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Abstract

In this thesis, a system identification approach is developed for discrete-time
state-space nonlinear models with a strong form of stability guarantees. The real world
is complex, essentially nonlinear, and sometimes, modern day science still struggles
with a qualitative understanding of the nonlinearities around us. Technologies that
allow for an accurate explanation of observations are of great help to improve our
understandings of these complex systems. Also, the next-generation high-tech and
mechatronic systems come with extreme functionality and performance requirements,
inducing ever-increasing model accuracy specifications. To keep on fulfilling these high
expectations on system design and model-based control, it has become inevitable to
exploit the nonlinear operation modes of real-world systems, raising the demand to go
beyond linear system representations by modelling in the nonlinear domain.

Current works have shown that discrete-time block-oriented multiple-input multiple-
output (MIMO) nonlinear state-space models are capable of accurately representing a
large variety of real-world nonlinear systems. However, their implementations typically
suffer from computational inefficiency due to the curse of dimensionality. Furthermore,
the identified models cannot be safely used for other inputs than those seen during
identification. Even a slight perturbation of the input signal can lead to a significantly
different (possibly unbounded) model response.

Recent developments in stability analysis enable the assessment of the convergence
property for such models by solving linear matrix inequality (LMI) conditions. This
stability notion guarantees the existence of a unique, globally exponentially stable
model response to periodic perturbations. Using a discrete-time, MIMO equivalent
of the mixed-time-frequency (MTF) algorithm, we show that the steady-state model
response and the gradient of the model response with respect to its parameters can be
computed in an accurate and computationally efficient manner. These developments
allow for the usage of both global and local optimisation methods to solve the
system identification problem. Furthermore, by enforcing the identified model to be
inside the set of convergent models that are characterized by the LMI conditions, we
certify a stability property on the identified model. This property allows for reliable
usage of model predictions, also for excitation signals other than those used during
model training. The effectiveness and the benefits of the approach are validated on
(i) experimental data from the well-known Silverbox nonlinear system identification
benchmark and (ii) a simulation case study.

Keywords: Nonlinear system Identification; Data-driven modelling; Discrete-time; Lur’e-
type models; Convergent systems; Incremental stability; Steady-state; Silverbox;
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Chapter 1

Introduction

This thesis is conducted on the topic of Identification of discrete-time state-space nonlinear systems with
stability guarantees. The project background is discussed in Section 1.1. In Section 1.2, an overview of
the state-of-the-art on this research area is given, where we summarise relevant existing results and open
challenges. Section 1.3 addresses the research goal and planned contributions of this project. Finally,
Section 1.4, summarises the outline for this report and Section 1.5 provides preliminaries on our used
notations.

1.1 Background

The focus of this project is on the identification of a certain class of dynamical systems. In this section,
describing the background of this project, the concept of a dynamical system is introduced first. Consecutively,
the motivation for modelling such dynamical systems is given, followed by an introduction of the considered
model class. Finally, it is explained how system identification contributes to dynamic modelling, specifically
in the engineering research domain.

“The totality is not, as it were, a mere heap, but the whole is something besides the parts.”

— Aristotle, Metaphysics, 350 B.C.E [2]

Dynamic systems

The net of science aims to cover the empirical universe by addressing the following two questions [3]: what is
it made of and why does it work this way? A subset of this universe is typically studied as a complex system,
interacting with its respective environment. Dealing with these complex systems has been an important
discussion topic lately. On the one hand, the analysis philosophy tries to gain understanding on complex
phenomena by breaking them down into their constituent parts. This inherently depromotes the relationships
between components and, as was already suggested by Aristotle, a system may be more than the sum of
its parts. On the other hand, the synthesis paradigm tries to describe an entity through the context of its
relations and functioning within the whole. Note that both paradigms go hand in hand as no synthesis can be
done without analysis and no analysis makes sense without verification via synthesis [4]. It goes without
saying that these abstract systems can be related to phenomena in areas such as physics and mechanics, but
also sociology and biology [5], [6].

Measured
disturbance

Input

Process
noise

Output
System

Measurement
noise

Figure 1.1: Schematic definition of a dynamic system.
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Chapter 1. Introduction

Phenomena originating from either one of these research areas can be described by a mathematical system
object in which variables of different kinds interact, producing observable signals while being subject to
external stimuli, see Figure 1.1 [7]. Observable signals of interest are referred to as outputs, whereas
manipulable stimuli are called inputs. The remaining external signals are disturbances and can either be
directly measurable or unknown to the observer. With respect to the unknown disturbances, one distinguishes
between measurement- and process-noise, respectively affecting only the outputs and also the system’s
internal signals. Systems commonly show behavioural changes over time according to a fixed rule, making
them dynamic systems.

Dynamic models

When interacting with a system, it is of great use to have some concept, a model, of how its variables
relate based on observed signals [7]. Such a mathematical model allows for (i) causal explanation, such
as the health care industry trying to relate patient complaints to the disease causative agent, (ii) model
output prediction for any input and (iii) description, which provides insights in principles that determine the
system behaviour [8]. Note that a model never perfectly reflects reality, but requires only to be sufficiently
accurate.

Consider Figure 1.2, in which the necessity to motivate the considered model class in this project becomes
clear, given the large variety of existing model classes. It was mentioned before that the model is required
to describe the future and/or history of a dynamic system, explaining the decisions in Step I and II. The
systems under study are dynamic in the time domain and do not change their dynamics as function of a
spatial coordinate (as is the case for distributed partial differential equation (PDE) models). As a result,
lumped models are preferred in terms of an ordinary differential equation (ODE) in Step III. In this project, the
derived model is expected to mimic systems that change their state only at a discrete set of points in time.
Such systems commonly exist in research areas like biology and economics, see [9], [10], or as discretised
versions of continuous-time models arising in physics or mechanics. At the same time, one should note
that system outputs (even if they evolve in continuous-time) can typically only be measured at discrete time
instances, raising the demand for models in terms of difference equations, which motivates the decision in
Step IV. The model parametrisation does not change as function of time and model updates are assumed
to be deterministic in Steps V and VI, implying that stochastic and time-varying difference equations are
excluded.

One should understand why this project considers the class of nonlinear systems over its linear counterpart
in Step VII, as indeed, the Polish-American mathematician Stanislaw Ulam once compared nonlinear science
to studying the bulk of zoology as non-elephant animals [11]. Nevertheless, the vast majority of physically

True system

Mathematical model

Stochastic

Continuous-time

StaticDynamic

Distributed

Nonlinear

Time-varying

State-space Input-output

I

II

III

IV

V

VI

VII

VIII

S
tep

Linear

Deterministic

Time-invariant

Discrete-time

Lumped

Figure 1.2: Definition of the model structure considered in this project ( ).
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Section 1.1. Background

relevant systems exhibits essential nonlinear dynamic behaviour. On the one hand, all (non-significant)
nonlinear phenomena can be neglected while modelling in a linear framework. On the other hand, one can try
to include nonlinearities in the model, increasing the model accuracy at the cost of model complexity. The
latter is only recommended when a linear approximation fails the requirements, since nonlinear modelling has
proven to be significantly more involved [12]–[14]. Among other things: (i) nonlinear models do not necessarily
preserve stability under extrapolation outside the input domain that was seen during training, (ii) structural
model errors are inevitable as it may be challenging to fit the true system nonlinearities in a certain nonlinear
model class and (iii) process noise transforms nonlinearly such that it is no longer Gaussian, which results in
undesirable statistical properties of identified model parameters [12].

It is not necessarily possible to translate one nonlinear model representation into another, in contrast to
the linear time-invariant (LTI) case, where for example state-space and transfer-function representations
are often interchanged [15]. Several nonlinear model classes are proposed, which can roughly be divided
into state-space and input-output models [16]. The latter does not directly consider the internal behaviour
of the modelled system, which, e.g., complicates the analysis of stability properties. Furthermore, the
state-space model representation is more flexible than the well-known nonlinear autoregressive exogenous
(NARX) input-output models, increasing the likelihood of an accurate data fit [12]. Besides that, most of the
nonlinear control theory is based on state-space representations, which makes these models the intuitively
preferred class and explains the decision in Step VIII [17]. In conclusion, the model class of interest, being
nonlinear discrete-time state-space models is now fully motivated.

System identification

What remains is to find which model inside the set of candidate models defined by the model class fits the
system under study best. To that end, one can take a white-box-, or first-principles modelling approach,
reflecting simplifying assumptions together with well-known physical laws such as, e.g., mass balance,
momentum balance or heat transfer relations. These models are typically time-consuming to derive and
some physically meaningful parameters might still not be available to the user. In that case, additional
system calibration measurements are to be performed such that the unknown parameters are found. Since
experimentation is then required for model development anyway, the other approach would be to derive the
model via an identification experiment, in which a configured input design is applied to the system and its
outputs are measured with an appropriate sampling procedure [18]. The art of turning large input-output
data sets that are obtained experimentally from dynamical systems into compact models described by only a
few parameters is referred to as system identification [13], [14]. The procedure, as shown schematically in
Figure 1.3, is characterised by four main components, being data, model structure, estimation method and
validation.

The experimentally obtained system input-output data is the fundamental information source. It is important
to make sure that the prediction domain that is relevant to the model is mostly incorporated in the experiment.
If essential system features are not observed in the data, they are most likely not described by the identified
model. The model structure defines the set of candidate models up to a parameter vector and ideally includes
the true system dynamics. The estimation method should ensure that a specific parameter vector is selected
that describes the observed data best, given the model structure. Typically, a cost function being nonlinear

No, structure
mismatch

No, data not
informative

Preprocess
data

Identification
experiment

Model structure
selection

Model
estimation

Validation
test

Model
accepted?

Yes

perform a new
experiment?

Yes

No

Figure 1.3: System identification [7]. User decisions are in hexagons and algorithms are in rectangles.
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in the parameters has to be minimised in this step. Finally, the validation stage executes once a model is
identified. In this stage, the model is validated by comparing its simulated output to a new data set that was
not used during identification. Besides that, prior knowledge on the modelled system can be verified in this
stage. If the validation test fails, we can alter properties of our model structure, e.g., an LTI model’s state
dimension, and/or the experiment data, before estimating a new model. This process iterates until a model
passes the validation test according to user-defined criteria.

Engineering applications

So far, it has been described why dynamical systems are modelled and how system identification can be of
great use to establish the actual model describing a system under study best. These results connect well to
engineering challenges in dynamics and control, for which some motivating examples are listed below.

1. Control of turbulent fluid systems [19]: Imagine an aircraft wing positioned at a high angle of attack,
causing a stalled, turbulent downstream flow. One may desire to control this dynamical system to
re-laminarize the flow, which increases lift and decreases drag. Hereto, the nonlinear fluid dynamics
are to be modelled, which are described by the well-known Navier-Stokes equation. Even though the
nonlinear equations of motion are known, they are hard to solve and therefore not applicable for control
purposes. It is desired to derive a simpler nonlinear model, for which system identification can be used.

2. Damage analysis of large mechanical structures subjected to dynamic loading [20]: Structural elements
such as beams, cables and columns may be damaged under dynamic seismic, wind, or impact loading.
To prevent structural failure, one tries to identify damage in an early stage via dynamic modelling. Large
and complex real-life structures cannot be modelled accurately by first principles, which raises the
demand for nonlinear system identification techniques.

3. Modelling and control of mechanical ventilation [21]: Respiratory modules assist patients to breathe.
Even though the nonlinear dynamic models (including the patient’s state-of-health) can be derived
via first principles, the parameters describing the system are unknown and require offline calibration,
which is a time-consuming task. One can think of implementing system identification techniques to
online update the model, hereby minimising downtime of the control system and therefore increasing
the treatment efficiency.

Some major challenges in these examples include (i) nonlinear dynamic behaviour, (ii) (possibly) unmod-
elled dynamics, (iii) high-dimensionality of the model parametrisation and (iv) limited measurements and
actuations. Via system identification techniques, dominant patterns in complex systems can be described by
relatively low-order models. As soon as the model is established, nonlinear control theory can be applied to
steer the identified system, or retrieved insights potentially lead to improved system design. This project
thereby contributes to bridging the gap between traditional dynamics and control techniques and recent
developments in data-driven modelling. It does so by studying system identification of discrete-time nonlinear
state-space models.

1.2 State of the art

The topic of system identification for discrete-time nonlinear state-space models has been introduced in Sec-
tion 1.1. The current section summarises the achievements, limitations and open challenges of identification
strategies proposed in literature.

Many different nonlinear system identification approaches have been proposed in literature, among which
the family of block-oriented nonlinear models has been popular [22]. In these models, nonlinear dynamic
behaviour is separated into LTI dynamics and static nonlinearities. These building blocks can be combined
in different ways, of which some examples are shown in Figure 1.4. The popular Wiener and Hammerstein
structures, respectively structure I and II in Figure 1.4a, can be interpreted as a linear plant interacting with a
nonlinear output sensor or a nonlinear actuator input. These model structures showcase the advantages of
block-oriented nonlinear models being relatively simple to understand and easy to use [23].

The Lur’e-type structure in Figure 1.4b includes, but is not limited to, the Wiener and Hammerstein structures.
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Σ φ

Σφ

I

II

(a) Wiener (I) and Hammerstein (II) type structures

Σ

φ

III

(b) Lur’e (III) type structure

Figure 1.4: Block-oriented nonlinear models, interconnecting LTI models Σ and static nonlinearities φ [12].

Many engineering systems can be modelled as LTI with local static nonlinearities such as hardening/softening
springs, backlash and elastic stops [24]. Therefore, this model structure is chosen as the sweet spot between
complexity and representation capability of identified models [25]–[27]. System identification of discrete-
time, Lur’e-type models is an active research area, see [23], [28]–[35]. Lur’e-type systems are also referred to
as nonlinear-feedback and nonlinear linear fractional representation (NL-LFR) systems [22], [31].

The research in [36] studies system identification of discrete-time Lur’e-type models. A general multiple-input
multiple-output (MIMO) static nonlinearity is allowed and the model complexity can be balanced by tuning
the nonlinearity in- and output dimensions as well as the LTI model order. In an example, a single hidden
layer feedforward neural network with a linear output layer is chosen as the memoryless nonlinear function,
since it can be a universal approximator [37]. The identification procedure is split into two steps, starting
with a best linear approximation (BLA) of the nonlinear system, followed by solving a nonlinear non-convex
optimisation problem by a gradient-based routine. The model structure considered in [36] coincides with
the model class considered in this project, since MIMO discrete-time Lur’e-type models include, but are
not limited to, the class of nonlinear discrete-time state-space models. It should be noted that a thorough
theoretical analysis on, e.g., stability of the identified models is lacking. Furthermore, there was no focus
on computational efficiency of the system identification algorithm, which raises questions on the topic of
applicability to problems with a large number of variables [38].

One of the major challenges in system identification is to enforce a form of stability on the identified model,
see [39], [40]. Even though stable responses are observed for the true system, the responses of a model
resulting from an identification routine may not necessarily obey this property. For LTI models, enforcing
exponential stability is well understood [40]–[46]. However, the literature on the nonlinear counterpart with
some guaranteed form of stability is scarce and the consequences are more pronounced and complex [47],
[48]. It is well-known that nonlinear models can exhibit multiple stable solutions being attractive for different
sets of initial conditions [27]. Moreover, depending on the applied excitation signal, the response of nonlinear
models can become unstable. Consequently, even though the model explains the identification data set
perfectly well, the model response to a new bounded excitation (that is only slightly different from those
used during training) might be close to the true system response, but might as well be far off or even grow
unbounded. Such models are not capable of accurately predicting the system response in scenarios other
than the exact identification data set.

Another important challenge is related to the computational efficiency of algorithms used for nonlinear system
identification, since these algorithms are reported as extremely time-consuming, especially for problems
with a large number of decision variables [38], [49]. Most approaches minimise a non-convex cost function
using gradient-based optimisation routines. These algorithms require the computation of model responses to
evaluate the cost function. Moreover, additional model response computations are required for numerical
estimation of the cost function gradient (and Hessian) with respect to the model parameters [13], [14]. Next
to improvements on the hardware side to speed-up computations, one can think of data-parallelism, in which
shorter, but an increased number of model response simulations should be computed, increasing performance
by parallel computing [50]. Nevertheless, it is still an open challenge to minimise the computational load of a
single simulation step during identification.

In [13], [14], [51], system identification of continuous-time Lur’e-type models is discussed, while addressing
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the previously mentioned challenges on stability guarantees and computational efficiency. This model
structure comes with relatively easy-to-check, sufficient circle-criterion-like conditions for global exponential
convergence, which is a strong form of model stability. In particular, this property guarantees the existence
and uniqueness of a globally exponentially stable steady-state solution [52]. Exponentially convergent
systems obey the property that the periodic steady-state model response is of the same period time as
its periodic excitation [52]. This property was exploited in the development of a computationally efficient
algorithm to compute steady-state responses to evaluate the cost function and its gradient with respect to
the model parameters. These steady-state model responses are compared to steady-state measurements to
quantify model performance. Thereby, it is no longer required to estimate the initial system state. Also, one
can benefit computationally from implementing the efficient methods to compute the unique steady-state
model response. In system identification of linear models, it is common practice to process steady-state model
responses in frequency domain methods, which boils down to estimation of a transfer function or a frequency
response function in parametric and non-parametric approaches, respectively [53]. In the nonlinear system
identification field, steady-state model response are also exploited, e.g., when BLA methods are deployed as
a starting point in nonlinear model estimation, as shown in [13], [14], [51]. The system identification problem
is typically solved via a two-step algorithm. An initialisation step is performed, which is not limited to the BLA
(see, e.g., [23]), but can also be performed by deployment of global optimisation routines. In the second step,
a nonlinear non-convex optimisation problem is solved via a gradient-based routine. To that end, a Lur’e-type
parameter sensitivity model approach is presented to calculate the exact objective function gradient with
respect to the model parameters. These works, hence, solve the previously mentioned major challenges in
nonlinear system identification. These works are limited to the continuous-time case, which do not fall into
the discrete-time nonlinear state space model class considered in this project. Furthermore, only single-input
single-output (SISO) nonlinearities are considered, which greatly reduces the representation capabilities of
identified models.

Other nonlinear system identification approaches that address our stability challenges are modelling in a
recurrent neural network (RNN) structure. [54] discusses nonlinear system identification of black-box discrete-
time Lur’e-type models, viewed as RNNs, in which parameters have no physical interpretation. These models
have been shown to exhibit excellent expressive power, but lack stability or robustness guarantees. To that
end, methods that identify stable RNNs via a convex parametrisation are proposed in [55], [56]. Next to global
exponential stability (GES) of all solutions, an upper bound to the Lipschitz constant of the learnt network
is formulated, such that a sensitivity of the model output with respect to a small input perturbation (in the
infinity norm) can be quantified. This allows for robustness analysis of the identified model and a direct
link to robust control theory. Note that the stability conditions in the proposed methods are conservative in
the sense that they are only sufficient. These kind of models can generally not be used in combination with
white-box modelling, which require a physical understanding of the parameters, such as [13], [14].

Open challenges

The presented review of the state-of-the-art on the topic of system identification of nonlinear discrete-time
state-space models identifies a set of open challenges that are to be addressed in this project. In [36], a
flexible Lur’e-type discrete-time model structure has been proposed for the purpose of system identification.
Furthermore, [13], [14] proposes a methodology for a less flexible continuous-time model structure that deals
with major challenges in system identification, being stability guarantees and computational efficiency of
the estimation algorithm. These challenges have not been resolved in literature for the flexible discrete-time
case as of yet. This insight initiates the following open challenges: How to guarantee stability for flexible
discrete-time models with the same structure as [36]? How to compute steady-state solutions of stable
models inside this class computationally efficiently? How can these features be combined into a system
identification algorithm? These open challenges were taken as a starting point for this project’s research goal
formulation.

1.3 Research goals

Based on the state-of-the-art in Section 1.2 and especially the remaining open challenges, the foremost
objective for this project is to develop a methodology for system identification of the flexible model structure
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for discrete time systems, proposed in [36]. Inspired by the continuous-time contributions in [13], [14], this
project aims to include stability guarantees to the identified model and benefit from computationally efficient
model response calculation methods. In short, the main goal of this research is defined as:

“Develop an experimentally validated, computationally efficient system identification methodology for
flexible discrete-time nonlinear state-space models with stability guarantees.”

From this goal, a number of sub-goals can be identified towards an implementation of the main goal:

• Identification of a flexible discrete-time nonlinear state-space model is guaranteed by the Lur’e-type
model structure. This structure is extremely flexible if, e.g., deep feedforward neural networks are
chosen to characterize the nonlinear part of this model class as was shown in [36].

• An equivalent to the steady-state solution computation algorithm that was used in [13], [14] is to be
developed in this project. Once computational advantages of the mixed-time-frequency (MTF) algorithm
for discrete-time systems are numerically investigated and confirmed, a contraction analysis of the
algorithm towards the steady-state model response to periodic excitation should be proven, similar
to [57].

• A method is to be developed to calculate the exact gradient of the objective function (the mismatch
between model and system outputs) with respect to the model parameters efficiently, as was done for
the continuous-time case in [13], [14].

• Stability guarantees of the identified model are required, defined in terms of the global exponential
convergence property for nonlinear models, see [13], [14]. This property is selected because the
identified model is desired to have, for each (periodic) excitation, a unique (independent from the
initial state conditions) and GES steady-state (periodic) model response that is not highly sensitive
to small input perturbations in the infinity norm of the excitation. Additionally, conditions that are
computationally cheap to check are desired, such that the identification algorithm progression is not
limited by frequent, computationally costly stability checks.

• The identification methodology is required to be validated using experimentally obtained benchmark
datasets [58], [59]. The performance of our algorithms can then be compared quantitatively to state-of-
the-art methods in literature. Also, a simulation case study is to be performed for validation purposes.

1.4 Report outline

The outline of the remainder of this report is as follows:

Chapter 2 provides an overview of the Lur’e-type class of discrete-time dynamical systems that are of interest
to this project. It presents important assumptions and properties of these dynamics as preliminaries before
the focus shifts to answering the research questions.

Chapter 3 explains the stability guarantees that are required for the Lur’e-type dynamics to be a candidate
model. First we elaborate on the challenges in stability analysis of nonlinear systems and how/why global ex-
ponential uniform convergence (GEUC) is a desired system property to overcome these challenges. Thereafter,
we propose numerically tractable conditions to verify this property as a stability guarantee for Lur’e-type
systems.

Chapter 4 combines the information of its preceding chapters into a system identification algorithm for
Lur’e-type models with stability guarantees. Here, we formalise our model class and explain how we solve
the system identification problem, which is formulated as a standard constrained optimisation problem. We
focus on a computational efficient implementation by proposing methods to calculate steady-state model
responses fast and accurately in order to evaluate the objective function and its gradient.

Chapter 5 validates the system identification algorithm by presenting system identification results on Bench-
mark datasets, as well as a numeric case-study.

Chapter 6 presents the conclusions of this thesis, together with recommendations for future research.
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1.5 Preliminaries on notation

Definit ion 1.1 (Signal norms and normed signal spaces [60, p. 94-97])

• For real vectors x ∈ Rn, one can define:

– the Euclidean norm ∥·∥2 of x by
∥x∥2

2 = x⊤x. (1.1)

– the P -weighted norm ∥·∥P of x for 0 ≺ P ∈ Sn by

∥x∥2
P = x⊤Px. (1.2)

• For scalar valued sequences g : N → R, the Banach space ℓ2(N) of all N -periodic sequences having
a finite ℓ2-norm ∥·∥ℓ2

is defined, such that

∥g∥2
ℓ2

=
∑n

i=1 |g(i)|2 < ∞. (1.3)

• [61, p. 3]: For vector valued sequences g : N → Rn (with gi being the i-th sequence in g), the Banach
space ℓn

2 (N) of all N -periodic sequences having a finite ℓn
2 -norm ∥·∥ℓn

2
is defined, such that

∥g∥2
ℓn

2
=
∑n

i=1 ∥gi∥2
ℓ2

< ∞. (1.4)

• For vector valued complex functions f : C⊕ → Cn (with fi being the i-th sequence in f ), one
can define the Hardy space Hn

2 of functions for which all fi are analytic on , as well as continuous
and square-summable on every circle in up to the unit disc. This function space only appears in
Definition 1.3.

Definit ion 1.2 (Matr ix and system norms [27, p. 648])

• A matrix A ∈ Rm×n defines a bounded linear mapping between vectors x ∈ Rn, y ∈ Rm, such that
y = Ax. The induced p, q-norm of matrix A reads (for p ≥ 1, and q ≤ ∞) as

∥A∥p,q = sup
x̸=0

∥Ax∥q

∥x∥p

. (1.5)

Some special cases are ∥A∥1 = ∥A∥1,1, ∥A∥2 = ∥A∥2,2 and ∥A∥∞ = ∥A∥∞,∞, respectively given by

∥A∥1 = max
j

m∑

i=1
|aij |, ∥A∥2 =

√
ρ (A⊤A), ∥A∥∞ = max

i

n∑

j=1
|aij |.

• A system Σ defines a bounded linear mapping between sequences u ∈ U , y ∈ Y, such that y = Σ ◦ u.
One can introduce the normed space of linear systems L(U , Y) with induced norm

∥Σ∥L(U,Y) := sup
u∈U\{0}

∥Σ ◦ u∥Y
∥u∥U

. (1.6)

A special cases that is exploited in this project is ∥Σ∥L2
= ∥Σ∥L(ℓnu

2 , ℓ
ny
2 ), which is referred to as the

system’s induced L2-gain.
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Definit ion 1.3 (z- t ransform of vector-valued sequences)
The bilateral z-transform maps a n-dimensional complex vectors valued sequence x : Z → Cn (with xi

being the i-th sequence in x) into a n-dimensional complex vector valued function X ∈ Hn
2 (with Xi being

the i-th sequence in X). This transform is denoted by the linear operator Z : Cn → Hn
2 and defined for

each component xi as

Xi(z) = (Z ◦ xi(n))(z) =
∞∑

n=−∞
xi(n)z−n ∀ z ∈ C. (1.7)

The inverse z-transform is denoted by the linear operator Z−1 : Hn
2 → Cn and reads for stable Xi(z), i.e.,

all poles of Xi(z) are inside the open unit disc, as

xi(n) = Z−1 ◦ Xi(z) = 1
2π

∫ π

−π

Xi

(
ejω
)

ejωndω ∀ n ∈ Z. (1.8)

Definit ion 1.4 (N -point ( Inverse) discrete Fourier transform of vector-valued sequences)

The N -point Discrete Fourier Transform (DFT) maps from x, a periodic sequence of N complex vectors of
dimension n (with xi ∈ Cn being the i-th vector in x) into X, another sequence of N complex vectors of
dimension n (with Xi ∈ Cn being the i-th vector in X). This transform is denoted by the linear operator
F̂ : CN×n → CN×n and defined for the component xi as

Xi = F̂◦ xi, where Xi(k) =
N∑

n=0
xi(n)e−jω̃i(k)n ∀k ∈ {0, 1, . . . , N − 1} . (1.9)

We recognize the discrete set of so-called normalised DFT frequencies as ω̃i, where ω̃i(k) = 2πk/N . An
inverse procedure, which is referred to as Inverse discrete Fourier transform (IDFT), is denoted by the linear
operator F̂−1 : CN×n → CN×n and defined as

xi = F̂−1 ◦ Xi, where xi(k) = 1
N

N−1∑

n=0
Xi(n)ej ω̃i(k)n ∀k ∈ {0, 1, . . . , N − 1} . (1.10)

Definit ion 1.5 (Comparison funct ions [27, def. 4.2 & 4.3])

• A continuous function α : [0, a) → [0, ∞) is said to belong to class K if:

1. it is strictly increasing.

2. α(0) = 0.

• A continuous function α : [0, ∞) → [0, ∞) is said to belong to class K∞ if

1. it belongs to class K.

2. limr→∞ α(r) = ∞.

• A continuous function β : [0, a) × [0, ∞) → [0, ∞) belongs to class KL if

1. for each fixed r:

(a) the mapping β(r, s) is decreasing with respect to s.

(b) lims→∞ β(r, s) = 0.

2. for each fixed s: the mapping β(r, s) belongs to class K with respect to r.
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Chapter 2

Lur’e-type models

The purpose of this chapter is to elaborate on important preliminaries for Lur’e-type models. To that end,
the Lur’e-type structure is introduced first, after which the remainder of this chapter is structured as follows.
Section 2.1 discusses assumptions and instrumental properties of the linear block. The nonlinear block is
treated in Section 2.2 in a similar fashion. Section 2.3 discusses the problem of non-unique parametrisation
of the Lur’e-type structure, after which a summary of this chapter follows in Section 2.4.

