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Recovering the observable part of the initial data

of an infinite-dimensional linear system

with skew-adjoint generator

Ghislain Haine

Abstract We consider the problem of recovering the initial data (or initial state) of

infinite-dimensional linear systems with unitary semigroups. It is well-known that this

inverse problem is well posed if the system is exactly observable, but this assump-

tion may be very restrictive in some applications. In this paper we are interested in

systems which are not exactly observable, and in particular, where we cannot expect

a full reconstruction. We propose to use the algorithm studied by Ramdani et al. in

(Automatica 46:1616–1625, 2010) and prove that it always converges towards the

observable part of the initial state. We give necessary and sufficient condition to have

an exponential rate of convergence. Numerical simulations are presented to illustrate

the theoretical results.

Keywords Linear systems · Inverse problems · Controllability · Observability ·

Feedback control

1 Introduction

1.1 Motivation

In many areas of science, we need to recover the initial (or final) data of a physical

system from partial observation over some finite time interval. In oceanography and
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meteorology, where this problem is known as data assimilation, we can mention the

works of Auroux and Blum [1–3], Gejadze et al. [19,27], Shutyaev and Gejadze [34],

Teng et al. [38] and the monograph of Blum et al. [7] concerning the numerical aspects.

This problem also arises in medical imaging, for instance in thermoacoustic tomog-

raphy. There, the problem is to recover the initial data of a wave type equation from

surface measurements (see Gebauer and Scherzer [18] and the survey of Kuchment

and Kunyansky [26]).

In the last decade, new algorithms based on time reversal (see Fink [15,16]) have

been proposed for this problem. We can mention, for instance, the Back and Forth

Nudging proposed by Auroux and Blum [1], the Time Reversal Focusing by Phung

and Zhang [31], the algorithm proposed by Ito et al. [24] and finally, the one we will

consider in this paper, the forward–backward observers-based algorithm proposed by

Ramdani et al. [32] (which is a generalization of the one in [31]). In this paper, we

study the convergence of the reconstruction algorithm of [32] for systems with skew-

adjoint generator, when the inverse problem is ill-posed, that is to say when either the

observability or the estimatability assumption fails.

To make this statement precise, let us begin with some notation and definitions. Let

X be a Hilbert space and A a skew-adjoint operator on X . We are interested in the

reconstruction of the initial data z0 of

{
ż(t) = Az(t)

z(0) = z0 ∈ X.
∀ t ≥ 0, (1.1)

Such equations are often used to model vibrating systems (acoustic or elastic waves)

or quantum systems (Schrödinger equations).

By Stone’s Theorem (see for instance Tucsnak and Weiss [39]), A is the infinitesimal

generator of a unitary C0-group S on X , and in particular, ‖z(t)‖ = ‖z0‖ for all t ≥ 0.

Let Y be another Hilbert space. We suppose that we have access to z through

the operator C : D(A) → Y , during a time interval [0, τ ], τ > 0, leading to the

measurement

y(t) = Cz(t) ∀ t ∈ [0, τ ]. (1.2)

We call C the observation operator of the system. The observation is said to be bounded

if C is a bounded operator (i.e. C ∈ L(X, Y )), and unbounded otherwise. In the latter

case, we still assume that C is bounded with respect to the graph norm of A on D(A).

For systems described by evolution partial differential equations (i.e. when A is

a differential operator in the space variables on a domain Ω), bounded observation

generally corresponds to measurement on a subdomain O ⊂ Ω , while unbounded

observation in most cases corresponds to measurement on the boundary of Ω .

If we denote Ψτ the operator which associates the output function y|[0,τ ] to an initial

data z0 ∈ D(A), the inverse problem is well posed when Ψτ is left-invertible, with

bounded left-inverse. This is equivalent to Ψτ being bounded from below

∃kτ > 0, ‖Ψτ z0‖ ≥ kτ‖z0‖ ∀ z0 ∈ D(A). (1.3)

The pair (A, C) is said to be exactly observable in time τ when (1.3) holds.



Now, we present the algorithm proposed by Ramdani et al. [32]. For simplicity,

we consider the particular case where A is skew-adjoint and C ∈ L(X, Y ), the pair

(A, C) being exactly observable in time τ > 0. Let T
+ be the exponentially stable

C0-semigroup generated by A+ = A − γ C∗C , while T
− is generated by A− =

−A − γ C∗C , for some γ > 0 (see Liu [28]). For all n ∈ N
∗, we define the following

systems





ż+
n (t) = A+z+

n (t) + γ C∗y(t) ∀ t ∈ [0, τ ],

z+
1 (0) = z+

0 ∈ X,

z+
n (0) = z−

n−1(0) ∀ n ≥ 2,

(1.4)

{
ż−

n (t) = −A−z−
n (t) − γ C∗y(t) ∀ t ∈ [0, τ ],

z−
n (τ ) = z+

n (τ ) ∀ n ≥ 1.
(1.5)

The forward error e+
n (t) = z+

n (t) − z(t) satisfies





ė+
n (t) = (A − γ C∗C)e+

n (t) ∀ t ∈ [0, τ ],

e+
1 (0) = z+

0 − z0 ∈ X,

e+
n (0) = e−

n−1(0) ∀ n ≥ 2,

and the backward error e−
n (t) = z−

n (t) − z(t)

{
ė−

n (t) = (A + γ C∗C)e−
n (t) ∀ t ∈ [0, τ ],

e−
n (τ ) = e+

n (τ ) ∀ n ≥ 1.

So, we have

∥∥z−
n (0) − z0

∥∥ =
∥∥e−

n (0)
∥∥ =

∥∥(
T

−
τ T

+
τ

)n
e+

1 (0)
∥∥ ≤

∥∥T
−
τ T

+
τ

∥∥n ∥∥z+
0 − z0

∥∥ . (1.6)

According to Ito et al. [24, Lemma 2.2], if (A, C) is exactly observable in time τ ,

we have
∥∥T

−
τ T

+
τ

∥∥
L(X)

= α < 1 and thus

‖z−
n (0) − z0‖ ≤ αn‖z+

0 − z0‖ −→
n→∞

0.

In the case of exactly observable systems, we call the systems (1.4)–(1.5) forward

and backward observers as it is a generalization to infinite-dimensional systems of the

so-called Luenberger’s observers [29], well-known in control theory. Observers for

infinite-dimensional systems are an active topic of research, for both linear or non-

linear systems, and among the large literature, we can cite for instance: Chapelle et al.

[9], Krstic et al. [25], Moireau et al. [30], Smyshlyaev and Krstic [35], and Couchouron

and Ligarius [10]. For pioneering work, we refer to Baras and Bensoussan [4] and

Bensoussan [6].



In the paper of Ramdani et al. [32], they consider a wide class of infinite-dimensional

systems (allowing even an observation operator that is not admissible). They suppose

that the system is estimatable and backward estimatable (roughly speaking, the system

can be forward and backward stabilized with a feedback operator called a stabilizing

output injection operator). However, they show in Proposition 3.3 that this implies

that the system is exactly observable, or in other words, that (1.3) is satisfied (for some

sufficiently large time τ ). In this paper, we are dealing with the initial data recovery

of some well posed linear systems which are not supposed to be exactly observable,

using the same algorithm.

By a well posed linear system we mean a linear time-invariant system Σ such that

on any finite time interval [0, t], the operator Σt from the initial state z0 and the input

function u to the final state z(t) and the output function y is bounded. In other words,

Σ is a family of bounded operators such that

[
z(t)

y|[0,t]

]
= Σt

[
z0

u|[0,t]

]
.

Under some assumptions on the system Σ , we propose to investigate the above algo-

rithm in the framework of well posed linear systems (allowing admissible observation

operators) to recover the observable part of z0 from y|[0,τ ]. The results on well posed

linear systems used in this work will be recalled in Sect. 2. For more details, we refer

the reader, for instance, to the work of Salamon et al. [33,36,37,40–42] and the survey

of Weiss et al. [45].

