈ (0, h∗)

‖z0 − z0,h‖ ≤ Mτ



hθ ln2 h ‖z0‖2 + | ln h|
τ∫

0

‖C∗ (y(s) − yh(s)) ‖ds



 . (2.8)



Remark 2 In fact, Theorem 1 still holds true for z0 ∈ D

(

A
3
2
0

)

(with the same proofs

and slightly adapting the spaces). Nevertheless, we have not been able to carry out this
analysis for the fully discrete approximation in this case. This is why we restricted our
analysis to the case of an initial data z0 ∈ D

(

A20

)

.

2.1.2 Proof of Theorem 1

Before proving Theorem 1, we first need to prove some auxiliary results. The next
Proposition, which constitutes one of the main ingredients of the proof, provides the
error estimate for the approximation in space of the initial value problem (2.6) by
using the Galerkin scheme (2.7).

Proposition 1 Given q0 ∈ D
(

A20

)

and q0,h ∈ Xh , let q and qh be the solutions of

(2.6) and (2.7) respectively. Assume that C∗C ∈ L (D (A0)). Then, there exist M > 0
and h∗ > 0 such that for all t ∈ [0, τ ] and all h ∈ (0, h∗)

‖πhq(t) − qh(t)‖ ≤ ‖πhq0 − q0,h‖ + Mhθ
[

t
(

‖q0‖2 + ‖F‖1,∞
)

+ t2‖F‖2,∞
]

+
t∫

0

‖F(s) − Fh(s)‖ds,

where ‖F‖α,∞ = supt∈[0,τ ] ‖F(t)‖α .

Proof First, we substract (2.7) from (2.6) and obtain (we omit the time dependence
for the sake of clarity) for all ϕh ∈ Xh

〈q̇ − q̇h, ϕh〉 = ±i 〈q − qh, ϕh〉 1
2

−
〈

C∗C(q − qh), ϕh

〉

+ 〈F − Fh, ϕh〉 .

Noting that 〈πhq − q, ϕh〉 1
2

= 0 for all ϕh ∈ Xh and that πh q̇ makes sense by the
regularity of q (see (4.1)), we obtain from the above equality that for all ϕh ∈ Xh

〈πh q̇ − q̇h, ϕh〉 = 〈πh q̇ − q̇, ϕh〉 ± i 〈πhq − qh, ϕh〉 1
2

−
〈

C∗C (q − qh) , ϕh

〉

+ 〈F − Fh, ϕh〉 . (2.9)

On the other hand, setting

Eh =
1

2
‖πhq − qh‖2,

we have

Ėh = Re 〈πh q̇ − q̇h, πhq − qh〉 .

Applying (2.9) with ϕh = πhq − qh and substituting the result in the above relation,
we obtain by using Cauchy-Schwarz inequality and the boundedness of C that there
exists M > 0 such that



Ėh ≤ (‖πh q̇ − q̇‖ + M‖πhq − q‖ + ‖F − Fh‖) ‖πhq − qh‖
︸ ︷︷ ︸

=
√
2Eh

.

Since Ėh√
2Eh

=
d

dt

√
2Eh , the integration of the above inequality from 0 to t yields

‖πhq(t) − qh(t)‖ ≤ ‖πhq0 − q0,h‖+
t∫

0

(‖πh q̇(s) − q̇(s)‖+M‖πhq(s)−q(s)‖) ds

+
t∫

0

‖F(s) − Fh(s)‖ds. (2.10)

Thus, it remains to bound ‖πh q̇(t) − q̇(t)‖ and ‖πhq(t) − q(t)‖ for all t ∈ [0, τ ].
Using (2.5) and the classical continuous embedding fromD(Aα) toD(Aβ) for α > β,
we get that

{

‖πh q̇(t) − q̇(t)‖ ≤ Mhθ‖q̇(t)‖ 1
2

≤ Mhθ‖q̇(t)‖1,
‖πhq(t) − q(t)‖ ≤ Mhθ‖q(t)‖ 1

2
≤ Mhθ‖q(t)‖2,

∀t ∈ [0, τ ], h ∈ (0, h∗).

Using relations (4.2) and (4.3) proved in Lemma 2 of the Appendix, we get for all
t ∈ [0, τ ] and all h ∈ (0, h∗)

‖πh q̇(t) − q̇(t)‖ + ‖πhq(t) − q(t)‖ ≤ Mhθ
(

‖q0‖2 + t‖F‖2,∞ + ‖F‖1,∞
)

.

Substituting the above inequality in (2.10), we get the result.

Using the last result, we derive an error approximation for the semigroups T
± and for

the operator Lt = T
−
t T

+
t .

Proposition 2 Under the assumptions of Proposition 1, the following assertions hold

true

1. There exist M > 0 and h∗ > 0 such that for all t ∈ (0, τ ) and all h ∈ (0, h∗)

∥
∥
∥πhT

+
t q0 − T

+
h,t q0

∥
∥
∥ ≤ Mthθ‖q0‖2. (2.11)

∥
∥
∥πhT

−
t q0 − T

−
h,t q0

∥
∥
∥ ≤ M(τ − t)hθ‖q0‖2. (2.12)

2. There exist M > 0 and h∗ > 0 such that for all n ∈ N, all t ∈ [0, τ ] and all

h ∈ (0, h∗), we have

‖L
n
t q0 − L

n
h,t q0‖ ≤ M(1+ nτ)hθ‖q0‖2. (2.13)



Proof

1. It suffices to take F = Fh = 0 and q0,h = πhq0 in Proposition 1.
2. We first note that

‖L
n
t q0 − L

n
h,t q0‖ ≤ ‖L

n
t q0 − πhL

n
t q0‖ + ‖πhL

n
t q0 − L

n
h,t q0‖. (2.14)

Using (2.5) and the fact that ‖Lt‖L(D(A)) ≤ 1 proved in Lemma 1 of the Appendix,
the first term in the above relation can be estimated as follows

‖L
n
t q0 − πhL

n
t q0‖ ≤ Mhθ‖q0‖2, ∀h ∈ (0, h∗). (2.15)

For the second term in (2.14), we prove by induction that for all n ∈ N

‖πhL
n
t q0 − L

n
h,t q0‖ ≤ Mnτhθ‖q0‖2, ∀h ∈ (0, h∗). (2.16)

By definition, we have

‖πhLt q0 − Lh,t q0‖ = ‖πhT
−
t T

+
t q0 − T

−
h,tT

+
h,t q0‖,

≤ ‖πhT
−
t T

+
t q0 − T

−
h,tT

+
t q0‖ + ‖T

−
h,t (T

+
t q0 − T

+
h,t q0)‖.

By Lemma 1 of the Appendix and Eq. (2.12), we get

‖πhT
−
t T

+
t q0 − T

−
h,tT

+
t q0‖ ≤ M(τ − t)hθ‖q0‖2, ∀h ∈ (0, h∗).

Obviously ‖T
−
h ‖L(X) is uniformly bounded with respect to h (this follows for example

from (2.12)), and thus by (2.5) and Eq. (2.11), we have

‖T
−
h,t (T

+
t q0 − T

+
h,t q0)‖ ≤ ‖T

+
t q0 − πhT

+
t q0‖ + ‖πhT

+
t q0 − T

+
h,t q0‖

≤ Mthθ‖q0‖2, ∀h ∈ (0, h∗).

Consequently

‖πhLt q0 − Lh,t q0‖ ≤ Mτhθ‖q0‖2, ∀h ∈ (0, h∗), (2.17)

which shows that (2.16) holds for n = 1. Suppose now that for a given n ≥ 2, there
holds

‖πhL
n−1
t q0 − L

n−1
h,t q0‖ ≤ M(n − 1)τhθ‖q0‖2. (2.18)

We write

‖πhL
n
t q0 − L

n
h,t q0‖ ≤ ‖πhLtL

n−1
t q0 − Lh,tL

n−1
t q0‖ + ‖Lh,t (L

n−1
t q0 − L

n−1
h,t q0)‖.



Thanks to Lemma 1 of the Appendix and to the uniform boundedness of ‖Lh,t‖L(X)

with respect to h (which follows from the uniform boundedness of ‖T
±
h,t‖) and using

(2.17) and (2.18), we obtain

‖πhL
n
t q0 − L

n
h,t q0‖ ≤ M(τ + (n − 1)τ )hθ‖q0‖2,

which is exactly (2.16). Substituting (2.15) and (2.16) in (2.14), we obtain the result.

We are now able to prove Theorem 1.

Proof of Theorem 1 Introducing the term
∑Nh

n=0
L

n
h,τ z−(0), we rewrite z0 − z0,h in

the following form

z0 − z0,h =
∞
∑

n=0
L

n
τ z−(0) −

Nh∑

n=0
L

n
h,τ z−

h (0),

=
∑

n>Nh

L
n
τ z−(0) +

Nh∑

n=0

(

L
n
τ − L

n
h,τ

)

z−(0) +
Nh∑

n=0
L

n
h,τ

(

z−(0) − z−
h (0)

)

.