Let us consider a discrete-time Lur’e-type structure, expressed into the following form:

Σ :





x(k + 1) = Ax(k) + Bu(k) + Lw(k), x(0) = x0,

y(k) = Cx(k) + Dw(k),
z(k) = Fx(k) + Gu(k) + Hw(k),

(2.1a)

(2.1b)

(2.1c)

φ : { u(k) = φ(y(k), k) . (2.1d)

In this set of equations, one finds x(k) ∈ Rnx , z(k) ∈ Rnz and y(k) ∈ Rny as the evaluation at time-
instant k ∈ Z of state x, measured output z and unmeasured nonlinearity input y, respectively. Moreover,
u(k) ∈ Rnu and w(k) ∈ Rnw are recognised as the evaluations of the nonlinearity output u and measured
periodic external excitation w at this moment in time. Periodicity of discrete time signals is defined as follows
SISO and SISO.

Definit ion 2.1 (Discrete periodic signals [62, p. 121])
A discrete-time signal x : Z → Rnis periodic if there exists a non-zero integer p ∈ Z such that

x(n + p) = x(n), ∀ n ∈ Z. (2.2)

The Lur’e-type structure (2.1) can be split into (i) a LTI block Σ having a representation according to Equa-
tions (2.1a) to (2.1c) and (ii) a nonlinear block φ following Equation (4.17d). These dynamics can then be
interpreted as the feedback interconnection that is shown in Figure 2.1. Throughout this work, a discrete-time
Lur’e-type system can be referred to via either Equation (2.1) or the tuple (Σ, φ).

Σ

φ

z

u

w

y

Figure 2.1: Lur’e-type system interconnection.
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2.1 Linear block

One recognizes the state-space representation of a finite-dimensional MIMO LTI causal discrete-time dy-
namical system Σ in Equations (2.1a) to (2.1c). The state equation (2.1a) is parametrised by state matrix
A ∈ Rnx×nx , together with input matrices B ∈ Rnx×nu and L ∈ Rnx×nw . The output equations (2.1b)
and (2.1c) are characterised by output matrices C ∈ Rny×nx and F ∈ Rnz×nx , as well as feedthrough
matrices D ∈ Rny×nw , G ∈ Rnz×nu and H ∈ Rnz×nw . Given an initial condition x0 ∈ Rnx , this state-space
representation can be used to fully describe the behaviour of Σ under the time-varying excitation w and
nonlinear feedback u. This section starts by discussing assumptions on linear block Σ in the Lur’e-type
structure.

Assumption 2.1 (L inear block)
Throughout this thesis, the LTI block Σ respects certain properties, which can be listed as follows:

1. System Σ is represented via a state-space form to which one can refer to as (AΣ, BΣ, CΣ, DΣ). This
representation is defined in terms of the parametrisation of Equation (2.1) via

AΣ = A, BΣ =
[
B L

]
,

CΣ =
[
C
F

]
, DΣ =

[
0ny

D
G H

]
.

(2.3)

2. (AΣ, BΣ, CΣ, DΣ) is a minimal realization of Σ, such that the system is described by the minimum
number of state variables.

3. The nonlinearity input y and nonlinearity output u are of equal dimension, i.e., ny = nu.

The feedback interconnection in Figure 2.1 reveals a clear nonlinear algebraic loop in the Lur’e-type structure.
This direct feedthrough from nonlinearity output u into nonlinearity input y is excluded from the considered
Lur’e-type structure. An alternative method to deal with this challenge is mentioned in [23] and assumes a
unit sample delay in either the forward or the backward path. Finally, note that the second item in the list of
assumptions on the linear block can be guaranteed via the controllability and observability properties verified
by the well-known Kalman test [63, Th. 8.9].

All important assumptions on Σ are now explained, so in the next paragraph the focus lies on key properties
of these LTI dynamics. In particular, we aim to analyse solutions in the frequency domain. Let us once more
consider the state-space representation of LTI system Σ in Equations (2.1a) to (2.1c). It is well known that the
system output responses of these dynamics can be written as

y(k) = CAkx0

︸ ︷︷ ︸
I

+
k∑

i=1
CAk−i−1Bu(i) +

k∑

i=1
CAk−i−1Lw(i) + Dw(k)

︸ ︷︷ ︸
II

,

z(k) = FAkx0

︸ ︷︷ ︸
III

+
k∑

i=1
FAk−i−1Bu(i) +

k∑

i=1
FAk−i−1Lw(i) + Gu(k) + Hw(k)

︸ ︷︷ ︸
IV

.

(2.4a)

(2.4b)

In these equalities, terms I and III are recognised as the so-called free response contributions to y and z,
respectively. Furthermore, terms II and IV denote the forced response contributions to the respective system
outputs. For Schur stable LTI systems, i.e., λ(A) ⊂ C⊖, it is known that free responses decay asymptotically
to zero. Because the solutions ‘forget‘ their initial conditions, only the forced solution in Equation (2.4)
remains forward in time. Each solution then converges to this so-called steady-state solution, which is unique
and exists on the entire time axis k ∈ Z without growing unbounded, as is formalised in Property 2.1.
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Proper ty 2.1 Consider a LTI dynamical system Σ according to Equations (2.1a) to (2.1c) having a state-
space representation (AΣ, BΣ, CΣ, DΣ). The dynamics are subjected to T -periodic bounded inputs w, u.
If the state matrix AΣ is Schur stable, then there exists a unique T -periodic globally exponentially stable
steady-state solution

(
x̄ ∈ ℓnx

2 , ȳ ∈ ℓ
ny

2 , z̄ ∈ ℓnz
2
)

.

Note that the macron diacritic was chosen to denote steady-state signals. So-called time-domain steady-state
operators are defined to evaluate the T -periodic steady-state outputs of Σ in time-domain while being
subjected to T -periodic inputs for all m ∈ {1, . . . , T} according to

ȳw = F̂yw ◦ w, where
(

F̂yw ◦ w
)

(m) =
∑m

i=−∞ CAm−i−1Lw(i) + Dw(m), (2.5a)

ȳu = F̂yu ◦ u, where
(

F̂yu ◦ u
)

(m) =
∑m

i=−∞ CAm−i−1Bu(i), (2.5b)

z̄w = F̂zw ◦ w, where
(

F̂zw ◦ w
)

(m) =
∑m

i=−∞ FAm−i−1Lw(i) + Hw(m), (2.5c)

z̄u = F̂zu ◦ u, where
(

F̂zu ◦ u
)

(m) =
∑m

i=−∞ FAm−i−1Bu(i) + Gu(m). (2.5d)

Also, due to the superposition principle of LTI dynamics [63, p. 57], it holds

ȳ = ȳw + ȳu, (2.6) z̄ = z̄w + z̄u. (2.7)

These definitions are used in Appendix A.11, where a contraction mapping property is proven that is used
in Chapter 4. According to [64, Ch. 9], it is generally preferred to avoid calculating the convolution sums
in Equation (2.5), because (i) the operation is mathematically difficult to deal with, e.g., suppose we are
given an output sequence and system description, how can we then easily reconstruct the inputs sequence?
and (ii) evaluating this operation requires many algebraic actions, which is computationally unattractive. To
overcome these issues, fundamental results in linear systems theory often make use of analysis techniques
in the frequency domain, where the convolution sum operation reduces to a single multiplication. There also
exist computationally cheap methods to transform signals forth and back between the time- and frequency-
domain and, therefore, it is computationally attractive to compute model responses in the frequency domain.
In the following, one first introduces Σ’s transfer function representation for which an upper-bound to its
H∞-norm is derived. Thereafter, Σ’s frequency response function is treated, from which linear steady-state
operators that map periodic system inputs to periodic steady-state system outputs can be derived.

Transfer function representation

Next to the state-space formulation, there exist numerous representations of Σ, such as the difference equa-
tion, impulse-response representation and transfer function representation. This last form is characterised
by the transfer matrix GΣ(z) for the complex variable z ∈ C, which exactly relates the z-transform (as per
Definition 1.3) of periodic system inputs to the z-transform of steady-state system outputs. To distinguish
between the respective input- and output channels of Σ, the transfer matrix can be written as

(
Ȳ (z)
Z̄(z)

)
=
(

GΣyw
(z) GΣyu

(z)
GΣzw (z) GΣzu(z)

)

︸ ︷︷ ︸
GΣ(z)

(
W (z)
U(z)

)
, (2.8)

in which z-transforms of signals are denoted by capital letters and z arguments. This expression allows for a
characterization of the transfer matrix in terms of the parametrisation of Σ via

GΣyw (z) = C(zInx − A)−1L + D, (2.9a)

GΣyu
(z) = C(zInx

− A)−1B, (2.9b)

GΣzw
(z) = F (zInx

− A)−1L + H, (2.9c)

GΣyu(z) = F (zInx − A)−1B + G. (2.9d)

Note that GΣ(z) is unique, whereas Σ may have infinitely many state-space realizations. Also, GΣ(z) is
known to be proper and rational, since it would not have a state-space representation otherwise.
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Chapter 2. Lur’e-type models

Frequency response function

The frequency response function of system Σ is defined as the evaluation of the transfer matrix GΣ(z)
on a uniformly sampled subset of C#. This operator is denoted by GΣ(ejω̃) for so-called normalised DFT
frequencies ω̃, where ω̃(k) = 2πk/N for all k ∈ {0, 1, . . . , N − 1}. If a periodic signal with measurement
interval N is analysed, whose length is an integer multiple of the excitation period, then it is well known that
the N -point DFT (as per Definition 1.4) of steady-state LTI system outputs and the N -point DFT of harmonic
inputs are exactly related via the frequency response function GΣ(ejω̃) [65].

Because of this exact relation, one can introduce so-called frequency-domain steady-state operators for the
LTI system Σ, which map from periodic excitations to periodic steady-state outputs. These operators involve
element-wise multiplication with the frequency response function and are defined for all m ∈ {1, . . . , N} as

Ȳ w = F̂Y W ◦ W, where
(

F̂Y W ◦ W
)

(m) = GΣyw
(ejω̃(m−1)) W (m), (2.10a)

Ȳ u = F̂Y U ◦ U, where
(

F̂Y U ◦ U
)

(m) = GΣyu
(ejω̃(m−1)) U(m) , (2.10b)

Z̄w = F̂ZW ◦ W, where
(

F̂ZW ◦ W
)

(m) = GΣzw
(ejω̃(m−1)) W (m), (2.10c)

Z̄u = F̂ZU ◦ U, where
(

F̂ZU ◦ U
)

(m) = GΣzu
(ejω̃(m−1)) U(m). (2.10d)

Here, e.g., Ȳ w ∈ CN×ny is recognised as the N -point DFT of steady-state output ȳw driven by w. This
concludes the discussion on LTI system properties and analysis techniques. All important assumptions on
the linear block are listed, whereafter it is shown that steady-state solutions of linear systems can be solved
efficiently in the frequency domain. Finally, it is shown that the induced L2-gain on the linear block can be
found by solving a linear matrix inequality (LMI) optimisation problem, which is used in Chapters 3 and 4. An
instrumental property of the transfer matrix representation reads as follows.

Proper ty 2.2 ( [66], [67, Th. 11.3]) Consider a stable discrete-time LTI system Σyu, subject to
input u and generating output yu. Suppose that the system can be represented via the transfer matrix
GΣyu

(z) : ℓnu
2 → ℓ

ny

2 . Then, by Definition 1.2, it holds

∥∥Ȳ u
∥∥

ℓ
ny
2

=
∥∥(GΣyuU)

∥∥
ℓ

ny
2

≤ ∥Σyu∥L2
∥U∥ℓnu

2
=
∥∥GΣyu(z)

∥∥
H∞

∥U∥ℓnu
2

. (2.11)

In this property, one recognise the equivalence between a LTI system’s induced L2-gain and the H∞-norm of
its transfer matrix [67, Th. 11.3]. Crucially, via this equivalence, it is possible to express a system property
into a signal norm that can be evaluated by solving an LMI optimisation problem for which efficient solution
methods exist. The well-known discrete-time Bounded-Real lemma is formalised below.

Lemma 2.1 (Discrete-t ime Bounded-Real Lemma [68, Lem. 5.1])
Consider a discrete-time LTI system Σ whose transfer matrix GΣ(z) admits a state-space representa-
tion (A, B, C, D), where A ∈ Rn×n, B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu . Then, the inequality
∥GΣ(z)∥H∞

< γ holds if and only if there exist 0 ≺ P ∈ Snx and γ ∈ R>0, such that




A⊤PA − P A⊤PB C⊤

⋆ B⊤PB − γIp D⊤

⋆ ⋆ −γIp


 ≺ 0. (2.12)

The H∞ norm of GΣ(z) is the minimum value of γ ∈ R>0 that satisfies the above condition. If (A, B, C, D)
is a minimal realization, then the matrix inequalities can be non-strict.

Proof. See [68, Lem. 5.1].

The LMI optimisation problem in Lemma 2.1 is applied multiple times throughout this project. On the one
hand, in Chapter 3 we show that once a Lur’e-type structure satisfies a certain stability notion, then this
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Section 2.2. Nonlinear block

implies an upper-bound to the H∞-norm of its transfer matrix. On the other hand, this upper-bound is applied
together with Property 2.2 in the contraction analysis of an iterative algorithm in Chapter 4.

2.2 Nonlinear block

This section treats the most important assumptions that were made on the nonlinear block φ. These assump-
tions partly define the model class and impose important properties on the nonlinear block as explained in the
remainder of this section. The notions of (incremental) sector conditions are introduced first in Definitions 2.2
and 2.3, respectively. Consecutively, the assumptions on φ are listed in Assumption 2.2.

Definit ion 2.2 (Sector condit ion [27, Def. 6.2])
A memoryless function φ : Rny × R>0 → Rny is said to be sector bounded within sector bounds [K1, K2],
for real symmetric K1, K2 ∈ Sny with K2 − K1 ≻ 0, if this function satisfies:

[φ(y, t) − K1y]⊤ [φ(y, t) − K2y] ≤ 0, (2.13)

for all y ∈ Rny and t ∈ R>0.

Definit ion 2.3 ( Incremental sector condit ion [69, Def. 4] )
A memoryless function φ : Rny × R>0 → Rny is said to be incrementally sector bounded within sector
bounds [S1, S2], for real symmetric S1, S2 ∈ Sny with S2 − S1 ≻ 0, if this function satisfies

[
φ(ya, t) − φ(yb, t) − S1(ya − yb)

]⊤ [
φ(ya, t) − φ(yb, t) − S2(ya − yb)

]
≤ 0, (2.14)

for all ya, yb ∈ Rny and t ∈ R>0.

Assumption 2.2 (Nonl inear block assumptions)

1. Nonlinear block φ is memoryless, which ensures that the nonlinearity output at any instant of time
is determined uniquely by its input at that time instant. Hence, it does not depend on the input
history [27, p. 19]. This property is also referred to as zero-memory or static.

2. Nonlinear block φ is decentralized in the sense that for any time instant k, its ith output φi(yi(k), k)
depends solely on its respective ith input yi(k) [27, p. 228]. Therefore, one can write

φ(y(k), k) =
[
φ1(y1(k), k) φ2(y2(k), k) . . . φp(yp(k), k)

]⊤
, (2.15)

which clearly shows the decoupled input-output behaviour of the nonlinearity.

3. The nonlinearity φ is sector bounded as per Definition 2.2 within known sector bounds [0ny
, Ω]. This

assumption is verified if

sΩ(R, y) := φ(y, k)⊤R(φ(y, k) − Ωy) ≤ 0 ∀y ∈ Rny , k ∈ Z, (2.16)

for any diagonal 0 ≺ R ∈ Sny . The diagonal matrix 0 ≺ Ω ∈ Sny with diag (
{

Ω1, . . . , Ωpy

}
) = Ω

and Ωi > 0, ∀i ∈ {1, . . . , py} fully characterizes this condition.

4. The nonlinearity φ is incrementally sector bounded as per Definition 2.3 within known incremental
sector bounds [0ny , Ω̄]. This assumption is verified if

sΩ̄(R, ya, yb) :=
(
za − zb

)⊤
R
(
za − zb − Ω̄(ya − yb)

)
≤ 0 ∀ya, yb ∈ Rny , k ∈ Z, (2.17)

for any diagonal 0 ≺ R ∈ Sny and where zi = φ(yi, k). The diagonal matrix 0 ≺ Ω̄ ∈ Sny with
diag (

{
Ω̄1, . . . , Ω̄py

}
) = Ω̄ and Ω̄i > 0, ∀i ∈ {1, . . . , ny} fully characterizes this condition.
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Chapter 2. Lur’e-type models

The third and fourth item in the list of assumptions are from now on referred to as the cone bounded sector
constraints on nonlinearity φ. In the general MIMO case (py > 1), it is hard to find and interpret the cone
bounded sector constraints on a certain nonlinearity φ. However, if we recall that φ is decentralized in the
scope of this project, then we can think of these constraints as a set of SISO cone bounded constraints on
the individual nonlinearity outputs φi(yi,k, k). Fortunately, it is relatively easy to find tight bounds on the
(incremental) sector of a SISO nonlinear function, which can be understood for an example nonlinearity via
the visual interpretations in Figure 2.2.

φi

yi

Ωiyi

(a) Sector bounded within [0, Ωi].

∂φi
∂yi Ω̄i

yi

(b) Incrementally sector bounded within [0, Ω̄i].

Figure 2.2: Cone bounded sector constraints on φi(yi, k).

The nonlinearity output φi is clearly constrained by a sector condition to the grey area in Figure 2.2a, whose
boundary is characterized by Ωi > 0. The sector clearly imposes yi and φi to be of equal sign, which is
also referred to as φi(yi) lying in the first and third quadrant. Note that this sector condition imposes each
nonlinearity output φi to pass through the origin, such that

φi(0, k) = 0 ∀i ∈ {1, . . . , ny} , k ∈ Z. (2.18)

Besides that, the nonlinearity slope ∂φi

∂yi
is clearly constrained by a incremental sector condition to the grey

area in Figure 2.2b, whose boundary is characterized by Ω̄i. Here we can see that the incremental sector
condition defines φi as monotonic since it is non-decreasing on its entire domain. Finally, observe that multi-
plying a SISO (incremental) sector condition by a nonnegative constant can never make the function violate
its constraint. This fact allowed for the inclusion of weight matrix R in Equations (2.16) and (2.17).

2.3 Non-unique model parametrisation

A well-known issue of block-oriented nonlinear models, including the model class (2.1), is related to the
uniqueness of the model parametrization [23]. Many different models inside this model class result in the
same input-output behaviour even though they are parametrised differently. This phenomenon is undesired in
the scope of system identification, as is illustrated later on in Chapter 5. In the following section, loop scaling,
loop transformation and similarity transformations are identified as sources of non-unique parametrisations
inside the model class. Also, a normalised, symmetric Lur’e-type model form is presented, which is used in
Chapters 3 and 4 for stability analysis and system identification purposes, respectively.
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Section 2.3. Non-unique model parametrisation

Loop scaling

Loop scaling can be thought of as a linear scaling of the nonlinearity output and input channels, respectively,
u and y. To this end, we can introduce the diagonal matrix Ψ1 ∈ Snu to scale the nonlinearity output channel
according to u = Ψ1ũ. Furthermore, the diagonal matrix Ψ2 ∈ Sny scales the nonlinearity input channel via
y = Ψ−1

2 ỹ. Loop scaling is shown schematically as the block diagram in Figure 2.3.

Σ y

φ

z

u

ũ

w

Ψ1

ỹ

Ψ−1
1

Ψ2

Ψ−1
2

Σ̃

φ̃

Figure 2.3: Loop scaling interconnection.

One can see that loop scaling gives rise to an updated Lur’e-type parametrisation (Σ̃, φ̃), which is different
from the original model (Σ, φ), but still inside the model class and producing an equivalent input-output
behaviour. This Lur’e-type model satisfies the properties that are explained in Lemma 2.2.

Lemma 2.2 (Loop scal ing)
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1). Let Σ and φ verify Assumptions 2.1 and 2.2,
respectively. If we introduce the diagonal and invertible nonlinearity input- and output scaling matrices
Ψ1 ∈ Snu and Ψ2 ∈ Sny , such that u = Ψ1ũ and y = Ψ−1

2 ỹ, then we find an updated Lur’e-type model
(Σ̃, φ̃), for which:

• The linear block Σ̃ verifies Assumption 2.1 for the state-space form (AΣ̃, BΣ̃, CΣ̃, DΣ̃), where

AΣ̃ = A, BΣ̃ =
[
BΨ1 L

]
,

CΣ̃ =
[
Ψ2C

F

]
, DΣ̃ =

[
0ny

Ψ2D
GΨ1 H

]
.

(2.19)

• The nonlinear block φ̃ is defined as

φ̃(ỹ) := Ψ−1
1 φ(Ψ−1

2 ỹ) (2.20)

and verifies Assumption 2.2 with updated bounds on (i) the sector condition: [0ny
, Ψ−1

1 ΩΨ−1
2 ]

and (ii) the incremental sector condition: [0ny , Ψ−1
1 Ω̄Ψ−1

2 ].

Proof. See Appendix A.1
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Chapter 2. Lur’e-type models

Loop transformation

Via a loop transformation, one can add or subtract a purely linear term to the nonlinear block of the Lur’e-
type model structure, while compensating for this in the linear block parametrisation [27, p. 255]. This
transformation is established if the nonlinearity output u is replaced by ũ = u − Ψ3y given a diagonal
loop-transformation matrix Ψ3 ∈ Snu . The loop transformation is shown schematically in Figure 2.4.

Σ y

z

u

ũ

w

Σ̃ Ψ3

φ

φ̃ −Ψ3

Figure 2.4: Loop transformation interconnection.

One can see that loop transformation gives rise to an updated Lur’e-type parametrisation (Σ̃, φ̃), which is
different from the original model (Σ, φ), but still inside the model class and producing an equivalent input
output behaviour. The properties of (Σ̃, φ̃) follow the results in Lemma 2.3.

Lemma 2.3 (Loop transformation)
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1). Let Σ and φ verify Assumptions 2.1 and 2.2,
respectively. If one introduces the diagonal loop-transformation matrix Ψ3 ∈ Sny such that u = ũ + Ψ3y,
then, an updated Lur’e-type model (Σ̃, φ̃) is retrieved, for which:

• The linear block Σ̃ verifies Assumption 2.1 for an updated state-space form (AΣ̃, BΣ̃, CΣ̃, DΣ̃), where

AΣ̃ = A + BΨ3C, BΣ̃ =
[
B (L + BΨ3D)

]
,

CΣ̃ =
[

C
F + GΨ3C

]
, DΣ̃ =

[
0ny

D
G H + BΨ3D

]
.

(2.21)

• The nonlinear block φ̃ is defined as

φ̃(y, k) := φ(y) − Ψ3y (2.22)

and verifies Assumption 2.2 with updated bounds on (i) the sector condition: [−Ψ3, Ω−Ψ3] and (ii) the
incremental sector condition: [−Ψ3, Ω̄ − Ψ3].

Proof. See Appendix A.2

Page 18 of 100



Section 2.3. Non-unique model parametrisation

A normalised, symmetric Lur’e-type system

The loop scaling and loop transformation methods in Lemmas 2.2 and 2.3, respectively, can be used to
cast any Lur’e-type model (2.1) into a form with an equivalent input-output behaviour, whose nonlinearity is
incrementally sector bounded within known incremental sector bounds [− 1

2 Iny
, 1

2 Iny
]. The loop scaling and

loop transformation operations on (Σ, φ) are shown schematically as the block diagram in Figure 2.5.

Σ y

φ

z

u

ũ

w

Σ̃

φ̃

1
2Iny

−1
2Iny

Ω̄

Ω̄−1

ỹ

Figure 2.5: Transformation towards a normalised, symmetric Lur’e-type model.

The properties of this transformation, as formalised in Lemma 2.4, are applied multiple times in this project;
e.g. Section 3.5 and Theorem 4.2 extensively use the normalised, symmetric form of a Lur’e-type sys-
tem.

Lemma 2.4 (Normalized symmetric Lur’e-type structures)
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1). Let Σ and φ verify Assumptions 2.1 and 2.2,
respectively. Let us perform a loop scaling as per Lemma 2.2 with Ψ1 = Iny and Ψ2 = Ω̄, followed by a loop
transformation as per Lemma 2.3 of Ψ3 = 1

2 Iny . One then finds an updated Lur’e-type model (Σ̃, φ̃) for
which:

• The linear block Σ̃ verifies Assumption 2.1 and admits a state-space form (AΣ̃, BΣ̃, CΣ̃, DΣ̃), where

AΣ̃ = A + 1
2BΩ̄C, BΣ̃ =

[
B L + 1

2 BΩ̄D
]

,

CΣ̃ =
[

Ω̄C
F + 1

2 GΩ̄C

]
, DΣ̃ =

[
0ny

Ω̄D
G H + 1

2 BΩ̄D

]
.

(2.23)

• The nonlinear block φ̃ is defined as

φ̃(ỹ, k) := φ(Ω̄−1ỹ, k) − 1
2y (2.24)

and verifies Assumption 2.2 with updated bounds on (i) the sector condition: [− 1
2 Iny , Ω̄−1Ω − 1

2 Iny ]
and (ii) the normalised symmetric incremental sector condition: [− 1

2 Iny
, 1

2 Iny
].
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Chapter 2. Lur’e-type models

Linear block similarity transformation

The final source of non-unique Lur’e-type model parametrisation that is discussed in this work addresses
similarity transformations of the linear block Σ. It is well known from linear system theory, that any one-
to-one linear transformation of state variables does not alter the input-output behavior of a LTI system and,
hence, induces non-unique parametrisations of Σ [70, p. 658]. This result is formalised in Lemma 2.5.

Lemma 2.5 (Similar i ty transformation)
Consider a LTI system Σ that admits the state-space representation (AΣ, BΣ, CΣ, DΣ). Let P ∈ Rnx×nx

be non-singular and consider a so-called similarity transformation x̃k = Pxk. Then Σ admits another
state-space form (ÂΣ, B̂Σ, ĈΣ, D̂Σ), where

ÂΣ = PAΣP −1, B̂Σ = PBΣ,

ĈΣ = CΣP −1, D̂Σ = DΣ.

(2.25)

This representation is said to be (algebraically) equivalent to the original state-space description of Σ and
therefore results in the same input-output behaviour.

Proof. See Appendix A.3

2.4 Summary

In this chapter, the class of discrete-time Lur’e-type systems that is considered in this project for the pur-
pose of system identification is exploited. The linear block Σ is assumed to admit a minimal state-space
representation having a square nonlinearity input- output channel. Furthermore, it is explained how and why
steady-state responses of Σ can be computed in the frequency domain and a method to compute the induced
L2-gain of Σ. Moreover, it is assumed that the nonlinear block φ is static, decentralized and satisfying
certain cone bounded sector constraints. The parametrisation of Lur’e-type systems is non-unique given the
possibility of loop-scaling, loop-transformation and similarity transformation, which also allows to cast any
Lur’e-type model into a normalised, symmetric form. For system identification purposes, Lur’e-type models
are only accepted when they satisfy certain stability guarantees. This model class restriction is central to the
upcoming chapter.
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Chapter 3

Convergent Lur’e-type models

In the previous chapter, Lur’e-type models are introduced as the model class together with the most important
assumptions and properties. A major challenge in nonlinear system identification, which has not been
addressed so far, is to enforce a form of stability on the identified model. In Section 3.1 this challenge
is explained and illustrated by a simple example. One can aim to constrain the model class further by
guaranteeing a certain stability property for our identified Lur’e-type model. In this work, the global uniform
exponential convergence property is enforced, which is discussed for generic nonlinear systems in Section 3.2
first. After that, numerically tractable conditions are provided to assess the global uniform exponential
convergence property for models in our model class in Section 3.3. Finally, it is shown that satisfaction of
the conditions for GEUC guarantees an upper bound to the gain of the linear block, which is used to develop
efficient numerical methods for identification in Chapter 4.

3.1 Stability challenges for generic nonlinear systems

Let us consider a generic discrete-time nonlinear system

x(k + 1) = f(x(k), w(k), k), ∀k ∈ Z, (3.1)

where x(k) ∈ Rnx and w(k) ∈ Rnw are the system’s state and input, respectively. Assume that the nonlinear
function f : Rn × Rm × Z≥k0 → Rn is continuous with respect to the two first arguments for any third one.
One denotes the initial condition x(k0) as x0 for k0 ∈ Z. Moreover, for ease of notation, let us introduce the
solution of dynamics (3.1) as ϕw : Z>k0 × Z × Rnx → Rnx verifying

ϕw(k + 1, k0, x0) = f(ϕw(k, k0, x0), w(k), k) ∀ (k, k0, x0) ∈ Z≥k0 × Z × Rn. (3.2)

It is well-known that nonlinear systems can exhibit multiple stable solutions being attractive for different sets
of initial conditions [27]. Moreover, depending on the applied excitation signal, the response of nonlinear
models can become unstable. Consequently, even though the model explains a certain identification data set
perfectly well, the model response to a new bounded excitation might be close to the true system response,
but might as well be far off or even become unbounded. To interpret this behaviour even better, Example 3.1
illustrates the stability challenges for nonlinear systems.
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Chapter 3. Convergent Lur’e-type models

Example 3.1 (Stabil i ty challenges)

Let us consider a scalar, nonlinear dynamical system (3.1) subject to a constant input w, where

f(x(k), w) = 1
10x(k)w (x(k) + 1)

(
(x(k)w)2 − x(k)w − 1

)
+ x(k). (3.3)

Our intention is to simulate these dynamics in multiple scenarios. To that end, one can first select a set of
initial conditions

{
xa

0 , xb
0, xc

0, xd
0
}

, where

xa
0 = −0.8, xb

0 = −0.2, xc
0 = 0.8, xd

0 = −1.2.