The paper is organized as follows. In Sect. 2 we give some background on well

posed linear systems, including the construction of the dual system and the known

results on colocated feedback. In Sect. 3, we begin with the definition of two sys-

tems, Σ+ and Σ−, corresponding to the forward (1.4) and backward (1.5) observers,

respectively. We then work on the properties of the operator T
−
τ T

+
τ , called the forward–

backward operator, which appears naturally. The properties of this operator, given in

Proposition 3.9, are needed to prove the main result of this paper. Finally, we prove

the main result of this work, Theorem 1.1, which shows that the algorithm leads to

the reconstruction of the observable part of the initial state. In Sect. 4, we apply our

theoretical result to an N -dimensional (N ≥ 2) wave equation, with Dirichlet control

and colocated observation on a part of the boundary.

1.2 Main results

From a well posed linear system Σ =

[
T Φ

Ψ F

]
, defined in Definition 2.1 and verifying

some assumptions (namely A∗ = −A and B = C∗), we will construct two other well

posed linear systems Σ+ and Σ−, corresponding to (1.4) and (1.5), respectively. All

the needed terminology and results on well posed linear systems are recalled in Sect. 2.

Let us begin with the definition of the time-reflection operator. Let W be a Hilbert

space. For all τ ≥ 0, we define the linear operator Rτ : L2
ℓoc([0,∞), W ) →

L2
ℓoc([0,∞), W ) by



( Rτ u) (t) =

{
u(τ − t) ∀ t ∈ [0, τ ],

0 ∀ t > τ.

To state our main result, we need the operator Φd
τ defined in Theorem 2.13. In the

following theorem, we only need that Φd
τ = Ψ ∗

τ Rτ , so that VObs = Ran Φd
τ can be

understood as (Ker Ψτ )
⊥. From that, the link with the known results in the case of

exact observability (1.3) is obvious.

Theorem 1.1 Let X and Y be Hilbert spaces. Assume that Σ is a well posed linear

system with input and output space Y and state space X determined by the operators

(A, B, C) and the transfer function G, such that A∗ = −A and B = C∗. Using

Theorems 2.13 and 2.17, let us denote by Σ+ (resp. Σ−) the closed-loop system of Σ

(resp. Σd ) with output feedback operator γ I , where γ ∈ (0, κ), for some κ ∈ (0,∞]

(explicitly given in Remark 2.18).

Let z0 ∈ X and denote u, z and y the input, trajectory and output of Σ , respectively,

with initial state z0. Let τ > 0, z+
0 ∈ X and denote, for all n ≥ 1, z+

n and z−
n the

respective trajectories of Σ+ and Σ− with respective inputs v+ = γ y + u and

v− = γ Rτ y+ Rτ u, and initial states

z+
1 (0) = z+

0 ∈ X, z+
n (0) = z−

n−1(0), n ≥ 2, z−
n (τ ) = z+

n (τ ), n ≥ 1.

Furthermore, we denote by Π the orthogonal projector from X onto VObs = Ran Φd
τ ,

then the following statements hold true:

1. We have for all z0, z+
0 ∈ X

∥∥(I − Π)
(
z−

n (0) − z0

)∥∥ =
∥∥(I − Π)

(
z+

0 − z0

)∥∥ ∀ n ≥ 1.

2. The sequence
(∥∥Π

(
z−

n (0) − z0

)∥∥)
n≥1

is strictly decreasing and satisfies

∥∥Π
(
z−

n (0) − z0

)∥∥ −→
n→∞

0.

3. The rate of convergence is exponential, i.e. there exists a constant α ∈ (0, 1),

independent of z0 and z+
0 , such that

∥∥Π
(
z−

n (0) − z0

)∥∥ ≤ αn
∥∥Π

(
z+

0 − z0

)∥∥ ∀ n ≥ 1,

if and only if Ran Φd
τ is closed in X .

Theorem 1.1 allows us to approximate the projection of z0 on VObs by the projection

of z−
n (0). However, in practice, it is difficult to characterize VObs and thus the projector

Π . The following corollary shows that if the (arbitrary) initial guess z+
0 belongs to

VObs (for example, one can take z+
0 = 0), then all successive approximations z−

n (0)

belong to VObs, so that we do not need to know Π anymore.



Corollary 1.2 Under the assumptions of Theorem 1.1, if z+
0 ∈ VObs, then

∥∥z−
n (0) − Π z0

∥∥ −→
n→∞

0.

Furthermore, the decay rate is exponential if and only if Ran Φd
τ is closed in X.

We will prove this corollary in Sect. 3.4.

2 Background on well posed linear systems

In this section, we recall some definitions used in the framework of well posed linear

systems, also called abstract linear systems. All this material can be found, for instance,

in [33,36,37,40–42,45].

2.1 Definitions and associated operators A, B and C

We first define the τ -concatenation. For any τ ≥ 0 and any Z , Hilbert space, we define

for all u, v in L2([0,∞), Z) the following binary operator

(u ⋄τ v) (t) =

{
u(t) ∀ t ∈ [0, τ ),

v(t − τ) ∀ t ≥ τ.

Definition 2.1 (Well posed linear system) Let X , U and Y be Hilbert spaces. We

denote by U = L2([0,∞), U ) and Y = L2([0,∞), Y ). A well posed linear system

on (U , X,Y) is a family of bounded operators Σ = (Σt )t≥0 from X × U to X × Y ,

where Σt =
[

Tt Φt

Ψt Ft

]
, satisfying:

– T = (Tt )t≥0 is a C0-semigroup on X ,

– Φ = (Φt )t≥0 is a family of bounded linear operators from U to X such that

Φτ+t (u ⋄τ v) = TtΦτ u + Φtv ∀ u, v ∈ U , τ, t ≥ 0,

– Ψ = (Ψt )t≥0 is a family of bounded linear operators from X to Y such that

Ψτ+t z = Ψτ z ⋄τ ΨtTτ z ∀ z ∈ X, τ, t ≥ 0,

and Ψ0 ≡ 0,

– F = (Ft )t≥0 is a family of bounded linear operators from U to Y such that

Fτ+t (u ⋄τ v) = (Fτ u) ⋄τ (ΨtΦτ u + Ftv) ∀ u, v ∈ U , τ, t ≥ 0,

and F0 ≡ 0.

We call U the input space of Σ , X the state space of Σ , and Y the output space of

Σ . The operator Φτ is called an input map, Ψτ an output map and Fτ an input–output

map.



Denoting by Pτ the projection of L2([0,∞), Z) on L2([0, τ ), Z) (by truncation),

one can easily show that Φτ Pτ = Φτ , Fτ Pτ = Fτ , PtΨτ = Ψt and PtFτ Pt =

PtFτ = Ft for all 0 ≤ t ≤ τ .

To be able to define the output y of the system Σ from its operators, we first need

to define

Ψ∞ = lim
τ→∞

Ψτ ∈ L(X,Yℓoc),

and

F∞ = lim
τ→∞

Fτ ∈ L(Uℓoc,Yℓoc),

where Uℓoc and Yℓoc are the Fréchet spaces defined by Uℓoc = L2
ℓoc([0,∞), U ) and

Yℓoc = L2
ℓoc([0,∞), Y ) with the seminorms being the norms of Pτ u, where τ > 0.

Then, one can easily show that

Ψτ = PτΨ∞, Fτ = Pτ F∞.

We call Ψ∞ an extended output map of Σ , and F∞ an extended input–output map of

Σ .

Definition 2.2 Let z0 ∈ X and u ∈ Uℓoc, the state trajectory z and the output function

y of Σ corresponding to the initial state z0 and the input function u are defined by

z(t) = Tt z0 + Φt u ∀ t ≥ 0,

y = Ψ∞z0 + F∞u.
(2.1)

One can easily see that

[
z (t)

Pt y

]
= Σt

[
z0

Pt u

]
.