Therefore, we have

‖z0 − z0,h‖ ≤ S1 + S2 + S3, (2.19)

where we have set















S1 =
∑

n>Nh

∥
∥L

n
τ z−(0)

∥
∥ ,

S2 =
∑Nh

n=0

∥
∥
∥

(

L
n
τ − L

n
h,τ

)

z−(0)
∥
∥
∥ ,

S3 =
(

∑Nh

n=0

∥
∥
∥L

n
h,τ

∥
∥
∥

L(X)

)
∥
∥z−(0) − z−

h (0)
∥
∥ .

Note that the term S1 is the truncation error of the tail of the infinite sum (1.5), the
term S2 represents the cumulated error due to the approximation of the semigroups
T

± while the term S3 comes from the approximation of the first iterate z−(0) of the
algorithm.
Since η = ‖Lτ‖L(X) < 1, using relation (1.4), the first term can be estimated very

easily

S1 ≤ M
ηNh+1

1− η
‖z0‖2. (2.20)

The term S2 can be estimated using the estimate (2.13) from Proposition 2

S2 ≤ M





Nh∑

n=0
(1+ nτ)



 hθ‖z−(0)‖2, ∀h ∈ (0, h∗).



Therefore, using (1.4) and the fact that ‖Lτ‖D(A2) < 1 in the above relation, we
finally get that

S2 ≤ M
[

1+ (1+ τ)Nh + N 2h τ

]

hθ‖z0‖2, ∀h ∈ (0, h∗). (2.21)

It remains to estimate the term S3. As η = ‖Lτ‖L(X) < 1, (2.13) implies that
‖Lh,τ‖L(X) is also uniformly with respect to h bounded by 1, provided h is small
enough. Hence, we have

S3 ≤ M Nh

∥
∥z−(0) − z−

h (0)
∥
∥

≤ M Nh

(∥
∥z−(0) − πhz−(0)

∥
∥ +

∥
∥πhz−(0) − z−

h (0)
∥
∥
)

.
(2.22)

By using (2.5) and (1.4), we immediately obtain that

∥
∥z−(0) − πhz−(0)

∥
∥ ≤ Mhθ‖z0‖2. (2.23)

To estimate the second term πhz−(0) − z−
h (0), we apply twice Proposition 1 first for

the time reversed backward observer z−(τ − ·) and then for the forward observer
z+ (the time reversal step is introduced as in the formulation of Proposition 1, only
initial value Cauchy problems can be considered). After straightforward calculation
we obtain that for all h ∈ (0, h∗)

∥
∥πhz−(0) − z−

h (0)
∥
∥ ≤ Mhθ

[

τ(‖z+(τ )‖2 + ‖C∗y‖1,∞) + τ 2‖C∗y‖2,∞
]

+
τ∫

0

‖C∗ (y(τ − s) − yh(τ − s)) ‖ds

+
τ∫

0

‖C∗ (y(s) − yh(s)) ‖ds. (2.24)

Applying (4.2) of Lemma 2 of the Appendix with zero initial data, we obtain that

‖z+(τ )‖2 ≤ τ‖C∗y‖2,∞.

Therefore (2.24) also reads

∥
∥πhz−(0) − z−

h (0)
∥
∥ ≤ Mhθ (τ + τ 2)‖C∗y‖2,∞ + 2

τ∫

0

‖C∗ (y(s) − yh(s)) ‖ds.



As C∗C ∈ L
(

D
(

A20

))

∩ L (D (A0)) and ‖z‖2,∞ = ‖z0‖2 (since i A0 is skew-
adjoint), the last relation becomes

∥
∥πhz−(0) − z−

h (0)
∥
∥ ≤ Mhθ (τ + τ 2)‖z0‖2 + 2

τ∫

0

‖C∗ (y(s) − yh(s)) ‖ds.

Substituting the above relation and (2.23) in (2.22), we get

S3 ≤ M Nh



hθ (1+ τ + τ 2)‖z0‖2 +
τ∫

0

‖C∗ (y(s) − yh(s)) ‖ds



 . (2.25)

Substituting (2.20), (2.21) and (2.25) in (2.19), we get for all h ∈ (0, h∗)

‖z0 − z0,h‖ ≤ M





(
ηNh+1

1− η
+ hθ

[

1+ (1+ τ + τ 2)Nh + τ N 2h

]
)

‖z0‖2

+Nh

τ∫

0

‖C∗ (y(s) − yh(s)) ‖ds



 ,

which leads to the result (with possibly reducing the value of h∗).

2.2 Full discretization

2.2.1 Statement of the main result

In order to approximate (2.6), we use an implicit Euler scheme in time combined with
the previous Galerkin approximation in space. In others words, we discretize the time
interval [0, τ ] using a time step 1t > 0. We obtain a discretization tk = k1t , where
0 ≤ k ≤ K and where we assumed, without loss of generality, that τ = K1t . Given a
continuously differentiable function of time f , we approximate its derivative at time
tk by the formula

f ′(tk) ≃ Dt f (tk) :=
f (tk) − f (tk−1)

1t
.

We suppose that q0,h ∈ Xh and Fk
h , for 0 ≤ k ≤ K , are given approximations of

q0 and F(tk) in the space X . We define (qk
h ), for 0 ≤ k ≤ K , as the solution of the

following problem: for all ϕh ∈ Xh :

{ 〈

Dt q
k
h , ϕh

〉

= ±i
〈

qk
h , ϕh

〉

1
2

−
〈

C∗Cqk
h , ϕh

〉

+
〈

Fk
h , ϕh

〉

,

q0h = q0,h .
(2.26)



Note that the above procedure leads to a natural approximation T
±
h,1t,k of the contin-

uous semigroup T
±
tk
by setting

T
+
tk

q0 ≃ T
+
h,1t,kq0 := qk

h , T
−
tk

q0 ≃ T
−
h,1t,kq0 := q K−k

h ,

whereqk
h solves (2.26)with Fk

h = 0 for all 0 ≤ k ≤ K and forq0,h = πhq0. Obviously,
this also leads to an approximation of Lτ = T

−
τ T

+
τ by setting

Lh,1t,K = T
−
h,1t,K T

+
h,1t,K .

Assume that for all 0 ≤ k ≤ K , yk
h is a given approximation of y(tk) in Y and let

(

z+
h

)k
and

(

z−
h

)k
be respectively the approximations of (2.2) and (2.3) obtained via

(2.26) as follows:

– For all 0 ≤ k ≤ K ,
(

z+
h

)k = qk
h where qk

h solves (2.26) with Fk
h = C∗yk

h and
q0h = 0,

– For all 0 ≤ k ≤ K ,
(

z−
h

)k = q K−k
h where qk

h solves (2.26) with Fk
h = C∗yK−k

h

and q0h = (z+
h )K .

Then, our main result (which is the fully discrete counterpart of Theorem 1) reads
as follows

Theorem 2 Let A0 : D (A0) → X be a strictly positive self-adjoint operator and C ∈
L(X, Y ) such that C∗C ∈ L

(

D
(

A20

))

∩L (D (A0)). We assume that the pair (i A0, C)

is exactly observable in time τ > 0. Let z0 ∈ D
(

A20

)

be the initial value of (2.1). With

the above notation, let z0,h,1t be defined by (1.7) and denote η := ‖Lτ‖L(X) < 1.
Then there exist M > 0, h∗ > 0 and 1t∗ > 0 such that for all h ∈ (0, h∗) and all

1t ∈ (0,1t∗) we have

‖z0 − z0,h,1t‖ ≤ M

[
(

ηNh,1t +1

1− η
+ (hθ + 1t)(1+ τ)N 2h,1t

)

‖z0‖2

+Nh,1t1t

K
∑

ℓ=0

∥
∥C∗(y(tℓ) − yℓ

h)
∥
∥

]

.

Corollary 2 Under the assumptions of Theorem 2, we set

Nh,1t =
ln(hθ + 1t)

ln η



Then, there exist Mτ > 0, h∗ > 0 and 1t∗ > 0 such that for all h ∈ (0, h∗) and

1t ∈ (0,1t∗)

‖z0 − z0,h,1t‖ ≤ Mτ

[

(hθ + 1t) ln2(hθ + 1t)‖z0‖2

+
∣
∣ln(hθ + 1t)

∣
∣1t

K
∑

ℓ=0

∥
∥C∗(y(tℓ) − yℓ

h)
∥
∥

]

. (2.27)

Remark 3 Contrarily to the semi-discrete case, we have not been able to extend our
results for z0 in a larger space than D

(

A20

)

.

Remark 4 Let us emphasize that our results hold without assuming a CFL type con-
dition.

2.2.2 Proof of Theorem 2

The proof of Theorem 2 goes along the same lines as the one of Theorem 1 in the
semi-discrete case and uses energy estimates similar to those developed in Fujita and
Suzuki [11, p. 865]. The main ingredient for the convergence analysis is the follow-
ing result (the counterpart of Proposition 1) which gives the error estimate for the
approximation (in space and time) of system (2.6) by (2.26).