Also, a set of constant inputs
{

wa, wb
}

is selected, where

wa = −1.4, wb = 2.1.

A simulation of the dynamics (3.3) for the various initial conditions and inputs is shown in Figure 3.1.
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−0.5
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(a) Input: wa.
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(b) Input: wb.

Figure 3.1: Simulation of dynamics (3.3) for various initial conditions and inputs.

Taking a closer look at these simulation results, one can clearly identify the stability challenges for generic
nonlinear systems that were introduced in this section. To start off, observe that the stability of solutions
can indeed highly depend on the selected initial state. Looking at Figure 3.1a, it can be seen that a bounded
response for xa

0 , xb
0, xc

0, whereas the solution starting from xd
0 is unbounded. Undoubtedly, a bounded

steady-state solution is not necessarily unique, since the solution for xc
0 does not converge in steady-state to

the ones starting from xa
0 , xb

0. Furthermore, taking also Figure 3.1b into account, one notices that stability of
solutions is not necessarily preserved under input variations. The xd

0 solution stabilizes switching from wa

to wb, whereas the xc
0 solution shows the exact opposite behaviour. Despite the xb

0 solution being bounded,
it approaches a different steady-state than x = −1, namely x = 0, making the solutions less predictable.
This in contrast to the xa

0 solution, which is not sensitive to this input variation and still converges to x = −1
in steady state. One could argue that such a predictable steady-state behaviour can be a desired model
property and adds to the robustness of the model to initial conditions and to variations of the input, in
particular, if such property is to be expected (or observed) for the system to be modelled.
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3.2 Stability notions for nonlinear systems

This section elaborates upon stability notions for nonlinear systems to deal with the challenges that were
explained in Section 3.1. A nonlinear system that exhibits global asymptotic stability (GAS) solutions in
absence of perturbations, can respond according to the four scenarios that are shown in Figure 3.2 in presence
of bounded perturbations.

x(k + 1) = f (x(k), w(k), k)

w

x x x

t

x

tttt

I II III IV

Figure 3.2: Stability notions on nonlinear systems in presence of perturbations.

In scenario I, solutions grow unbounded, despite the stability property of the unperturbed system. This kind of
behaviour was observed in Example 3.1 before. In scenario II, the system exhibits the input-to-state stability
(ISS) property, such that responses remain in some region around an equilibrium, but do not converge to each
other and are, therefore, not predictable [71]. Obviously, in scenario II, one would be interested in quantifying
how fast the response converges to the bounded region, together with the size of this convergence region. In
scenario III, all responses converge to a unique, but possibly unbounded, steady-state response independent
from the initial condition. This behaviour is referred to as incremental stability. Finally, in scenario IV, systems
with the convergence property show bounded responses that converge to a unique steady-state solution
independent from the initial condition. Due to the predictability and boundedness of the solution, scenario IV
is enforced on the identified model by the identification algorithm in Chapter 4. The uniform convergence
property is formally defined as follows.

Definit ion 3.1 (Uniform convergence [72, Def. 1] )
A discrete-time nonlinear system (3.1) is said to be uniformly convergent in a set X ⊂ Rnx for an input
class W, if, for every input w ∈ W:

• There exists a unique steady-state solution x̄w(k) ∈ X , that is defined and bounded for all k ∈ Z.

• x̄w is uniformly asymptotically stable in X , i.e., there exists a KL-function β such that

∥ϕw(k, k0, x0) − x̄w(k)∥ ≤ β(∥x0 − x̄w(0)∥, k − k0), ∀x0 ∈ X . (3.4)

In the case where β is exponential in the second argument of (3.1), the convergence is called exponential.
The set X is referred to as the convergence region. If X = Rn, then the convergence is global.

Notice that x̄w exists, and is bounded, on the entire time axis, so both in forward and backward time. An
instrumental property of uniformly convergent systems addresses steady-state solution periodicity.

Proper ty 3.1 ( [73, Pr. 3.1]) Suppose system (3.1) with a given input w is uniformly convergent. If the
input w is constant, the corresponding steady-state solution x̄w is also constant; if w is periodic with period
T , then the corresponding steady-state solution x̄w is also periodic with the same period T .
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This property turns out useful for system identification, where the steady-state dynamics of the nonlinear
candidate models are calculated explicitly. The definition of uniform convergence does not provide us with
a check to verify whether a particular system (3.1) is uniformly convergent, as it is not obvious to find
the convergence region and β-function that prove this property according to Definition 3.1. It is desired
to characterize the uniform convergence property such that it can be checked more easily. To that end,
the notions of (compact) positively invariant sets and uniform asymptotic incremental stability are to be
introduced first. In words, once a trajectory of the system (3.1) enters a positively invariant set at a certain
time instant, then forward in time it never leaves it again. Such a set is called compact if it is closed and
bounded. This notion is introduced formally in Definition 3.2 below.

Definit ion 3.2 (Posit ively invariant set [74, p. 4])
A set Sc ⊂ Rn is said to be positively invariant with respect to (i) the system dynamics (3.1) and (ii) inputs
from a certain class W , if for all w ∈ W, x0 ∈ Sc, and k, k0 ∈ Z such that k ≥ k0, it holds ϕw(k, k0, x0) ∈
Sc.

What is left is to formulate a method for checking the existence of such a compact, positively invariant set.
This can be done via a Lyapunov characterization, as explained in Lemma 3.1.

Lemma 3.1 (Compact, posit ively invariant set [75, Ass. 1])
Let us consider the K-function γ(·), which characterizes the input class

Wγ =
{

w ∈ Rm, ∥w∥ ≤ γ−1(1)
}

. (3.5)

Suppose there exists a continuous function V : Rn → R>0, together with K∞-functions α1(·), α2(·) and a
nonnegative scalar c ∈ R≥0, such that the following conditions are satisfied for all x ∈ Rn, w ∈ Rm and
k ∈ Z:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (3.6a)

V (f(x, w, k)) ≤ c, if V (x) ≤ c and γ(∥w∥) ≤ 1. (3.6b)

Then, there exists a compact, positively invariant set

Sc = {x ∈ Rn, V (x) ≤ c} , (3.7)

according to Definition 3.2, with respect to (i) the system dynamics (3.1) and (ii) inputs from the class Wγ .

This characterisation is a modified version of the autonomous case in [74, pr. Th. 13]. A crucial property of
these compact, positively invariant sets is explained by a discrete-time version of Yakubovich’s lemma [76,
Lem. 2].

Lemma 3.2 ( [77, Lem. 2])
A compact positively invariant set Sc with respect to (i) the system dynamics (3.1) and (ii) inputs from a
certain class W, contains at least one solution x̄w that is defined on Z and satisfies x̄w ∈ Sc for all w ∈ W
and k ∈ Z.

The next step is to formalise Definition 3.3, in which the uniform asymptotic incremental stability property
is addressed. In words, this property guarantees that any two solutions of a nonlinear system having their
initial conditions inside a certain set, asymptotically converge to each other regardless of their exact initial
conditions.
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Definit ion 3.3 (Uniform asymptotic incremental stabil i ty [75, Def. 2] )
A discrete-time nonlinear system (3.1) is said to be uniformly asymptotically incrementally stable in a
positively invariant set S ⊆ Rn for a class of inputs W, if for any input w ∈ W there exists a KL-function
β(·, ·), such that ∥∥ϕw(k, k0, xa

0) − ϕw(k, k0, xb
0)
∥∥ ≤ β(

∥∥xa
0 − xb

0
∥∥, k − k0). (3.8)

In case β is exponential in the second argument, the incremental stability is called exponential. Finally,
when S = Rn, then the incremental stability is global.

Note that this definition is a slight modification of the definition for autonomous systems in [78, Def. 1].
Given the generic nonlinear dynamics (3.1) and inputs from a certain class w ∈ W, a method for check-
ing the uniform asymptotic incremental stability property is proposed via a Lyapunov characterization in
Lemma 3.3.

Lemma 3.3 (Uniform asymptotic incremental stabil i ty [75, Ass. 2])
Consider a positively invariant set S ⊆ Rn with respect to (i) the dynamics (3.1) and (ii) inputs from a certain
class W, according to Definition 3.2. Suppose there exists a continuous function V : Z × S × S → R>0,
referred to as an incremental Lyapunov function, together with K∞-functions α3(·), α4(·) and K-function
α5(·) such that for all xa, xb ∈ S, w ∈ W and k ∈ Z, the following conditions are satisfied:

α3(
∥∥xa − xb

∥∥) ≤ V (k, xa, xb) ≤ α4(
∥∥xa − xb

∥∥), (3.9a)

sV
(
k + 1, f(xa, w, k), f(xb, w, k)

)
− V (k, xa, xb) ≤ −α5(

∥∥xa − xb
∥∥), (3.9b)

Then the system is uniformly asymptotically incrementally stable in S ⊆ Rn according to Definition 3.3. The
incremental stability is global when S = Rn. Moreover, when α3, α4 and α5 are quadratic functions, then
system (3.1) is exponentially incrementally stable.

Again, this lemma is an extension of the autonomous dynamics case in [74, Th. 9]. Uniform convergence can
be guaranteed by the existence of a compact positively invariant set together with the uniform asymptotic
incremental stability property. Figure 3.3 helps to illustrate this behaviour via a two-dimensional state-space
example.

x1

x2

xa
0

xb
0

xb

x̄w

Sc

S

xa

Figure 3.3: Uniform convergence via incremental stability and positively invariant sets.

Suppose there exists a compact, positively invariant set Sc. By Lemma 3.2, it can be concluded that there

Page 25 of 100



Chapter 3. Convergent Lur’e-type models

exists at least one bounded steady-state solution x̄w ∈ Sc. Moreover, suppose there exists another (not
necessarily compact) positively invariant set S ⊇ Sc, which is called the convergence region in which
solutions are asymptotically incrementally stable according to Definition 3.3. In that case, any two solutions
of dynamics (3.1) starting inside S must converge to each other. Given the existence of one solution that
resides inside Sc for all time instances, namely the steady-state solution x̄w, all solutions having their initial
conditions inside S, converge for sure to this bounded solution. As an example, this behaviour is shown
for solutions xa and xb in Figure 3.3, that converge to the steady-state solution x̄w. One observes that the
two properties combined indeed imply the asymptotic stability and uniqueness of steady-state solution x̄w.
Thereby, it guarantees uniform convergence in S. Note that a compact, positively invariant set is required to
exclude systems exhibiting incrementally stable solutions that grow unbounded from the class of uniformly
convergent systems.

These insights are formalized in Theorem 3.4 below, which formulates a characterisation of uniform con-
vergence via two adequate Lyapunov-like functions. On the one hand, a compact, positively invariant set is
introduced as the level set of Lyapunov function V1. On the other hand, incremental stability is characterized
by the time-independent incremental Lyapunov function V2.

Theorem 3.4 (Lyapunov character isat ion of uniform convergence [75, Th. 5])
Consider a generic nonlinear discrete-time system (3.1). Suppose that there exists:

• A function V1 : Rn → R>0, verifying the conditions in Lemma 3.1. Then, there exists a compact,
positively invariant set

Sc = {x ∈ Rn, V1(x) ≤ c} , (3.10)

with respect to the system dynamics (3.1) and inputs from a certain class w ∈ Wγ , which satisfies the
properties in Definition 3.2.

• A not-necessarily compact set S ⊆ Rn, which is also positively invariant with respect to the system
dynamics (3.1) and inputs from the class Wγ . Also, this set is a superset of Sc in the large sense,
such that S ⊇ Sc.

• An incremental Lyapunov function V2 : Z × S × S → R>0, verifying the conditions in Lemma 3.3.
Then, the system (3.1) is (exponentially) uniformly asymptotically incrementally stable on the set S.

Then, the system (3.1) is (exponentially) uniformly convergent on the set S for the class of inputs Wγ

according to Definition 3.1. As a result, the system has a unique steady-state solution x̄w for every w ∈ Wγ

that verifies
V1(x̄w) ≤ c. (3.11)

Note that the system is said to be globally convergent when S = Rn.

Proof. See [75, Th. 5].

This characterisation allows to search for two Lyapunov functions to conclude upon uniform convergence of
system (3.1) and is, therefore, instrumental in the derivation of verifiable conditions to assess the uniform
convergence property of nonlinear dynamical systems. In many existing results, the functions V1 and V2
are taken the same (and often of quadratic form). Theorem 3.4 shows that it is not necessary to choose
them equally, which potentially reduces the conservatism of stability conditions. Nevertheless, it should
be noted that finding the Lyapunov functions V1, V2 for generic nonlinear systems is still not an easy task.
However, this project considers the class of Lur’e-type systems for which numerically tractable conditions can
be derived for finding the Lyapunov functions that are required in Theorem 3.4. This topic is discussed in the
next upcoming section.
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3.3 Sufficient conditions for Lur’e-type systems

For the class of Lur’e-type systems, it has been shown that the assumptions of Theorem 3.4 can be verified
by quadratic Lyapunov functions that can be found by solving a set of bilinear matrix inequality (BMI)
conditions [75]. Note that all BMI conditions considered in this project reduce to LMI conditions once their
respective scalar hyper-parameters are fixed. These LMI conditions can be cast into convex optimisation
problems, for which there exist computationally efficient solution methods [79]. This methodology allows for
structured approaches in analysing the stability of nonlinear systems, rather than searching for adequate
Lyapunov functions. In this project, we restrict ourselves to the identification of discrete-time Lur’e-type
systems (2.1), and, therefore, these BMI type of conditions are of interest to check numerically for the GEUC
property.

Let us consider the class of Lyapunov functions that are quadratic in the system state:

Ṽ (x(k)) = ∥x(k)∥2
P̃a

, (3.12)

where 0n ≺ P̃a ∈ Sn. In [75], sufficient conditions for the GEUC property of discrete-time Lur’e-type systems
(2.1) (with the additional assumption D = 0ny ) are proposed via Lyapunov functions that are quadratic in the
system state. This result is formalized in Theorem 3.5.

Theorem 3.5 (Global, exponential uniform convergence: I [75, Th. 7])
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1) and assume D = 0ny

. Let Σ and φ verify
Assumptions 2.1 and 2.2 respectively. Furthermore, consider symmetric matrices P1, P2 ∈ Sny and diagonal
positive definite matrices S1, S2 ∈ Sny . In addition, consider positive scalars τ1, τ2, σ and c such that the
following inequalities hold true:




A⊤

B⊤

L⊤


P1




A⊤

B⊤

L⊤




⊤

−




τ1P1 −C⊤ΩS1 0nx×nw

⋆ 2S1 0nu×nw

⋆ ⋆ τ2Inw


 ≺ 0nx+nu+nw , (3.13a)

−c(1 − τ1) + τ2σ ≤ 0, (3.13b)
[
A⊤

B⊤

]
P2

[
A⊤

B⊤

]⊤

−
[
P2 −C⊤Ω̄S2
⋆ 2S2

]
≺ 0nx+nu

. (3.13c)

Then, the assumptions of Theorem 3.4 are verified by considering the (incremental) Lyapunov functions
V1(x) = ∥x∥2

P1
and V2(xa, xb) =

∥∥xa − xb
∥∥2

P2
. According to Theorem 3.4, the Lur’e-type system is GEUC

for the class of inputs Wγ = {w(k) ∈ Rm, ∥w(k)∥ ≤ √
σ}. Finally, the steady-state solution x̄w belongs to

the sellipsoid E(P1, c).

Proof. An extended version of [75, pr. Th. 7] can be found in Appendix A.4.

These conditions were taken as a starting point in formulating stability guarantees for Lur’e-type systems
(2.1) in the scope of system identification. Obviously, due to a possible non-zero D matrix, our model class
includes, but is not limited by, the dynamical systems considered in Theorem 3.5. Therefore, first and most
importantly, it is shown that the assumption D = 0ny can be dropped without any additional conservatism
such that the feasibility of the conditions in Theorem 3.5 implies the convergence property for our model
class (2.1), also for a non-zero feedthrough matrix D. Note that an additional system output (Equation (2.1c))
does not alter stability properties and is, therefore, not considered for stability analysis.

Lemma 3.4 The feasibility of the conditions in Theorem 3.5 implies the global, exponential uniform
convergence property as per Definition 3.1, for the class of arbitrary bounded inputs, of the dynamics (Σ, φ)
according to (2.1), where Σ and φ verify Assumptions 2.1 and 2.2, respectively.

Proof. See Appendix A.5
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As an alternative approach, one could alter the conditions in Theorem 3.5 to make the D matrix appear
explicitly in the BMI constraints. One could then follow a proof similar to that of Theorem 3.5 to show that
these updated constraints imply the convergence property for models inside our model class (2.1). This
approach is presented as Theorem B.1 in Appendix B.1.

However, it can be shown that the conditions in Theorem 3.5 can be simplified by eliminating hyper parame-
ters, which reduces the computational cost of stability checks in a system identification context. Therefore,
this solution route is pursued and we first present the following argument:

Lemma 3.5 ( [75]) The feasibility of the conditions in Theorem 3.5 is irrespective of τ2.

Proof. See Appendix A.6.

We can benefit from this argument by proposing an improved set of stability conditions in Theorem 3.6 below,
from which the hyper-parameter τ2 has been eliminated. This makes these new conditions preferred over the
ones in Theorem 3.5 as we have reduced the number of optimisation variables.

Theorem 3.6 (Global, exponential uniform convergence: I I [75])
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1). Let Σ and φ verify Assumptions 2.1
and 2.2, respectively. Furthermore, consider symmetric matrices P1, P2 ∈ Snx and diagonal positive
definite matrices S1, S2 ∈ Sny . In addition, consider the positive scalar 0 < τ < 1, such that

[
A⊤

B⊤

]
P1

[
A⊤

B⊤

]⊤

−
[
τP1 −C⊤S1Ω

⋆ 2S1

]
≺ 0, (3.14a)

[
A⊤

B⊤

]
P2

[
A⊤

B⊤

]⊤

−
[
P2 −C⊤S2Ω̄
⋆ 2S2

]
≺ 0. (3.14b)

Then, via Lemmas 3.4 and 3.5, the assumptions in Theorem 3.5 are satisfied, such that the Lur’e system
(2.1) is GEUC as per Definition 3.1 for the class of arbitrary bounded inputs by considering the (incremental)
Lyapunov functions V1(x) = ∥x∥P1

and V2(xa, xb) =
∥∥xa − xb

∥∥
P2

.

Proof. See Appendix A.7

Minimising τ (while ensuring feasible stability conditions) imposes a tighter bound on steady-state solution
x̄w. A bisection method can be applied to find such a ‘small’ τ value as explained in Algorithm 1. Depending
on the feasibility of the LMI conditions in a certain iteration m, one either increases the bisection lower-limit,
or decreases the bisection upper-limit until the bisection interval becomes sufficiently tight.

Algorithm 1: Bisection method.

1 Initialise bisection interval {τ
[1]
min, τ

[1]
max = {0, 1}, stopping tolerance η∗ > 0 and index m = 1.

2 Verify that the lower/upper limit indeed yield infeasible/feasible conditions in Theorem 3.6

3 while (τ [m]
max − τ

[m]
min)/τ

[m]
max ≥ η∗ do

4 Choose τ [m+1] = mean
(

τ
[m]
max, τ

[m]
min

)

5 if the conditions in Theorem 3.6 are feasible for τ [m+1] then
6 Decrease upper-limit: {τ

[m+1]
min , τ

[m+1]
max } = {τ

[m]
min, τ [m+1]}

7 else
8 Increase lower-limit: {τ

[m+1]
min , τ

[m+1]
max } = {τ [m+1], τ

[m]
max}

9 end
10 m = m + 1
11 end
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For illustration purposes of the presented stability conditions together with the bisection method solution
strategy, a simple instant of model class (2.1) is worked out, to which the conditions in Theorem 3.5 are
applied to verify the GEUC property.

Example 3.2 (A dynamical system that sat isf ies the condit ions in Theorem 3.6)
Let us consider a model (Σ, φ) according to Equation (2.1), where Σ and φ verify Assumptions 2.1 and 2.2
respectively. The system’s linear block Σ does not include a separate output equation and is parametrised
by

A =
[
0.5 0.1
0.3 −0.4

]
, B =

[
−0.3 0.6
0.6 −0.3

]
, L =

[
0.2
0.4

]
, C =

[
0.5 −0.5
0.6 0.2

]
, D =

[
0.2
0.1

]
.

Besides that, the nonlinearity is defined as φ = [ φ1(y1) φ2(y2) ]⊤, where

φi(yi) = Ω̄i sign (yi) max (0, |yi| − δ). (3.15)

The parameters Ω̄i = 0.8 and δi = 0.1 for i ∈ {1, . . . , 2} are selected. One refers to Equation (3.15) as
a deadzone-type nonlinearity, in which δi denotes the deadzone length and Ω̄i defines the nonlinearity
slope outside of the deadzone region. The cone bounded sector constraints on φ are then characterized by
Ω = Ω̄ = diag

{
Ω̄1, Ω̄1

}
. Finally, the system is subject to the external excitation w(k) = sin (π(k − 1)/5).

Our intention is to verify the GEUC property for the example system via the conditions in Theorem 3.6. A
bisection search on τ has been performed, starting on the interval [0, 1] for the stopping criterium η∗ = 0.01.
The iteration history of this search can be seen in Figure 3.4a and resulted in τ = 0.66 being the smallest
scalar for which a feasible solution of Theorem 3.6 exists. The solution of the corresponding LMI then reads

P1 =
[
1.41 0.14
0.14 0.67

]
, P2 =

[
1.17 0.08
0.08 0.89

]
, S1 =

[
0.74 0

0 1.24

]
, S2 =

[
0.84 0

0 0.92

]
.

Let us iterate the dynamics (Σ, φ) starting from xa
0 = [−1.5 − 3]⊤ or xb

0 = [1.5 3]⊤. We observe in
Figure 3.4b convergence of solutions to a unique and bounded steady-state x̄w, which is periodic with the
same period as our external excitation w. Even starting from an extreme initial condition xc

0 = [−50 50]⊤
yields similar conclusions, whereby the guaranteed stability property indeed makes a global impression.

1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

m

τ 1
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Not feasible
Bisection limits

(a) Bisection search on hyper-parameter τ .
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(b) State trajectories.

Figure 3.4: Bisection search and state trajectories.
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Given our state trajectories, we can also evaluate the trajectories of Lyapunov functions V1 and V2 and show
them in Figure 3.5a. We can see the magnitudes decreasing in forward time, but the presence of excitation w
prevents the Lyapunov functions from reaching zero. We can define a level set Sc := {x ∈ Rnx | V1(x) ≤ c}
for c = 1.06. This level was found by choosing λ = 0.1 and using Equations (A.26) and (A.27) with a ten
percent margin with respect to the critical values of c and σ as was shown in the proof of Theorem 3.6 in
Appendix A.7. We can clearly see in Figure 3.5a that once V1 becomes smaller than c, it never exceeds this
value again, which makes Sc positively invariant with respect to the dynamics (Σ, φ) and arbitrary bounded
inputs.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3010−2

10−1

100

101

102

V
1
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xc

c

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 3010−8
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104

k

V
2

xa − x̄w

xb − x̄w

xc − x̄w

(a) Lyapunov functions trajectories.
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(b) Positively invariant set.

Figure 3.5: Lyapunov functions and positively invariant sets.

The Lyapunov function level set Sc is shown in Figure 3.5b as the sellipsoid E(P1, c) in state-space (x1, x2)
for all bisection method iterations that yield feasible stability conditions. It can be seen that Sc includes x̄w.
Also, a smaller value of τ provides a tighter bound on x̄w.

3.4 Efficient implementation of stability conditions for identification

The stability conditions in Theorem 3.5 allow for insights in a model’s behaviour, e.g., an explicit characteriza-
tion of Sc, as was shown in Example 3.2. However, in this project we are only interested in verifying the GEUC
property for a model inside our model class. We do not aim to find a bound on the steady-state solution while
assessing stability properties, since we calculate the steady-state solution explicitly for system identification
purposes; see Chapter 4. We can therefore propose one additional simplification of the stability conditions
for the purpose of computational efficiency.

Theorem 3.7 (Global, exponential uniform convergence: I I I )
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1). Let Σ and φ verify Assumptions 2.1 and 2.2
respectively. Furthermore, consider a symmetric matrix P ∈ Snx and diagonal positive definite matrix
S ∈ Sny . In addition, the scalar τ∗ = 0.99 is selected, which obviously satisfies 0 < τ∗ < 1, such that the
following inequalities hold true:

[
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
τ∗P −C⊤SΩ̄

⋆ 2S

]
≺ 0, (3.16)

Then, the assumptions of Theorem 3.4 are verified by considering the (incremental) Lyapunov functions
V1(x) = ∥x∥P and V2(xa, xb) =

∥∥xa − xb
∥∥

P
. According toTheorem 3.4, the Lur’e-type system (2.1) is

GEUC for the class of arbitrary bounded inputs as per Definition 3.1.

Proof. See Appendix A.8.
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This theorem allows us to just search for a solution to Condition (3.16), which is an LMI, to characterise the
Lyapunov functions V1 and V2. Because of this, it is no longer required to execute the bisection search and
one can just solve a convex optimisation problem to verify the stability properties of a candidate model
during system identification. This step imposes huge computational benefits and is, therefore, implemented
for system identification. Notice that τ∗ = 0.99 is selected to show that our steady-state solution x̄w lives
in a relatively large, but finite positively invariant set. Via other stability conditions, e.g. Theorem 3.6,
positively invariant sets that enclose the steady-state solution within a tighter margin can likely be selected.
However, for the purpose of system identification, one is not necessarily interested in such a tight bound.
This concludes our discussion on sufficient conditions for the GEUC property of Lur’e-type systems.

3.5 Bounded LTI block gain for convergent Lur’e-type systems

The main objective of this section is to show that the feasibility of the conditions in Theorem 3.6 implies the
feasibility of the discrete-time Bounded-Real-Lemma condition applied to the LTI dynamics from ũ to ỹ of the
symmetric, normalised Lur’e-type model form (Σ̃, φ̃) for γ = 2 in Lemma 2.1. This, in turn, guarantees an
upper-bound on the H∞ norm of these LTI dynamics, as is formalised in Lemma 3.6.

Lemma 3.6 (H∞ norm of Σ ũy implied by the convergence proper ty)
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1). Let Σ and φ verify Assumptions 2.1 and 2.2
respectively. Suppose that (Σ, φ) satisfies the conditions in Theorem 3.6 and is, therefore, GEUC as per
Definition 3.1. Furthermore, suppose that the system has been transformed into its symmetric, normalised
form (Σ̃, φ̃) as per Lemma 2.4. Then, by applying the discrete-time Bounded-Real-Lemma (Lemma 2.1) to
Σ̃ỹũ(z), one can conclude that the following inequality holds true:

∥∥∥GΣ̃ỹũ
(z)
∥∥∥

H∞
< 2. (3.17)

Proof. See Appendix A.9

This result is used extensively in a contraction analysis performed in Section 4.4.

3.6 Summary

This chapter started by explaining the challenges of stability analysis for nonlinear dynamical systems. By
means of an example, it is motivated that, depending on system perturbations, these dynamics can exhibit
multiple equilibria that are attractive for different sets of initial conditions. Steady-state solutions of nonlinear
systems can either be bounded or unbounded and unique or non-unique. The stability notion of interest to
this project is referred to as GEUC and guarantees the existence of a both bounded and unique steady-state
solution that is globally exponentially stable. A Lyapunov characterisation of this stability notion is presented,
which defines a system as convergent, if there exists a compact, positively invariant set in state-space, which
is a subset of the domain on which the system exhibits the uniform incremental stability property. Sufficient
conditions for GEUC of discrete-time Lur’e-type models (2.1) in terms of LMI conditions are presented and
extended towards an efficient implementation of the stability checks as part of a system identification
algorithm, which is to be discussed in the next chapter. Finally, it is shown that the feasibility of the sufficient
conditions for GEUC imposes an upper-bound to the H∞-norm on the linear block of the Lur’e-type system
in its symmetric, normalised form. This property turns out instrumental for the implementation of a system
identification algorithm as well, whose working principles and properties are discussed in the upcoming
chapter.
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Chapter 4

Identification of Lur’e-type systems

Via system identification techniques, we aim to find a descriptive model to a sequence of collected inputs and
outputs from a certain dynamical system under study. This is usually done by solving a certain optimisation
problem. Therefore, let us consider the standard form of a constrained optimisation problem, which reads

minimize
θ ∈ Θ

J(θ). (4.1)

In this description, one recognizes the decision variables θ that are constrained in a certain set Θ ⊂ Rnθ . It is
desired to find the decision variables that minimise the objective function J : Θ → R. In system identification
problems, the decision variables parametrise a candidate model. Furthermore, Θ characterises a certain
model class, containing all possible candidate models. More details on the specific optimisation problem at
hand in the scope of system identification (explaining the definition of θ, Θ and J ) can be found in Section 4.1.
Once the system identification task has been formulated as an optimisation problem, we still do not know
how to find the decision variables that solves the problem. Section 4.2 explains that we use a gradient-based
method to solve the problem at hand starting from a well-chosen initial point. This solution method requires
us to calculate the objective function gradient with respect to the decision variables, for which a parameter
sensitivity model approach is presented in Section 4.3. An implementation of this solution method requires
us to calculate many steady-state solutions for the candidate models and their respective (discrete-time
variant of) parameter sensitivity models. We motivate the computationally efficient implementation of the
system identification algorithm in Section 4.4, where the so-called MTF algorithm plays a central role.