Let A be the infinitesimal generator of T, and ω0(T) its growth bound. We denote

by X1 the domain D(A) endowed with the graph norm, denoting by ‖·‖1, and X−1 the

closure of X with the norm ‖z‖−1 = ‖(β I − A)−1z‖ (for some arbitrary β ∈ ρ(A),

the resolvent set of A). It is well-known (see for instance Tucsnak and Weiss [39]) that

these spaces are Hilbert spaces and that

X1 ⊂ X ⊂ X−1,

each inclusion being dense and with continuous embedding.

For any Hilbert space W , any interval J and any ω ∈ R, we denote by

L2
ω(J, W ) = eωL2(J, W ),

where (eωv)(t) = eωtv(t), with the norm ‖eωv‖L2
ω

= ‖v‖L2 .



Proposition 2.3 There exists a unique operator B ∈ L(U, X−1), called the control

operator of Σ , such that for any initial state z0 ∈ X and any input function u ∈ Uℓoc,

the state trajectory z defined in (2.1) is the unique strong solution in X−1 of

{
ż(t) = Az(t) + Bu(t) ∀ t ≥ 0,

z(0) = z0.

Moreover, we know that z ∈ C([0,∞), X) ∩ H1
ℓoc([0,∞), X−1), and if u ∈

L2
ω([0,∞), U ) with ω > ω0(T), then z also belongs to L2

ω([0,∞), X) and its Laplace

transform is

ẑ(s) = (s I − A)−1[z0 + Bû(s)] ∀ s ∈ Cω.

We can also prove that

Ψ∞ ∈ L(X, L2
ω([0,∞), Y )),

and

F∞ ∈ L

(
L2

ω([0,∞), U ), L2
ω([0,∞), Y )

)
.

This enables us to represent y via its Laplace transform.

Proposition 2.4 There exist an analytic L(U, Y )-valued function G on Cω0(T), called

the transfer function ofΣ , and a unique operator C ∈ L(X1, Y ), called the observation

operator of Σ , with the following properties:

– For every z0 ∈ X and u ∈ L2
ω([0,∞), U ) with ω > ω0(T), the corresponding

output function y = Ψ∞z0 + F∞u belongs to L2
ω([0,∞), Y ) and its Laplace

transform is

ŷ(s) = C(s I − A)−1z0 + G(s )̂u(s) ∀ s ∈ Cω. (2.2)

– G satisfies for all α, β ∈ Cω0(T)

G(α) − G(β)

α − β
= −C(α I − A)−1(β I − A)−1 B, (2.3)

or equivalently G′(α) = −C(α I − A)−2 B.

– G is bounded on Cω for every ω > ω0(T).

Note that according to the second statement, G is determined by A, B and C up to an

additive constant.

For any C ∈ L(X1, Y ), we define its Λ-extension CΛ by

CΛz0 = lim
λ→∞

Cλ(λI − A)−1z0.

We denote D(CΛ) its domain, consisting of all z0 ∈ X for which the above limit

exists. Then we have the following result (see Theorem 3.2 of [33] and [36])



Proposition 2.5 With the previous notation, if u ∈ Uℓoc, and z0 ∈ X, then for almost

every t ≥ 0

y(t) = CΛ

[
z(t) − (β I − A)−1 Bu(t)

]
+ G(β)u(t) ∀ β ∈ Cω0(T).

Furthermore, if u ∈ H1
0,ℓoc([0,∞), U ),

y(t) = CΛTt z0 + C
[
Φt u − (β I − A)−1 Bu(t)

]
+ G(β)u(t) ∀ β ∈ Cω0(T). (2.4)

Curtain and Weiss [12] have given necessary and sufficient conditions for a triple

of operators (A, B, C) to be well posed (i.e. to be associated with a well posed lin-

ear system Σ). We need the definition of admissibility for control and observation

operators before stating the theorem.

Definition 2.6 Let X , U and Y be Hilbert spaces. Let A be the generator of a C0-

semigroup T on X , B ∈ L(U, X−1) a control operator and C ∈ L(X1, Y ) an obser-

vation operator.

– B is an admissible control operator for T if and only if for some (and hence any)

τ > 0, the operator Φτ , defined by

Φτ u =

τ∫

0

Tτ−s Bu(s)ds ∀ u ∈ Uℓoc,

has its range in X .

– C is an admissible observation operator for T if and only if for some (and hence

any) τ > 0, the operator Ψτ defined by

(Ψτ z0) (t) =

{
CTt z0 ∀ t ∈ [0, τ ]

0 ∀ t > τ
∀ z0 ∈ X1,

has a continuous extension to X .

Remark 2.7 It is clear that C is an admissible observation operator for T if and only

if C∗ is an admissible control operator for T
∗.

Theorem 2.8 (Generating triple, Theorem 5.1 of [11]) Let X, U and Y be three Hilbert

spaces.

A triple of operators (A, B, C) is well posed (i.e. associated with a well posed linear

system Σ) if:

1. A is the generator of a C0-semigroup T on X ,

2. B ∈ L(U, X−1) is an admissible control operator for T,

3. C ∈ L(X1, Y ) is an admissible observation operator for T,

4. there is an α ∈ R such that some (and hence any) solution G : ρ(A) → L(U, Y )

of the equation (2.3) is bounded on Cα (i.e. G is proper).



Conversely, if Σ is a well posed linear system, with associated triple of operators

(A, B, C) and the transfer function G, then the four previous conditions are satisfied.

2.2 Optimizability, estimatability, controllability and observability

It is well-known that for any C0-semigroup T, we have the following property:

∀ω > ω0(T), ∃Mω ≥ 1 : ‖Tt z0‖ ≤ Mωeωt‖z0‖ ∀ z0 ∈ X.

If we have ω0(T) < 0, then there is ω < 0 satisfying this inequality and the C0-

semigroup will decay exponentially in time. This justifies the following definition.

Definition 2.9 A well posed linear system Σ is exponentially stable if and only if

ω0(T) < 0.

Let us recall some definitions, which can be found in Weiss and Rebarber [44].

Definition 2.10 Let X , U and Y be Hilbert spaces. Let A be the generator of a C0-

semigroup T on X , B ∈ L(U, X−1) an admissible control operator for T and C ∈

L(X1, Y ) an admissible observation operator for T.

– The pair (A, B) is optimizable if for every z0 ∈ X , there exists a u ∈ U such that

z ∈ L2([0,∞), X), where

z(t) = Tt z0 +

t∫

0

Tt−s Bu(s)ds.

– The pair (A, C) is estimatable if (A∗, C∗) is optimizable.

A well posed linear system Σ is said to be optimizable if its corresponding pair (A, B)

is optimizable, and estimatable when its corresponding pair (A, C) is estimatable.

Definition 2.11 Let X , U and Y be Hilbert spaces. Let A be the generator of a C0-

semigroup T on X , B ∈ L(U, X−1) an admissible control operator for T and C ∈

L(X1, Y ) an admissible observation operator for T.

– The pair (A, B) is exactly controllable in time τ > 0 if Ran Φτ = X . It is

approximately controllable in time τ > 0 if Ran Φτ = X .

– The pair (A, C) is exactly observable in time τ > 0 if there exists a constant

kτ > 0 such that

‖Ψτ z0‖ ≥ kτ‖z0‖ ∀ z0 ∈ X.

It is approximately observable in time τ > 0 if Ker Ψτ = {0}.

Remark 2.12 The pair (A, C) is exactly observable (approximately observable) if and

only if (A∗, C∗) is exactly controllable (approximately controllable).



2.3 The dual system

We introduce now the dual system of a well posed linear system.

Theorem 2.13 (Theorem 4 of [45] ) Let Σ =

[
T Φ

Ψ F

]
be a well posed linear system

with input space U, state space X and output space Y . Define Σd =
(
Σd

t

)
t≥0

by

Σd
t =

[
T

d
t Φd

t

Ψ d
t F

d
t

]
=

[
I 0

0 Rt

] [
T

∗
t Ψ ∗

t

Φ∗
t F

∗
t

] [
I 0

0 Rt

]
. (2.5)

Then, Σd =

[
T

d Φd

Ψ d
F

d

]
is a well posed linear system with input space Y , state space

X and output space U. In particular, ω0(T) = ω0(T
d). The linear system Σd is called

the dual system of Σ .