Proposition 3 Given initial states q0 ∈ D
(

A20

)

and q0,h ∈ Xh , let q and qk
h , for

0 ≤ k ≤ K , be respectively the solutions of (2.6) and (2.26). Assume that C∗C ∈
L (D (A0)). Then, there exist M > 0, h∗ > 0and1t∗ > 0 such that for all h ∈ (0, h∗),
all 1t ∈ (0,1t∗) and all 0 ≤ k ≤ K :

‖πhq(tk) − qk
h‖ ≤ ‖πhq0 − q0,h‖ + M

{

1t

k
∑

ℓ=1
‖F(tℓ) − Fℓ

h ‖

+
(

hθ + 1t
)
[

tk
(

‖q0‖2 + ‖F‖1,∞ + ‖Ḟ‖∞
)

+ t2k ‖F‖2,∞
]
}

.

Proof Let r1(tk) denote the residual term in the first order Taylor expansion of q

around tk−1, so that

q̇(tk) =
q(tk) − q(tk−1)

1t
−
1

1t
r1(tk) = Dt q(tk) −

1

1t
r1(tk), (2.28)

Subtracting (2.26) from the continuous weak formulation (2.6) applied for t = tk and
for an arbitrary test function ϕ = ϕh ∈ Xh , we immediately get by using (2.28) that
for all 1 ≤ k ≤ K



〈

Dt

(

q(tk) − qk
h

)

, ϕh

〉

= ±i 〈πhq(tk), ϕh〉 1
2

−
〈

C∗C
(

q(tk) − qk
h

)

, ϕh

〉

+
1

1t
〈r1(tk), ϕh〉 +

〈

F(tk) − Fk
h , ϕh

〉

.

The above relation implies that

〈

Dt

(

πhq(tk) − qk
h

)

, ϕh

〉

= 〈Dt (πhq(tk) − q(tk)) , ϕh〉

±i
〈

πhq(tk) − qk
h , ϕh

〉

1
2

−
〈

C∗C
(

q(tk) − qk
h

)

, ϕh

〉

+
1

1t
〈r1(tk), ϕh〉 +

〈

F(tk) − Fk
h , ϕh

〉

. (2.29)

Now, for all 1 ≤ k ≤ K , let

E
k
h =

1

2
‖πhq(tk) − qk

h‖2.

Using the identity

1

2

(

‖u‖2 − ‖v‖2 + ‖u − v‖2
)

= Re 〈u − v, u〉 , ∀u, v ∈ X,

one easily obtains that for all 1 ≤ k ≤ K

DtE
k
h ≤ Re

〈

Dt

(

πhq(tk) − qk
h

)

, πhq(tk) − qk
h

〉

. (2.30)

Substituting (2.29) with ϕh = πhq(tk) − qk
h in the above inequality and using the

boundedness of C , we obtain the existence of M > 0 such that for all 1 ≤ k ≤ K

DtE
k
h ≤

[

‖Dt (πhq(tk) − q(tk)) ‖ + M‖πhq(tk) − q(tk)‖

+
1

1t
‖r1(tk)‖ + ‖F(tk) − Fk

h ‖
]

‖πhq(tk) − qk
h‖. (2.31)

Using the straightforward relations

DtE
k
h =

(

Dt

√

E
k
h

) (√

E
k
h +

√

E
k−1
h

)

, (2.32)

and

‖πhq(tk) − qk
h‖ ≤

√
2

(√

E
k
h +

√

E
k−1
h

)

, (2.33)

we obtain from (2.5) and (2.31) that for all h ∈ (0, h∗)

Dt

√

E
k
h ≤ M

{

hθ
(

‖Dt q(tk)‖ 1
2

+ ‖q(tk)‖ 1
2

)

+
1

1t
‖r1(tk)‖ + ‖F(tk) − Fk

h ‖
}

.



By (2.28) and relations (4.2) and (4.3) in Lemma 2 of the Appendix, the last estimate
yields

Dt

√

E
k
h ≤ M

{

hθ
(

‖q0‖2 + tk‖F‖2,∞ + ‖F‖1,∞
)

+‖F(tk) − Fk
h ‖ +

hθ

1t
‖r1(tk)‖ 1

2
+
1

1t
‖r1(tk)‖

}

.

(2.34)

To conclude, it remains to bound the two last terms in the above estimate. By definition
of r1, we have

r1(tk) = q(tk−1) − q(tk) + 1t q̇(tk),

in D

(

A
1
2
0

)

, and thus by the mean value theorem, we get

‖r1(tk)‖ 1
2

≤ 1t sup
s∈[tk−1,tk]

‖q̇(s)‖ 1
2

+ 1t‖q̇(tk)‖ 1
2
.

Using once again (4.3), we obtain that there exists M > 0 such that

‖r1(tk)‖ 1
2

≤ M1t
(

‖q0‖2 + tk‖F‖2,∞ + ‖F‖1,∞
)

. (2.35)

Now by the regularity of q (see Lemma 2), the residual r1 can be expressed via the
integral

r1(tk) =
tk∫

tk−1

q̈(s) (tk−1 − s) ds,

in X , and thus

‖r1(tk)‖ ≤ 1t2 sup
s∈[tk−1,tk]

‖q̈(s)‖.

Using Eq. (2.4) verified by q and the boundedness of C , we have

‖q̈(t)‖ =
∥
∥
∥

dq̇

dt
(t)

∥
∥
∥ =

∥
∥
∥

d

dt

{

± i A0q(t) − C∗Cq(t) + F(t)
}∥
∥
∥,

≤ ‖q̇(t)‖1 + M‖q̇(t)‖ + ‖Ḟ(t)‖.

Hence, once again by (4.3), we get

‖r1(tk)‖ ≤ 1t2
(

‖q0‖2 + tk‖F‖2,∞ + ‖F‖1,∞ + ‖Ḟ‖∞
)

. (2.36)



Substituting inequalities (2.35) and (2.36) in relation (2.34) provides estimates for

Dt

√

E
k
h =

√

Ek
h −

√

E
k−1
h

1t
, for k = 1, . . . , K , that can be added together to get the

desired inequality (since ‖πhq(tk) − qk
h‖ =

√

2Ek
h ).

Using this Proposition, we can derive an error estimate for the semigroup T
±
tk
(for all

1 ≤ k ≤ K ) and for the operator Lτ = T
−
τ T

+
τ (the counterpart of Proposition 2).

Proposition 4 Under the assumptions of Proposition 3, the following assertions hold

true

1. There exist M > 0, h∗ > 0 and 1t∗ > 0 such that for all h ∈ (0, h∗), all

1t ∈ (0,1t∗) and all 0 ≤ k ≤ K

∥
∥
∥πhT

+
tk

q0 − T
+
h,1t,kq0

∥
∥
∥ ≤ Mtk(h

θ + 1t)‖q0‖2. (2.37)
∥
∥
∥πhT

−
tk

q0 − T
−
h,1t,kq0

∥
∥
∥ ≤ M(τ − tk)(h

θ + 1t)‖q0‖2. (2.38)

2. There exist M > 0, h∗ > 0 and 1t∗ > 0 such that for all n ∈ N, all h ∈ (0, h∗),
all 1t ∈ (0,1t∗) and all 0 ≤ k ≤ K

‖(Ln
tk

− L
n
h,1t,k)q0‖ ≤ M

[

hθ + nτ
(

hθ + 1t
)]

‖q0‖2. (2.39)

Proof

1. It suffices to apply Proposition 3 with F(tk) = Fk
h = 0 for all 0 ≤ k ≤ K and

q0,h,1t = πhq0.
2. First, we note that

‖L
n
tk

q0 − L
n
h,1t,kq0‖ ≤ ‖L

n
tk

q0 − πhL
n
tk

q0‖ + ‖πhL
n
tk

q0 − L
n
h,1t,kq0‖. (2.40)

Using (2.5), the fact that ‖L
n
t ‖L(D(A)) ≤ 1 (proved in Lemma 1 of the Appendix), the

first term in the above relation can be estimated as follows

‖L
n
tk

q0 − πhL
n
tk

q0‖ ≤ Mhθ‖q0‖2, ∀h ∈ (0, h∗). (2.41)

For the second term in (2.40), we prove by induction that for all n ∈ N, all h ∈ (0, h∗)
and all 1t ∈ (0,1t∗) (for some 1t∗ > 0)

‖πhL
n
tk

q0 − L
n
h,1t,kq0‖ ≤ Mnτ

(

hθ + 1t
)

‖q0‖2. (2.42)

By definition, we have

∥
∥πhLtk q0 − Lh,1t,kq0

∥
∥ =

∥
∥πhT

−
tk

T
+
tk

q0 − T
−
h,1t,kT

+
h,1t,kq0

∥
∥,

≤
∥
∥
∥

(

πhT
−
tk

− T
−
h,1t,k

)

πhT
+
tk

q0

∥
∥
∥

+
∥
∥
∥T

−
h,1t,k

(

πhT
+
tk

− T
+
h,1t,k

)

q0

∥
∥
∥ .



Using (2.38) and Lemma 1, we get

∥
∥
∥

(

πhT
−
tk

− T
−
h,1t,k

)

πhT
+
tk

q0

∥
∥
∥ ≤ M(τ − tk)

(

hθ + 1t
)

‖q0‖2.