4.1 Formulation of the system identification problem

Candidate models

In the scope of system identification, the nθ decision variables in θ fully parametrise a globally exponentially
uniformly convergent Lur’e-type candidate model (Σ(θ), φ(θ)). Such a candidate model is defined as

Σ(θ) :





x(k + 1, θ) = A(θ)x(k, θ) + B(θ)u(k, θ) + L(θ)w(k), x(0, θ) = x0,

y(k, θ) = C(θ)x(k, θ) + D(θ)w(k),
z(k, θ) = F (θ)x(k, θ) + G(θ)u(k, θ) + H(θ)w(k),

(4.2a)

(4.2b)

(4.2c)

φ(θ) : { u(k, θ) = φ(y(k, θ), θ). (4.2d)

Note that the signals associated with the candidate model are written by calligraphic font. The relation
between θ and the building blocks of Equation (4.2) depends on the specific problem at hand. One can adopt
a black-box modelling approach, in which all entries of the linear block matrices and all nonlinear block
parameters represent a decision variable. Contrarily, a white-box modelling routine can impose additional
model structure as a result of first-principles modelling. The decision variable space Θ ⊂ Rnθ is given by

Θ =
{

θ ∈ Rnθ | ∃(0 ≺ P ∈ Snx , 0 ≺ S ∈ Sny ) : Condition (3.16) in Theorem 3.7 holds true
}

. (4.3)

By Θ we thus denote the set of all candidate models that are globally exponentially uniformly convergent by
verifying the conditions in Theorem 3.7. Because of Property 3.1, one can denote the steady-state solution of
the candidate model under excitation by w ∈ ℓnw

2 (T ) as
(
x̄ ∈ ℓnx

2 (T ), ū ∈ ℓnu
2 (T ), ȳ ∈ ℓ

ny

2 (T ), z̄ ∈ ℓnz
2 (T )

)
.
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True system under study

In this project, we assume the true system to be inside model class (4.2), as is formalised in Assumption 4.1
below.

Assumption 4.1 There exists a decision variable set Θ0 ⊂ Θ describing the true system, i.e., the true
system can be described by parametrising a model inside the class of globally exponentially uniformly
convergent Lur’e-type models that verify Condition (3.16) in Theorem 3.7.

Note that due to the non-uniqueness of the model parametrisation (see Section 2.3) Θ0 is a subset of the
decision variable space Θ rather than a single point in the nθ-dimensional decision variable space. Because
of this assumption, we can write the dynamics of the true system under study for some θ0 ∈ Θ0 as

Σ(θ0) :





x0(k + 1, θ0) = A(θ0)x0(k, θ0) + B(θ0)u0(k, θ0) + L(θ0)w(k), x0(0, θ0) = x0,

y0(k, θ0) = C(θ0)x0(k, θ0) + D(θ0)w(k),
z0(k, θ0) = F (θ0)x0(k, θ0) + G(θ0)u0(k, θ0) + H(θ0)w(k),

(4.4a)

(4.4b)

(4.4c)

φ(θ0) : { u0(k, θ0) = φ(y0(k, θ0), θ0). (4.4d)

Note that the signals associated with the true system under study are written using a zero subscript. Obviously,
the decision variables θ0 are unknown at this point. Because of Property 3.1, we can denote the steady-state
solution of the true system as

(
w ∈ ℓnw

2 (T ), x̄0 ∈ ℓnx
2 (T ), ū0 ∈ ℓnu

2 (T ), ȳ0 ∈ ℓ
ny

2 (T ), z̄0 ∈ ℓnz
2 (T )

)
while

being subject to excitation by a T -periodic input w. We assume that the true system is subject to additive
output noise, such that we can define the measured true system output as follows from Assumption 4.2.

Assumption 4.2 The measured steady-state output is denoted by z̄e
0 and assumed to be a summation of

the output of (Σ(θ0), φ(θ0)) and and additive output noise, .i.e,

z̄e
0(k, θ0) = z̄0(k, θ0) + e(k). (4.5)

Here, e(k) is (i) zero-mean Gaussian white noise with finite variance σ2
e and (ii) independent from w(k).

Objective function

The next step is to define the objective function for the system identification problem. Here, one should
carefully consider which model is a ‘good’ model given a set of observed system inputs and outputs. In
literature, we can see two main branches of optimisation criteria, which are referred to as (i) one-step ahead
prediction error and (ii) simulation error [12]. In the former methodology, we provide the candidate model
with all previous system observations z̄e

0(k − 1, θ0), z̄e
0(k − 2, θ0), etc. and the current input w(k) in order to

make the candidate model predict the steady-state output z̄(k, θ) at the current time instant, which we can
then compare to the system observations z̄e

0(k, θ0). This process of one-step-ahead prediction can be repeated
along the entire measurement interval to allow for a quantification of the model performance. The latter
methodology uses the measured input data only to predict system outputs along the entire measurement
interval. This method allows the model to predict the system behaviour for new unseen input sequences at
the cost of an increased algorithmic complexity. The nonlinear dynamics propagate along the measurement
interval predictions, which might even cause unstable simulation results. This already indicates that having a
stability guarantee on the candidate models turns out helpful. Furthermore, one should also take into account
that computation of the objective function gradient with respect to the decision variables is more involved,
since past outputs also depend (typically nonlinearly) on θ. In general, models learnt by the simulation error
criteria perform better on long-term predictions than models that are learnt by the one-step ahead prediction
error criteria [12]. Therefore, in this project, we select the simulation error to quantify the cost associated
with a certain candidate model. The aforementioned challenges on model instability and objective function
gradient computation are dealt with in Sections 4.3 and 4.4.
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Let us define the steady-state model output errors with respect to:

1. System observations z̄e
0:

ϵ̄e(k, θ) = z̄(k, θ) − z̄e
0(k, θ0), ∀k ∈ {1, . . . , N} . (4.6)

2. Noiseless true system outputs z̄0:

ϵ̄(k, θ) = z̄(k, θ) − z̄0(k, θ0), ∀k ∈ {1, . . . , N} . (4.7)

The steady-state output errors are illustrated for the j-th component of the outputs in Figure 4.1 and the error
with respect to the system observations forms the basis to the objective function, which is commonly referred
to as a least-squares criterium and is defined according to

JN (θ) = 1
N

nz∑

j=1

N∑

k=1
ϵ̄e

j(k, θ)2. (4.8)

Note that the candidate model pays a penalty for any mismatch between its outputs and their respective
system observations along the measurement interval. Let us define another mismatch measure, related to
the noiseless true system outputs, as

VN (θ) = 1
N

nz∑

j=1

N∑

k=1
ϵ̄j(k, θ)2, (4.9)

on which we impose the following assumption.

Assumption 4.3 The unique global minimiser of VN is θ0 ∈ Θ0.

Note that the true parameter vector θ0 is an element of a set Θ0, which originates from the non-unique
parametrisation of Lur’e-type models as discussed in Section 2.3. Then, we have discussed all building blocks
to define the system identification estimator θ̂N as

θ̂N = arg min
θ ∈ Θ

JN (θ). (4.10)

The statistical properties of the estimator in Equation (4.10) together with Assumptions 4.1 to 4.3 have
already been researched in the field of system identification [14]. It was concluded that the estimator is
consistent, which means that θ̂N converges in probability to θ0 for long measurement intervals. Also, the
estimator is asymptotically efficient, implying that its variance with respect to θ0 is minimised up to the
Cramer-Rao lower-bound, which describes the best possible unbiased estimator [80].

z

k

ϵ̄e(k, θ)

z̄j(k, θ)
z̄e

0,j(k, θ0)

1 2 N

ϵ̄(k, θ)

z̄0,j(k, θ0)

Figure 4.1: Steady-state output error definitions.
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The system identification problem at hand is now fully defined as the constrained optimization problem (4.10).
Nevertheless, up to this point, it is still unknown what kind of approaches can be taken to find θ̂N inside
the model class. To that end, the solution strategy for the system identification problem is discussed next.

4.2 Solution to the system identification problem

The problem of nonlinear system identification has been translated into the standard-form constrained
optimisation problem in Equation (4.10). There is an entire research area dedicated to solving these stan-
dardised problems, which we can benefit from in this project. In the system identification community, it
is common practice to solve these problems via a two-step approach: (i) Decision variable initialisation
and (ii) Gradient-based optimisation [13], [14], [48].

Step I: Decision variable initialisation

In the decision variable initialisation step, we aim to find a well-chosen initial parameter vector θinit from which
we can start the gradient-based search in the second step. The objective for θinit is to be close to the set of true
system parameters Θ0, while being inside the feasible decision variable space Θ of globally exponentially
uniformly convergent Lur’e-type models that verify the conditions in Theorem 3.7. In this project, we consider
two methods for the purpose of decision variable initialisation, being the BLA and global optimisation, which
are treated one after the other in the upcoming paragraphs.

Best Linear Approximation

This method relies on estimating the so-called BLA of the nonlinear system [81]. Here, we approximate the
mapping from excitation w to system output ze

0 by the LTI model ΣBLA that admits a state-space represen-
tation (ABLA, BBLA, CBLA, DBLA). The system matrices in this state-space from can be found via the
MATLAB routines N4SID or TFEST, and crucially, these routines can guarantee GAS of ΣBLA, i.e., ABLA is a
Schur matrix such that λ(ABLA) ⊂ .

Based on this LTI approximation of the nonlinear dynamics, one can initialise a Lur’e-type candidate model,
which is denoted by (Σ(θinit), φ(θinit)). The linear block Σ(θinit) allows for the state-space representation
(AΣ(θinit), BΣ(θinit), CΣ(θinit), DΣ(θinit)). Obviously, the convergence property is guaranteed for the initial Lur’e-
type model if (i) GΣ(θinit)zw

(z) = GΣBLA
(z) and (ii) nonlinearity output u = 0 or GΣ(θinit)yu

(z) = 0. Recall
that the transfer matrices for the linear block of a Lur’e-type model (2.1) are defined in Section 2.1.

Three possible initial candidate model parametrisations are identified that guarantee these two properties.
Let us recall that matrices having their elements sampled from a uniform distribution on the [−1, 1] interval
are denoted by Ui×j ∈ Ri×j . Then, the three methods can be listed as follows:

1. [Zero output matrices method]: The nonlinearity is parametrised by random variables and the state-
space representation of Σ(θinit) is defined as

AΣ(θinit) = ABLA, BΣ(θinit) =
[
Unx×nu

BBLA

]
,

CΣ(θinit) =
[
0ny×nx

CBLA

]
, DΣ(θinit) =

[
0ny 0ny×nw

Unz×nu DBLA

]
,

(4.11)

such that there is zero nonlinearity input, which implies zero nonlinearity output due to the sector
condition on the nonlinearity of the initial candidate model (see Definition 2.2).

2. [Zero input matrices method]: The nonlinearity is parametrised by random variables and the state-space
representation of Σ(θinit) is defined as

AΣ(θinit) = ABLA, BΣ(θinit) =
[
0nx×nu

BBLA

]
,

CΣ(θinit) =
[
Uny×nx

CBLA

]
, DΣ(θinit) =

[
0ny

Uny×nw

0nz×nu
DBLA

]
,

(4.12)

such that a possibly non-zero nonlinearity output does not propagate through Σ(θinit) into the output.
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3. [Zero nonlinearity output method]: A special nonlinearity parametrisation that realizes zero nonlinearity
output is chosen and the state-space representation of Σ(θinit) is defined as

AΣ(θinit) = ABLA, BΣ(θinit) =
[
Unx×nu

BBLA

]
,

CΣ(θinit) =
[
Uny×nx

CBLA

]
, DΣ(θinit) =

[
0ny

Uny×nw

Unz×nu DBLA

]
.

(4.13)

Note that a nonlinearity parametrisation might not be trivially tunable towards zero nonlinearity output.
Consequently, this option is not applicable to every system identification problem.

Crucially, the nonlinear Lur’e-type model (Σ(θinit), φ(θinit)) is identical to the linear model ΣBLA in terms of
an equivalent input-output behaviour. The BLA framework is able to estimate initial model parameters fast
and, additionally, it provides an analysis on nonlinear distortions and an estimate for the state dimension [81].
Also, this method was applied successfully as an initial point for nonlinear system identification in prior
research, see [23] and references therein.

Global Optimisation

One can think of initialising decision variables via global optimisation routines in an attempt to identify an ini-
tial point that is sufficiently close to the global minimum of the objective function. The search can be stopped
prematurely to save computational costs since a gradient-based method, starting from this initial point, can
thereafter be used to effectively find the closest minimum of the cost function. Such global optimisation
methods were researched extensively in literature and typically encompass (sophisticated) random walks
through the decision variable space. These efforts resulted, among others, in Monte-Carlo, genetic-type and
swarm intelligent algorithms [82]. Typically, these routines are considered computationally expensive as they
tend to explore a significant share of the unfavourable regions in decision variable space [83]. Therefore,
a computationally cheap method to evaluate the objective function value, such as the one proposed in
Section 4.4, can be an enabler for the application of global optimisation routines. A controlled random search
(CRS) method, as described in [84], [85], was successfully applied as an initialisation method for nonlinear
system identification of continuous-time models [14], [86], [87]. The CRS version as implemented in this
project is detailed in Algorithm 2.

Algorithm 2: Controlled random search algorithm [85, Alg. 1].

1 Set k = 0, nt = 0 and ns = 0.
2 Initialise a population R of np agents that are uniformly distributed on Θ.
3 Evaluate the cost associated with all agents in the population
4 while (Jmin > J∗ and (Jmax − Jmin)/Jmax > η∗ and k < k∗) or k = 0 do
5 Denote the worst agent in R by Jmax = J(rmax) = maxri∈R J(ri)
6 Select a random subset of nm + 1 agents in R such that Rs = {r1, . . . , rnm+1}
7 Compute the centroid Ḡ of the first nm points in Rs via Ḡ = 1

nm

∑nm

i=1 ri

8 Compute the primary point P̄1 according to P̄1 = 2Ḡ − rm+1
9 Set nt = nt + 1

10 if P̄1 ∈ Θ and J(P̄1) < Jmax then
11 Replace rmax by P̄1 in R // Replace the worst agent by the primary point

12 Set ns = ns + 1
13 else if ns

nt
< α then

14 Compute the secondary point: P̄2 = 1
2
(
Ḡ + rnm+1

)

15 if J(P̄2) < Jmax then
16 Replace rmax by P̄2 in R // Replace the worst agent by the secondary point

17 Set ns = ns + 1
18 Set nt = nt + 1
19 Best agent in the population: Jmin = J(rmin) = minri∈R J(ri)
20 Set k = k + 1
21 end
22 return θinit = rmin
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The algorithm starts by population initialisation in line 2, in which np agents are selected that are uniformly
distributed over the decision variable space Θ. Based on their objective function value, the agents can be
ranked from worst to best in line 3. Consecutively, the population R is iteratively updated until stopping
conditions are verified. A single iteration (lines 4-21) of the CRS algorithm can be explained via Figure 4.2 for
a two-dimensional example, in which agents and trial points are denoted by dots and squares, respectively.

r1

r2

r3

P̄1

P̄2

Ḡ

R

Rs

O

θ⃗2

θ⃗1

Figure 4.2: Primary and secondary point selection in a CRS iteration (for nm = 2 and np = 12).

One firstly selects a random subset Rs of nm + 1 agents from the population. Consecutively, the centroid
Ḡ of the first nm agents in the subset is computed. Thereafter, a so-called primary point P̄1 can be defined
by mirroring rnm+1 over the centroid Ḡ. If the primary point lies inside Θ and yields an improvement, it
replaces the worst agent in the population and the number of successful trials ns is increased. Otherwise, if
the success rate with respect to the number of trials nt is insufficient, one also tries to update the population
via a so-called secondary point P̄2 in the middle between rnm+1 and Ḡ. These steps iterate until (i) an agent
is found with a sufficiently small corresponding objective function value, (ii) the objective function value of all
agents has converged or (iii) a maximum number of iterations is performed. Finally, the CRS algorithm returns
the best agent in the population as a solution to the decision variable initialisation problem.

Step II: Gradient-based optimisation

The intention is not to improve upon existing nonlinear optimisation techniques, but to use an off-the-shelf
available solution method that fits the system identification problem well. Typically, the problems are high-
dimensional, nonlinear in the parameters and non-convex. Therefore, finding the decision variables that
minimise objective (4.8), even when starting close to the true system parameters, is not a trivial task. We
limit ourselves to algorithms that are readily available in the MATLAB Optimisation toolbox to fit within our
research context [88]. This toolbox provides us with two algorithms that can be used to solve the system
identification problem, being (i) LSQNONLIN and (ii) FMINCON. The latter one has our preference since it
allows for definition of additional (in)equality constraint functions next to the simple decision variable box
constraints allowed by LSQNONLIN. Such (in)equality constraint functions can among other things be used
in an attempt to eliminate non-unique model parametrisations as is explained in Chapter 5. The FMINCON
algorithm applies an interior-point method approach, see [89], to solve the optimisation problem. Algorithm 3
describes the family of gradient-based optimization routines [90]. The differences between specific routines
exist in, e.g., the computed search direction and step size in lines 5 and 6, respectively. These algorithms
typically stop iterating upon either being close to a (local) minimum, indicated by small gradient magnitudes,
or having converged to a fixed point of the iterative algorithm by taking small step sizes t.

Algorithm 3: Gradient-based optimisation with stopping criterium η[i][90, p. 466].

1 Given a starting point θinit ∈ Θ
2 Initialise iteration counter i = 0 and current iteration variables θ[0] = θinit

3 Initialise current stopping criterium η[0] = ∞ and stopping criterium tolerance η∗ > 0
4 while η[i] > η∗ do
5 Compute search direction: ∆θ
6 Compute step size: t[i]
7 Update current iteration variables: θ[i+1] = θ[i] + t[i]∆θ
8 Update iteration counter: i = i + 1.
9 end

10 return θ̂N = θ[i]
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Section 4.3. Parameter sensitivity model

Any gradient-based method requires the computation of the objective function gradient with respect to the
decision variables to define its search direction in line 5. To that end, the gradient-based solver allows us to
use finite difference approximations of the gradient. This method provides us with a non-exact representation
of the gradient, whereby we take the steps in (slightly) incorrect directions, which could lead to an increased
number of iterations upon completion of the optimisation algorithm, which is undesired from a computational
point of view. Therefore, the approach is to calculate the exact objective function gradient, which can be
derived as follows starting from Equation (4.8):

∂

∂θ
JN (θ) = 2

N

nz∑

j=1

N∑

k=1
ϵ̄e

j(k, θ)
︸ ︷︷ ︸

Term I

∂

∂θ
ϵ̄e

j(k, θ)
︸ ︷︷ ︸

Term II

. (4.14)

We can calculate term I by evaluating the steady-state output of the candidate model. Term II, however, is
unknown up to this point. The gradient-based method iterates its decision variable until the stopping criterium
is met. Finally, the final decision variable selection forms the output of the system identification solution
method. Note that there exist no guarantees upon the global optimality for the outputs of these gradient-
based optimisation approaches. These methods use only local information (functions and their gradients at a
point) in their search process, so they converge only to a local objective function minimum.

In this section, we have presented the solution method to the system identification problem, which is split
between an initialisation and a gradient-based optimisation step. The BLA and global optimisation methods
were suggested for the first step, whereas an off-the-shelf gradient-based optimisation algorithm that uses an
interior-point method is suggested for the second step. To calculate the exact objective function gradient for
the gradient-based optimisation method, a parameter sensitivity model approach is presented next.

4.3 Parameter sensitivity model

The motivation for deriving so-called parameter sensitivity models originates from rewriting the unknown
Term II in Equation (4.14) by using Equation (4.6) according to

∂

∂θ
ϵ̄e

j(k, θ) = ∂

∂θ
z̄j(k, θ) − ∂

∂θ
z̄e

0,j(k, θ0)
︸ ︷︷ ︸

=0

= ∂

∂θ
z̄e

j (k, θ). (4.15)

Hence, the unknown term is equivalent to the sensitivity of the steady-state model output with respect to the
decision variables. By definition of dynamics (4.2), these steady-state dynamics can be written as

z̄(k) = F x̄(k) + Gū(k) + Hw(k). (4.16)

In order to evaluate the sensitivity of this equality with respect to an scalar element θi from the decision
variables θ, one quickly admits that the sensitivity of the entire steady-state solution (w, ū, x̄, ȳ, z̄) with
respect to this decision variable is required.

Throughout this section, the following partial derivatives notation is adopted to improve readability. Firstly,
all explicit dependencies on θ are dropped in the notations. Secondly, where no ambiguity occurs, the θi

and y subscripts denote a partial derivative with respect to the i-th decision variable and the nonlinearity
input, respectively. Therefore, one can write φθi

(y) := ∂
∂θi

φ(y, θ) and φy(y) := ∂
∂y φ(y, θ) for the nonlinearity,

as well as, e.g., Aθi
:= ∂

∂θi
A(θ) for a linear block system matrix. Finally, a θi superscript implies that the

variable is associated with the i-th parameter sensitivity model. The following assumption holds true for
partial derivatives of Lur’e-type candidate model components.

Assumption 4.4

• φy(y) exists and is continuous for all y ∈ Rny and θ ∈ Θ.

• φθi
(y) , Aθ, Bθ, Lθ, Cθ, Dθ, Fθ, Gθ, Hθ exist and are continuous for all y ∈ Rny and θ ∈ Θ.
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Using this assumption, together with the observations in Equations (4.15) and (4.16), the notion of a
parameter sensitivity model together with its instrumental properties are formalised in Theorem 4.1. These
results are inspired by the continuous-time results in [66].

Theorem 4.1 (Lur ’e-type parameter sensit ivi ty model)
Consider a Lur’e-type candidate model (Σ, φ) according to Equation (4.2). Suppose that Σ and φ verify
Assumptions 2.1 and 2.2, respectively, and let the candidate model be globally, exponentially uniformly con-
vergent by verifying the conditions in Theorem 3.7. Then, one can define a Lur’e-type, so-called parameter
sensitivity model (Σθi , φθi) that complies to the following dynamics

Σθi :





xθi
(k + 1) = Axθi

(k) + Bŭθi(k) + Lw̆θi(k), xθi
(0) = xθi,0,

yθi
(k) = Cxθi

(k) + Dw̆θi(k),
zθi

(k) = Fxθi
(k) + G ŭθi(k) + Hw̆θi(k),

(4.17a)

(4.17b)

(4.17c)

φθi :
{

ŭθi(k) = φθi
(
yθi(k), Ψ(k)

)
. (4.17d)

In these dynamics, one recognises the following components:

• The external excitation w̆ depends on θ and the steady-state solution of (Σ, φ) via

w̆θi(k) =
[
w̆θi

1 (k)⊤
w̆θi

2 (k)⊤
w̆θi

3 (k)⊤
]⊤

, (4.18)

where
w̆θi

1 (k) = Aθi
x̄(k) + Bθi

ū(k) + Lθi
w(k) + Bφθi

(ȳ(k)), (4.19a)

w̆θi
2 (k) = Cθix̄(k) + Dθiw(k), (4.19b)

w̆θi
3 (k) = Fθi

x̄(k) + Gθi
ū(k) + Hθi

w(k) + Gφθi
(ȳ(k)). (4.19c)

• The linear block Σθi can be written as function of the candidate model parametrisation via

A = A, B = B, L =
[
Inx

0nx×nu
0nx×nw

]
,

C = C, D =
[
0ny×nx

Iny
0ny×nw

]
,

F = F, G = G, H =
[
0nz×nx

0nz×nu
Inz

]
.

(4.20)

• The nonlinearity φθi is (incrementally) sector bounded within the same bounds as φ and respects

φθi
(
yθi

(k), Ψ(k)
)

= Ψ(k)yθi
(k), (4.21)

in which one recognises the external, time-varying input term

Ψ(k) = φy

(
ȳ(k)

)
. (4.22)

The parameter sensitivity model respects the following instrumental properties:

• It is globally, exponentially uniformly convergent by verifying the conditions in Theorem 3.7.

• The unique T -periodic steady-state model output z̄θi is equivalent to ∂
∂θi

ϵ̄e.

Proof. See Appendix A.10

The steady-state solution of a single parameter sensitivity model provides us with information on all output
channels j = {1, . . . , nz} for a single parameter i ∈ {1, . . . , nθ} in the definition of the objective function gra-
dient (4.14). Therefore, nθ steady-state solutions of parameter sensitivity models are to be computed.
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4.4 Computationally efficient objective function (gradient) computation

In the scope of system identification, we are required to calculate the steady-state output of the candidate
model and its respective parameter sensitivity models in order to evaluate the system identification problem’s
objective function and its gradient with respect to the decision variables. This task is required throughout
each iteration of the gradient-based solver. Therefore, it is desired to assess this steady-state output both
accurately and computationally efficient.

Steady-state solution computation

One way of computing the steady-state solution for convergent nonlinear dynamical systems is simply to
forward iterate the dynamics starting from an arbitrary initial condition for a sufficiently long time. The
steady-state solution is globally exponentially stable, so the simulation always converges in forward time to
the steady-state solution with any desired accuracy. The characterisation of the GEUC property did not provide
us with an upper bound to the transient response time, so we have to find out while simulating whether we
are sufficiently close to the steady state response already. Simulating a discrete time dynamical systems
traces back to performing a sequence of algebraic operations, which is less computationally demanding
than, e.g., solving the differential equations for its continuous-time counterpart. Nevertheless, we require to
perform many simulations on typically large datasets and, hence, the steady-state model output calculation
step is still expected to dominate the computation budget. Alternatively, the MTF algorithm is presented
as a computationally efficient method to calculate steady-state model responses of globally exponentially
uniformly convergent continuous-time Lur’e-type systems with scalar signals up to user-defined accuracy [57],
[66]. This project extends this approach to multivariable discrete-time Lur’e-type systems (Σ, φ) according to
(2.1). The MTF algorithm can be used to accurately calculate steady-state solutions for normalised, symmetric
Lur’e-type models and its main working principles are formalised in Theorem 4.2. Recall that steady-state
operators for the linear block are defined in Section 2.1.

Theorem 4.2
Consider a Lur’e-type model (2.1) that verifies the convergence conditions in Theorem 3.7 and is cast into
its normalised, symmetric form (Σ̃, φ̃) as per Lemma 2.4. Suppose that the system is subject to a periodic
excitation w ∈ ℓnw

2 (N). Then, the sequence
(
ỹ[i]
)

i∈N0
with ỹ[0] being arbitrary inside ℓ

ny

2 (N), has a unique

limit, denoted by ¯̃y, which results from iteratively applying the mappings

ũ[i+1] = Fũỹ ◦ ỹ[i], (4.23a)

ỹ[i+1] = Fỹũ ◦ ũ[i+1] + Fỹw ◦ w, (4.23b)

because the composed operator Fỹũ ◦ Fũỹ is a contraction mapping. Furthermore, this unique limit ¯̃y
coincides with the steady-state model output ¯̃y of system (Σ̃, φ̃).

Proof. See Appendix A.11.

Note that we have only shown the existence of a contraction mapping for Lur’e-type systems that were cast into
their symmetric, normalised form. This theorem can be used to accurately compute the steady-state solution of
a convergent Lur’e-type model candidate (Σ(θ), φ(θ)) and its parameter sensitivity systems

(
Σθi(θ), φθi(θ)

)
,

which we require for the cost-function (gradient) evaluation. To improve upon the computational efficiency
of the implementation of the MTF algorithm, we opt to evaluate the LTI dynamics via the frequency domain
steady-state operators that are defined in Equation (2.10), while transforming the intermediate signals forth
and back between the time- and frequency-domain using the DFT and IDFT (see Definition 1.4). The approach
to calculate a steady-state solution for an arbitrary Lur’e-type model that verifies the convergence conditions
in Theorem 3.7 is summarised in Algorithm 4.
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Algorithm 4: Efficient steady-state solution computation for Lur’e-type systems (Σ, φ).