Proposition 2.14 (Proposition 4 of [45]) If A, B and C are respectively the semigroup

generator, control operator and observation operator of the well posed linear system

Σ with growth bound ω0(T), then the corresponding operators for Σd are A∗, C∗

and B∗. The transfer functions are related by

Gd(s) = G∗(s) ∀ s ∈ Cω0(T).

2.4 Feedback law

The results of this subsection allow us to construct the forward and backward observers

in the framework of well posed linear systems.

Definition 2.15 Let Σ be a well posed linear system with input space U , state space

X , output space Y and transfer function G. An operator K ∈ L(Y, U ) is called an

admissible feedback operator for Σ if I − GK has a well posed inverse on some right

half-plane (equivalently, if I − K G has a well posed inverse).

Theorem 2.16 (Theorem 6.1 of [41]) If K is an admissible feedback operator for

a well posed linear system Σ , the closed-loop system Σ K , i.e. Σ with the output

feedback u = K y + v (v is the new control), is well posed. Furthermore, we have

Σ K − Σ = Σ

[
0 0

0 K

]
Σ K = Σ K

[
0 0

0 K

]
Σ. (2.6)

Under some assumptions, Curtain and Weiss [12, Theorem 5.8] proved that the

colocated feedback law exponentially stabilizes the well posed linear system. This

generalizes, in some sense, the known results when A is skew-adjoint and C is bounded

(see Liu [28]). We give a simpler version of this result, in our particular case.



Theorem 2.17 Suppose that Σ is a well posed linear system such that A is skew-

adjoint, U = Y and B = C∗. Then, there exists a κ > 0 (possibly κ = +∞) such

that for all γ ∈ (0, κ), the feedback law −γ y + v (v is the new control) leads to a

closed-loop system Σγ which is well posed.

Moreover, if Σ is optimizable and estimatable, then the closed-loop system Σγ is

exponentially stable.

Remark 2.18 The value of κ is explicitly given in [12, Theorem 5.8]. We have κ =

‖E+‖−1, where E+ is the positive part of the self-adjoint operator

E = −
1

2

[
G∗(λ) + G(λ)

]
+ λC (λI + A)−1 (λI − A)−1 C∗ ∀ λ > 0. (2.7)

Furthermore, if 0 ∈ ρ(A), then

E = −
1

2

[
G∗(0) + G(0)

]
.

3 Algorithm of reconstruction

From now on, we suppose that Σ =

[
T Φ

Ψ F

]
is a well posed linear system with input

space U , state space X , output space Y , determined by the operators (A, B, C) and

the transfer function G, such that

1. A is skew-adjoint,

2. U = Y and B = C∗.

Note that from Stone’s Theorem, A is the generator of a unitary C0-group, which will

be denoted by S. In the sequel, we suppose without loss of generality that the control

u of Σ satisfies u ≡ 0.

3.1 The forward and backward observers

Let us begin with a forward observer Σ+ of Σ (corresponding to (1.4)). With the

above assumptions, we apply Theorem 2.17 to define the closed-loop system Σ+ for

some γ ∈ (0, κ).

In the first section of this paper, we have seen that the forward error e+(t) =

z+(t) − z(t) satisfies ė+ = (A − γ C∗C) e+ by simple algebraic computations. Here,

A − γ C∗C has no more meaning, since C is unbounded. Therefore, we use directly

the definitions of the trajectories z and z+ to show that e+(t) = T
+
t e(0).

We denote by

[
T

+ Φ+

Ψ +
F

+

]
the operators of Σ+. Then from (2.6) with K = −γ I ,

we have

T
+
t z+

0 = St z
+
0 − γΦtΨ

+
t z+

0 = St z
+
0 − γΦ+

t Ψt z
+
0 ∀ z+

0 ∈ X. (3.1)



Let us denote by z and z0, respectively by z+ and z+
0 , the trajectory and initial state of

Σ , respectively Σ+. We add the control v = γ y to Σ+, where y is the output function

of the initial system Σ . Note that y = Ψ∞z0 since we suppose that u ≡ 0 (see (2.1)

in Definition 2.2). We have

z(t) = St z0, z+(t) = T
+
t z+

0 + γΦ+
t y ∀ z0, z+

0 ∈ X.

From the above equalities and Φ+
t y = Φ+

t Pt y = Φ+
t PtΨ∞z0 = Φ+

t Ψt z0, we can

rewrite

z+(t) = St z
+
0 − γΦ+

t Ψt

(
z+

0 − z0

)
∀ z0, z+

0 ∈ X.

Then, we call Σ+ a forward observer of Σ , since under some additional assumptions,

z+(t) → z(t) as t → ∞. Indeed, e+(t) = z+(t) − z(t) satisfies

e+(t) = St

(
z+

0 − z0

)
− γΦ+

t Ψt

(
z+

0 − z0

)
= T

+
t

(
z+

0 − z0

)
∀ z0, z+

0 ∈ X,

and following Theorem 2.17, T
+ is exponentially stable if (and only if) Σ is optimiz-

able and estimatable.

Now, the idea is to go back in time, starting from z−
τ = T

+
τ z+

0 for a fixed finite

time τ > 0. Thus, we have to define a backward observer Σ− of Σ (corresponding to

(1.5)). We first define Σd =

[
T

d Φd

Ψ d
F

d

]
, the dual system of Σ , using Theorem 2.13.

From Proposition 2.14, the C0-semigroup generator of Σd is A∗ = −A, and then

the C0-semigroup of Σd is S
−1 = (S−t )t≥0. From our assumptions, the control and

observation operators of Σd are the same as those of Σ .

Before the definition of Σ−, we give the following lemma, immediate from (2.7),

which shows that the same parameter γ can be used for both Σ+ and Σ−.

Lemma 3.1 Let Σ be a well posed linear system verifying the assumptions of the

beginning of this section, and Σd its dual system. Denote κ and κd the maximal

bound for γ in Theorem 2.17, for Σ and Σd , respectively. Then κ = κd .

From now on, we take the same parameter γ ∈ (0, κ) for both Σ+ and Σ−.

We define by Σ− the closed-loop system of Σd , for some γ ∈ (0, κ). We denote

by

[
T

− Φ−

Ψ −
F

−

]
the operators of Σ−. Then from (2.6) with K = −γ I , we have

T
−
t z−

τ = S−t z
−
τ − γΦd

t Ψ −
t z−

τ = S−t z
−
τ − γΦ−

t Ψ d
t z−

τ ∀ z−
τ ∈ X. (3.2)

Denote by z− the trajectory of Σ− with the control v = γ Rτ y. We know that Φ−
τ Rτ

y =Φ−
τ Rτ Ψτ z0 and it is easy to see that Rτ Ψτ = Ψ d

τ Sτ , for all τ ≥ 0. Then, we get

z−(τ ) = S−τ z−
τ − γΦ−

τ Ψ d
τ

(
z−
τ − Sτ z0

)
.



Setting e−(t) =
(

Rτ z−
)
(t) − z(t), we obtain

e−(0) = z−(τ ) − z0

= S−τ z−
τ − γΦ−

τ Ψ d
τ

(
z−
τ − Sτ z0

)
− S−τ Sτ z0

= S−τ

(
z−
τ − Sτ z0

)
− γΦ−

τ Ψ d
τ

(
z−
τ − Sτ z0

)

= T
−
τ

(
z−
τ − z(τ )

)
.

And since z−
τ = z+(τ ) = T

+
τ z+

0 , we finally obtain

e−(0) = T
−
τ T

+
τ

(
z+

0 − z0

)
.