Obviously ‖T
−
h,1t,k‖L(X) is uniformly bounded (with respect to h and 1t), and thus

again by (2.37) we have

∥
∥
∥T

−
h,1t,k

(

πhT
+
tk

− T
+
h,1t,k

)

q0

∥
∥
∥ ≤ Mtk

(

hθ + 1t
)

‖q0‖2.

So, by adding the two last inequalities, we obtain that

∥
∥πhLtk q0 − Lh,1t,kq0

∥
∥ ≤ Mτ

(

hθ + 1t
)

‖q0‖2, (2.43)

showing that (2.42) holds for n = 1. Suppose now that for some n ≥ 2

‖πhL
n−1
tk

q0 − L
n−1
h,1t,kq0‖ ≤ M(n − 1)τ

(

hθ + 1t
)

‖q0‖2. (2.44)

Writing

‖πhL
n
tk

q0 − L
n
h,1t,kq0‖ ≤ ‖πhLtk L

n−1
tk

q0 − Lh,1t,kπhL
n−1
tk

q0‖
+‖Lh,1t,k(πhL

n−1
tk

q0 − L
n−1
h,1t,kq0)‖,

we get by using Lemma 1, the uniform boundedness of ‖Lh,1t,k‖L(X) with respect to
h and 1t , (2.43) and (2.44) that

‖πhL
n
tk

q0 − L
n
h,1t,kq0‖ ≤ M

[

(1+ (n − 1))τ
(

hθ + 1t
)]

‖q0‖2,

which is exactly (2.42). Substituting (2.41) and (2.42) in (2.40), we obtain the result.

We are now able to prove Theorem 2.

Proof of Theorem 2 We first introduce the term
∑Nh,1t

n=0 L
n
h,1t,K z−(0) to rewrite the

approximation error z0 − z0,h,1t in the following form:

z0 − z0,h,1t =
∞
∑

n=0
L

n
τ z−(0) −

Nh,1t
∑

n=0
L

n
h,1t,K

(

z−
h

)0

=
∑

n>Nh,1t

L
n
τ z−(0) +

Nh,1t
∑

n=0

(

L
n
τ − L

n
h,1t,K

)

z−(0)

+
Nh,1t
∑

n=0
L

n
h,1t,K

(

z−(0) −
(

z−
h

)0
)

.

Therefore, we have

‖z0 − z0,h,1t‖ ≤ S1 + S2 + S3, (2.45)



where we have set

















S1 =
∑

n>Nh,1t

∥
∥L

n
τ z−(0)

∥
∥ ,

S2 =
∑Nh,1t

n=0

∥
∥
∥

(

L
n
τ − L

n
h,1t,K

)

z−(0)
∥
∥
∥ ,

S3 =
(

∑Nh,1t

n=0

∥
∥
∥L

n
h,1t,K

∥
∥
∥

L(X)

) ∥
∥
∥z−(0) −

(

z−
h

)0
∥
∥
∥.

Since η = ‖Lτ‖L(X) < 1, the first term can be estimated very easily

S1 ≤ M
ηNh,1t +1

1− η
‖z0‖2. (2.46)

The second term S2 can be estimated using the estimate (2.39) from Proposition 4

S2 ≤ M

{ Nh,1t
∑

n=0

(

hθ + nτ(hθ + 1t)
)
}

‖z−(0)‖2, ∀h ∈ (0, h∗),1t ∈ (0,1t∗).

Therefore, using (1.4), the fact that ‖Lτ‖D(A2) < 1 (see Lemma 1) in the above
relation, we get that for all h ∈ (0, h∗) and 1t ∈ (0,1t∗)

S2 ≤ M
[

1+ (1+ τ)Nh,1t + (1+ τ)N 2h,1t

]
(

hθ + 1t
)

‖z0‖2. (2.47)

It remains to estimate the term S3. As for the semi-discrete case, one can easily show
that ‖Lh,1t,K ‖L(X) is uniformly bounded by 1 (with respect to h and 1t), and thus
we have

S3 ≤ M Nh,1t

∥
∥
∥z−(0) − (z−

h )0
∥
∥
∥

≤ M Nh,1t

(∥
∥z−(0) − πhz−(0)

∥
∥ +

∥
∥
∥πhz−(0) − (z−

h )0
∥
∥
∥

)

.
(2.48)

By using (2.5) and (1.4), we immediately obtain that

∥
∥z−(0) − πhz−(0)

∥
∥ ≤ Mhθ‖z0‖2. (2.49)

To estimate the second term πhz−(0) − (z−
h )0, we apply twice Proposition 3 first for

the time reversed backward observer z−(τ − ·) and then for the forward observer z+

(the time reversal step is introduced simply because Proposition 3 is written for initial
(and not final) value Cauchy problems). After straightforward calculation we obtain
that for all h ∈ (0, h∗) and all 1t ∈ (0,1t∗)



∥
∥
∥πhz−(0) − (z−

h )0
∥
∥
∥ ≤ M(hθ + 1t)

[

τ(‖z+(τ )‖2 + ‖C∗y‖1,∞ + ‖C∗ ẏ‖∞)

+τ 2‖C∗y‖2,∞
]

+ 1t

K
∑

ℓ=1

∥
∥
∥C∗

(

y(τ − tℓ) − yK−ℓ
h

)∥
∥
∥

+1t

K
∑

ℓ=1

∥
∥
∥C∗

(

y(tℓ) − yℓ
h

)∥
∥
∥ . (2.50)

Applying (4.2) of Lemma 2 of the Appendix with zero initial data, we obtain that

‖z+(τ )‖2 ≤ τ‖C∗y‖2,∞.

As C∗C ∈ L
(

D
(

A20

))

∩ L (D (A0)) and ‖z‖2,∞ = ‖z0‖2 (since i A0 is skew-
adjoint), (2.50) also reads

∥
∥
∥πhz−(0) − (z−

h )0
∥
∥
∥ ≤ M(hθ + 1t)(τ + τ 2)‖z0‖2 + 21t

K
∑

ℓ=0

∥
∥
∥C∗

(

y(tℓ) − yℓ
h

)∥
∥
∥ .

Substituting the above relation and (2.49) in (2.48), we get

S3 ≤ M Nh,1t

{

(hθ + 1t)(1+ τ + τ 2)‖z0‖2 + 1t

K
∑

ℓ=0

∥
∥
∥C∗

(

y(tℓ) − yℓ
h

)∥
∥
∥

}

.

(2.51)

Substituting (2.46), (2.47) and (2.51) in (2.45), we get for all h ∈ (0, h∗) and all
1t ∈ (0,1t∗)

‖z0 − z0,h,1t‖ ≤ M

{

Nh,1t1t

K
∑

ℓ=0

∥
∥
∥C∗

(

y(tℓ) − yℓ
h

)∥
∥
∥ +

ηNh,1t +1

1− η
‖z0‖2

+(hθ + 1t)
[

1+ (1+ τ + τ 2)Nh,1t + (1+ τ)N 2h,1t

]

‖z0‖2
}

,

which leads to the result (with possibly reducing the value of h∗ and 1t∗).

3 The wave equation

Let H be a Hilbert space endowed with the inner product 〈·, ·〉. The corresponding
norm of H is denoted by ‖ · ‖. Let A0 : D (A0) → H be a strictly positive self-adjoint
operator and C0 ∈ L(H, Y ) a bounded observation operator, where Y is an other
Hilbert space. The norm in D(Aα

0 ) will be denoted by ‖ · ‖α . Given τ > 0, we deal
with the general wave type system

{

ẅ(t) + A0w(t) = 0, ∀t > 0,
y(t) = C0ẇ(t), ∀t ∈ [0, τ ], (3.1)



and we want to reconstruct the initial value (w0, w1) = (w(0), ẇ(0)) of (3.1) know-
ing y(t) for t ∈ [0, τ ]. In order to use the general iterative algorithm described in the
introduction, we first rewrite (3.1) as a first order system of the form (1.1). To achieve
this, it suffices to introduce the following notation:

z(t) =
[

w(t)

ẇ(t)

]

, X = D

(

A
1
2
0

)

× H,

A =
(

0 I

−A0 0

)

, D (A) = D (A0) × D

(

A
1
2
0

)

, (3.2)

C ∈ L(X, Y ), C =
[

0 C0
]

. (3.3)

The space X is endowed with the norm

‖z‖ =
√

‖z1‖21
2

+ ‖z2‖2, ∀ z =
[

z1
z2

]

∈ X.

Note that the operator i A is selfadjoint but has no sign so that the problem studied here
does not fit into the framework of Sect. 2. We assume that the pair (A, C) is exactly
observable in time τ > 0. Thus, according to Liu [21, Theorem 2.3.], A+ = A −C∗C

(resp. A− = −A − C∗C) is the generator of an exponentially stable C0-semigroup
T

+ (resp. T−). We set as usually

Lτ = T
−
τ T

+
τ .

Throughout this section we always assume that (w0, w1) ∈ D
(

A2
)

= D

(

A
3
2
0

)

×
D (A0). Thus by applying Theorem 4.1.6 of Tucsnak and Weiss [27], we have

w ∈ C

(

[0, τ ],D
(

A
3
2
0

))

∩ C1 ([0, τ ],D (A0)) ∩ C2
(

[0, τ ],D
(

A
1
2
0

))

.