1 Apply the transformation of Lemma 2.4 on (Σ, φ) to obtain (Σ̃, φ̃).
2 Set iteration counter i = 0, stopping criterium η[0] = ∞ and stopping tolerance η∗ > 0.
3 Compute W from w using DFT

4 Evaluate LTI dynamics in frequency domain (assume ¯̃u[0] = 0N×nu
): ¯̃Y[0] = F̂Ỹ W ◦ W .

5 Compute ¯̃y[0] from ¯̃Y[0] using IDFT.
6 while η[i] > η∗ do
7 Evaluate the nonlinearity in time domain: ¯̃u[i+1] = F̂ũỹ ◦ ¯̃y[i].

8 Compute ¯̃U[i+1] from ¯̃u[i+1] using DFT.

9 Evaluate LTI dynamics in frequency domain: ¯̃Y[i+1] = F̂Ỹ Ũ ◦ ¯̃U[i+1] + ¯̃Y[0].

10 Compute ¯̃y[i+1] from ¯̃Y[i+1] using IDFT.
11 set i = i + 1.
12 end

13 Define ¯̃Y and ¯̃U as ¯̃Y[i] and ¯̃U[i].

14 Apply the inverse transformation of Lemma 2.4 on ¯̃Y and ¯̃U to define Ȳ and Ū .
15 Evaluate additional elements of Σ’s steady-state solution in the frequency domain:

Z̄ = F̂ZU ◦ Ū + F̂ZW ◦ W, X̄ = F̂XU ◦ Ū + F̂XW ◦ W

16 Compute ū, ȳ, z̄, x̄ from Ū , Ȳ , Z̄, X̄ using IDFT
17 return steady-state solution of (Σ, φ): (ū, w, x̄, ȳ, z̄) .

In line 1 of Algorithm 4, we transform (Σ, φ) into its normalised symmetric form (Σ̃, φ̃). Thereafter, in
lines 2 to 13, we recognise a computationally efficient implementation of the discrete-time multivariable
MTF algorithm, which can be better understood by taking a closer look at Figure 4.3. In this figure, we
can see that first the contribution of excitation w into steady-state output ¯̃Y is computed in the frequency
domain. Consequently, we evaluate the i-th iteration’s approximation of steady-state nonlinearity output
¯̃U in the time-domain before calculating its contribution to the i’th iteration’s approximation of ¯̃Y in the
frequency domain again. We then check whether the (normalised) ‘distance’ between the current and previous
approximation of steady-state output ¯̃Y meets the stopping threshold via the stopping criterium

η[i] =

∥∥∥vect ( ¯̃Y[i] − ¯̃Y[i−1])
∥∥∥

2∥∥∥vect ( ¯̃Y[i])
∥∥∥

2

, (4.24)

in which vect (·) is an operator that reshapes all elements of a matrix into a single column vector with a
column-major layout. In case the stopping tolerance is met by the criterium, we output the i’th iteration’s
approximations as ¯̃Y and ¯̃U . Otherwise, we apply the mappings once more by a new loop iteration.

F̂Ỹ W

F̂

w

F̂Ỹ Ũ

η[i] > η∗Ỹ[i]

ti
m
e

do
m
ai
n

fr
eq

ue
nc
y

do
m
ai
n¯̃U[i]W

¯̃y[i]¯̃u[i] F̂ũỹ

F̂ F̂−1

˜̄Y = ¯̃Y[i]

˜̄U = ¯̃U[i]false

¯̃Y[i]

tr
ue

:
i

=
i

+
1

˜̄U, ˜̄Y
i > 0

Figure 4.3: Discrete-time multivariable MTF algorithm, where F̂is the N -point DFT operator.
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We now shift the focus back to Algorithm 4. Upon completion of the MTF algorithm, in line 14, we inversely
transform the nonlinear steady-state in- and outputs of (Σ̃, φ̃) into their (Σ, φ) equivalents. We then use
frequency domain steady-state operators to calculate the missing elements of the steady-state solution in
line 15 and transform everything back to the time-domain in line 16, which concludes the algorithm.

To illustrate the behaviour of the MTF algorithm and its computational benefits, we apply this method to
calculate steady-state solutions for the Lur’e-type system in Example 4.1.

Example 4.1 (MTF algori thm example)
Let us once more consider the Lur’e-type model (Σ, φ) of Example 3.2 and, additionally, select a sampling
frequency fs = 1/2048 Hz. The system is excited by the harmonic w, such that w(k) = 1

10
∑3

i=1 sin (2πik)
on a measurement interval k ∈ {1, . . . , N} of length N = 2048 samples. Therefore, the measurement
regards exactly one period of the harmonic excitation w. Previously, in Example 3.2, it was shown that
this system is globally exponentially uniformly convergent by verifying the conditions in Theorem 3.6. We
can transform (Σ, φ) into its normalised, symmetric form (Σ̃, φ̃) as per Lemma 2.4 in order to apply the
MTF algorithm to calculate the steady-state solution of (Σ̃, φ̃). For this example system, the MTF algorithm
results are shown in Figure 4.4, where the color darkness of lines increases along the iteration history. In
this figure, we also find the actual steady-state output ¯̃y of (Σ̃, φ̃), which was found by forward iterating the
dynamics for an excessively long time.
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ỹ 2

(a) ¯̃y[i] along the iteration history.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i [−]
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10−2

10−1

100

η
[i

]

η[i]

η∗

(b) η[i] along the iteration history.

Figure 4.4: MTF algorithm accuracy along its iteration history.

In Figure 4.4a, we can see that, within the deadzone region, ¯̃y[i] already coincides with ¯̃y for i = 1. Outside
of the deadzone region, the approximate steady-state output already takes a reasonable shape, but we
still observe a clear difference with respect to the true steady-state solution ¯̃y. Throughout the iteration
history, ¯̃y[i] resembles ¯̃y better and better. Furthermore, the stopping criterium decreases in Figure 4.4b
until it passes the threshold η∗, which means that the approximate steady-state outputs have converged
sufficiently to the unique fixed point of the contraction mapping after nine MTF algorithm iterations.

To test the computational efficiency of the proposed method, we execute the MTF algorithm for various
measurement interval lengths N ∈

{
211, 212, . . . , 222} such that the measurement interval consists of an

integer multiple of excitation periods. Each test case was executed ten times to assess the computational
consistency of the algorithm and reject outliers. We define the return state of the MTF algorithm as the tuple
(i, η[i]) upon algorithm completion. This return state is shown for all instances of all testcases in Figure 4.5.
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Figure 4.5: MTF algorithm return state for many executions as function of measurement interval length N .

The most important conclusion from Figure 4.5a is that the number of MTF algorithm iterations appears
independent from the measurement interval length N . Also, it can be seen that the computation time is
roughly proportional to the measurement interval length. In all cases, the MTF algorithm has contracted
sufficiently to the fixed point of the iterative mapping as can be seen in Figure 4.5b. Lastly, no large
variations in computation time are observed along repetition of the MTF algorithm for constant measurement
interval length.

The final contribution of this example is to quantify the computational incentive of using the MTF algorithm
to compute steady-state solutions rather than forward iterating the nonlinear dynamics. The results of this
analysis are shown in Figure 4.6.
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Figure 4.6: Computation time comparison.
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The forward iteration method is implemented as follows: (i) Forward iterate the dynamics for two excitation
periods starting from arbitrary initial state, (ii) Verify whether the last period is in steady-state, by comparing
its contents to the previous period using a stopping criterium similar to Equation (4.24) and (iii) if necessary,
forward iterate the dynamics for another excxitation period and repeat step (ii) until the steady-state is
calculated sufficiently accurate. This solution method is used to calculate the steady-state solution of
(Σ̃, φ̃) on the previously mentioned grid of measurement interval lengths. The average computation time
for each test case of both methods is shown in Figure 4.6 together with its standard deviation along the
ten repetitions. From this figure, one can conclude that the MTF algorithm manages to compute steady-
state model responses roughly three times faster than the forward iteration method. Given the large
computational budget for steady-state model response computation, this induces the expectation of a
significant reduction for the total system identification algorithm runtime by roughly 66 %.

Efficient objective function (gradient) computation

In the previous paragraph, we have explained how to compute the unique steady-state solution of convergent
Lur’e-type models computationally efficiently via Algorithm 4. However, up to this point, it is still an open
question how this method connects to the solution for the system identification problem. We have imple-
mented a four-stage strategy to evaluate the objective function and its gradient with respect to the decision
variables. A schematic representation of this algorithm is shown in Figure 4.7.
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Algorithm 4
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ȳ

Σθ1(θ)
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ũ1

Ψ
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Eq. (4.19)

ū
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Figure 4.7: Efficient objective function (gradient) computation.
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The computationally efficient objective function (gradient) computation strategy kicks off in Stage I, which is
referred to as the steady-state solution stage, where we first interpret the decision variable θ as a Lur’e-type
candidate model (Σ(θ), φ(θ)). Next, we check whether there exist stability guarantees for (Σ(θ), φ(θ)) in
terms of the GEUC property by verifying the feasibility of the condition in Theorem 3.7. When there are no
stability guarantees available, we instantly reject the proposed set of decision variables as a solution to
the problem. Otherwise, we apply Algorithm 4 to this Lur’e-type model in order to calculate its steady-state
solution (w, ū, x̄, ȳ, z̄). In Stage II, which is referred to as the parameter sensitivity inputs stage, we take the
(w, x̄, ū, ȳ) elements of the steady-state solution of (Σ(θ), φ(θ)) and translate them via the static mappings
in Equations (4.19) and (4.22) into (w̃θ1 , . . . , w̃θnθ

) and Ψ as a preprocessing step before the third stage of
the algorithm commences. In Stage III, the sensitivity steady-state output stage, we start by defining the set
of Lur’e-type parameter sensitivity models associated with (Σ(θ), φ(θ)) as per Theorem 4.1. Note that in this
stage, we require to define nθ parameter sensitivity models to evaluate the sensitivity with respect to each
element in θ. The next step is to calculate the steady-state output of all these globally, exponentially uniformly
convergent parameter sensitivity models, for which we can again apply Algorithm 4. In this stage, we can
improve upon the computational performance of the algorithm even further by realising that the computations
on all sensitivity systems are independent. Therefore, we can benefit from parallel computing possibilities in
MATLAB [91]. We can assign a task, i.e., computing the steady-state output of a parameter sensitivity model
by executing Algorithm 4, to each core of the computer’s multicore processor in order to run simulations
in parallel and reduce the overall runtime of the system identification. Stage IV, the objective function
(gradient) stage starts once the steady-state outputs of all parameter sensitivity models are calculated. In
this stage, we first calculate the steady-state model output errors by comparing observations to the simulated
steady-state model outputs in Equation (4.6), which provides all information to evaluate the objective function
via Equation (4.8). The gradient of the steady-state output error with respect to the decision variables can be
found by combining the results of Stage III with Equation (4.15). Then finally, we can calculate the objective
function gradient itself by evaluating Equation (4.14), which concludes the computations within one iteration
of the gradient-based nonlinear optimisation routine.

4.5 Summary

This chapter covers the definition of and solution to the nonlinear system identification problem considered
in this project. In particular, the system identification problem is translated into a standard-form constrained
optimisation problem, whose decision variables θ parametrise a candidate model (4.2). The decision variables
can be selected from the set of globally, exponentially convergent discrete-time Lur’e-type models. The
simulation error is desired to be minimised, which defines the objective function to the optimisation problem
as the least-squares criterium in (4.8) and closes the system identification problem formulation. To solve such
a problem, we adopt a two-step approach: ‘Decision variable initialisation’ and ‘gradient-based optimisation‘.
The first step can be performed via a BLA of the nonlinear dynamics, or a global optimisation approach.
The second step can be completed via an interior-point method that is readily available in the MATLAB
optimisation toolbox. This method requires to evaluate the objective function, as well as its gradient with
respect to the decision variables in each iteration. The prior term can be calculated via the steady-state output
of the candidate model, whereas the latter term is found exactly by computing the steady-state output of
a set of Lur’e-type parameter sensitivity models. Obviously, the computational performance of the system
identification algorithm would benefit greatly from fast and accurate computation of all these steady-state
solutions. To that end, the MTF algorithm is implemented, which is shown to contract iteratively to the unique
steady-state solution of convergent Lur’e-type models. The computational performance of having such an
MTF algorithm is illustrated by an example and this chapter ends by an explanation of the efficient objective
function (gradient) computation algorithm that is validated on experimental and simulation case studies in
the next chapter.
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Chapter 5

Identification results
In this chapter, the proposed system identification algorithm is validated on benchmark experimental data in
Section 5.1. The selected dataset is well-known in the nonlinear system identification field and can, therefore,
be used to compare the estimated model performance quantitatively to existing solutions. The discussion
of system identification results continues by a simulation case study for a first-order dynamical system in
Section 5.2. Non-unique parametrisation issues and suggested solutions are illustrated. New insights in the
behaviour of our methods can be gained in simulation studies, as the ‘true’ system is known.

5.1 Experimental study: Silverbox benchmark

The Silverbox system has been reported as an electronic implementation of the Duffing oscillator and its
input-output behaviour is proposed as a benchmark dataset for the research field of nonlinear system
identification [58], [59], [92]. Its behaviour can be modelled as the mechanical system that is shown
schematically in Figure 5.1a. In this figure, we recognise a mass m1 moving purely in the horizontal x⃗1
direction over a frictionless surface. Its position is measured as a function of time and denoted by x1(t),
relative to its initial position x1(0) = x1,0. The model dynamics are induced by a scalar harmonic force
perturbation w(t), a nonlinear spring characterised by coefficient k3 and a linear spring-damper combination
parametrised by k1 and d1. Newton’s second law can be applied to this nonlinear system to derive the
following second-order differential equation as the equation of motion for this mechanical system:

m1ẍ1 + d1ẋ1(t) + k1x1(t) + k3x3
1(t) = w(t). (5.1)

These nonlinear dynamics can be written into a continuous-time Lur’e-type form:

Σ0 :





ẋ0(t) =
[

0 1
− k1

m1
− d1

m1

]
x0(t) +

[
0
1

]
u0(t),

z0(t) =
[
1 0

]
x0(t),

(5.2a)

(5.2b)

u0(t) = w(t) − φ0(z0(t)), (5.2c)

as shown schematically in the block-diagram in Figure 5.1b.

d1

k3

m1

x1(t)
x1,0

w(t)
k1

O x⃗1

x⃗2

(a) Mass-spring-damper model.

Σ0
w z0u0

−φ0

(b) Lur’e-type model.

Figure 5.1: Interpreting the Silverbox as a mass-spring-damper- and a Lur’e-type model.
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In this Lur’e-type model, we have selected the state x0(t) =
[
x1(t) ẋ1(t)

]⊤
, together with the scalar

measured output z0(t) = x1(t) and a cubic nonlinear function

φ0(z0(t)) = k3
m1

z0(t)3. (5.3)

The input force u0(t) consists of contributions by the external force perturbation and the nonlinear spring.
Let us assume that x1(t) is measured at uniformly spaced time instants with sampling interval Ts. Also, a
zero-order hold assumption is imposed to the external force excitation w(t), such that

w(t) = w(kTs), ∀ kTs ≤ t < (k + 1)Ts, k ∈ N0. (5.4)

Because of these assumptions, well-known discretization techniques for LTI models can be applied to
Equations (5.2a) and (5.2b), which together with the static relation in Equation (5.2c) results in a discrete-time
Lur’e-type model describing the dynamics of the silverbox system [63, p. 119]. There has been extensive
research on Duffing oscillators and, depending on the choice of constants m1, k1, d1 and k3, it is known that
solutions to (5.1) can either be GES or chaotic with a high sensitivity to initial conditions [93].

In the remainder of this section, the system identification algorithm proposed in Chapter 4 is applied to
data retrieved from the silverbox system, since prior knowledge confirms that these dynamics fit the model
class (4.2). Additionally, one can guarantee that the identified model describes a duffing oscillator that
operates in a convergent regime by enforcing feasibility of the condition in Theorem 3.7, which can be
exploited, e.g., for controller design. The identification experiment is explained, followed by numerous
system identification results. Thereafter, model performances are compared quantitatively to state-of-the-art
benchmark results.

5.1.1 Identification experiment

The identification experiment that covers the Silverbox benchmark dataset is presented in Figure 5.2. In this
figure, the scalar excitation w and output ze

0 are shown as function of time measured at a sampling frequency
of 610.35 Hz, both having a distinctive arrow-shape. The dataset can be divided into parts I and II, by which
the arrow’s ‘head’ and ‘tail’ are denoted, respectively. Part I, governing samples 1-40585, is a band-limited
Gaussian white noise sequence between 0 Hz and 200 Hz with a linear increase in amplitude forward in time.
Part II consists of ten realisations of a random-phase odd multisine sequence that are mutually interconnected
by zero inputs. After part II, a sine-sweep sequence starts, but this part of the data is excluded from our
analysis, which is in line with other approaches reported in literature [59].
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Figure 5.2: The arrow-shaped Silverbox dataset ( ), consisting of a so-called ‘head’ and ‘tail’, respectively
denoted by I and II. The ‘tail’ contains ten odd multisine realisations, one of which is denoted by ( ).
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Let us isolate the multisine realisation that was highlighted in Figure 5.2, and analyse its properties in time-
and frequency-domain in Figure 5.3. The top plot of Figure 5.3 illustrates the division of the arrow’s tail in ten
sections that are separated by a sequence of zeros. One of these sections is shown in this figure and the
previously mentioned multisine realisation is a subset of this section of length N = 8192, as shown in red. A
frequency domain representation of the multisine realisation is included in the bottom plot of Figure 5.3 to
verify whether the correct subsets of the arrow tail are selected as estimation data. It can be verified that all
1342 odd harmonics on a bandwidth between 0 Hz and 200 Hz are evenly excited, which indeed complies to
the experiment design motivation in [58]. There is no information in the data of harmonics having a frequency
above the passband until the Nyquist frequency fN .

0 50 100 150 200 250 300
Frequency [Hz]

-150

-100

-50

|W
|[

dB
]

even
odd
fN

96 98 100 102 104 106 108
Time [s]

-0.2

0

0.2

w
[V

]

leading/trailing excitation
multisine realisation

Figure 5.3: Random-phase odd-multisine excitation realisation in time- and frequency-domain.

As a final preprocessing step, the mean and first-order polynomial trends were removed from part I and
the first nine multisines in part II. Then, the observations can be presented as the model estimation and
validation datasets in Figure 5.4. The last multisine is omitted to train the model on comparable data with
respect to existing solutions [92]. Also, note that the excitation amplitude of the validation dataset exceeds
the amplitudes seen during training. This allows for testing extrapolation properties of identified models.
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Figure 5.4: Silverbox identification experiment, split between the nine estimation ( ), ( ) and a single
validation dataset ( ).
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5.1.2 Model structure selection

The main purpose of the model structure selection step is to define the relation between the decision variables
θ and a Lur’e-type candidate model (Σ(θ), φ(θ)) for the specific system identification problem at hand. By
selection of structure, we mean, e.g., definition of (i) the model order of Σ(θ), (ii) the nonlinearity φ(θ) itself
and (iii) whether or not convergence is enforced. Not enforcing convergence is selected for the sake of
benchmarking with reported results in the literature. Numerous model structure selections are proposed in
Table 5.1, each of which is denoted by (Σ(θi), φi(θi)) for i ∈ {I, . . . , VIII}.

Table 5.1: Model structure selections for Silverbox system identification.

Σ(θi) φi(θi)
ID

nx ny z = y w − φi(y) = u Name Definition Details
Stability

guarantees?
nθ

I 2 1 ✓ ✓ zero (5.8) ✓ 5
II 2 1 ✓ ✓ polynomial (5.9a) ✗ 8
III 2 1 ✓ ✓ spline (5.10a) ✗ 7
IV 2 1 ✓ ✓ spline (5.10a) ✓ 7
V 2 1 ✓ ✓ NN (5.11a) nn = 3 ✗ 14
VI 2 1 ✓ ✓ NN (5.11a) nn = 10 ✗ 35
VII 2 1 ✓ ✓ NN (5.11a) nn = 3 ✓ 14
VIII 2 1 ✓ ✓ NN (5.11a) nn = 10 ✓ 35

The variety of model structures induces different candidate model parametrisations. The decision variables
complying to a candidate model of a certain structure are characterised by

θi =
[

θΣ
θφi

]
, ∀ i ∈ {I, . . . , VIII} , (5.5)

in which θΣ and θφi
denote the parameters of the linear and nonlinear block for Lur’e-type candidate model

(Σ(θi), φi(θi)) of class (4.2), respectively. The characterisation of these blocks is discussed next.

Linear block structure

All of the selected model structures use the same parametrisation for the linear block Σ(θi). Given the
prior knowledge on the Silverbox dynamics (5.2), it was decided to adopt a discrete-time second-order LTI
state-space model that is interconnected via feedback by a SISO nonlinearity, such that nx = 2 and ny = 1.
Furthermore, it is assumed that the measured output channel z also serves as nonlinearity input channel y.
Finally, the nonlinearity output u and the external excitation w are assumed to be summable towards a scalar
input of Σ(θi) as illustrated in Figure 5.1b. All constraints on the linear block have been explained, so the
next step is to introduce a candidate model’s linear block parametrisation as

θΣ =
[
a1 a2 b0 b1 b2

]⊤
, (5.6)

whose entries characterise the unique SISO transfer function of Σ(θi) as

GΣ(θi)(z) = b0z
2 + b1z+ b2

z2 + a1z+ a2
. (5.7)

A transfer function coefficients parametrisation reduces the number of model parameters compared to a
full parametrisation of all matrix elements in a state-space model. Nevertheless, the system identification
algorithm requires a characterization of the linear block in terms of a state-space form in which we distinguish
between external and nonlinear inputs. Therefore, a state-space representation in controllability canonical
form (see [63, p. 252]) can be derived from GΣ(θi)(z) in (5.7) and characterises Σ(θi) into a state-space form
that fits the model class (4.2) with

A(θ) =
[

0 1
−a2 −a1

]
, B(θ) = −

[
0
1

]
, L(θ) =

[
0
1

]
, C(θ) =

[
b2 − a2b0
b1 − a1b0

]⊤

, D(θ) = b0.
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Note that the state space matrices associated with the output equation are, respectively constrained by
F (θ) = C(θ), G(θ) = 0ny and H(θ) = D(θ), due to the z = y assumption. Also, note that B = −L since the
input of Σ as defined in Equation (5.2c) is split between an external and a nonlinear input in the model class.
Because the linear block is constrained to this canonical form, the possibility of non-unique parametrisation
due to similarity transformations is eliminated from the system identification problem.

Nonlinear block structures

The different candidate model parametrisations are induced by the various nonlinearity structures φi(θi) and
are now treated one after the other. Instances of all nonlinearity structures are shown in Figure 5.9, which
helps to understand the different characterisations. The first considered nonlinearity is actually not a ‘real’
nonlinear function, but simply ensures a zero output via

φI(y(k)) = 0. (5.8)

Obviously, this nonlinearity adds no additional model parameters. In an attempt to improve representation
capabilities beyond those of a linear model, a cubic polynomial is selected as the nonlinearity of structure II.
This nonlinear function fits the prior knowledge on the Silverbox system well and its definition can be written
together with its parametrisation according to

φII(y(k)) =
3∑

i=1
kiy(k)i, (5.9a)

θφII =
[
k1 k2 k3

]⊤ ∈ R3. (5.9b)

A downside of the polynomial nonlinearity is that structure II does not allow for stability guarantees, since its
nonlinear function can obviously not be (incrementally) sector bounded within finite bounds.

To address this problem, the third and fourth model structures implement a so-called ‘spline ’ nonlinearity,
which behaves as a pure cubic polynomial on a certain domain including the origin and is linear outside. One
can define this nonlinearity and its parametrisation as

φIII,IV(y(k)) =





k1y(k)3 for |y(k)| ≤ y∗

αy(k) + β for y(k) > y∗

αy(k) − β for y(k) < −y∗,

(5.10a)

θφIII,IV =
[
k1 y∗

]⊤ ∈ R2
≥0, (5.10b)

where α = 3k1y2
∗ and β = −2k1y3

∗. This nonlinear function verifies Assumption 2.2 and its cone-bounded
sector constraints are characterised by Ω = Ω̄ = 3k1y2

∗ for nonnegative constants k1 and y∗.

Both previously mentioned nonlinearity definitions are heavily dependent on prior knowledge of the Silverbox
system dynamics. Consequently, the previous model structures are not expected to be applicable to data
obtained from systems other than the Silverbox. This motivates the introduction of a feed-forward neural
network as the nonlinearity of structures V-VIII, as the universal approximation theorem states that such a
network can approximate any continuous function for inputs in a specific range (see [37], [94]).

A schematic view on these feed-forward neural networks with a single hidden layer can be found in Figure 5.5.
In this figure, it can be seen that the neural network input y(k) splits inside the hidden layer into nn branches,
each of which is scaled linearly with its associated input weight. Consecutively, in each branch the input bias
is added, whereafter the nonlinear activation function is applied. In the output layer, each branch is scaled by
an output weight, whereafter all branches are summed together with the output bias to define the neural
network output u(k). In summary, the neural network nonlinearity and its parametrisation can be defined as

φV-VIII(y(k)) = W [2]⊤σ
(

W [1]y(k) + b[1]
)

+ b[2], (5.11a)

θφV-VIII =
[
W [1] b[1] W [2]]⊤ ∈ ΘφV-VIII ⊂ R3nn , (5.11b)
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Figure 5.5: Schematic representation of a feed-forward neural network with a single hidden layer.
Subscripts denote vector element indices.

in which σ(·) is the nonlinear activation function for which a hyperbolic tangent was selected in this project.
The hidden layer consists of nn neurons and, hence, we recognise the input- and output-weight matrices
W [1], W [2] ∈ Rnn

≥0 together with input-bias matrix b[1] ∈ Rnn in the neural network parametrisation. Thereby,
the decision variable space associated with the neural network parametrisation is defined as

ΘφV-VIII =
{

θ ∈ R3nn | W [1](θ), W [2](θ) ∈ Rnn

≥0

}
. (5.12)

Let us recall that the sector condition in Definition 2.2 requires φ(0) = 0, which can be satisfied by constrain-
ing the output bias to

b[2] = −W [2]⊤ tanh (b[1]). (5.13)

As a final step, the existence of cone bounded sector constraints on φV-VIII is investigated. Let us define the
partial derivative with respect to its input y as

∂

∂y
φV-VIII(y(k)) = W [2]⊤MW [1], (5.14)

in which
M = diag

(
(1ny − tanh2 (W [1]y(k) + b[1]))⊤

)
. (5.15)

The diagonal elements of M are bounded on [0, 1], which allows us to upper-bound the nonlinearity slope

by γ = W [2]⊤W [1]. This bound is tight for zero input bias and conservative otherwise. In conclusion, φV-VIII

verifies Assumption 2.2 and its cone-bounded sector constraints are characterised by Ω = Ω̄ = γ.

All model structure selections are now explained together with their respective parametrisations. The first
model structure is linear and hence has limited representation capabilities. Model structure II improves upon
this by allowing for a cubic nonlinearity, but GEUC cannot be guaranteed. The structures III and IV with a
spline nonlinearity allow for a trade-off, being in a finite (incremental) sector, as well as cubic on a domain
near the origin to reflect reality. The expected representation capabilities are even further improved by
considering neural network nonlinearities in structures V-VIII. Note that an improved representation capability
usually goes hand in hand with an increased number of model parameters, which complicates the system
identification procedure. This trade-off between model complexity and representation capability is illustrated
in the following, where model estimation results are presented for all model structure selections.

Page 52 of 100



Section 5.1. Experimental study: Silverbox benchmark

5.1.3 Model estimation

The problem of system identification of discrete-time Lur’e-type models for the Silverbox benchmark is solved
for the model structures that were introduced before. Model structure I is linear and can thus be identified via
linear system identification techniques. The BLA method that was introduced in Section 4.2 is implemented,
but provides us with a non-structured SISO LTI state-space model (ABLA, BBLA, CBLA, DBLA). Previously,
it was explained that the linear block’s state-space representation is expected in controllability canonical form.
Under the condition that the pair (ABLA, BBLA) is controllable, one can always apply a special similarity
transformation as per Lemma 2.5 to the BLA, which renders the LTI model into the desired form [63, p. 252].
The required transformation matrix is given by

P =
[
q⊤ (qABLA)⊤

. . .
(
qAn−1

BLA

)⊤
]⊤

, (5.16)

where q denotes the bottom row of CBLA. Consequently, we retrieve an equivalent state-space representation
(ÃBLA, B̃BLA, C̃BLA, D̃BLA), which is in controllability canonical form and allows to define the initial
values for θΣ via the zero nonlinearity output method explained in Section 4.2. Via this technique, one
initialises a GEUC Lur’e-type model, whose input-output behaviour is equivalent to the BLA. The selected
initial nonlinearity parametrisations that guarantee zero nonlinearity output are summarised in Table 5.2.