If Σ is optimizable and estimatable, then there exists a τ > 0 such that

‖T
−
τ T

+
τ ‖L(X) < 1 (since T

+ and T
− are then exponentially stable). In other words,

z−(0) is a better approximation of z0 than z+
0 . The iteration of this process gives a

method to reconstruct z0 with exponential decay of the error, as after n iterations we

have

‖e−
n (0)‖ ≤

∥∥T
−
τ T

+
τ

∥∥n

L(X)

∥∥z+
0 − z0

∥∥ ∀ n ∈ N.

3.2 Relation between Σ+ and Σ−

In this subsection we prove the following theorem, which will be useful in many

computations.

Theorem 3.2 With the assumptions given at the beginning of this section, we have(
Σ+

)d
= Σ−.

The proof of this result is based on the following equalities.

Lemma 3.3 With the assumptions and notation of Theorem 3.2, we have

(I + γ Fτ )
−1 Ψτ = Rτ (I + γ Rτ Fτ Rτ )

−1 RτΨτ , (3.3)

Fτ (I + γ Fτ )
−1 = Fτ Rτ (I + γ Rτ Fτ Rτ )

−1 Rτ . (3.4)

Proof Remark that from (2.6),

(I + γ Fτ )
(
I − γ F

+
τ

)
= I =

(
I − γ F

+
τ

)
(I + γ Fτ ),

showing that (I + γ Fτ )
−1 = I − γ F

+
τ .

On the other hand, we easily obtain that

(
I − γ Rτ F

+
τ Rτ

)
(I + γ Rτ Fτ Rτ ) = I + γ Rτ

(
Fτ − F

+
τ − γ F

+
τ Fτ

)
︸ ︷︷ ︸

=0 from (2.6)

Rτ

= (I + γ Rτ Fτ Rτ )
(
I − γ Rτ F

+
τ Rτ

)
.



In other words, (I + γ Rτ Fτ Rτ )
−1 = I − γ Rτ F

+
τ Rτ ; hence, we have to prove that

equality (3.3) reduces to

(
I − γ F

+
τ

)
Ψτ = Rτ

(
I − γ Rτ F

+
τ Rτ

)
RτΨτ .

But

Rτ
(
I − γ Rτ F

+
τ Rτ

)
RτΨτ = PτΨτ − γ Pτ F

+
τ PτΨτ

= Ψτ − γ F
+
τ Ψτ =

(
I − γ F

+
τ

)
Ψτ .

Similarly, equality (3.4) reduces to

Fτ

(
I − γ F

+
τ

)
= Fτ Rτ

(
I − γ Rτ F

+
τ Rτ

)
Rτ ,

and

Fτ Rτ
(
I − γ Rτ F

+
τ Rτ

)
Rτ = Fτ Pτ − γ Fτ Pτ F

+
τ Pτ

= Fτ − γ Fτ F
+
τ = Fτ

(
I − γ F

+
τ

)
.

⊓⊔

Proof (Proof of Theorem 3.2) We have to show that

(
T

+
τ

)d
= T

−
τ ,

(
Φ+

τ

)d
= Φ−

τ ,
(
Ψ +

τ

)d
= Ψ −

τ ,
(
F

+
τ

)d
= F

−
τ .

Let us begin with
(
Φ+

τ

)d
= Φ−

τ . Using R∗τ = Rτ , (2.5), (2.6) and (3.3), we have

(
Φ+

τ

)d
=

(
Ψ +

τ

)∗
Rτ

= Ψ ∗
τ Rτ

(
I + γ Rτ F

∗
τ Rτ

)−1
Rτ Rτ

= Φd
τ

(
I + γ F

d
τ

)−1
Pτ

= Φ−
τ .

Similarly, we obtain
(
Ψ +

τ

)d
= Ψ −

τ . Then, using (3.2), we have
(
T

+
τ

)d
=

(
T

+
τ

)∗
=

S−τ − γΦ−
τ Ψ d

τ = T
−
τ .

It remains to show that
(
F

+
τ

)d
= F

−
τ . Again, from R∗τ = Rτ , (2.5), (2.6) and (3.4),

we have

(
F

+
τ

)d
= Rτ

(
F

+
τ

)∗
Rτ

= Rτ Rτ
(
I + γ Rτ F

∗
τ Rτ

)−1
Rτ F

∗
τ Rτ

= F
−
τ .

⊓⊔



3.3 The forward–backward operator

We now study in the general case the forward–backward operator T
−
τ T

+
τ , for a fixed

τ , with γ ∈ (0, κ). In other words, we suppose neither that Σ is optimizable and

estimatable, nor that τ is large enough to ensure that ‖T
−
τ T

+
τ ‖L(X) < 1.

Let us introduce the following orthogonal decomposition of an element z of X .

Lemma 3.4 With the previous notation and definitions, we have

X = Ker Ψτ ⊕ Ran Φd
τ .

Proof This follows immediately from the decomposition X = Ker Ψτ ⊕(Ker Ψτ )
⊥ =

Ker Ψτ ⊕ Ran Ψ ∗
τ and from Φd

τ = Ψ ∗
τ Rτ (see Eq. (2.5)), since, obviously, Ran Ψ ∗

τ =

Ran
[
Ψ ∗

τ Rτ
]
. ⊓⊔

In the sequel of the paper, we denote by VObs = Ran Φd
τ and VUnobs = Ker Ψτ ,

which correspond respectively to the observable part and to the unobservable part of

an element of X .

Proposition 3.5 We have

(
T

−
τ T

+
τ

)
VObs ⊂ VObs,

(
T

−
τ T

+
τ

)
VUnobs ⊂ VUnobs.

Proof From (3.1) and (3.2), we have

T
−
τ T

+
τ = I − γ S−τΦτΨ

+
τ − γΦ−

τ Ψ d
τ Sτ + γ 2Φ−

τ Ψ d
τ ΦτΨ

+
τ . (3.5)

First, note that from (2.5)

S−τΦτ = Φd
τ Rτ = Ψ ∗

τ Pτ .

Second, simple computations give Ψ d
τ Sτ = Rτ Ψτ and Theorem 3.2 shows that Φ−

τ =(
Ψ +

τ

)∗
. Finally, from (2.6), we see that

Ψ +
τ = (I + γ Fτ )

−1 Ψτ ,

and then (3.5) becomes

T
−
τ T

+
τ = I − γΨ ∗

τ (I + γ Fτ )
−1 Ψτ − γΨ ∗

τ

(
I + γ F

∗
τ

)−1
RτΨτ

+γ 2Ψ ∗
τ

(
I + γ F

∗
τ

)−1
RτΨ

d
τ Φτ (I + γ Fτ )

−1 Ψτ .

Thus, by Lemma 3.4

〈
T

−
τ T

+
τ z, θ

〉
= 〈z, θ〉 = 0,

〈
T

−
τ T

+
τ θ, z

〉
= 〈θ, z〉 = 0 ∀ z ∈ VObs, θ ∈ VUnobs,

and then T
−
τ T

+
τ

)
VObs ⊂ VObs and

(
T

−
τ T

+
τ

)
VUnobs ⊂ VUnobs. ⊓⊔



Remark 3.6 We point out the fact that ‖T
−
τ T

+
τ z‖ = ‖z‖ for all z ∈ VUnobs.

We immediately obtain the following result

Corollary 3.7 Let Π be the orthogonal projector from X onto VObs, then

T
−
τ T

+
τ Π = ΠT

−
τ T

+
τ .

Proposition 3.8 Denote by L =
(
T

−
τ T

+
τ

)
|VObs ∈ L(VObs). Then L is a positive self-

adjoint operator on VObs.

Proof From Theorem 3.2, we have for all z1, z2 ∈ X

〈
T

−
τ T

+
τ z1, z2

〉
=

〈
T

+
τ z1, T

+
τ z2

〉
.