The forward and backward observers (1.2) and (1.3) read then as follows (as second-
order systems)

{

ẅ+(t) + A0w
+(t) + C∗

0C0ẇ
+(t) = C∗

0 y(t), ∀t ∈ [0, τ ],
w+(0) = 0, ẇ+(0) = 0,

(3.4)

{

ẅ−(t) + A0w
−(t) − C∗

0C0ẇ
−(t) = −C∗

0 y(t), ∀t ∈ [0, τ ],
w−(τ ) = w+(τ ), ẇ−(τ ) = ẇ+(τ ).

(3.5)

Clearly, the above two systems can bewritten as a general initial valueCauchy problem
of the same form (simply by using a time reversal for the second system)

{

p̈(t) + A0 p(t) + C∗
0C0 ṗ(t) = f (t), ∀t ∈ [0, τ ],

p(0) = p0, ṗ(0) = p1
(3.6)

where we have set



– for the forward observer (3.4): f (t)=C∗
0 y(t)=C∗

0C0ẇ(t) and (p0, p1)=(0, 0),
– for the backward observer (3.5): f (t) = −C∗

0 y(τ − t) = −C∗
0C0ẇ(τ − t) and

(p0, p1) = (w+(τ ),−ẇ+(τ )) ∈ D
(

A2
)

= D

(

A
3
2
0

)

× D (A0).

Let us emphasize that with these notation, the semigroupsT± are given by the relations

T
+
t

[

p0
p1

]

=
[

p(t)

ṗ(t)

]

T
−
t

[

p0
p1

]

=
[

p(τ − t)

− ṗ(τ − t)

]

(3.7)

where p solves (3.6) with f = 0.
In the next two subsections, we present a convergence analysis of semi-discretized

and fully discretized approximation schemes for the forward and backward observers
(3.4) and (3.5). Our proof is based on the convergence analysis of the semi and fully
discretizations of (3.6). For the sake of clarity, we dropped in the proofs some of the
details which are very close to the ones given in the Schrödinger. As far as we know,
the existing literature on the convergence analysis of full discretizations of wave-type
systems concern only the particular cases of conservative systems (i.e. without damp-
ing), see e.g. Raviart and Thomas [25, p. 197] or Dautray and Lions [7, p. 921] and
systems with constant damping coefficients Geveci and Kok [12]. For a recent review
of numerical approximation issues related to the control and the observation of waves,
we refer the reader to the review paper of Zuazua [28].

3.1 Space semi-discretization

3.1.1 Statement of the main result

We use a Galerkin method to approximate system (3.6). More precisely, consider a

family (Hh)h>0 of finite-dimensional subspaces of D

(

A
1
2
0

)

endowed with the norm

in H . We denote πh the orthogonal projection from D

(

A
1
2
0

)

onto Hh . We assume

that there exist M > 0, θ > 0 and h∗ > 0 such that we have for all h ∈ (0, h∗)

‖πhϕ − ϕ‖ ≤ Mhθ ‖ϕ‖ 1
2
, ∀ϕ ∈ D

(

A
1
2
0

)

. (3.8)

Given (p0, p1) ∈ D
(

A2
)

, the variational formulation of (3.6) reads for all t ∈ [0, τ ]

and all ϕ ∈ D

(

A
1
2
0

)

as follows

{ 〈 p̈(t), ϕ〉 + 〈p(t), ϕ〉 1
2

+
〈

C∗
0C0 ṗ(t), ϕ

〉

= 〈 f (t), ϕ〉 , ∀t ∈ [0, τ ],
p(0) = p0, ṗ(0) = p1.

(3.9)

Suppose that (p0,h, p1,h) ∈ Hh × Hh and fh are given approximations of (p0, p1)

and f respectively in the spaces X and L1 ([0, τ ], H). We define ph(t) as the solution



of the variational problem

{ 〈 p̈h(t), ϕh〉+〈ph(t), ϕh〉 1
2
+

〈

C∗
0C0 ṗh(t), ϕh

〉

=〈 fh(t), ϕh〉 , ∀t ∈[0, τ ],
ph(0) = p0,h, ṗh(0) = p1,h .

(3.10)

for all t ∈ [0, τ ] and all ϕh ∈ Hh .
The above approximation procedure leads in particular to the definition of the semi-

discretized versions T
±
h of the semigroups T

± that we will use. Indeed, we simply
set

T
+
h,t

[

p0
p1

]

=
[

ph(t)

ṗh(t)

]

T
−
h,t

[

p0
p1

]

=
[

ph(τ − t)

− ṗh(τ − t)

]

(3.11)

where ph solves (3.10) for fh = 0 and (p0,h, p1,h) = (πh p0, πh p1). The semi-
discretized counterpart of Lτ = T

−
τ T

+
τ is then given by

Lh,τ = T
−
h,τ T

+
h,τ .

Assume that yh is an approximation of the output y in L1([0, τ ], Y ) and letw+
h and

w−
h denote the Galerkin approximations of the solutions of systems (3.4) and (3.5),
satisfying for all t ∈ [0, τ ] and all ϕh ∈ Hh

{ 〈

ẅ+
h (t), ϕh

〉

+
〈

w+
h (t), ϕh

〉

1
2

+
〈

C∗
0C0ẇ

+
h (t), ϕh

〉

=
〈

C∗
0 yh(t), ϕh

〉

,

w+
h (0) = 0, ẇ+

h (0) = 0,
(3.12)

{ 〈

ẅ−
h (t), ϕh

〉

+
〈

w−
h (t), ϕh

〉

1
2

−
〈

C∗
0C0ẇ

−
h (t), ϕh

〉

= −
〈

C∗
0 yh(t), ϕh

〉

,

w−
h (τ ) = w+

h (τ ), ẇ−
h (τ ) = ẇ+

h (τ ).
(3.13)

With the above notation, the main result of this section reads as follows.

Theorem 3 Let A0 : D (A0) → H be a strictly positive self-adjoint operator and

C0 ∈ L(H, Y ) such that C∗
0C0 ∈ L

(

D

(

A
3
2
0

))

∩ L

(

D

(

A
1
2
0

))

. Define (A, C) by

(3.2) and (3.3). Assume that the pair (A, C) is exactly observable in time τ > 0 and

set η := ‖Lτ‖L(X) < 1. Let (w0, w1) ∈ D

(

A
3
2
0

)

× D (A0) be the initial value of

(3.1) and let (w0,h, w1,h) be defined by



[

w0,h
w1,h

]

=
Nh∑

n=0
L

n
h,τ

[

w−
h (0)

ẇ−
h (0)

]

. (3.14)

Then there exist M > 0 and h∗ > 0 such that for all h ∈ (0, h∗)

‖w0 − w0,h‖ 1
2

+ ‖w1 − w1,h‖ ≤ M





(
ηNh+1

1− η
+ hθτ N 2h

)
(

‖w0‖ 3
2

+ ‖w1‖1
)

+Nh

τ∫

0

‖C∗
0 (y(s) − yh(s)) ‖ds



 .

Corollary 3 Under the assumptions of Theorem 3, we set

Nh = θ
ln h

ln η
.

Then, there exist Mτ > 0 and h∗ > 0 such that for all h ∈ (0, h∗)

‖w0 − w0,h‖ 1
2

+ ‖w1 − w1,h‖ ≤ Mτ



hθ ln2 h
(

‖w0‖ 3
2

+ ‖w1‖1
)

+| ln h|
τ∫

0

‖C∗
0 (y(s) − yh(s)) ‖ds



 . (3.15)

3.1.2 Proof of Theorem 3

The next Proposition provides the error estimate for the approximation of (3.9) by
using the Galerkin scheme (3.10).

Proposition 5 Given (p0, p1) ∈ D

(

A
3
2
0

)

× D (A0) and (p0,h, p1,h) ∈ Hh × Hh ,

let p and ph be the solutions of (3.9) and (3.10) respectively. Assume that C∗
0C0 ∈

L

(

D

(

A
1
2
0

))

. Then, there exist M > 0 and h∗ > 0 such that for all t ∈ [0, τ ]

and all h ∈ (0, h∗)

‖πh p(t) − ph(t)‖ 1
2

+ ‖πh ṗ(t) − ṗh(t)‖ ≤ M

{

‖πh p0 − p0,h‖ 1
2

+ ‖πh p1 − p1,h‖

+hθ
[

t
(

‖p0‖ 3
2

+ ‖p1‖1 + ‖ f ‖ 1
2 ,∞

)

+ t2‖ f ‖1,∞
]
}

+
t∫

0

‖ f (s) − fh(s)‖ds.



Proof First, we substract (3.10) from (3.9) to obtain (we omit the time dependence
for the sake of clarity) for all ϕh ∈ Hh

〈 p̈ − p̈h, ϕh〉 + 〈p − ph, ϕh〉 1
2

+
〈

C∗
0C0 ( ṗ − ṗh) , ϕh

〉

= 〈 f − fh, ϕh〉 .