Table 5.2: Initialisation of nonlinearity parametrisation for different model structures.

ID I II III,IV V-VIII

initialisation of θφi

[ ]
03×1

[
0 |U1×1|

]⊤ [
|Unn×1|⊤ U⊤

nn×1 0⊤
nn×1

]⊤

Note that the spline width y∗ in structures III, IV, as well as the elements of the input weights and bias
matrices in structures V-VIII are initialised as (nonnegative) random variables from a uniform distribution,
which is denoted by Ui×j . This approach ensures a non-zero initial objective function gradient with respect to
the nonlinearity parameters. What remains in the model estimation stage is to solve the system identification
problem via the gradient-based method from Section 4.2. To that end, Algorithm 4 is implemented to calculate
steady-state model responses of GEUC Lur’e-type candidate models and their respective parameter sensitivity
models. In case no stability guarantees are enforced, i.e., for model structures II, III, V and VI, we rely on
forward iterating the nonlinear dynamics as demonstrated in Example 4.1, until the solution has converged to
the steady-state solution. For unstable models, the cost associated with the their ‘steady-state’ solution is
assumed to be excessively large, whereby such decision variable selections are rejected by the gradient-based
solution method. Figure 5.6 shows a typical progression of the gradient-based method.
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Figure 5.6: Iteration history of the estimation method for model structure II.
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In this figure, it can be validated that the objective function value of the initial parametrisation complies to the
cost associated with the BLA. Starting from this initial point, the gradient-based optimisation method quickly
reduces the objective function value by several orders of magnitude. Also, the first-order-optimality measure,
∥∇JN ∥∞, decreases drastically, indicating that the estimation method converges towards a (local) minimum.
Simultaneously, the maximum step size ∥∆θ∥∞ shrinks until it passes the minimum step size threshold θ∗ in
the 17th iteration as can be seen in the bottom plot of Figure 5.6, concluding the model estimation step for
structure II. To interpret the results of this model estimation step, the steady-state model output error ϵ̄e of
model structures I and II are shown in Figure 5.7 for the third multisine realisation.

0 2 4 6 8 10 12
Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

Vo
lt

ag
e

[V
]

(a) Time domain.

50 100 150 200 250 300
Frequency [Hz]

-80

-60

-40

-20

0

20

40

60

M
ag

ni
tu

de
[d

B
]

(b) Frequency domain.

Figure 5.7: Estimated model performance on estimation data 3.
The plots include z̄e

0 ( ), ϵ̄e for (BLA) structure I ( ) and ϵ̄e for (cubic) structure II ( ).

Note that this figure displays steady-state information instead of a simple simulation of the model subject to
the multisine excitation sequence. It can be seen that structure I captures the system dynamics relatively
well, but is clearly outperformed by structure II. In order to quantitatively compare the performance between
different estimated models, a performance measure is defined in terms of Root Mean Squared Error (RMSE),
which (depending on a steady-state assumption for the considered measurements) reads as

eRMSE =

√√√√ 1
N

N∑

k=1
(ze

0(k) − z(k))2
, (5.17) ēRMSE =

√√√√ 1
N

N∑

k=1
(z̄e

0(k) − z̄(k))2
. (5.18)

Numerous system identification approaches for this benchmark dataset adopt this performance measure
(see, e.g., Table 5.3). In case Equation (5.17) is used, the model response is computed via forward iteration
of the model dynamics throughout one excitation signal period. Contrarily, Equation (5.18) requires the
steady-state model response to be computed via, e.g., the MTF algorithm. Both performance measures are
presented for model structures I-VII in Figure 5.8 and estimation datasets 1-9. In this figure, it can clearly be
seen that the performance for the different model structures can be ranked from best to worst in the order
II-III-V-VI-IV-VII-I. Note that the model estimation step for structure VIII was unsuccessful and, therefore, no
results are presented. The cubic structure II is the clear winner, which is in line with expectations due to our
prior knowledge on the Silverbox system. It can be seen that performance of models with stability guarantees
(IV and VII) deteriorates significantly with respect to their unconstrained equivalents (III and V). Also, the
performance measure shows much more consistency throughout different estimation datasets for ēRMSE in
Figure 5.8b, compared to eRMSE in Figure 5.8a, which suffers from an unmodelled initial condition to the
internal state. The model structure color coding is preserved throughout the remainder of this section.
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Figure 5.8: Estimation data performance of I ( ), II ( ), III ( ), IV ( ), V ( ), VI ( ), VII ( ).

To interpret the characteristics of the estimated models even further, the nonlinearity graph and the Bode
magnitude diagram of the involved LTI block’s transfer function are compared in Figures 5.9 and 5.10,
respectively. Note that the estimates, even though being structurally different, show many similarities.

Let us start by discussing the nonlinearities in Figure 5.9a. Structure I has a trivial zero nonlinearity and
needs no further clarification. For structure II, one clearly recognises the cubic polynomial shape that is
expected to perform well on this dataset by the prior knowledge on the Silverbox system. Furthermore, it is
well received that spline nonlinearities III, IV behave exactly like the cubic polynomial of II inside their spline
widths. Outside of this domain, the spline structures in III and IV behave linear to allow for a finite bound
on their (incremental) sector. The spline width of III is slightly larger than that of IV, which can be explained
by the additional stability constraints on IV. Continuing to Figure 5.9b, it can be seen that also the neural
networks without stability guarantees (V and VI) have fitted the shape of the cubic polynomial within the
input region of interest. Because there is no prior knowledge on the nonlinearity design of the Silverbox
system included in these model structures, this is an outstanding performance by the identification algorithm.
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Figure 5.9: Estimated nonlinearity graph for various model structures.
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Figure 5.10: Estimated linear block transfer function for various model structures.

It can be concluded from Figure 5.10 that the characteristics of the estimated linear blocks are similar to
those of the BLA initialisation. The figure shows Bode magnitude diagrams of the estimated models in close
proximity to the one of structure I. This marks the end of the discussion on the estimated models, which are
subjected to a validation test next.

5.1.4 Model validation

Does the estimated model actually solve our system identification problem and/or is it in conflict with either
the validation data or prior knowledge? These questions are answered in the model validation step [12]. The
validation test is defined as forward iterating the estimated model dynamics throughout one period of the
preprocessed arrow-‘head’ excitation as was introduced in Figure 5.4 and comparing the simulation results to
observed data. The estimated model performances can then be compared to state-of-the-art results on this
benchmark dataset, for which an overview is given in Table 5.3. In this table, (i) indicates the simulation RMSE,
defined as eRMSE in (5.17), on the validation set (1-40585). Furthermore, (ii) and (iii) denote the validation
test on set (1-40000) and a special validation set (iii) that is mentioned in the table, respectively. The results
presented in this work are written in blue and empty cells indicate unavailability of the information.

Table 5.3: Model performance in terms of validation RMSE, compared to the state of the art [59].

Author Method nθ (i) (ii) (iii) Validation (iii) Estimation set
Ljung et al. (2004) Neural network + cubic regr. > 700 0.3 1 - 40495 40586 - 127410
Hjalmarsson (2004) Physical block-oriented 5 0.96 40001 - Body
Verdult (2004) Weighted local linear SS 16 1.3 1 - 40495 40585 - 49192
Sragner et al. (2004) Special MLP 100 7.8 40001 - 125000
Espinoza et al. (2004) FS-PLS 500 0.318 40001 - 85000
Espinoza Tapia (2006) PL-LSSVM 0.271 40001 - 85000
Paduart et al. (2010) PNLSS 37 0.26 1 - 40700 40701 - Body
Marconato et al. (2012) Nonlinear state-space 23 0.34 40001 - 80000
Mulders et al. (2013) Poly-LFR 12 0.35 Head Body
Mattos et al. (2017) RVFL-NLMM 10 40001 - End
Santos et al. (2018) FS-LSSVR 0.76 40001 - 85000
Maroli (2019) TCN (fair) 4753 2.18 40586 - 85000
Maroli (2019) TCN 4753 1.74 40001 - 127500
This work (2021) I: BLA 5 13.7 13.5 40586 - 118314
This work (2021) II: Cubic 8 0.55 0.54 40586 - 118314
This work (2021) III: Spline 7 2.78 2.79 40586 - 118314
This work (2021) IV: Stable spline 7 4.87 4.85 40586 - 118314
This work (2021) V: NN (3 neurons, no stab.) 14 1.14 1.12 40586 - 118314
This work (2021) VI: NN (10 neurons, no stab.) 35 1.15 1.13 40586 - 118314
This work (2021) VII: NN (3 neurons, stab.) 14 11.5 11.3 40586 - 118314
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It is only possible to compare our estimated models to results in literature quantitatively when there is
consensus on the performance measure, as well as the considered validation dataset. Our intention in this
work is to follow the guidelines for fair benchmarking on the Silverbox dataset in [59] and validate on the
data in set (i), which allows to quantify the model extrapolation performance. Unfortunately, [59] is the
only work that is known to the author that validates on the exact same set. The model performances in
[59] are easily outperformed by structures II,V and VI, despite them being parametrised by an excessive
number of 4753 parameters. In order to compare our results to more works in literature, the validation test
results on set (ii) are added. Clearly, the BLA in structure I can no longer catch up with the state-of-the-art
nonlinear models. Also, the model structures IV and VII cannot compete with the the best results in literature
in terms of extrapolation performance, but these models come with stability guarantees on the identified
model. Arguably, these benefits render them (especially IV) in the sweet spot of being relatively accurate
and applicable to reliably predict on input sequences that were not seen during model training. Our high
performance structures II, V and VI are in close proximity to the best performing models that are reported in
literature, non of which come with some guaranteed form of stability. Note that our models typically require
significantly less parameters compared to their competition.

Next to these quantitative results for the model validation step of our system identification outcomes, a
qualitative understanding of the model behaviours in the validation test is desired. To that end, the simulation
results of structures I-IV are compared in Figures 5.11 and 5.12 in time and frequency domain, respectively.
The time-domain results shown some initial error due to an unmodelled initial condition for the internal state.
Furthermore, it can be seen that the cubic structure II is a good representation of the observations. Even in the
extrapolation regime, which starts roughly after 50 seconds, only a slight increase in model error is observed.
The behaviour of the spline models III, IV in the model validation test is perfectly in line with expectations.
For small excitation magnitudes, their nonlinearities behave in the cubic regime and the models match the
performance of structure I. For larger excitation magnitudes, the nonlinearity acts in its linear regime, whereby
it differs from the prior knowledge on the Silverbox system, inducing model performance loss. This effect is
greater for structure IV, since a smaller spline width is selected for this model to verify its stability constraint.
Finally, it can be seen in Figure 5.12 that the nonlinear model errors are concentrated around the resonance
frequency and close to DC.

The qualitative analysis on the model validation step continues in Figures 5.13 and 5.14, in which validation
data simulation results of the neural network structures V-VII are shown in time and frequency domain,
respectively. The BLA results for structure I are repeated to calibrate our observations with respect to
Figures 5.11 and 5.12. The results for structures V and VI show much similarity despite their difference in
hidden layer dimension. Note that these simulation results do not suffer significantly from the extrapolation
effects that were seen for the cubic and spline nonlinearity structures. Finally, the stable neural network
structure VII appears barely as an improvement with respect to a linear model. It can be seen that the
stability constraint deteriorated the model performance significantly, which can partly be explained by the
conservative upper-bound on the nonlinearity slope that is used to characterise the cone-bounded sector
constraints. A tighter upper-bound enlarges the feasible region in decision variable space, whereby a better
(local) minimum may become available.

Hereby, the extensive Silverbox case study comes to an end. Prior knowledge on the true system dynamics
and the identification experiment is explained. Consecutively, multiple model structures are proposed in
an attempt to model the Silverbox system in the class of discrete-time GEUC Lur’e-type models. It was
decided to investigate a cubic nonlinearity structure, which fits the prior knowledge well. In order to allow
for stability guarantees, a spline nonlinearity structure is proposed, followed by a variety of single hidden
layer feedforward neural networks. The identification methodology of Chapter 4 is applied and estimation,
as well as extrapolation results are motivated both quantitatively and qualitatively. Also, the estimated
models are compared to state-of-the-art models in literature. In conclusion, neural networks and cubic
nonlinearities without stability guarantees accurately model the Silverbox system dynamics having their
performance measures close to the best results in literature while using significantly less model parameters.
Finally, the GEUC spline nonlinearity structure is shown to be a significant improvement with respect to the
(linear) models in literature with stability guarantees.
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Figure 5.11: Validation test results ϵe in time domain for structures I: ( ), II: ( ), III: ( ) IV: ( ).
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Figure 5.12: Validation test results ϵe in frequency domain for structures I: ( ), II: ( ), III: ( ) IV: ( ).
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Figure 5.13: Validation test results ϵe in time domain for structures I: ( ), V: ( ), VI: ( ) VII: ( ).
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Figure 5.14: Validation test results ϵe in frequency domain for structures I: ( ), V: ( ), VI: ( ) VII: ( ).
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5.2 Simulation study: First order dynamics

In this simulation case study, a system identification problem is solved for the purpose of estimating a
first-order Lur’e-type model, which experiences feedback from a smooth deadzone-type nonlinearity. The
true system is known to the user, such that steady-state measurements of excitation w and the true model
response can be computed. This simulated ‘observed data’ serves as an input to the proposed system
identification approach with the intent to identify the parameters describing the true system.

First, the selected first-order model structure is presented. Thereafter, the true system design is motivated
together with the simulated identification experiment. Then, the system identification problem is solved in
the model estimation step. The identified model leads to new insights in the parametrisation of the selected
model structure, resulting into model structure improvements.

First-order model structure selection

In this simulation case study, candidate models (Σθ, φθ) according to (4.2) with dimensions nx = ny =
nu = nz = nw = 1 are considered. A black-box modeling approach is adopted, such that each matrix element
of the LTI state-space form represents a model parameter. Also, a smooth-deadzone type nonlinearity was
selected, which can describe real-world phenomena such as worn steering wheel linkages in cars, or coulomb
frictions in DC motors. This nonlinearity defines φθ according to

φθ(y(k)) = y(k) − δ(θ) tanh
(1

δ
y(k)

)
, (5.19)

which is parametrised by the scalar deadzone length δ(θ). All parameters in the selected model structure are
collected in

θ =
[
A(θ) B(θ) L(θ) C(θ) D(θ) F (θ) G(θ) H(θ) δ(θ)

]⊤ ∈ ΘF ⊂ R9, (5.20)

in which decision variable selections are constrained to the set

ΘF =
{

θ ∈ R9 | (A(θ), [B(θ) L(θ)]) controllable, (A(θ), [C(θ)⊤ F (θ)⊤]⊤) observable, δ(θ) ≥ 0
}

. (5.21)

Controllability and observability of the pairs (A(θ), [B(θ) L(θ)]) and (A(θ), [C(θ)⊤ F (θ)⊤]⊤), respectively,
implies the minimality of Σθ’s state-space representation and, hence, Assumption 2.1 is verified. Furthermore,
nonlinearities with nonnegative deadzone lengths are considered, such that φθ is static, decentralised and
respects the cone bounded (incremental) sector constraints that are characterised by Ω = Ω̄ = 1. These
properties together imply the satisfaction of Assumption 2.2. Given that the assumptions on the linear and
nonlinear block are verified, the decision variable space Θ can now be defined as

Θ =
{

θ ∈ ΘF | ∃ (P ∈ R>0, S ∈ R>0) : Condition (3.16) in Theorem 3.7 holds true
}

, (5.22)

guaranteeing the GEUC property for models inside this model class, i.e., θ ∈ Θ. This concludes the discussion
on the selected model structure in this simulation case study. The identification experiment design is
explained next.

Identification experiment

In simulation case studies, the true system dynamics are known to the user. In this example, it was decided
to design the true system dynamics inside of the proposed first-order model structure selection. More
specifically, a parametrisation θ0 ∈ Θ was chosen, defining the true system dynamics (Σ0, φ0) as (4.4)
with

A(θ0) = 0.5, B(θ0) = 0.78, L(θ0) = 0.3,

C(θ0) = 0.35, D(θ0) = 0.93,

F (θ0) = 1, G(θ0) = 0.62, H(θ0) = 2,

δ(θ0) = 1.
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Section 5.2. Simulation study: First order dynamics

The true-system parametrisation θ0 indeed represents a GEUC model, since the positive scalars P = 9.42 and
S = 9.11 yield feasibility of the condition (3.16) in Theorem 3.7.

The next step is to design an excitation signal that covers the system operation domain of interest and
brings out all essential system features of interest [12]. Important characteristics of the true system are
displayed in Figure 5.16. It is common practice to apply multisine excitation signals for the purpose of system
identification. Particularly, a random-phase quasi-logarithmic multisine excitation design with constant
amplitude distribution is generated via the Frequency Domain System Identification Toolbox (FDIDENT)
toolbox (see, e.g., [95]) with the following settings.

Table 5.4: Quasi-logarithmic multisine excitation settings.

Ts N Nper Range Trials Nf fmin fmax
w 0.01 [s] 2048 4 [−10, 10] 50 10 0.004 [Hz] 50 [Hz]

The excitation signal design retrieved from the toolbox is analysed in time- and frequency domain in Fig-
ure 5.15a. The observed characteristics comply to the settings in Table 5.4, since ten harmonic contributions
can be recognised that appear equidistant on a quasi-logarithmic grid between 0.004 Hz and 50 Hz with an
even amplitude distribution. Also, the excitation amplitude varies in time-domain between −10 and 10 as was
intended. In conclusion, the excitation signal design is deemed successful and Algorithm 4 can be applied
to compute the steady-state model response for the dynamics (Σ0, φ0). The results are shown in time- and
frequency-domain in Figure 5.15b. This completes the identification experiment discussion and the next step
is to estimate a model based on the identification experiment and the proposed model class.
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Figure 5.15: Identification experiment design for the first-order simulation case study.

Model estimation

The model estimation step is performed for the simulation case study via a CRS global optimisation approach
in the decision variable initialisation step, followed by a gradient-based optimisation routine. The main
working principles of the CRS are treated in Section 4.2 and the algorithm was executed with the following
settings that are based on [85].

Table 5.5: CRS settings.

np nm α J∗ η∗ k∗

100 9 0.5 0.1 0.1 1000
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The progresssion of the CRS algorithm is explained in Figure 5.16. The plot in Figure 5.16a shows the initial
population of hundred agents. The agents were randomly selected from ΘF and, only under feasibility of the
LMI stability condition, it is passed as an agent to the population, so typically a large objective function value
is associated with these initial agents. The CRS algorithm was performed for k = 855 iterations until the final
population is found as shown in Figure 5.16b. It can be seen that the difference in objective function value
between the agents was greatly reduced and the best agent in the population even crossed the J∗ tolerance,
which made the algorithm come to a stop and concluded the decision variable initialisation.
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(b) Final population after k = 855 iterations.

Figure 5.16: The initial and final population of the CRS decision variable initialisation step. The objective
function value is shown for each agent in the population. Also, the stopping conditions η∗ ( ) and J∗ ( )

are shown, which are activated if all agents are above, or when one agent is below, respectively.

The next step is to use the parameters corresponding to the best CRS agent as the initial point for the gradient-
based optimisation routine that is explained in Section 4.2. The iteration history of the gradient-based
method is shown in Figure 5.17 below.
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Figure 5.17: Gradient-based optimisation.
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Section 5.2. Simulation study: First order dynamics

A first observation is that the optimisation can be deemed successful, since the gradient-based method
managed to decrease the objective function value up to numerical precision. Also, it can be seen that
the largest element of the objective function gradient becomes small in magnitude, indicating that the
iterative algorithm converged to a (local) minimum in decision variable space. It should be remarked that the
estimation required more than 400 iterations of the gradient-based solution method, which is unfavourable
computationally. Also, notice that in most of these iterations (see, e.g, iteration 300-400) barely any progress
was made. Hence, there is still room for improvements here.

To analyse the properties of the identified model θ̂N , it is compared to θinit and θ0 in terms of Bode magnitude
diagrams of the linear block and the nonlinearity graph in Figure 5.18. The results in this figure are surprising,
since the estimated model θ̂N does not coincide with the characteristics of the true dynamics θ0 despite
explaining the training data perfectly well. Apparently, the model parametrisation contains non-uniqueness
other than those induced by similarity transformations (that do not appear in Bode magnitude diagrams).
The estimated deadzone length is clearly off and despite correctly identifying the Bode magnitude diagrams
for GΣzw

(z) and GΣyu
(z), the transfer functions GΣyw

(z) and GΣzu
(z) are off by a constant gain. These

observation are, possibly, due to parameter non-uniqueness via loop scaling (see Section 2.3).

Indeed, it can be shown that the parametrisation is non-unique due to gain-exchanges between the linear
and the nonlinear block. Let us apply a loop-scaling transformation as per Lemma 2.2 to the dynamics (Σ, φ)
for Ψ2 = Ψ1 = γ. The resulting Lur’e-type model (Σ̃, φ̃) can then be written as





xk+1 = Ax(k) + Bγ−1ũ(k) + Lw(k),
ỹk = γ−1Cx(k) + γ−1Dw(k),
zk = Fx(k) + Gγ−1ũk + Hw(k),
ũk = ỹ(k) − γ−1δ tanh

(
δ−1γỹ(k)

)
.

(5.23a)

(5.23b)

(5.23c)

(5.23d)

Remarkably, the blue terms in Equation (5.23) represent a new deadzone length δ̂ = γ−1δ and, hence, one
can select any invertible loop scaling by γ while still generating the same input-output behaviour. It is quite
likely that the estimation method exploited many of these equivalent points in decision variable space, which
reduced its convergence rate drastically. The result of loop-scaling θ̂N towards the deadzone length of θ0 is

shown as ˜̂
θN in Figure 5.18 and indeed also ensures a bode magnitude diagram match with θ0. As a solution,

the redundant degree of freedom can be eliminated by fixing the deadzone length in our model class, without
inducing any additional conservatism on the model’s representation capabilities. This proposal marks the
end of the first order system simulation case study.
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Figure 5.18: Lur’e-type model characteristics for θinit ( ), θ̂N ( ), θ0 ( ) and ˜̂
θN ( ).
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5.3 Summary

The proposed system identification methodology validation in this chapter is twofold. First, an experimental
validation was performed on the Silverbox benchmark dataset that is well-known in the research domain of
nonlinear system identification. Model structures inside our model class including cubic, spline and feedfor-
ward neural networks with or without stability guarantees are proposed. After that, the system identification
methodology is deployed and results are explained both quantitatively and qualitatively on estimation and
validation datasets. A comparison between our model performances and state-of-the-art Silverbox models in
literature is presented. In conclusion, our methodology enables to identify models having cubic or neural
network nonlinearities without stability guarantees that approximately match the performance of the best
models in literature, albeit being parametrised by fewer parameters. Also, a significant improvement on
modeling with stability guarantees is presented in terms of the GEUC spline structure, which easily outper-
forms stable BLA models. The second system identification method validation involves a simulation case
study of first-order dynamical systems with SISO deadzone nonlinearities. A quasi-logarithmic excitation was
designed in order to simulate an identification experiment. The system identification is initialised via a CRS
global optimisation routine. The proposed system identification methodology manages to successfully ex-
plain all details of the identification experiment data. However, it is shown that this model structure contains
unexpected non-unique parametrisations in terms of gain exchanges between the deadzone length and the
linear block matrices. This non-uniqueness can be eliminated by fixing the deadzone length before starting
the model estimation. In conclusion, the system identification methodology is successfully implemented on
both experimental data and a simulation case study. It is a logical next research objective to validate the
methodologies on identification of MIMO Lur’e-type models with stability guarantees on the identified model.
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Chapter 6

Conclusions and recommendations

In this thesis, a method for system identification of discrete-time state-space nonlinear models with stability
guarantees is developed. Existing methods in this research field suffer typically from the computational
complexity of solving high-dimensional nonlinear optimisation problems. Also, these approaches generally
do not enforce some form of stability on the identified model. This work contributes to the open challenges in
the field of nonlinear system identification by aiming to achieve the following main research goal:

“Develop an experimentally validated, computationally efficient system identification methodology for
flexible discrete-time nonlinear state-space models with stability guarantees.”

These main research objectives have mostly been achieved and the outcomes of the work presented in this
thesis are split into conclusions and recommendations for future research.

6.1 Conclusions

This work considers the class of discrete-time multiple-input multiple-output (MIMO) Lur’e-type models. Such
models consist of an linear time-invariant (LTI) block having a minimal state-space representation that is
placed in feedback with a static, decentralised nonlinearity that verifies cone bounded sector constraints. The
model class has extensive representation capabilities, as it includes, but is not limited by many well-known
block-oriented model classes such as (parallel) Wiener- and Hammerstein-structures.

Contributions to developments in stability analysis of discrete-time MIMO Lur’e-type models are presented
in this thesis. It first extends existing sufficient conditions for the global exponential uniform convergence
(GEUC) property to a sufficient condition that is computationally cheap to check. Thereafter, it shows that
satisfaction of the sufficient conditions for GEUC also guarantees an upper-bound to the H∞-norm of the LTI
block’s transfer function related to the input-output channels of the MIMO nonlinearity.

Another main contribution of this work involves the development of a mixed-time-frequency (MTF) algorithm
for discrete-time MIMO Lur’e-type models in order to compute steady-state responses in a computationally
efficient manner. This method is inspired by existing works on continuous-time single-input single-output
(SISO) Lur’e-type models. It is shown that under the sufficient condition for GEUC, the discrete-time MIMO MTF
algorithm globally contracts towards the steady-state model response. Furthermore, it is shown in a numerical
case study that a 66 % computation time reduction can be achieved by implementing the MTF algorithm
rather than forward iterating the nonlinear dynamics to calculate steady-state model responses.

A system identification methodology is developed to estimate models inside the model class. This task is
tackled as a constrained optimisation problem with the objective to minimise the simulation error between ob-
servations and steady-state model outputs along a measurement interval. Candidate models are constrained
to the class of discrete-time MIMO Lur’e-type models that are GEUC by verifying the proposed condition.
System identification is performed via a two-stage algorithm. First, a good initial point in decision variable
space is selected by existing methods such as best linear approximation (BLA) and controlled random search
(CRS) global optimisation. Starting from this initial point, a gradient-based optimisation method is used to
solve the system identification problem. This work aims to improve the computational efficiency of such
methods. It does so by computing steady-state candidate model responses via the MTF algorithm in order to
evaluate the objective function. Also, it is shown that the exact objective function gradient with respect to the
decision variables can be evaluated by calculation of steady-state responses via the MTF algorithm for a set of
GEUC parameter sensitivity models associated with the candidate model.
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The final contributions of this work concern validation of the proposed system identification methodology.
First, an experimental validation was performed on the Silverbox benchmark dataset that is well-known
in the research domain of nonlinear system identification. Estimated models with cubic or neural network
nonlinearities and without stability guarantees are presented that approximately match the performance
of the best Silverbox models in literature. Also, significant improvements on stable Also, a significant
improvement on modeling with stability guarantees is presented in terms of the GEUC spline structure, which
easily outperforms stable BLA models. The second validation involves a simulation case study of first-order
dynamical systems with SISO deadzone nonlinearities. The identification data can be explained perfectly by
our estimated models and unexpected parameter non-uniqueness is shown for the model class in terms of
gain exchanges that can easily be eliminated by fixing the deadzone length of the nonlinearity.

6.2 Recommendations

Some good progress was made in this work on nonlinear system identification. However, throughout this
project, several possible further improvements were identified as recommendations for future work that are
listed below without a specific order.

• System identification methodology validation:
As a short-term extension of the current system identification methodology validation, a tighter upper-
bound on the slope of a single hidden layer feedforward neural network is desired. It is expected that
such an advancement leads to improved Silverbox models with stability guarantees as the current
incremental sector bounds appear to limit the model structure’s representation capabilities. An obvious
second extension of this thesis involves the validation of our system identification methodology beyond
models having SISO nonlinearities. One can think of the challenging F-16 aircraft ground vibration
benchmark for nonlinear system identification as a starting point, since prior knowledge on the true
system dynamics indicates the existence of multiple saturation-type nonlinearities [96]. Such a system
fits our model class well and the benchmark allows for comparison with state-of-the-art modelling
results in literature. Also, the simulation study that is presented in this work could be extended to the
MIMO nonlinearity case, for example by simulation of mass-spring-damper systems with nonlinear
springs and dampers. Such a step would strengthen the confidence of our system identification
methodology being able to express complex real-world systems into accurate mathematical models.