Then 〈
T

−
τ T

+
τ z, z

〉
=

∥∥T
+
τ z

∥∥2
∀ z ∈ X. (3.6)

Thus T
−
τ T

+
τ is positive self-adjoint on X , and a fortiori L is positive self-adjoint on

VObs (by Proposition 3.5). ⊓⊔

Proposition 3.9 Let L be as in Proposition 3.8. Then the following statements hold:

1. For all z ∈ VObs\{0}, we have ‖Lz‖ < ‖z‖.

2. We have the following characterization

‖L‖L(VObs) < 1 ⇐⇒ VObs = Ran Φd
τ = Ran Φd

τ .

We need two lemmas to prove this proposition.

Lemma 3.10 Let Σ =
[

T Φ

Ψ F

]
be a well posed linear system satisfying the assump-

tions of the beginning of this section. We have for all u ∈ Uℓoc

(
Φ∗

τ Φτ − F
∗
τ − Fτ

)
u(t) = 2Eu(t) for a.e. t ∈ (0, τ ),

where E is the self-adjoint operator defined by (2.7).

Proof Let Σd =

[
T

d Φd

Ψ d
F

d

]
be the dual system of Σ . We first remark that

Φ∗
τ Φτ − F

∗
τ = RτΨ

d
τ Φτ − Rτ F

d
τ Rτ .

Let u be a control belonging to

Hτ = {w ∈ H1
ℓoc([0,∞), Y ) | w(0) = w(τ) = 0},

and z the trajectory of Σ with null initial state and control u. Then, z satisfies

{
ż(t) = Az(t) + C∗u(t) ∀ t ∈ [0, τ ],

z(0) = 0,

and the output of Σ is given by y = y|[0,τ ](t) = (Fτ u) (t).



Now, we consider zd(t) = Rτ z(t) = z(τ − t). Then, zd(t) is the trajectory of Σd

with control v = − Rτ u and initial state Φτ u

{
żd(t) = −Azd(t) − C∗ Rτ u(t) ∀ t ∈ [0, τ ],

zd(0) = Φτ u.

The output of Σd is then yd = Ψ d
τ Φτ u − F

d
τ Rτ u.

Now, we have that

Rτ yd − y = RτΨ
d
τ Φτ u − Rτ F

d
τ Rτ u − Fτ u.

Since u ∈ Hτ , we have in particular that u and Rτ u belong to H1
0,ℓoc([0,∞), Y ) and

from (2.4), with β = λ > 0, we have for almost every t ∈ (0, τ )

Rτ yd(t) − y(t) = Rτ Cd
ΛS−tΦτ u + Rτ C

[
Φd

t u + (λI + A)−1 C∗ Rτ u(t)
]

−C
[
Φt u − (λI − A)−1 C∗u(t)

]
− (G∗(λ) + G(λ))u(t).

But Cd
Λ is an extension of C , thus we can rewrite the above equality

Rτ yd(t) − y(t)=Cd
Λ

[
Rτ zd(t)+(λI + A)−1 C∗ R2τ u(t)

− z(t)+(λI − A)−1C∗u(t)
]
−(G∗(λ)+G(λ))u(t) for a.e. t ∈(0,τ ),

Since zd(t) = Rτ z(t) and R2τ u(t) = u(t) on (0, τ ), this becomes

Rτ yd(t) − y(t) = Cd
Λ

[
(λI + A)−1 + (λI − A)−1

]
C∗u(t)

−(G∗(λ) + G(λ))u(t) for a.e. t ∈ (0, τ ),

Now, using (λI − A)−1 = − (−λI + A)−1 for all λ > 0 and the resolvent identity,

we get

Rτ yd(t) − y(t) = 2λCd
Λ (λI + A)−1 (λI − A)−1 C∗u(t)

−(G∗(λ) + G(λ))u(t) for a.e. t ∈ (0, τ ),

But (λI + A)−1 (λI − A)−1 C∗ ∈ L(Y, X1), and thus we can replace Cd
Λ by C in the

above equality, and (2.7) gives the result

Rτ yd(t) − y(t) = 2Eu(t) for a.e. t ∈ (0, τ ),

We conclude by the density of Hτ in Uℓoc. ⊓⊔

Finally, we recall how to characterize the closure of the range of a bounded linear

operator. We give this lemma without proof (see for instance Brézis [8, Chapter 2]).



Lemma 3.11 A bounded linear operator T ∈ L(Z1, Z2), where Z1 and Z2 are Hilbert

spaces, has a closed range if and only if there exists a constant k > 0 such that

‖T ∗ f ‖ ≥ k‖(I − P) f ‖ ∀ f ∈ Z2, (3.7)

where P is the orthogonal projector on Ker T ∗.

We are now able to prove Proposition 3.9.

Proof (Proof of Proposition 3.9) The two points of Proposition 3.9 are consequences

of the following relation

‖T
+
τ z‖2 = ‖z‖2 − 2γ ‖Ψ +

τ z‖2 + 2γ 2
〈
EΨ +

τ z, Ψ +
τ z

〉
∀ z ∈ X, (3.8)

where E is the self-adjoint operator of Remark 2.18.

Let us begin with the proof of (3.8).

‖T
+
τ z‖2 = ‖Sτ z − γΦτΨ

+
τ z‖2

= ‖Sτ z‖2 − γ 〈Φ∗
τ Sτ z, Ψ +

τ z〉 − γ 〈Ψ +
τ z, Φ∗

τ Sτ z〉 + γ 2‖ΦτΨ
+
τ z‖2.

From ‖Sτ z‖ = ‖z‖, Φ∗
τ Sτ = Ψτ and Ψτ = (I + γ Fτ ) Ψ +

τ , we obtain

‖T
+
τ z‖2 =‖z‖2−γ〈(I +γ Fτ ) Ψ +

τ z,Ψ +
τ z〉−γ〈Ψ +

τ z, (I +γ Fτ ) Ψ +
τ z〉+γ 2‖ΦτΨ

+
τ z‖2

= ‖z‖2 − 2γ ‖Ψ +
τ z‖2 + γ 2

〈(
Φ∗

τ Φτ − Fτ − F
∗
τ

)
Ψ +

τ z, Ψ +
τ z

〉
.

We use now Lemma 3.10 to get (3.8).

We denote E+ the positive part of E , then

‖T
+
τ z‖2 = ‖z‖2 − 2γ ‖Ψ +

τ z‖2 + 2γ 2
〈
EΨ +

τ z, Ψ +
τ z

〉

≤ ‖z‖2 − 2γ ‖Ψ +
τ z‖2 + 2γ 2 ‖E+‖︸ ︷︷ ︸

=κ−1

‖Ψ +
τ z‖2

≤ ‖z‖2 − 2γ
(
1 − γ κ−1

)
‖Ψ +

τ z‖2.

where κ is the maximum bound for γ , given in Remark 2.18. In particular we have

1 − γ κ−1 > 0. From this, if z ∈ VObs\{0}, thus ‖Ψ +
τ z‖2 > 0, and therefore

‖Lz‖2 = 〈Lz, Lz〉

=
〈
L (L)

1
2 z, (L)

1
2 z

〉

= ‖T
+
τ (L)

1
2 z‖2

≤ ‖ (L)
1
2 z‖2 − 2γ

(
1 − γ κ−1

)
‖Ψ +

τ (L)
1
2 z‖2

≤ 〈Lz, z〉

≤ ‖T
+
τ z‖2

≤ ‖z‖2 − 2γ
(
1 − γ κ−1

)
‖Ψ +

τ z‖2

< ‖z‖2.

Thus, the first point is shown.



For the second point, we use the fact (from Ψτ = (I + γ Fτ ) Ψ +
τ and Ψ +

τ =(
I − γ F

+
τ

)
Ψτ ) that there exist two constants m, M > 0 such that

m‖Ψτ z‖ ≤ ‖Ψ +
τ z‖ ≤ M‖Ψτ z‖∀ z ∈ X,

together with Lemma 3.11 to get that

Ran Φd
τ = VObs ⇐⇒ inf

z∈VObs, ‖z‖=1
‖Ψτ z‖ > 0 ⇐⇒ inf

z∈VObs, ‖z‖=1
‖Ψ +

τ z‖ > 0.