Noting that 〈πh p − p, ϕh〉 1
2

= 0 for all ϕh ∈ Hh and that πh p̈ makes sense by the
regularity of p (this is a direct consequence of relation (4.1) from Lemma 2 used with

q =
[

p

ṗ

]

), we obtain from the above equality that for all ϕh ∈ Hh

〈πh p̈ − p̈h, ϕh〉 + 〈πh p − ph, ϕh〉 1
2

= 〈πh p̈ − p̈, ϕh〉 +
〈

C∗
0C0 ( ṗh − ṗ) , ϕh

〉

+〈 f − fh, ϕh〉 . (3.16)

On the other hand, setting

Eh =
1

2
‖πh ṗ − ṗh‖2 +

1

2
‖πh p − ph‖21

2
,

we have

Ėh = 〈πh p̈ − p̈h, πh ṗ − ṗh〉 + 〈πh p − ph, πh ṗ − ṗh〉 1
2
.

Applying (3.16) with ϕh = πh ṗ − ṗh and substituting the result in the above relation,
we obtain by using Cauchy-Schwarz inequality and the boundedness of C0 that there
exists M > 0 such that

Ėh ≤
(

‖πh p̈ − p̈‖ + M‖πh ṗ − ṗ‖ + ‖ f − fh‖
)

‖πh ṗ − ṗh‖
︸ ︷︷ ︸

≤
√
2Eh

.

Since Ėh√
2Eh

=
d

dt

√
2Eh , the integration of the above inequality from 0 to t yields

‖πh p(t) − ph(t)‖ 1
2

+ ‖πh ṗ(t) − ṗh(t)‖ ≤ M

{

‖πh p0 − p0,h‖ 1
2

+ ‖πh p1 − p1,h‖

+
t∫

0

(‖πh p̈(s) − p̈(s)‖ + ‖πh ṗ(s) − ṗ(s)‖) ds +
t∫

0

‖ f (s) − fh(s)‖ds

}

.

(3.17)

Thus, it remains to bound ‖πh p̈(t) − p̈(t)‖ and ‖πh ṗ(t) − ṗ(t)‖ for all t ∈ [0, τ ].
Using (3.8) and the classical continuous embedding fromD(Aα) toD(Aβ) for α > β,
we get that

{

‖πh p̈(t) − p̈(t)‖ ≤ Mhθ‖ p̈(t)‖ 1
2
,

‖πh ṗ(t) − ṗ(t)‖ ≤ Mhθ‖ ṗ(t)‖ 1
2

≤ Mhθ‖ ṗ(t)‖1,
∀t ∈ [0, τ ], h ∈ (0, h∗).



Using relations (4.3) proved in Lemma 2 of the Appendix for the first order unknown

q =
[

p

ṗ

]

and the right-hand side F =
[

0
f

]

, we get for all t ∈ [0, τ ] and all h ∈ (0, h∗)

‖πh p̈(t)− p̈(t)‖+‖πh ṗ(t)− ṗ(t)‖ ≤ Mhθ
(

‖p0‖ 3
2
+‖p1‖1+t‖ f ‖1,∞+‖ f ‖ 1

2 ,∞

)

.

Substituting the above inequality in (3.17), we get the result.

Thanks to the last result, we are now in position to derive an error approximation for
the semigroups T

± and for the operator Lt = T
−
t T

+
t . This result has been recently

proved in [5] we refer the interested reader to the proof given there, which is similar
to the one of Proposition 2.

Proposition 6 Let 5h =
[
πh 0
0 πh

]

. Under the assumptions of Proposition 5, the

following assertions hold true

1. There exist M > 0 and h∗ > 0 such that for all t ∈ (0, τ ) and all h ∈ (0, h∗)

∥
∥
∥
∥
(5hT

+
t − T

+
h,t )

[

p0
p1

]∥
∥
∥
∥

≤ Mthθ
(

‖p0‖ 3
2

+ ‖p1‖1
)

, (3.18)
∥
∥
∥
∥
(5hT

−
t − T

−
h,t )

[

p0
p1

]∥
∥
∥
∥

≤ M(τ − t)hθ
(

‖p0‖ 3
2

+ ‖p1‖1
)

. (3.19)

2. There exist M > 0 and h∗ > 0 such that for all n ∈ N, all t ∈ [0, τ ] and all

h ∈ (0, h∗), we have

∥
∥
∥
∥
(Ln

t − L
n
h,t )

[

p0
p1

]∥
∥
∥
∥

≤ M(1+ nτ)hθ
(

‖p0‖ 3
2

+ ‖p1‖1
)

. (3.20)

Now, we can turn to the proof of Theorem 3

Proof of Theorem 3 Introducing the term
∑Nh

n=0 L
n
h,τ

[

w−(0)
ẇ−(0)

]

, we first rewrite the

error term

[

w0
w1

]

−
[

w0,h
w1,h

]

=
∑∞

n=0 L
n
τ

[

w−(0)
ẇ−(0)

]

−
∑Nh

n=0 L
n
h,τ

[

w−
h (0)

ẇ−
h (0)

]

in the fol-

lowing form

[

w0
w1

]

−
[

w0,h
w1,h

]

=
∑

n>Nh

L
n
τ

[

w−(0)
ẇ−(0)

]

+
Nh∑

n=0

(

L
n
τ − L

n
h,τ

)
[

w−(0)
ẇ−(0)

]

+
Nh∑

n=0
L

n
h,τ

[

w−(0) − w−
h (0)

ẇ−(0) − ẇ−
h (0)

]

.

Therefore, we have

∥
∥
∥
∥

[

w0
w1

]

−
[

w0,h
w1,h

]∥
∥
∥
∥

≤ S1 + S2 + S3, (3.21)



where we have set






















S1 =
∑

n>Nh

∥
∥
∥
∥
L

n
τ

[

w−(0)
ẇ−(0)

]∥
∥
∥
∥

,

S2 =
∑Nh

n=0

∥
∥
∥
∥

(

L
n
τ − L

n
h,τ

)
[

w−(0)
ẇ−(0)

]∥
∥
∥
∥

,

S3 =
(

∑Nh

n=0

∥
∥
∥L

n
h,τ

∥
∥
∥

L(X)

) ∥
∥
∥
∥

[

w−(0)
ẇ−(0)

]∥
∥
∥
∥

.

Following exactly the same way than in the proof of the Schrödinger case, we get the
claimed result.

3.2 Full discretization

3.2.1 Statement of the main result

In order to approximate (3.9) in space and time, we use an implicit Euler scheme in
time combined with the previous Galerkin approximation in space. We discretize the
time interval [0, τ ] using a time step 1t > 0. We obtain a discretization tk = k1t ,
where 0 ≤ k ≤ K and where we assumed, without loss of generality, that τ = K1t .
Given a function of time f of class C2, we approximate its first and second derivative
at time tk by

f ′(tk) ≃ Dt f (tk) :=
f (tk) − f (tk−1)

1t
.

f ′′(tk) ≃ Dt t f (tk) :=
f (tk) − 2 f (tk−1) + f (tk−2)

1t2
.

We suppose that (p0,h,1t , p1,h,1t ) ∈ Hh × Hh and f k
h , for 0 ≤ k ≤ K , are given

approximations of (p0, p1) and f (tk) in the space X and H respectively. We define
the approximate solution (pk

h)0≤k≤K of (3.9) as the solution of the following problem:
pk

h ∈ Hh such that for all ϕh ∈ Hh

{ 〈

Dt t pk
h, ϕh

〉

+
〈

pk
h, ϕh

〉

1
2

+
〈

C∗
0C0Dt pk

h, ϕh

〉

=
〈

f k
h , ϕh

〉

, 2 ≤ k ≤ K

p0h = p0,h,1t , p1h = p0h + 1t p1,h,1t .
(3.22)

Note that the above procedure leads to a natural approximation T
±
h,1t,k of the contin-

uous operators T
±
tk
by setting















T
+
tk

[

p0
p1

]

≃ T
+
h,1t,k

[

p0
p1

]

:=
[

pk
h

Dt pk
h

]

T
−
tk

[

p0
p1

]

≃ T
−
h,1t,k

[

p0
p1

]

:=
[

pK−k
h

−Dt pK−k
h

]
(3.23)



where pk
h solves (3.22) with f k

h = 0 for all 0 ≤ k ≤ K and for (p0,h,1t , p1,h,1t ) =
(πh p0, πh p1). Obviously, this also leads to a fully discretized approximation of the
operator Lτ = T

−
τ T

+
τ by setting

Lh,1t,K = T
−
h,1t,K T

+
h,1t,K .

Assume that for all 0 ≤ k ≤ K , yk
h is a given approximation of y(tk) in Y and let

(

w+
h

)k
and

(

w−
h

)k
be respectively the approximations of (3.4) and (3.5) obtained via

(3.22) as follows:

– For all 0 ≤ k ≤ K ,
(

w+
h

)k = pk
h where pk

h solves (3.22) with f k
h = C∗

0 yk
h and

(p0,h,1t , p1,h,1t ) = (0, 0),

– For all 0 ≤ k ≤ K ,
(

w−
h

)k = pK−k
h where pk

h solves (3.22) with f k
h = −C∗

0 yK−k
h

and (p0,h,1t , p1,h,1t ) = ((w+
h )K ,−Dt (w

+
h )K ).