• Model class generalisation:
In this thesis, the model class is limited to discrete-time Lur’e-type models consisting of a linear block
with a minimal state-space representation that is interconnected via feedback by a static, decentralised
MIMO nonlinearity with cone-bounded sector constraints. In case of multiple nonlinearities, the
similarity transformation towards a controllability canonical form as used in the Silverbox case study no
longer holds. Therefore, a different approach on eliminating similarity transformations of the linear
block is to be developed. Also, the assumption of having decentralised nonlinearities limits the model
class by excluding, e.g., nonlinearities that involve cross-products of system states. An extension of the
model class to nonlinearities with coupled inputs allows us to implement (deep) neural networks in the
feedback loop. The Lur’e-type model structure can still be of use in stability analysis, where innovations
in the field of artificial intelligence, such as improvements on tight estimation of Lipschitz constants to
deep neural networks, can be combined with, e.g., small-gain arguments originating from the field of
(robust) control theory. This bridges the gap between two rapidly growing research areas allowing for
many more new research steps.

• Stability condition conservatism reduction:
The sufficient conditions for GEUC that are used in this work are conservative in the sense that there
exist GEUC systems for which our conditions cannot guarantee the property. Our stability conditions
prove the convergence property via two (incremental) Lyapunov functions that are quadratic in the
internal system state. As a future research step, it could be investigated whether the conservatism
can be reduced by considering an extended Lyapunov function class. Also, it could be investigated
whether local stability analysis reduces conservatism on the stability conditions. Many systems only
act in specific operating regimes. Therefore, it is sufficient to prove stability for these operation modes
and omit the possibility of instabilities at unachievable system states.
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Appendix A

Proofs

A.1 Proof of Lemma 2.2

Proof.
Let us substitute the equalities uk = Ψ1ũk and yk = Ψ−1

2 ỹk into our model class (2.1) such that the updated
nonlinearity output- and input, respectively ũ and ỹ, appear explicitly in the model equations





xk+1 = Ax(k) + BΨ1ũ(k) + Lw(k),
Ψ−1

2 ỹk = Cx(k) + Dw(k),
zk = Fx(k) + GΨ1ũk + Hw(k),

Ψ1ũk = φ(Ψ−1
2 ỹ(k), k).

(A.1a)

(A.1b)

(A.1c)

(A.1d)

We can rewrite Equations (A.1b) and (A.1d), such that we find the system

Σ̃ :





x(k + 1) = Ax(k) + BΨ1ũ(k) + Lw(k), x(0) = x0,

ỹ(k) = Ψ2Cx(k) + Ψ2Dw(k),
z(k) = Fx(k) + GΨ1ũ(k) + Hw(k),

(A.2a)

(A.2b)

(A.2c)

φ̃ :
{

ũ(k) = Ψ−1
1 φ(Ψ−1

2 ỹ(k), k). (A.2d)

Indeed, this system can be interpreted as a new Lur’e-type structure (Σ̃, φ̃) with Σ̃ having a state-space repre-
sentation (AΣ̃, BΣ̃, CΣ̃, DΣ̃) according to Equation (2.19) and a nonlinearity φ̃ according to Equation (2.20)
satisfying the (incremental) sector bounds mentioned in Lemma 2.2.
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A.2 Proof of Lemma 2.3

Proof. (See [97, p. 51]).
Let us substitute the equality uk = ũk + Ψ3yk into our model class (2.1) such that the updated nonlinearity
output ũ appears explicitly in the model equations





xk+1 = Ax(k) + B(ũ(k) + Ψ3y(k)) + Lw(k),
yk = Cx(k) + Dw(k),
zk = Fx(k) + G(ũk + Ψ3y(k)) + Hw(k),

(ũ(k) + Ψ3y(k)) = φ(y(k), k).

(A.3a)

(A.3b)

(A.3c)

(A.3d)

We can substitute Equation (A.3b) into Equations (A.3a) and (A.3c), which reads after rearranging terms as

Σ̃ :





x(k + 1) = (A + BΨ3C)x(k) + Bũ(k) + (L + BΨ3D)w(k), x(0) = x0,

y(k) = Cx(k) + Dw(k),
z(k) = (F + GΨ3C)x(k) + Gũ(k) + (H + GΨ3D)w(k),

(A.4a)

(A.4b)

(A.4c)

φ̃ : { ũ(k) = φ(y(k), k) − Ψ3y(k). (A.4d)

Note that the assumption of having no direct feedthrough from u into y simplified the equalities in Equa-
tion (A.4). Indeed, this system can be interpreted as a new Lur’e-type structure (Σ̃, φ̃) inside our model class
with Σ̃ having a state-space representation (AΣ̃, BΣ̃, CΣ̃, DΣ̃) according to Equation (2.21) and a nonlinearity
φ̃ according to Equation (2.22) satisfying the (incremental) sector bounds mentioned in Lemma 2.3.

A.3 Proof of Lemma 2.5

Proof. (See [70, p. 658]).
The transfer matrix of a discrete-time LTI system Σ is denoted by GΣ(z) and can as function of its state-space
formulation (AΣ, BΣ, CΣ, DΣ) via

GΣ(z) = CΣ(zInx
− AΣ)−1BΣ + DΣ. (A.5)

Moreover, the transfer function associated with the updated state-space representation (ÂΣ, B̂Σ, ĈΣ, D̂Σ),
denoted by ĜΣ(z), can be expressed as

ĜΣ(z)= D̂Σ + ĈΣ(zInx
− ÂΣ)−1B̂Σ

= DΣ + (CΣP −1)(zInx
− PAΣP −1)−1(PBΣ)

= DΣ + CΣ
[
P −1(zInx

− PAΣP −1)P
]−1

BΣ

= DΣ + CΣ(zInx − AΣ)−1BΣ

= GΣ(z), (A.6)

Replace
(ÂΣ, B̂Σ, ĈΣ, D̂Σ)

(AB)−1 = B−1A−1

Use P −1P = Inx

which indeed shows that both state-space representations describe the same transfer function and hence
have an identical input-output behaviour.
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A.4 Proof of Theorem 3.5

Proof.
This proof verifies the validity of the assumptions of the sufficient part of Theorem 3.4 and is split in two parts.
Part 1 addresses the existence of a compact, positively invariant set for the class of inputs Wγ . Consecutively,
the global incremental stability property is discussed in part 2.

Part 1: Existence of a compact positively invariant set

The existence of a compact, positively invariant set is guaranteed if the assumptions in Lemma 3.1 are verified.
Therefore, this part of the proof aims at showing that solutions to Theorem 3.5 imply satisfaction of the
conditions (3.6) for adequate choices of functions γ(·), α1(·), α2(·) and scalar c.

• Firstly, we consider condition (3.6a) in Lemma 3.1. Recall that V1 is positive definite by definition. Then,
we can apply Rayleigh’s inequality as in Lemma B.4, such that

λmin(P1)∥x∥2 ≤ V1(x) ≤ λmax(P1)∥x∥2
, (A.7)

where λmin(·) and λmax(·) refer to a matrix’s smallest and largest eigenvalue respectively. Obviously,
this expression indeed satisfies condition (3.6a) for the quadratic K∞-functions α1(s) = α̃1s2 and
α2(s) = α̃2s2, with positive coefficients α̃1 = λmin(P1), α̃2 = λmax(P1) and argument s = ∥x∥ ∈ R>0.

• Consecutively, we consider condition (3.6b) in Lemma 3.1. To that end, one can define

η :=




x
u
w


 . (A.8)

Pre- and post-multiplication of condition (3.13a) by η⊤ and η, respectively, yields for all η ̸= 0:




A⊤

B⊤

L⊤


P1




A⊤

B⊤

L⊤




⊤

−




τ1P1 −C⊤ΩS1 0
⋆ 2S1 0
⋆ ⋆ τ2Im


≺ 0,

=⇒ η⊤




A⊤

B⊤

L⊤


P1




A⊤

B⊤

L⊤




⊤

η − η⊤




τ1P1 −C⊤ΩS1 0
⋆ 2S1 0
⋆ ⋆ τ2Im


 η < 0,

=⇒ V1 (f(x, w)) − τ1V1(x) − τ2∥w∥2 − 2sΩ(S1, Cx) < 0
=⇒ V1 (f(x, w)) − c − τ1(V1(x) − c) − τ2(∥w∥2 − σ) − 2sΩ(S1, Cx) < 0
=⇒ V1 (f(x, w)) − c − τ1(V1(x) − c) < 0
=⇒ V1 (f(x, w)) < c if V1(x) < c and ∥w∥2 ≤ σ. (A.9)

pre- and post-
multiply with
η⊤ and η

Use V1 and (2.16)

Add (3.13b)

sΩ ≤ 0, ∥w∥2 ≤ σ

This expression indeed verifies condition (3.6b) for the quadratic K-function γ(s) = 1
σ s2 given the

positive coefficient σ and argument s = ∥w∥ ∈ R>0.

From this analysis, we can conclude that condition (3.6)in Lemma 3.1 holds true and hence, there exists a
compact set Sc = {x ∈ Rnx | V1(x) ≤ c}, which is positively invariant according to Definition 3.2 with respect
to (i) the system dynamics (??) and (ii) inputs from class W = {w ∈ Rnw | ∥w∥2 ≤ σ}.

Part 2: Global exponential uniform asymptotic incremental stability

The global exponential uniform asymptotic incremental stability property is guaranteed if the assump-
tions in Lemma 3.3 are verified for S = Rmx . This part of the proof shows that the conditions in Theo-
rem 3.5 imply the satisfaction of the conditions (3.9) for the time-independent incremental Lyapunov function
V2(xa, xb) =

∥∥xa − xb
∥∥2

P2
and adequate choices of functions α3(·), α4(·) and α5(·).
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• Firstly, we consider (3.9a) in Lemma 3.3. Recall that V2 is positive definite by definition. Then, we can
apply Rayleigh’s inequality as in Lemma B.4, such that

λmin(P2)
∥∥xa − xb

∥∥2 ≤ V2(xa, xb) ≤ λmax(P2)
∥∥xa − xb

∥∥2
. (A.10)

Obviously, this expression indeed satisfies condition (3.9a) for the quadratic K∞-functions α3(s) =
α̃3s2 and α4(s) = α̃4s2, with strictly positive coefficients α̃3 = λmin(P2), α̃4 = λmax(P2) and argument
s =

∥∥xa − xb
∥∥ ∈ R>0.

• Consecutively, we consider condition (3.9b) in Lemma 3.3. One can define

µ :=
[
xa − xb

ua − ub

]
. (A.11)

Note that µ has a similar role as η in (A.69) with the difference that η depends on the input w, whereas
µ is independent of w. One can pre- and post-multiply linear matrix inequality (LMI) (3.13c) by µ⊤ and
µ respectively, such that for all µ ̸= 0:

[
A⊤

B⊤

]
P2

[
A⊤

B⊤

]⊤

−
[
P2 −C⊤Ω̄S2
⋆ 2S2

]
≺ 0n+p+m

=⇒ µ⊤
[
A⊤

B⊤

]
P2

[
A⊤

B⊤

]⊤

µ − µ⊤
[
P2 −C⊤Ω̄S2
⋆ 2S2

]
µ < 0

=⇒ V2(f(xa, w), f(xb, w)) − V2(xa, xb) − 2sΩ̄(S1, ya, yb) < 0
=⇒ V2

(
f(xa, w), f(xb, w)

)
− V2(xa, xb) < 0

=⇒ V2
(
f(xa, w), f(xb, w)

)
− V2(xa, xb) < α̃5

∥∥xa − xb
∥∥.

pre-and post-
multiply with
µ⊤ and µ

use V2 and (2.16)

sΩ̄ ≤ 0

strict inequality

This inequality indeed verifies condition (3.9b) for the quadratic K∞-function α5(s) = α̃5s2, with
some positive coefficient α̃5 and argument s =

∥∥xa − xb
∥∥ ∈ R>0.

Now all assumptions of Lemma 3.3 have been checked for solutions of Theorem 3.5 and hence the system is
globally exponentially uniformly asymptotically incrementally stable with respect to dynamics (??).

In conclusion, this proof has shown the existence of a compact, positively invariant set, as well as the global
exponential uniform asymptotic incremental stability property. As a result, Theorem 3.4 can be used to show
that the system is globally exponentially uniformly convergent with respect to dynamics (??) for the class of
inputs Wγ .
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A.5 Proof of Lemma 3.4

Proof.

This proof shows that the GEUC property of the dynamics (2.1) for the class of arbitrary bounded inputs is
implied by the feasibility of the conditions in Theorem 3.5. It does so by admitting that the incremental
Lyapunov function is invariant under absence or presence of feedthrough matrix D and the following steps
are taken.

• Consider a Lur’e-type model





x(k + 1) = Ax(k) + Bu(k) + Lw(k)
y(k) = Cx(k),
u(k) = φ(y(k)),

(A.12a)

(A.12b)

(A.12c)

and let this model be convergent under the conditions of Theorem 3.5 for the class of bounded inputs
with a given bound.

• Under this convergence condition, there exists an incremental Lyapunov function V = ∥x1 − x2∥2
P for

some 0 ≺ P ∈ Snx , such that
∆V ≤ −ϵV, ∀x1, x2 ∈ Rnx , (A.13)

in which ϵ ∈ R>0 is a strictly positive scalar.

• For obvious reasons, the incremental stability property is invariant under transformations from dynamics
(A.12) into dynamics of type (A.12). Therefore, V can also be used as an incremental Lyapunov function
for the dynamics (A.12).

• Let us introduce the Lyapunov function candidate V2 = ∥x∥2
P , which can be interpret as a special case

of V for x1 = x and x2 = 0. Then, the incremental Lyapunov function loses its incremental appearance
and reduces to V = ∥x∥P . The Lyapunov function increment can be written as

∆V = ∥f(x, u)∥2
P − ∥x∥2

P

= ∥f(x, u) − f(0, u) + f(0, u)∥2
P − ∥x − 0∥2

P

≤ ∥f(x, u) − f(0)∥2
P + ∥f(0, u)∥2

P −∥x − 0∥2
P

≤ −ϵV + ∥f(0, u)∥2
P .

(A.14)

• The red term in the previous inequality is bounded for arbitrary bounded inputs, because of the
incremental sector condition on the nonlinearity. This can be seen as follows:

f(x(k), u(k)) = x(k + 1)
= Ax(k) + Bu(k) + Lw(k),

(A.15)

and hence
f(0, u(k)) = Bu(k) + Lw(k)

= Bφ(y(k) + Dw(k)) + Lw(k)
= Bφ(Dw(k)) + Lw(k).

(A.16)

This equality is indeed bounded for bounded excitations w(k) and an incrementally sector bounded
nonlinearity φ.

• Then, V2 is a Lyapunov function that guarantees the existence of a positively invariant set. Together
with the global exponential incremental stability property, this in turn implies the GEUC property for the
dynamics (2.1) and arbitrary bounded inputs, which closes the proof.
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A.6 Proof of Lemma 3.5

Proof.

This proof starts by assuming that there exists a set of variables {P1, P2, S1, S2, τ1, τ2} such that the con-
ditions in Theorem 3.5 hold true. To show that the feasibility of these conditions is irrespective from
hyper-parameter τ2, we first split the conditions into two independent sets:

• Set I is affected by {P1, S1, τ1, τ2}) and consists of Inequalities (3.13a) and (3.13b) (.

• Set II is affected by {P2, S2} and consists of Inequality (3.13c).

Consecutively, we analyse the redundancy of τ2 for feasibility purposes in these two sets of conditions one
after the other.

• Next, we show that the feasibility of set I is independent from τ2.

– Let us multiply (3.13a) by a positive scalar ϵ > 0, such that




A⊤

B⊤

F ⊤


 (ϵP1)




A⊤

B⊤

F ⊤




⊤

−




τ1 (ϵP1) −C⊤Ω (ϵS1) 0nx×nw

⋆ 2 (ϵS1) 0nu×nw

⋆ ⋆ (ϵτ2) Inw


 ≺ 0nx+nu+nw . (A.17)

From this inequality, we can conclude that (3.13a) is feasible for any variable set: {ϵP1, ϵS1, τ1, ϵτ2}.
This makes the feasibility of (3.13a) irrespective of hyper-parameter τ2.

– Let us analyse Inequality (3.13b) for arbitrary 0 < τ1 < 1 and τ2 > 0. Admit that one can always
select positive scalar variables c and σ, such that Inequality (3.13b) is feasible. Indeed, this
observation makes the feasibility of Theorem B.1 independent from hyper-parameter τ2

• The feasibility of set II is trivially irrespective from τ2, because these conditions are not parametrised by
this hyper-parameter.

We have shown that the feasibility of sets I and II does not depend on τ2. Thereby, the feasbility of Theorem 3.5
is irrespective from τ2.
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A.7 Proof of Theorem 3.6

Proof.
This proof verifies the validity of the assumptions of the sufficient part of Theorem 3.4 and is split in two
parts. Part 1 addresses the existence of a compact, positively invariant set for the class of bounded inputs.
Consecutively, the global exponential incremental stability property is discussed in part 2. Note that there
exists a strong parallel between this proof and the proof of Theorem 3.5. For readability purposes, the exact
parallels are not repeated.

Part 1: Existence of a compact positively invariant set

The existence of a compact, positively invariant set is guaranteed if the assumptions in Lemma 3.1 are verified.
Therefore, this part of the proof aims at showing that solutions to Theorem 3.6 imply satisfaction of the
conditions (3.6) for adequate choices of functions γ(·), α1(·), α2(·) and scalar τ .

• Firstly, we consider condition (3.6a) in Lemma 3.1. This condition can be verified as presented in the
proof of Theorem 3.5. There exist functions α1(s) = α̃1s2 and α2(s) = α̃2s2 with positive scalars
α̃1 := λmin(P1), α̃2 := λmax(P1) and argument s = ∥x∥. Trivially, these quadratic K∞-functions verify
condition (3.6a).

• Consecutively, we consider condition (3.6b) in Lemma 3.1. To that end, we introduce a nonzero scalar λ,
such that we can apply Lemma B.1. This lemma guarantees M − κ∗N ≺ 0, which for κ∗ = λ−1 and
choosing the left-hand-side of (3.14a) as M , together with a possibly indefinite choice for matrix N
reads

[
A⊤

B⊤

]
P1

[
A⊤

B⊤

]⊤

−
[
τP1 −C⊤S1Ω

⋆ 2S1

]

︸ ︷︷ ︸
M

−
(

− 1
λ

)

︸ ︷︷ ︸
κ∗

[
A⊤P1L
B⊤P1L

] [
A⊤P1L
B⊤P1L

]⊤

︸ ︷︷ ︸
N

≺ 0. (A.18)

We can rewrite this expression into the form

[
A⊤

B⊤

]
P1

[
A⊤

B⊤

]⊤

−
[
τP1 −C⊤S1Ω

⋆ 2S1

]

︸ ︷︷ ︸
Ā

−
[
A⊤P1L
B⊤P1L

]

︸ ︷︷ ︸
B̄

(
− 1

λ
Im

)

︸ ︷︷ ︸
D̄−1

[
A⊤P1L
B⊤P1L

]⊤

︸ ︷︷ ︸
C

≺ 0. (A.19)

From this expression, we observe that D̄ ≺ 0 by definition. Therefore, we can apply Lemma B.3 as a
necessary and sufficient condition for

[
Ā B̄

C̄ D̄

]
≺ 0. (A.20)

After rearranging terms and substituting the original variables, this inequality is equivalent to




A⊤

B⊤

L⊤


P1




A⊤

B⊤

L⊤




⊤

−




τP1 −C⊤S1Ω 0n×m

⋆ 2S1 0p×m

⋆ ⋆ λIm + L⊤P1L


 ≺ 0. (A.21)

Subsequently, one can define

η :=
[
x⊤ u⊤ w⊤]⊤ , (A.22)
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such that pre- and post-multiplication of Inequality (A.21) by η⊤ and η, respectively, yields for all η ̸= 0:



A⊤

B⊤

L⊤


P1




A⊤

B⊤

L⊤




⊤

−




τP1 −C⊤S1Ω 0n×m

⋆ 2S1 0p×m

⋆ ⋆ λIm + L⊤P1L


≺ 0

=⇒ η⊤




A⊤

B⊤

L⊤


P1




A⊤

B⊤

L⊤




⊤

η − η⊤




τP1 −C⊤S1Ω 0n×m

⋆ 2S1 0p×m

⋆ ⋆ λIm + L⊤P1L


 η < 0

=⇒ V1 (f(x, w)) − τV1(x) − 2sΩ(S1, Cx) − λ∥w∥2
2 − ∥Lw∥2

P1
< 0

=⇒ V1 (f(x, w)) − τV1(x) − λ∥w∥2
2 − ∥Lw∥2

P1
< 0. (A.23)

pre-and
post-
multiply

Use V1
and
(2.16)

sΩ ≤ 0

The next step is to assume that there always exist positive scalars σ, c ∈ R>0, such that

−c(1 − τ) + σ < 0, (A.24)

A summation of Inequalities (A.23) and (A.24) can then be written as

V1 (f(x, w)) − c − τ (V1(x) − c) +
(

σ − ∥Lw∥2
P1

− λ∥w∥2
2

)

︸ ︷︷ ︸
X

< 0. (A.25)

One can always guarantee X ≥ 0 by choosing

σ ≥ σ∗ := λ∥w∥2
2 + ∥Lw∥2

P1
. (A.26)

Note that this decision induces the following requirement, which originates from (A.24):

c > c∗ := σ∗

1 − τ
. (A.27)

Given that X ≥ 0, this term can be excluded from Inequality (A.25), such that the remaining terms
imply

V1 (f(x, w)) < c | {V1 (x) ≤ c} , (A.28)

for the input class

Wγ =
{

w ∈ Rm, ∥w∥2
2 ≤ σ

ρ(L⊤P1L) + λ

}
. (A.29)

These expressions indeed verify condition (3.6b) for the quadratic K-function γ(s) = γ̃s2 with argument

s = ∥w∥2 and coefficient γ̃ = ρ(L⊤P1L)+λ
σ . Given the positive scalars σ, λ, it holds γ̃ ∈ R>0.

From this analysis, we can conclude that condition (3.6) in Lemma 3.1 holds true and hence, there exists a
compact, positively invariant set Sc =

{
x ∈ Rn | V1(x) ≤ c, ∥w∥2 ≤ γ−1(1)

}
.

Part 2: Global exponential uniform asymptotic incremental stability

The global exponential uniform asymptotic incremental stability property is guaranteed if the assumptions
in Lemma 3.3 are verified for S = Rn. This part of the proof shows that solutions to Theorem 3.6 imply
conditions (3.9) for the time-independent incremental Lyapunov function V2(xa, xb) =

∥∥xa − xb
∥∥2

P2
and

adequate choices of functions α3(·), α4(·) and α5(·). Notice that the LMI (3.14b) is equivalent to (3.13c)
in Theorem 3.5. Therefore, part 2 of that theorem’s proof can be followed to guarantee that there exists a
quadratic K∞-function α5 = α̃5s2 with some positive scalar α̃5 satisfying condition (3.9) in Lemma 3.3. This
makes the dynamics (2.1) globally exponentially uniformly asymptotically incrementally stable.

In conclusion, this proof has shown the existence of a compact, positively invariant set, as well as the global
exponential uniform asymptotic incremental stability property. As a result, Theorem 3.4 defines the system
as globally exponentially uniformly convergent with respect to dynamics (2.1) for the class of inputs Wγ .
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A.8 Proof of Theorem 3.7

Proof.
In this proof, we show that the feasibility of condition (3.16) in Theorem 3.7 implies the inequality (3.14).
We write all three conditions on a scalar level and then show that Condition (3.16) is more strict than the
conditions (3.14).

• Assume that there exist variables P ≻ 0, S ≻ 0 such that inequality (3.16) holds true. Let us now
introduce the variable

µ1 =
[
x⊤ u⊤]⊤ . (A.30)

Pre- and post-multiplication of Condition (3.16) by µ⊤
1 and µ1, respectively, yields for all µ1 ̸= 0nx+ny

:

[
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
τ∗P −C⊤Ω̄S

⋆ 2S

]
≺ 0nx+ny

=⇒ µ⊤
1

([
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
τ∗P −C⊤Ω̄S

⋆ 2S

])
µ1 < 0

=̂ x⊤A⊤PAx + 2x⊤A⊤PBu + u⊤ (B⊤PB − 2S
)

u︸ ︷︷ ︸
:=α

−τ∗x⊤Px + 2x⊤C⊤SΩ̄u < 0

=̂ α − τ∗x⊤Px + 2x⊤C⊤SΩ̄u < 0 (A.31)

pre- and
post-
multiply

• Let us propose the same variables as a solution to Condition (3.14b) such that we can substitute P2 = P
and S2 = S. Furthermore, let us also pre-and post-multiply this inequality by µ⊤

1 and µ1, respectively.
Then we find for all µ1 ̸= 0nx+ny

:

[
A⊤

B⊤

]
P2

[
A⊤

B⊤

]⊤

−
[
P2 −C⊤Ω̄S2
⋆ 2S2

]
?≺ 0nx+ny

[
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
P −C⊤Ω̄S
⋆ 2S

]
?≺ 0nx+ny

=⇒ µ⊤
1

([
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
P −C⊤Ω̄S
⋆ 2S

])
µ1

?
< 0

=̂ x⊤A⊤PAx + 2x⊤A⊤PBu + u⊤ (B⊤PB − 2S
)

u︸ ︷︷ ︸
α

−x⊤Px + 2x⊤C⊤SΩ̄u
?
< 0

=̂ α − x⊤Px + 2x⊤C⊤SΩ̄u
?
< 0 (A.32)

Substitute
solution

pre- and
post-
multiply

• The same reasoning can be applied to Condition (3.14b) such that we find for all µ1 ̸= 0nx+ny
:

[
A⊤

B⊤

]
P1

[
A⊤

B⊤

]⊤

−
[
τP1 −C⊤ΩS1

⋆ 2S1

]
?≺ 0nx+ny

[
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
τP −C⊤ΩS
⋆ 2S

]
?≺ 0nx+ny

=⇒ µ⊤
1

([
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
τP −C⊤ΩS
⋆ 2S

])
µ1

?
< 0

=̂ x⊤A⊤PAx + 2x⊤A⊤PBu + u⊤ (B⊤PB − 2S
)

u︸ ︷︷ ︸
α

−τx⊤Px + 2x⊤C⊤SΩ̄u
?
< 0

=̂ α − τx⊤Px + 2x⊤C⊤SΩu
?
< 0 (A.33)

Substitute
solution

Pre- and
post-
multiply
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• let us denote the left-hand-side of an inequality by LHS(·). To arrive at the desired result, we verify

LHS((A.32))
?
≤ (A.31)

=̂ α − x⊤Px + 2x⊤C⊤SΩ̄u
?
≤ α − τ∗x⊤Px + 2x⊤C⊤SΩ̄u < 0

=̂ (τ∗ − 1) ∥x∥2
P

?
≤ 0 (A.34)

Substitute
variables

Rearrange
terms

which indeed holds true because (i) τ∗ < 1 and (ii) P ≻ 0. Furthermore, let us verify

LHS((A.33))
?
≤ (A.31)

=̂ α − τx⊤Px + 2x⊤C⊤SΩu
?
≤ α − τ∗x⊤Px + 2x⊤C⊤SΩ̄u < 0

=̂ (τ∗ − τ) ∥x∥2
P + 2u⊤S

(
Ω − Ω̄

)
Cx

?
≤ 0

=⇒ (τ∗ − τ) ∥x∥2
P + 2u⊤ S

(
Ω − Ω̄

)
︸ ︷︷ ︸

P

y
?
≤ 0 (A.35)

Substitute
variables

Rearrange
terms

y = Cx

which indeed holds true, because (i) P ≻ 0, (ii) there always exists a τ such that τ∗ < τ < 1 and,
hence, τ∗ − τ < 0, (iii) P ⪯ 0 since Ω̄ ⪰ Ω and (iv) ui and yi always have equal signs. The third and
fourth item in this list follow from the sector condition on φ as explained in Section 2.2.

• As a result, we have shown that the feasibility of condition (3.16) in Theorem 3.7 implies the feasibility
of the inequalities (3.14) in Theorem 3.6 for the Lur’e-type dynamics (2.1) with the additional D = 0ny

assumption made in Equation (A.35). As a final step, by Lemma 3.4 we conclude upon global exponential
uniform convergence for any class of bounded inputs with a possibly non-zero feedthrough matrix D.
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A.9 Proof of Lemma 3.6

Proof.
This proof verifies the validity of the assumptions of the sufficient part of Lemma 3.6 and is split in three
parts. In part 1, we manipulate the convergence conditions and the Bounded-Real-Lemma condition towards
a scalar form. Thereafter, in part 2 we show that the feasibility of the Bounded-Real-Lemma condition for Σ̃ỹũ

is implied for γ ≥ 2 to conclude upon an upper-bound to the H∞ norm on the dynamics of interest.