(3.9)

Since L is self-adjoint and positive, we have

‖L‖L(VObs) = sup
z∈VObs, ‖z‖=1

〈Lz, z〉

= sup
z∈VObs, ‖z‖=1

‖T
+
τ z‖2

≤ 1 − 2γ
(
1 − γ κ−1

)
inf

z∈VObs, ‖z‖=1
‖Ψ +

τ z‖.

So that from (3.9)

Ran Φd
τ = VObs H⇒ ‖L‖L(VObs) < 1.

Conversely, from (3.8), we get

‖T
+
τ z‖2 = ‖z‖2 − 2γ

〈
(I − γ E) Ψ +

τ z, Ψ +
τ z

〉
, (3.10)

and since

‖T
+
τ z‖2 < ‖z‖2 ∀ z ∈ VObs\{0},

we see that 〈
(I − γ E) Ψ +

τ z, Ψ +
τ z

〉
> 0 ∀ z ∈ VObs\{0}. (3.11)

Thus,

0 <
〈
(I − γ E) Ψ +

τ z, Ψ +
τ z

〉
≤ ‖I − γ E‖ ‖Ψ +

τ z‖2,

which shows that

inf
z∈VObs, ‖z‖=1

‖Ψ +
τ z‖ = 0 H⇒ inf

z∈VObs, ‖z‖=1

〈
(I − γ E) Ψ +

τ z, Ψ +
τ z

〉
= 0

and then, if Ran Φd
τ is not closed in X , from (3.9) and the above relation

‖L‖L(VObs) = sup
z∈VObs, ‖z‖=1

‖T
+
τ z‖2

= 1 − 2γ inf
z∈VObs, ‖z‖=1

〈
(I − γ E) Ψ +

τ z, Ψ +
τ z

〉

= 1.



So that

Ran Φd
τ 6= VObs H⇒ ‖L‖L(VObs) = 1,

or in other words

‖L‖L(VObs) < 1 H⇒ Ran Φd
τ = VObs,

and Proposition 3.9 is proved. ⊓⊔

3.4 Proofs of the main results

Proof (Proof of Theorem 1.1) Let z0, z+
0 ∈ X . From Lemma 3.4, we can write uniquely

z0 = Π z0 + (I − Π) z0 and z+
0 = Π z+

0 + (I − Π) z+
0 . We will successively prove

assertions 1., 3. and 2., in this order.

With the notation of Propositions 3.5, 3.8 shows that the error (1.6) can be rewritten

for all n ∈ N as

(
T

−
τ T

+
τ

)n (
z+

0 − z0

)
= LnΠ

(
z+

0 − z0

)
+

(
T

−
τ T

+
τ

)n
(I − Π)

(
z+

0 − z0

)
. (3.12)

1. First, we prove that the first term of the right-hand side of (3.12) has no contribution.

From Remark 3.6, we know that

‖T
−
τ T

+
τ z‖ = ‖z‖ ∀ z ∈ VUnobs.

Using Proposition 3.5, we iterate and obtain

∥∥(
T

−
τ T

+
τ

)n
z
∥∥ = ‖z‖ ∀ n ∈ N, z ∈ VUnobs.

Finally, from Corollary 3.7, we get

(
T

−
τ T

+
τ

)n
(I − Π)

(
z+

0 − z0

)
= (I − Π)

(
T

−
τ T

+
τ

)n (
z+

0 − z0

)

= (I − Π)
(
z−

n (0) − z0

)
,

and the first part of the theorem is proved.

3. Let z ∈ VObs = Ran Φd
τ . From the second statement in Proposition 3.9, Ran Φd

τ =

Ran Φd
τ if and only if ‖L‖L(VObs) < 1. Then, if Ran Φd

τ is closed in X , we have

for all n ∈ N

∥∥Lnz
∥∥ ≤ αn‖z‖ ∀ z ∈ VObs,

with α = ‖L‖L(VObs) < 1. Conversely, if the above relation holds for all n ∈ N,

then ‖L‖L(VObs) ≤ α < 1 (taking n = 1), and the last statement in Proposition 3.9

shows that Ran Φd
τ is closed in X . The last part of the theorem is then proved.



2. We suppose now that Ran Φd
τ is not closed in X . We know from Proposition 3.8

that L is self-adjoint, positive, and so is Ln for all n ∈ N. In particular, for all

n ∈ N, we have ‖Ln‖L(VObs) = ‖L‖n
L(VObs)

= 1. Iterating n ∈ N times (3.10), we

obtain

〈
Lnz, z

〉
=‖z‖2−2γ

n∑

k=1

〈
(I −γ E) Ψ +

τ L
k−1
2 z,Ψ +

τ L
k−1
2 z

〉
L2([0,∞),Y )

∀ z ∈ VObs,

and then Ln+1 < Ln since

〈
Lnz, z

〉
−

〈
Ln+1z, z

〉
= 2γ

〈
(I −γ E) Ψ +

τ L
n
2 z, Ψ +

τ L
n
2 z

〉
L2([0,∞),Y )

∀ z ∈ VObs,

and the right-hand side of this equality is strictly positive from (3.11). In particular,

this implies that the sequence (‖Lnz‖)n∈N is strictly decreasing, for all z ∈ VObs.

Indeed, ‖Lnz‖2 =
〈
L2nz, z

〉
>

〈
L2(n+1)z, z

〉
=

∥∥Ln+1z
∥∥2

.

It remains to show that for all z ∈ VObs, 0 is the limit of (‖Lnz‖)n∈N. As a

decreasing sequence of positive operators on the Hilbert space VObs, Lemma 12.3.2

of [39] shows that the sequence converges in L(VObs) to a positive operator L∞ ∈

L(VObs) such that

lim
n→∞

Lnz = L∞z ∀ z ∈ VObs,

and satisfying L∞ ≤ Ln for all n ∈ N. We have for all z1, z2 ∈ VObs

〈
L2

∞z1, z2

〉
= 〈L∞z1, L∞z2〉

= lim
n→∞

lim
m→∞

〈Lnz1, Lm z2〉

= lim
n→∞

lim
m→∞

〈
Ln+m z1, z2

〉

= 〈L∞z1, z2〉 ,

which shows that L2
∞ = L∞. Furthermore, we have for all z ∈ VObs\{0}

‖L∞z‖2 =
〈
L2

∞z, z
〉
= 〈L∞z, z〉 ≤

〈
L2z, z

〉
= ‖Lz‖2 < ‖z‖2,

The above inequality comes from the first point of Proposition 3.9.

Suppose now that Ran L∞ 6= {0}. Then, there exists z ∈ VObs such that L∞z 6= 0

and then

‖L∞z‖ = ‖L2
∞z‖ < ‖L∞z‖,

which is impossible. Thus Ran L∞ = {0}, or in other words L∞ ≡ 0. This shows

that

lim
n→∞

LnΠ z = 0 ∀ z ∈ X.



We conclude using Corollary 3.7

Π
(
z−

n (0)−z0

)
=Π

(
T

−
τ T

+
τ

)n (
z+

0 −z0

)
= LnΠ

(
z+

0 −z0

)
−→
n→∞

0 ∀ z+
0 , z0 ∈ X.

Proof (Proof of Corollary 1.2) Using (3.1) and (3.2), we rewrite z−
1 (0). We have for

all z0, z+
0 ∈ X

z+
1 (τ ) = Sτ z+

0 − γΦτΨ
+
τ

(
z+

0 − z0

)
,

and

z−
1 (0) = S−τ z+

1 (τ ) − γΦd
τ Ψ −

τ

(
z+

1 (τ ) − Sτ z0

)
.

Substituting the first equality into the second one, we obtain

z−
1 (0) = z+

0 − γ S−τΦτΨ
+
τ

(
z+

0 − z0

)
− γΦd

τ Ψ −
τ

(
z+

1 (τ ) − Sτ z0

)
.