Then, our main result (the fully discrete counterpart of Theorem 3) reads as follows

Theorem 4 Let A0 : D (A0) → H be a strictly positive self-adjoint operator and

C0 ∈ L(H, Y ) such that C∗
0C0 ∈ L

(

D

(

A
3
2
0

))

∩ L

(

D

(

A
1
2
0

))

. Define (A, C) by

(3.2) and (3.3). Assume that the pair (A, C) is exactly observable in time τ > 0 and

set η := ‖Lτ‖L(X) < 1. Let (w0, w1) ∈ D

(

A
3
2
0

)

× D (A0) be the initial value of

(3.1) and let (w0,h,1t , w1,h,1t ) be defined by

[

w0,h,1t

w1,h,1t

]

=
Nh∑

n=0
L

n
h,1t,K

[

(w−
h )0

Dt (w
−
h )1

]

, (3.24)

where Dt (w
−
h )1 =

(w−
h )1 − (w−

h )0

1t
.

Then there exist M > 0, h∗ > 0 and 1t∗ > 0 such that for all h ∈ (0, h∗) and

1t ∈ (0,1t∗)

‖w0 − w0,h,1t‖ 1
2

+ ‖w1 − w1,h,1t‖ ≤ M

[(
ηNh,1t +1

1− η
+

(

hθ + 1t
)

(1+ τ) N 2h,1t

)

×
(

‖w0‖ 3
2

+ ‖w1‖1
)

+ Nh,1t1t

×
K

∑

ℓ=0

∥
∥
∥C∗

0 (y(tℓ) − yℓ
h)

∥
∥
∥

]

.

Corollary 4 Under the assumptions of Theorem 4, we set

Nh,1t =
ln(hθ + 1t)

ln η



Then, there exist Mτ > 0, h∗ > 0 and 1t∗ > 0 such that for all h ∈ (0, h∗) and

1t ∈ (0,1t∗)

‖w0−w0,h,1t‖ 1
2
+‖w1−w1,h,1t‖ ≤ Mτ

[

(hθ +1t) ln2(hθ +1t)
(

‖w0‖ 3
2
+‖w1‖1

)

+
∣
∣ln(hθ + 1t)

∣
∣1t

K
∑

ℓ=0

∥
∥
∥C∗

0

(

y(tℓ) − yℓ
h

)∥
∥
∥

]

.

(3.25)

3.2.2 Proof of Theorem 4

As in the semi-discrete case, the main ingredient for the convergence analysis is the
following result (the counterpart of Proposition 5) which gives the error estimate for
the full approximation of the general system (3.9) by (3.22).

Proposition 7 Given (p0, p1)∈D

(

A
3
2
0

)

×D (A0) and (p0,h,1t , p1,h,1t )∈ Hh × Hh ,

let p and (pk
h)k be the solutions of (3.9) and (3.22) respectively. Assume that C∗

0C0 ∈

L

(

D

(

A
1
2
0

))

. Then, there exist M > 0, h∗ > 0 and 1t∗ > 0 such that for all

1 ≤ k ≤ K , all h ∈ (0, h∗) and all 1t ∈ (0,1t∗)

‖πh p(tk)− pk
h‖ 1

2
+‖πh ṗ(tk)−Dt pk

h‖ ≤ M

{

‖πh p0 − p0,h,1t‖ 1
2
+‖πh p1 − p1,h,1t‖

+
(

hθ + 1t
)
[

tk

(

‖p0‖ 3
2

+ ‖p1‖1 +‖ f ‖ 1
2 ,∞

+ ‖ ḟ ‖∞
)

+ t2k ‖ f ‖1,∞
]

+1t

k
∑

ℓ=1
‖ f (tℓ) − f ℓ

h ‖
}

.

Proof Denote by r1(tk) the residual term in the first order Taylor expansion of p

around tk−1. Then

ṗ(tk) =
p(tk) − p(tk−1)

1t
−
1

1t
r1(tk) = Dt p(tk) −

1

1t
r1(tk), (3.26)

We have

‖πh ṗ(tk) − Dt pk
h‖ ≤ ‖πh ṗ(tk) − πh Dt p(tk)‖ + ‖Dt (πh p(tk) − pk

h)‖
≤
1

1t
‖r1(tk)‖ + ‖Dt (πh p(tk) − pk

h)‖

Therefore, the error we need to bound satisfies

‖πh p(tk) − pk
h‖ 1

2
+ ‖πh ṗ(tk) − Dt pk

h‖ ≤ 2
√

E
k
h +

1

1t
‖r1(tk)‖ (3.27)



where we have set for all 1 ≤ k ≤ K

E
k
h =

1

2

{∥
∥
∥Dt

(

πh p(tk) − pk
h

)∥
∥
∥

2
+

∥
∥
∥πh p(tk) − pk

h

∥
∥
∥

2

1
2

}

.

On the other hand, if r2(tk) denote the residual term first order the Taylor expansion
of ṗ around tk−1, then

p̈(tk) = Dt t p(tk) − γ k, (3.28)

where

γ k =
1

1t2
(r1(tk) − r1(tk−1)) +

1

1t
r2(tk).

Using (3.26) and (3.28), and subtracting (3.22) from the variational formulation (3.9)
written for t = tk and for an arbitrary test function ϕ = ϕh ∈ Hh , one easily obtains

〈

Dt t

(

πh p(tk) − pk
h

)

, ϕh

〉

+
〈

πh p(tk) − pk
h, ϕh

〉

1
2

= 〈Dt t (πh p(tk) − p(tk)) , ϕh〉

−
〈

C∗
0C0Dt

(

p(tk) − pk
h

)

, ϕh

〉

+
〈

γ k, ϕh

〉

+
1

1t

〈

C∗
0C0r1(tk), ϕh

〉

+
〈

f (tk) − f k
h , ϕh

〉

. (3.29)

Using the identity

1

2

(

‖u‖2 − ‖v‖2 + ‖u − v‖2
)

= Re 〈u − v, u〉 , ∀u, v ∈ H,

one easily obtains that for all 2 ≤ k ≤ K

DtE
k
h ≤

〈

Dt t

(

πh p(tk) − pk
h

)

, Dt

(

πh p(tk) − pk
h

)〉

+
〈

πh p(tk) − pk
h, Dt

(

πh p(tk) − pk
h

)〉

1
2

. (3.30)

Taking ϕh = Dt

(

πh p(tk) − pk
h

)

in (3.29) and substituting in the above inequality
and using the boundedness of C0, we obtain the existence of M > 0 such that for all
2 ≤ k ≤ K

DtE
k
h ≤ M

[

‖Dt t (πh p(tk) − p(tk))‖ + ‖Dt (πh p(tk) − p(tk))‖ + ‖γ k‖

+
1

1t
‖r1(tk)‖ + ‖ f (tk) − f k

h ‖
] ∥

∥
∥Dt (πh p(tk) − pk

h)

∥
∥
∥ . (3.31)



Using relations (2.32) and (2.33), we obtain from (3.8), (3.31), (3.26), (3.28) and rela-
tions (4.2) and (4.3) in Lemma 2 of the Appendix for the first order formulation of
(3.6) that for all h ∈ (0, h∗)

Dt

√

E
k
h ≤ M

{

hθ
(

‖p0‖ 3
2

+ ‖p1‖1 + tk‖ f ‖1,∞ + ‖ f ‖ 1
2 ,∞

)

+ ‖ f (tk) − f k
h ‖

+
hθ

1t2
‖r1(tk) − r1(tk−1)‖ 1

2
+

hθ

1t

(

‖r1(tk)‖ 1
2

+ ‖r2(tk)‖ 1
2

)

+
1

1t2
‖r1(tk) − r1(tk−1)‖ +

1

1t

(

‖r1(tk)‖ + ‖r2(tk)‖
)
}

. (3.32)

To conclude, it remains to bound the terms including the residuals r1 and r2 in the
above estimate. By definition of r2, themean value theorem and using once again (4.3),
we obtain that there exists M > 0 such that

‖r2(tk)‖ 1
2

≤ M1t
(

‖p0‖ 3
2

+ ‖p1‖1 + tk‖ f ‖1,∞ + ‖ f ‖ 1
2 ,∞

)

. (3.33)

Nowby the regularity of p (seeLemma2 applied to the first order formulation of (3.6)),
the residual r2 can be expressed via the integral

r2(tk) =
tk∫

tk−1

d3 p

ds3
(s) (tk−1 − s) ds,

in H . Using Eq. (3.6) verified by p and the boundedness of C0, we have

∥
∥
∥
∥

d3 p

dt3
(t)

∥
∥
∥
∥

=
∥
∥
∥

d p̈

dt
(t)

∥
∥
∥ =

∥
∥
∥

d

dt

{

− A0 p(t) − C∗
0C0 ṗ(t) + f (t)

}∥
∥
∥,

≤ ‖ ṗ(t)‖1 + M‖ p̈(t)‖ + ‖ ḟ (t)‖. (3.34)

Hence, once again by (4.3), we get

‖r2(tk)‖ ≤ M1t2
(

‖p0‖ 3
2

+ ‖p1‖1 + tk‖ f ‖1,∞ + ‖ f ‖ 1
2 ,∞

+ ‖ ḟ ‖∞
)

. (3.35)

For the term implying r1, we note that

r1(tk) =
tk∫

tk−1

p̈(s)(tk−1 − s)ds,



in D

(

A
1
2
0

)

. Hence, by a similar argument and (4.3),

‖r1(tk)‖ ≤ M‖r1(tk)‖ 1
2

≤ M1t2
(

‖p0‖ 3
2

+ ‖p1‖1 + tk‖ f ‖1,∞ + ‖ f ‖ 1
2 ,∞

)

.

(3.36)

Then, we write in D

(

A
1
2
0

)

the difference r1(tk) − r1(tk−1) on the integral form.

Using the above relation, it comes by using once again (4.3)

‖r1(tk) − r1(tk−1)‖ 1
2

≤ M1t2 sup
s∈(tk−2,tk−1)

‖ p̈(s)‖ 1
2
,

≤ M1t2
(

‖p0‖ 3
2

+ ‖p1‖1 + tk−1‖ f ‖1,∞ + ‖ f ‖ 1
2 ,∞

)

.

(3.37)

Finally

‖r1(tk) − r1(tk−1)‖ ≤ 1t

tk−1∫

tk−2

s∫

s−1t

∥
∥
∥
∥

d3 p

dσ 3
(σ )

∥
∥
∥
∥

dσ ds,

≤ M1t3 sup
s∈(tk−3,tk−1)

∥
∥
∥
∥

d3 p

ds3
(s)

∥
∥
∥
∥

.

Using (3.34) and (4.3), we get

‖r1(tk)−r1(tk−1)‖ ≤ M1t3
(

‖p0‖ 3
2

+ ‖p1‖1 + tk−1‖ f ‖1,∞ + ‖ f ‖ 1
2 ,∞

+ ‖ ḟ ‖∞
)

.

(3.38)

Substituting (3.33), (3.35), (3.36), (3.37) and (3.38) in relation (3.32) provides esti-

mates for Dt

√

E
k
h =

√

Ek
h −

√

E
k−1
h

1t
, for k = 1, . . . , K . By adding all these inequalities,

we immediately get an upper bound for
√

E
k
h , and thus the desired inequality thanks

to (3.27) and (3.36).

Using this Proposition, we can derive an error estimate for the semigroup T
±
tk
(for all

0 ≤ k ≤ K ) and for the operator Lτ = T
−
τ T

+
τ (the counterpart of Proposition 6). We

skip the proof, which is nearly the same as the one of Proposition 4.

Proposition 8 Let 5h =
[
πh 0
0 πh

]

. Under the assumptions of Proposition 7, the fol-

lowing assertions hold true



1. There exist M > 0, h∗ > 0 and 1t∗ > 0 such that for all h ∈ (0, h∗), all

1t ∈ (0,1t∗) and all 0 ≤ k ≤ K

∥
∥
∥
∥
(5hT

+
tk

− T
+
h,1t,k)

[

p0
p1

]∥
∥
∥
∥

≤ Mtk(h
θ + 1t)

(

‖p0‖ 3
2

+ ‖p1‖1
)

.

(3.39)
∥
∥
∥
∥
(5hT

−
tk

− T
−
h,1t,k)

[

p0
p1

]∥
∥
∥
∥

≤ M(τ − tk)(h
θ + 1t)

(

‖p0‖ 3
2

+ ‖p1‖1
)

.

(3.40)

2. There exist M > 0, h∗ > 0 and 1t∗ > 0 such that for all n ∈ N, all h ∈ (0, h∗),
all 1t ∈ (0,1t∗) and all 0 ≤ k ≤ K

∥
∥
∥
∥
(Ln

tk
− L

n
h,1t,k)

[

p0
p1

]∥
∥
∥
∥

≤ M
[

hθ + nτ(hθ + 1t)
]
(

‖p0‖ 3
2

+ ‖p1‖1
)

.

(3.41)

We are now able to prove Theorem 4.

Proof of Theorem 4 Introducing the term
∑Nh,1t

n=0 L
n
h,1t,K

[

w−(0)
ẇ−(0)

]

, we can rewrite
[

w0
w1

]

−
[

w0,h,1t

w1,h,1t

]

in the following form

[

w0
w1

]

−
[

w0,h,1t

w1,h,1t

]

=
∞
∑

n=0
L

n
τ

[

w−(0)
ẇ−(0)

]

−
Nh,1t
∑

n=0
L

n
h,1t,K

[

(w−
h )0

Dt (w
−
h )1

]

,

=
∑

n>Nh,1t

L
n
τ

[

w−(0)
ẇ−(0)

]

+
Nh,1t
∑

n=0

(

L
n
τ − L

n
h,1t,K

)
[

w−(0)
ẇ−(0)

]

+
∑Nh,1t

n=0 L
n
h,1t,K

([

w−(0) − (w−
h )0

ẇ−(0) − Dt (w
−
h )1

])

.

Therefore, we have

‖w0 − w0,h,1t‖ 1
2

+ ‖w1 − w1,h,1t‖ ≤ S1 + S2 + S3, (3.42)

where we have set


















S1 =
∑

n>Nh,1t

∥
∥
∥
∥
L

n
τ

[

w−(0)
ẇ−(0)

]∥
∥
∥
∥

,

S2 =
∑Nh,1t

n=0

∥
∥
∥
∥

(

L
n
τ − L

n
h,1t,K

)
[

w−(0)
ẇ−(0)

]∥
∥
∥
∥

,

S3 =
(

∑Nh,1t,K

n=0

∥
∥
∥L

n
h,1t,K

∥
∥
∥

L(X)

)∥
∥
∥
∥

[

w−(0) − (w−
h )0

ẇ−(0) − Dt (w
−
h )1

]∥
∥
∥
∥

.



Once again, using similar arguments as the ones detailed for the Schrödinger case, we
get the claimed result.

Appendix

Let A : D (A) → X a skew-adjoint operator and C ∈ L(X, Y ) such that C∗C ∈
L (D (A)). Assume that A−C∗C generates a C0-semigroup T of contractions on X,

i.e. that ‖Tt‖L(X) ≤ 1 for all t ≥ 0.

Lemma 1 The operator A−C∗C generates a C0-semigroup of contractions on D (A)

and D
(

A2
)

.

Proof As C ∈ L(X, Y ) is bounded, we clearly have D (A) = D (A − C∗C).

Moreover, C∗C ∈ L (D (A)) implies that D
(

A2
)

= D

(

(A − C∗C)2
)

. The result

follows then from [27, Proposition 2.10.4].

Lemma 2 Given q0 ∈ D
(

A2
)

and F ∈ C
(

[0, τ ],D
(

A2
))

∩ C1 ([0, τ ],D (A)), let

q denote the solution of the initial value problem

{

q̇(t) = Aq(t) − C∗Cq(t) + F(t), t ∈ (0, τ ),

q(0) = q0.

Then, we have the following statements

1. Regularity:

q ∈ C
(

[0, τ ],D
(

A2
))

∩ C1 ([0, τ ],D (A)) ∩ C2 ([0, τ ], X) , (4.1)

2. Bound for q:

‖q(t)‖α ≤ ‖q0‖α + t‖F‖α,∞, for α = 0, 1, 2, (4.2)

3. Bound for q̇ : there exists M > 0 such that

‖q̇(t)‖α ≤ M
(

‖q0‖α+1 + t‖F‖α+1,∞
)

+ ‖F‖α,∞, for α = 0, 1, (4.3)

where ‖F‖α,∞ = supt∈[0,τ ] ‖F(t)‖α .

Proof

1. By [27, Theorem 4.1.6], we have q ∈ C
(

[0, τ ],D
(

A2
))

∩ C1 ([0, τ ],D (A)).
But since C∗C ∈ L (D (A)) and F ∈ C

(

[0, τ ],D
(

A2
))

∩ C1 ([0, τ ],D (A)), we
have

(

A − C∗C
)

q(t) ∈ C ([0, τ ],D (A)) ∩ C1 ([0, τ ], X) .

The last inclusion follows then from the fact that q̇(t) = (A − C∗C) q(t) inD (A).



2. By Duhamel’s formula, we have

‖q(t)‖α =
∥
∥
∥Tt q0 +

t∫

0

Tt−s F(s)ds

∥
∥
∥

α
,

≤ ‖Tt q0‖α +
t∫

0

‖Tt−s F(s)‖α ds,

≤ ‖q0‖α + t‖F‖α,∞,

where we have used Lemma 1 of the Appendix for the last inequality.
3. Using the estimate (4.2) obtained for q(t) and the continuity of the embeddings

D
(

A2
)

→֒ D (A) →֒ X , we easily get

‖q̇(t)‖α = ‖ (A − C∗C) q(t) + F(t)‖α,

≤ ‖q(t)‖α+1 + M‖q(t)‖α + ‖F‖α,∞,

≤ M
(

‖q0‖α+1 + t‖F‖α+1,∞
)

+ ‖F‖α,∞.
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