From S−τΦτ = Φd
τ Rτ and Φd

τ = Ψ ∗
τ Rτ , we get that, for all z+

0 , θ ∈ X

〈
z−

1 (0), θ
〉
=

〈
z+

0 , θ
〉
− γ

〈
Ψ +

τ

(
z+

0 − z0

)
, Ψτ θ

〉
− γ

〈
RτΨ

−
τ

(
z+

1 (τ ) − Sτ z0

)
, Ψτ θ

〉
.

This implies that

〈
z−

1 (0), θ
〉
= 0 ∀ z+

0 ∈ VObs, θ ∈ VUnobs.

In other words, for all z+
0 ∈ VObs, z−

1 (0) ∈ VObs. We can iterate the cycle of forward–

backward observers and obtain that

z+
0 ∈ VObs H⇒ z−

n (0) ∈ VObs ∀ n ∈ N.

We apply Theorem 1.1 with z+
0 ∈ VObs and the previous result to conclude. ⊓⊔

4 Example

In this section, we investigate a wave equation with colocated Dirichlet control and

observation. This system is known to be well posed (see for instance Guo and Zhang

[22]). Many other examples fitting into the framework of this paper can be found in the

literature. We can mention another work of Guo and Zhang [23] for the wave equation

with partial Dirichlet control and colocated observation with variable coefficients, the

work of Chapelle et al. [9] on the wave equation with distributed observation, of Guo

and Shao [21] for both non-uniform Schrödinger and Euler–Bernoulli equations with

boundary control and observation, and of Curtain and Weiss [12,43] for the Rayleigh

beam equation.



Let Ω ∈ R
N , N ≥ 2, be a bounded domain with smooth boundary ∂Ω = Γ0 ∪ Γ1,

Γ0∩Γ1 = ∅ and Γ0 and Γ1 are relatively open in ∂Ω . Let ∆ be the Dirichlet Laplacian,

and ν the unit normal vector of Γ1 pointing towards the exterior of Ω . We consider





ẅ(x, t) − ∆w(x, t) = 0 ∀ x ∈ Ω, t > 0,

w(x, t) = 0 ∀ x ∈ Γ0, t > 0,

w(x, t) = u(x, t) ∀ x ∈ Γ1, t > 0,

w(x, 0) = w0(x) ∀ x ∈ Ω,

ẇ(x, 0) = w1(x) ∀ x ∈ Ω,

(4.1)

with u the input function (the control), and (w0, w1) the initial state. We observe this

system on Γ1, leading to the measurement

y(x, t) = −
∂(−∆)−1ẇ(x, t)

∂ν
∀ x ∈ Γ1, t > 0. (4.2)

Guo and Zhang [22, Theorem 1.1] proved that this evolution partial differential

equation can be represented by a well posed linear system Σ with state space

X = L2(Ω) × H−1(Ω) and U = Y = L2(Γ1), and that the operators (A, B, C)

satisfy A∗ = −A and B = C∗. More precisely, there exist A0 (namely −∆) a positive

definite self-adjoint operator such that

A =

(
0 I

−A0 0

)
,

and C0 ∈ L

(
D

(
A

1
2

0

)
, Y

)
such that

C = [0 C0] .

Moreover, the transfer function of this system is given by

G(s) = sC0

(
s2 I + A0

)−1
C∗

0 ∀ s ∈ C0.

Thus, since 0 ∈ ρ(A), Remark 2.18 gives

E = −
1

2

(
G∗(0) + G(0)

)
= 0.

In particular, the value of κ in Theorem 1.1 is equal to infinity.

Theorem 4.1 Let γ > 0 and τ > 0, (w0, w1) ∈ L2(Ω)× H−1(Ω) be the initial state

of (4.1), u ∈ L2([0, τ ), L2(Γ1)) its input function, w its solution, and y its output,

given by (4.2). Denote, for all n ≥ 1, w+
n and w−

n the respective solutions of



Fig. 1 An example of configuration in two dimensions and the initial state to reconstruct





ẅ+
n (x, t) − ∆w+

n (x, t) = 0 ∀ x ∈ Ω, t ∈ (0, τ ),

w+
n (x, t) = 0 ∀ x ∈ Γ0, t ∈ (0, τ ),

w+
n (x, t) = γ

∂(−∆)−1ẇ+
n (x, t)

∂ν
+ γ y(x, t) + u(x, t) ∀ x ∈ Γ1, t ∈ (0, τ ),

w+
1 (x, 0) = 0 ẇ+

1 (x, 0) = 0 ∀ x ∈ Ω,

w+
n (x, 0) = w−

n−1(x, 0), ẇ+
n (x, 0) = ẇ−

n−1(x, 0) ∀ x ∈ Ω, n ≥ 2,

and





ẅ−
n (x, t) − ∆w−

n (x, t) = 0 ∀ x ∈ Ω, t ∈ (0, τ ),

w−
n (x, t) = 0 ∀ x ∈ Γ0, t ∈ (0, τ ),

w−
n (x, t) = γ

∂(−∆)−1ẇ−
n (x, t)

∂ν
− γ y(x, t) + u(x, t) ∀ x ∈ Γ1, t ∈ (0, τ ),

w−
n (x, τ ) = w+

n (x, τ ), ẇ−
n (x, τ ) = ẇ+

n (x, τ ) ∀ x ∈ Ω.

Denote Π the orthogonal projector from L2(Ω)× H−1(Ω) onto VObs = Ran Φd
τ (we

do not show it explicitly). Then, from Corollary 1.2, we have

∥∥∥∥
(

w−
n (x, 0)

ẇ−
n (x, 0)

)
− Π

(
w0(x)

w1(x)

)∥∥∥∥
L2(Ω)×H−1(Ω)

−→
n→∞

0.

Furthermore, the decay is exponential if and only if Ran Φd
τ is closed in L2(Ω) ×

H−1(Ω).

To illustrate Theorem 4.1, consider the configuration on the left of Fig. 1 and let

us try to reconstruct the initial state on the right of Fig. 1, constituted of three bumps,

with null initial velocity. For simplicity sake, we take u ≡ 0.

Then, we choose τ > 0 such that, using the geometric optic rays (see Bardos et al.

[5]), we can reconstruct all initial data with support included in the left striped part,



and that no information can be obtained from the initial data with support included in

the right striped part. In particular, we cannot expect to reconstruct the bump in the

right top part of Ω .

Remark 4.2 It is well-known that uniform controllability/observability (with respect

to the mesh size parameters) may fail after discretization (see for instance Zhang et

al. [46]) due to high-frequency spurious modes. Using a numerical viscosity method,

Ervedoza and Zuazua [14] proposed a time discretization preserving the uniform (in

the time parameter) exponential stability of a damped wave equation.

More recently, García and Takahashi [17] used a finite-difference discretization in

space for a one-dimensional wave equation. To avoid restrictions on the number of

steps with respect to the mesh size, they add a vanishing viscosity in the numerical

observers. They prove an estimate of the errors with respect to the mesh size and to

the number of steps in the algorithm of [32].

In the case studied here, where we do not have exact observability, it is not clear if

such a process can be used to tackle the spurious modes. Indeed, a further investigation

of the discretization of VObs and its stability under the discretized algorithm should be

done.

Fig. 2 Relative error of the “observable part of the position” in L2(Ω) and the reconstructions obtained

after the first, second and third iterations



Remark 4.3 In presence of noisy measurement, we do not know if the stability of VObs

under the discretized algorithm is preserved. It is more likely that this stability fails,

leading to a deterioration of the reconstruction.

Using GMSH [20] and GetDP [13], we have implemented the algorithm with finite

elements in space (parameter h = 0.02) and an unconditionally stable Newmark

scheme in time (parameter 1t = 0.005), with γ = 1 and a time of observation τ = 1.

We have obtained Fig. 2, where we can see the efficiency of the algorithm to

reconstruct “the observable part” of the initial data (we take here the truncation on the

bottom part of the figure). After only three iterations, we reach 6 % of relative error

in L2(Ω).
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