Part 1: Convergence conditions manipulation

Assume that there exist variables P ≻ 0, S ≻ 0 such that Inequality (3.16) in Theorem 3.7 holds true. In
the proof of Theorem 3.7 (see Appendix A.8) we have seen that this assumption implies the feasibility of
Condition (3.14b) in Theorem 3.6 for P2 = P and S2 = S. Let us first define the variable

µ1 :=
[
x⊤ u⊤]⊤ . (A.36)

Pre- and post-multiplication of Condition (3.14b) by µ⊤
1 and µ1, respectively, yields for all µ1 ̸= 0n+p:

[
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
P −C⊤Ω̄S
⋆ 2S

]
≺ 0n+p

=⇒ µ⊤
1

([
A⊤

B⊤

]
P

[
A⊤

B⊤

]⊤

−
[
P −C⊤Ω̄S
⋆ 2S

])
µ1 < 0

=̂ x⊤ (A⊤PA − P
)

x + 2x⊤A⊤PBu + u⊤B⊤PBu︸ ︷︷ ︸
=:α

−2u⊤Su + 2x⊤C⊤SΩ̄u < 0

=̂ 2u⊤Su − 2x⊤C⊤SΩ̄u > α (A.37)

pre- and
post-
multiply

Part 2: Bounded real Lemma manipulation

Recall that our Lur’e-type system is cast into its normalised, symmetric form (Σ̃, φ̃) as per Lemma 2.4. Our
focus lies on the LTI dynamics from nonlinearity output ũ to nonlinearity input ỹ, denoted by Σ̃ũy.

• We have seen before that this system respects the transfer function representation

Σ̃ũỹ(z) =
[

A + 1
2 BΩ̄C B

Ω̄C 0ny

]
, (A.38)

such that a state-space formulation of these dynamics reads





xk+1 = (A + 1
2BΩ̄C)

︸ ︷︷ ︸
Ā

xk + Bũk,

ỹk = Ω̄C︸︷︷︸
C̄

xk,

(A.39a)

(A.39b)

Also, recall that the nonlinearity output ũ of Σ̃ is related to the signals in Σ via

ũ = u − 1
2Ω̄y (A.40)

• Let us first introduce the variable

µ2 :=
[
x⊤ ũ⊤ ỹ⊤]⊤ , (A.41)
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which allows us via pre- and post-multiplication by µ⊤
2 and µ2 to write the Bounded real Lemma LMI

(2.12) for minimal state-space realisations on a scalar level according to




Ā⊤PĀ − P Ā⊤PB C̄⊤

∗ B⊤PB − γIny
0ny

∗ ∗ −γIny


 ?

⪯ 0

=⇒ µ⊤
2




Ā⊤PĀ − P Ā⊤PB C̄⊤

∗ B⊤PB − γIny
0ny

∗ ∗ −γIny


µ2

?
≤ 0

=̂ x⊤ (Ā⊤PĀ − P
)

x︸ ︷︷ ︸
Term 1

+ 2x⊤Ā⊤PBũ︸ ︷︷ ︸
Term 2

+ 2ỹ⊤C̄x − γỹ⊤ỹ︸ ︷︷ ︸
Term 3

+ ũ⊤(B⊤PB − γIny )ũ︸ ︷︷ ︸
Term 4

?
≤ 0. (A.42)

pre- and
post-
multiply

For readability of the sequel, this inequality was split into four terms, which will all be manipulated
(if necessary) according to the following two steps: Step I: Substitution of the normalised, symmetric
transformation to express the inequality into the parametrisation of (Σ, φ). Step II: Substitution of the
nonlinearity input equation Equation (A.39b).

Term 1:

x⊤ (Ā⊤PĀ − P
)

x

=̂ x⊤

((
A + 1

2BΩ̄C

)⊤

P

(
A + 1

2BΩ̄C

)
− P

)
x

=̂ x⊤ (A⊤PA − P
)

x + x⊤A⊤PBΩ̄Cx + 1
4x⊤C⊤Ω̄B⊤PBΩ̄Cx

=̂ x⊤ (A⊤PA − P
)

x + x⊤A⊤PBΩ̄y + 1
4y⊤Ω̄B⊤PBΩ̄y (A.43)

I

II

Term 2:

2x⊤Ā⊤PB̄ũ

=̂ 2x⊤
(

A + 1
2BΩ̄C

)⊤

PB

(
u − 1

2Ω̄y

)

=̂ 2x⊤A⊤PBu − x⊤A⊤PBΩ̄y + x⊤C⊤Ω̄B⊤PBu − 1
2x⊤C⊤Ω̄B⊤PBΩ̄y

=̂ 2x⊤A⊤PBu − x⊤A⊤PBΩ̄y + y⊤Ω̄B⊤PBu − 1
2y⊤Ω̄B⊤PBΩ̄y (A.44)

I

II

Term 3:

2ỹ⊤C̄x − γỹ⊤ỹ

=̂ 2y⊤Ω̄Ω̄Cx − γy⊤Ω̄Ω̄y

=̂ (2 − γ) y⊤Ω̄Ω̄y (A.45)

I

II

Term 4:

ũ⊤(B̄⊤PB̄ − γIny
)ũ

=̂
(

u − 1
2Ω̄y

)⊤ (
B⊤PB − γIny

)(
u − 1

2Ω̄y

)

=̂ u⊤B⊤PBu − 1
4γy⊤Ω̄Ω̄y − y⊤Ω̄B⊤PBu + γu⊤Ω̄y + 1

4y⊤Ω̄B⊤PBΩ̄y − γu⊤u (A.46)

I
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Notice that all underlined terms in Equations (A.43) to (A.46) cancel with respect to the other terms with
a matching color. Incorporating all these changes, we can write Inequality (A.42) as

x⊤ (A⊤PA − P
)

x + 2x⊤A⊤PBu + u⊤B⊤PBu︸ ︷︷ ︸
=α

+
(

2 − 5
4γ

)
y⊤Ω̄Ω̄y +γu⊤Ω̄y −γu⊤u

?
≤ 0 (A.47)

• In this expression, we recognize the α-term that we saw before in the convergence conditions manipu-
lation step. We found an upper-bound to α in Inequality (A.37), which we can apply here and hence

2u⊤Su − 2x⊤C⊤SΩ̄u +
(

2 − 5
4γ

)
y⊤Ω̄Ω̄y + γu⊤Ω̄y − γu⊤u

?
≤ 0. (A.48)

We can once more substitute Equation (A.39b), such that

2u⊤Su − 2y⊤Ω̄Su +
(

2 − 5
4γ

)
y⊤Ω̄Ω̄y + γu⊤Ω̄y − γu⊤u

?
≤ 0. (A.49)

Furthermore, by the cone bounded sector constraints on φ, we know that u⊤u ≤ y⊤Ω̄u ≤ y⊤Ω̄Ω̄y. We
can upper-bound the blue term in Inequality (A.49) by this relation to arrive at

2y⊤Ω̄Su − 2y⊤Ω̄Su +
(

2 − 5
4γ

)
y⊤Ω̄Ω̄y + γu⊤Ω̄y − γu⊤u

?
≤ 0. (A.50)

The first two terms cancel out and what remains is
(

2 − 5
4γ

)
y⊤Ω̄Ω̄y + γu⊤Ω̄y − γu⊤u

?
≤ 0. (A.51)

Observe that due to the diagonality of Ω̄ we can interpret this inequality as

y⊤




(2 − 5
4 γ)Ω̄2

1
. . .

(2 − 5
4 γ)Ω̄2

ny


 y+u⊤




γΩ̄1
. . .

γΩ̄ny


 y−u⊤




γ
. . .

γ


u

?
≤ 0, (A.52)

which can be rewritten into

ny∑

i=1
(2 − 5

4γ)Ω̄2
i y2

i + γΩ̄iuiyi − γu2
i

?
≤ 0. (A.53)

A sufficient condition for Inequality (A.53) to hold, reads

(2 − 5
4γ)Ω̄2

i y2
i + γΩ̄iuiyi − γu2

i ≤ 0, ∀i ∈ {1, . . . , ny} , (A.54)

which admits the quadratic form

[
ui

yi

]⊤ [−γ 1
2 Ω̄i

⋆ (2 − 5
4 γ)Ω̄2

i

]

︸ ︷︷ ︸
P(Ω̄i,γ)

[
ui

yi

]
?
≤ 0, ∀i ∈ {1, . . . , ny} . (A.55)

This inequality holds true whenever P is negative semi-definite. To assess this property, we analyse
the eigenvalues of P as function of Ω̄i and γ in Figure A.1.
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(a) Eigenvalues. (b) Nonpositive?

Figure A.1: Eigenvalues of P on the (γ, Ω̄) grid.

It can clearly be seen that P(Ω̄i, γ) is negative semi-definite for all Ωi, γ ∈ R>0 as long as γ ≥ 2. On
the boundary, P is still negative semi-definite, as can be concluded from its non-positive eigenvalues

λ1(P(Ω̄i, 2)) = 0, λ2(P(Ω̄i, 2)) = −2 − 1
2Ω̄2

i .

In conclusion, the feasibility of the non-strict discrete-time bounded-real lemma conditions on GΣỹũ
(z)

for γ ≥ 2 is implied by the feasibility of the convergence conditions. Therefore, it holds

∥∥GΣỹũ
(z)
∥∥

H∞
< 2, (A.56)

which closes this proof.
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A.10 Proof of Theorem 4.1

Proof.

Part 1: Derivation of the parameter sensitivity model

The product- and chain rule for differentiation with indirect dependencies are applied to the entire steady-state
dynamics of (4.2), such that




x̄θi
(k + 1) = Aθi

x̄(k) + Ax̄θi
(k) + Bθi

ū(k) + B ūθi
(k) + Lθi

w(k) + Lwθi
(k),

ȳθi
(k) = Cθi

x̄(k) + Cx̄θi
(k) + Dθi

w(k) + Dwθi
(k),

z̄θi
(k) = Fθi

x̄(k) + F x̄θi
(k) + Gθi

ū(k) + Gūθi
(k) + Hθi

w(k) + Hwθi
(k),

ūθi
(k) = φθi

(ȳ(k)) + φy

(
ȳ(k)

)
ȳθi

(k)

(A.57a)

(A.57b)

(A.57c)

(A.57d)

Obviously, wθ = 0, thanks to the external excitation being independent from the decision variables. Conse-
quently, the blue terms in (A.57) can be omitted. Let us now substitute Equation (A.57d) into Equations (A.57a)
and (A.57c), such that after rearranging terms one finds




x̄θi
(k + 1) = Ax̄θi

(k) + Bφy

(
ȳ(k)

)
ȳθi

(k) + Aθi
x̄(k) + Lθi

w(k) + Bθi
ū(k) + Bφθi

(
ȳ(k)

)
,

ȳθi
(k) = Cx̄θi

(k) + Cθi
x̄(k) + Dθi

w(k),
z̄θi

(k) = F x̄θi
(k) + Gφy

(
ȳ(k)

)
ȳθi

(k) + Fθi
x̄(k) + Hθi

w(k) + Gθi
ū(k) + Gφθi

(
ȳ(k)

)
,

(A.58a)

(A.58b)

(A.58c)

Note that the red terms in this expression can be interpret as a nonlinear steady-state input ¯̆u(k) =
φθi(ȳθi , Ψ(k)) associated with the nonlinearity φθi(ȳθi(k), Ψ(k)) = Ψ(k)ȳθi(k) that is subject to a
time-varying external input Ψ(k) = φy(ȳ(k)). By the incremental sector condition on φ, it is known that
Ψ(k) ∈ [0, Ω̄]. Therefore, the nonlinearity φθi is also incrementally sector bounded within [0, Ω̄]. The blue
terms depend on the steady-state solution of (Σ, φ) and can, therefore, be interpret as exogenous inputs
w̆θi

1 , w̆θi
2 , w̆θi

3 (see Equation (4.19)) to these steady-state dynamics. Consequently, Equation (A.58) can be
rewritten into



x̄θi(k + 1) = Ax̄θi(k) + B ¯̃u + w̆θi
1 (k, θ),

ȳθi
(k) = Cx̄θi

(k) + w̆θi
2 (k, θ),

z̄θi(k) = F x̄θi(k) + G¯̃u + w̆θi
3 (k, θ),

¯̆ui(k) = φθi(ȳθi(k), Ψ(k)),

(A.59a)

(A.59b)

(A.59c)

(A.59d)

Note that the Equations (A.57) to (A.59) only hold true in steady-state. Moreover, notice that Equation (A.59)
describes the steady-state solution of the model

Σθi :





xθi
(k + 1) = Axθi

(k) + Bŭθi(k) + w̆θi
1 (k),

yθi(k) = Cxθi(k) + w̆θi
2 (k),

zθi
(k) = Fxθi

(k) + Gŭθi(k) + w̆θi
3 (k),

(A.60a)

(A.60b)

(A.60c)

φθi :
{

ŭθi(k) = φθi(ȳθi(k), Ψ(k)), (A.60d)

which is equivalent to the parameter sensitivity system Equation (4.17) up to a renaming of variables via
Equations (4.18) and (4.20).

Part 2: Argumentation for the properties of parameter sensitivity models

The sensitivity of steady-state model outputs z̄ with respect to a decision variable θi can thus be described
by the steady-state solution of the parameter sensitivity model (A.60). Via Equations (4.14) and (4.15), this
sensitivity is directly related to the objective function gradient with respect to the decision variables. Finally,
recall that (Σ, φ) is convergent by verifying the condition in Theorem 3.7. This condition is dependent on
the variables

{
A, B, C, Ω̄

}
, and because all these variables are shared between (Σ, φ) and (Σθi , φθi), the

parameter sensitivity model is convergent as well.
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A.11 Proof of Theorem 4.2

Proof.
Let us consider two arbitrary steady-state nonlinearity input signals ¯̃ya

[i],
¯̃yb

[i] ∈ ℓ
ny

2 (N) to Lur’e-type model
(Σ̃, φ̃), defined at arbitrary iteration i of the MTF algorithm. Our approach is to execute one iteration of the
MTF algorithm and then compare the ‘distance’ between ¯̃ya and ¯̃yb measured in ℓ

ny

2 -norm before and after
this iteration to show the contraction mapping property for (F̂ỹũ ◦ F̂ũỹ).

• To that end, let us apply Equation (4.23) on ¯̃ya
[i] and ¯̃yb

[i] such that for p ∈ {a, b}, we write

¯̃yp
[i+1] =

(
F̂ỹũ ◦ F̂ũỹ

)
◦ ¯̃yp

[i] + F̂ỹw ◦ w, (A.61)

in which we recognise the linear steady-state operators F̂ỹũ and F̂¯̃yw̃ as defined for LTI dynamics in
Equation (2.5). Furthermore, we recognise a nonlinear steady-state operator F̂ũỹ, defined as

ū = F̂ũỹ ◦ ¯̃y, where
(

F̂ũỹ ◦ ¯̃y
)

(m) = φ̃(¯̃y(m)). (A.62)

Consequently, the ‘distance’ between ¯̃ya
[i+1] and ¯̃yb

[i+1] can be expressed as
∥∥∥¯̃ya

[i+1] − ¯̃yb
[i+1]

∥∥∥
ℓ

ny
2

=
∥∥∥
(

F̂ỹũ ◦ F̂ũỹ

)
◦ ¯̃ya

[i] −
(

F̂ỹũ ◦ F̂ũỹ

)
◦ ¯̃yb

[i]

∥∥∥
ℓ

ny
2

(A.63)

• Let us now present the following two instrumental inequalities:

1. By Definition 2.3 we know that the following inequality holds true for any ¯̃u1, ¯̃u2 ∈ ℓnu
2 (N):

∥∥¯̃u1 − ¯̃u2
∥∥

ℓnu
2

=
∥∥∥F̂ũỹ ◦ ¯̃y1 − F̂ũỹ ◦ ¯̃y2

∥∥∥
ℓnu

2

≤ Kφ̃

∥∥¯̃y1 − ¯̃y2
∥∥

ℓ
ny
2

. (A.64)

Since φ̃ is incrementally sector bounded within
[
− 1

2 Iny
, 1

2 Iny

]
, it is known that Kφ̃ = 1

2 .

2. Also, we can use Property 2.2 to derive the following inequality for any ¯̃u1, ¯̃u2 ∈ ℓnu
2 (N):

∥∥¯̃y1 − ¯̃y2
∥∥

ℓ
ny
2

=
∥∥∥F̂ỹũ ◦ ¯̃u1 − F̂ỹũ ◦ ¯̃u2

∥∥∥
ℓnu

2

≤ KΣ̃
∥∥¯̃u1 − ¯̃u2

∥∥
ℓnu

2
. (A.65)

By the result of Lemma 3.6, we know that KΣ̃ =
∥∥Σ̃¯̃y ¯̃u(z)

∥∥
H∞

< 2.

• Let us combine Inequalities Equations (A.64) and (A.65) such that for any ¯̃y1, ¯̃y2 ∈ ℓ
ny

2 (N):

∥∥∥
(

F̂ỹũ ◦ F̂ũỹ

)
◦ ¯̃y1 −

(
F̂ỹũ ◦ F̂ũỹ

)
◦ ¯̃y2

∥∥∥
ℓ

ny
2

≤ Kφ̃KΣ̃
∥∥¯̃y1 − ¯̃y2

∥∥
ℓ

ny
2

. (A.66)

in which we can substitute ¯̃y1 = ¯̃ya
[i] and ¯̃y2 = ¯̃yb

[i] to identify the RHS of Equation (A.63) such that we
conclude

∥∥∥¯̃ya
[i+1] − ¯̃yb

[i+1]

∥∥∥
ℓ

ny
2

≤ Kφ̃KΣ̃︸ ︷︷ ︸
:=α < 1

∥∥∥¯̃ya
[i] − ¯̃yb

[i]

∥∥∥
ℓ

ny
2

. (A.67)

This inequality verifies the contraction mapping theorem condition (B.17) in Theorem B.3 for α < 1.
Indeed, F̂ỹũ ◦ F̂ũỹ is a contraction mapping having a unique fixed point ¯̃y. Finally, verifying that the
true steady-state solution ¯̃y of (Σ̃, φ̃) is a fixed point of the iterative procedure in (4.23), i.e.,

¯̃y =
(

F̂ỹũ ◦ F̂ũỹ

)
◦ ¯̃y + F̂ỹw ◦ w, (A.68)

we conclude that ¯̃y = ¯̃y. Hence, the limit ¯̃y of the iterative procedure (4.23) equals the true steady-state
solution ¯̃y of (Σ̃, φ̃).
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A.12 Proof of Theorem B.1

Proof.
This proof verifies the validity of the assumptions of the sufficient part of Theorem 3.4 and is split in two parts.
Part 1 addresses the existence of a compact, positively invariant set for the class of inputs Wγ . Consecutively,
the global exponential incremental stability property is discussed in part 2. Note that there exists a strong
parallel between this proof and the proof of Theorem 3.5. For readability purposes, the exact parallels are not
repeated here.

Part 1: Existence of a compact positively invariant set

The existence of a compact, positively invariant set is guaranteed if the assumptions in Lemma 3.1 are verified.
Therefore, this part of the proof aims at showing that the conditions in Theorem B.1 imply satisfaction of the
conditions (3.6) for adequate choices of functions γ(·), α1(·), α2(·) and scalars c, τ1, τ2 and σ.

• Firstly, we consider condition (3.6a) in Lemma 3.1. This condition can be verified as presented in the
proof of Theorem 3.5. There exist functions α1(s) = α̃1s2 and α2(s) = α̃2s2 with positive scalars
α̃1 := λmin(P1), α̃2 := λmax(P1) and argument s = ∥x∥2. In conclusion, these quadratic K∞-functions
verify condition (3.6a).

• Consecutively, we consider condition (3.6b) in Lemma 3.1. To that end, one can define

η :=
[
x⊤ u⊤ w⊤]⊤ . (A.69)

Pre- and post-multiplication of LMI (B.1a) by η⊤ and η, respectively, yields for all η ̸= 0:



A⊤

B⊤

F ⊤


P1




A⊤

B⊤

F ⊤




⊤

−




τ1P1 −C⊤ΩS1 0n×m

⋆ 2S1 −S1ΩD
⋆ ⋆ τ2Im


≺ 0n+p+m

=⇒ η⊤




A⊤

B⊤

F ⊤


P1




A⊤

B⊤

F ⊤




⊤

η − η⊤




τ1P1 −C⊤ΩS1 0n×m

⋆ 2S1 −S1ΩD
⋆ ⋆ τ2Im


 η < 0

=⇒ V1 (f(x, w)) − τ1V1(x) − τ2∥w∥2
2 − 2sΩ(S1, Cx + Dw) < 0. (A.70)

pre-and
post-
multiply

Use V1 and (2.16)

This expression is of the same type as Equation (A.9) in the proof of Theorem 3.5. Therefore, that
proof can be followed from this point onwards to verify condition (3.6b) via the quadratic K-function
γ(s) = γ̃s2 with argument s = ∥w∥2 and coefficient γ̃ = 1

σ . Given the positive scalar σ, it holds
γ̃ ∈ R>0.

From this analysis, we can conclude that condition (3.6) in Lemma 3.1 holds true and hence, there ex-
ists a compact, positively invariant set Sc = {x ∈ Rnx | V1(x) ≤ c} given input from the class Wγ ={

w ∈ Rnw | ∥w∥2
2 ≤ σ

}
.

Part 2: Global exponential uniform asymptotic incremental stability

The global exponential uniform asymptotic incremental stability property is guaranteed if the assumptions
in Lemma 3.3 are verified for S = Rnx . This part of the proof shows that solutions to Theorem 3.5 imply
conditions (3.9) for the time-independent incremental Lyapunov function V2 and adequate choices of functions
α3(·), α4(·) and α5(·). Notice that the LMI (B.1c) is equivalent to (3.13c) in Theorem 3.5. Therefore, part 2
of that theorem’s proof can be followed to guarantee that here exists a quadratic K∞-function α5 = α̃5s2

with some positive scalar α̃5 satisfying condition (3.9) in Lemma 3.3. This makes the dynamics (2.1) globally
exponentially uniformly asymptotically incrementally stable.

In conclusion, this proof has shown the existence of a compact, positively invariant set, as well as the global
exponential uniform asymptotic incremental stability property. As a result, Theorem 3.4 shows that the
system is globally exponentially uniformly convergent with respect to dynamics (2.1) for the class of inputs
Wγ .
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A.13 Proof of Theorem B.2

Proof.
This proof verifies the validity of the assumptions of the sufficient part of Theorem 3.4 and is split in two parts.
Part 1 addresses the existence of a compact, positively invariant set for the class of inputs Wγ . Consecutively,
the global exponential incremental stability property is discussed in part 2. For readibility purposes we
denote the evaluation of a function at time instant k by a subscript k.

Part 1: Existence of a compact positively invariant set

The existence of a compact positively invariant set is guaranteed if the assumptions in Lemma 3.1 are verified.
Therefore, this part of the proof aims at showing that solutions to Theorem B.2 imply satisfaction of the
conditions (3.6) for adequate choices of functions γ(·), α1(·), α2(·) and scalar c. To that end, compliance to
conditions (3.6a) and (3.6b) is guaranteed one after the other.

• Firstly, we consider condition (3.6a) in Lemma 3.1. A suitable lower bound to V1 can be thought of
as the quadratic K∞-function α1(r) = α̃1 r2 for some α̃1 > 0. This lower-bound exists as can be
seen by pre- and post-multiplying inequality (B.7a) by ξ(x)⊤ and ξ(x), respectively, which yields for all
∥x∥2 ̸= 0:

P1 + GΩ(S0) ≻ 0nx+ny

∥ξ(x)∥2
P1

+ ∥ξ(x)∥2
GΩ(S0) > 0

V1(x) + 2sΩ(S0, Cx) > 0
V1(x) + 2sΩ(S0, Cx) > α̃1∥x∥2

2
V1(x) ≥ α1(r)

Pre- and post-multiply by ξ(x)⊤ and ξ(x)

Substitute (B.6a)

Strict inequality

sΩ(S, y) ≤ 0

Indeed, this expression satisfies the lower bound in (3.6a) for some positive scalar α̃1 and argument
r = ∥x∥2.

As an intermediate step, observe that the cone bounded sector constraint (2.16) guarantees φ(y) ≤ Ωy
and can be used as follows:

∥φ(y)∥2
2 = φ(y)⊤φ(y)

≤ y⊤ΩΩy

= x⊤C⊤ΩΩCx

≤ ρ
(
C⊤ΩΩC

)
∥x∥2

2, (A.71)

Use φ(y) ≤ Ωy

Use y = Cx

Rayleigh’s inequality

A suitable upper bound to V1 can be thought of as the quadratic K∞-function α2(r) = α̃2 r2 for some
α̃2 > 0. This upper-bound exists as can be seen by applying Rayleigh’s inequality, see Lemma B.4, to
the quadratic form V1(x). We have

V1(x) = ξ(x)⊤P1ξ(x)
≤ ρ(P1)∥ξ(x)∥2

2

= ρ(P1)
(

∥x∥2
2 + ∥φ(y)∥2

2

)

≤ ρ(P1)
(

∥x∥2
2 + ρ(C⊤ΩΩC)∥x∥2

2

)

= α̃2∥x∥2
2

= α2(r)

Rayleigh’s inequality

∥ξ(x)∥2
2 = ∥x∥2

2 + ∥φ(y)∥2
2

Use (A.71)

which indeed satisfies the upper bound in (3.6a) for the positive scalar α̃2 := ρ(P1)(1 + ρ(C⊤ΩΩC)
and argument r = ∥x∥2.
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• Consecutively, we consider condition (3.6b) in Lemma 3.1. One can define




ξk

ξk+1
wk


 = M1ηk, (A.72)

where

ηk :=




ξk

φ(CAxk + Bφ(Cxk) + Fwk)
wk


 , (A.73)

If we now pre- and post-multiply inequality (B.7b) by η⊤
k and ηk, respectively, then we find for all xk ̸= 0:

η⊤M⊤
1




−τ1P1 − GΩ(S1) 0nx+ny 0(nx+ny)×nw

0nx+ny
P1 − GΩ(S2) 0(nx+ny)×nw

0nw×(nx+ny) 0nw×(nx+ny) −τ2Inw


M1η< 0

=⇒




ξk

ξk+1
wk




⊤ 


−τ1P1 − GΩ(S1) 0nx+ny
0(nx+ny)×nw

0nx+ny
P1 − GΩ(S2) 0(nx+ny)×nw

0nw×(nx+ny) 0nw×(nx+ny) −τ2Inw






ξk

ξk+1
wk


< 0

=̂ ξ⊤
k (−τ1P1 − GΩ(S1)) ξk + ξ⊤

k+1 (P1 − GΩ(S2)) ξk+1 − τ2w⊤
k wk< 0

=̂ ξ⊤
k+1P1ξk+1 − τ1ξ⊤

k P1ξk − τ2w⊤
k wk − 2sΩ(S1, Cxk) − 2sΩ(S2, Cxk+1)< 0,

Use (A.72)

Use (B.6a)

which after rearranging terms results in

V1(f(xk, wk)) − τ1V1(xk) − τ2∥wk∥2 − 2sΩ(S1, Cxk) − 2sΩ(S2, Cxk+1) < 0. (A.74)

One can now add Inequality (B.7c) such that we find the form

W (xk, wk) − S(xk, wk) + g4(xk, wk) < 0, (A.75)

where

W (xk, wk) = V1(f(xk, wk)) − c (A.76a)

S(xk, wk) =
2∑

i=1
τiGi(xk, wk), G1(xk, wk) = V1(xk) − c, G2(xk, wk) = w⊤

k wk − σ (A.76b)

g4(xk, wk) = −2sΩ(S1, Cxk) − 2sΩ(S2, Cf(xk, wk)) (A.76c)

Thanks to sector condition (2.16), we conclude g4(xk+1) ≥ 0. Thus, W (f(xk, wk)) − S(xk, wk) < 0 is
necessary to satisfy (A.75). Therefore, we can apply the S-procedure as Lemma B.5 to conclude that

W (xk, wk) < 0 | {G1(x) ≤ 0, G2(x) ≤ 0}
V1(f(xk, wk)) < c |

{
V1(xk) ≤ c, ∥w∥2 ≤ σ

}
,

Use (A.76)

This expression indeed verifies condition (3.6b) for the quadratic K-function γ(s) = 1
σ s2 given the

positive coefficient σ and argument s = ∥wk∥ ∈ R>0.

From this analysis, we can conclude that condition (3.6)in Lemma 3.1 holds true and hence, there exists a

compact, positively invariant set Sc =
{

x ∈ Rn | V1(x) ≤ c, ∥w∥2
2 ≤ γ

}
.
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Part 2: Global exponential uniform asymptotic incremental stability

The global exponential uniform asymptotic incremental stability property is guaranteed if the assumptions in
Lemma 3.1 are verified for S = Rn. This part of the proof shows that solutions to Theorem 3.5 imply conditions
(3.9) for the time-independent incremental Lyapunov function V2(ξ(xa), ξ(xb)) =

∥∥ξ(xa) − ξ(xb)
∥∥2

P2
and

adequate choices of functions α3(·), α4(·) and α5(·). To that end, conditions (3.9a) and (3.9b) are checked
one after the other.

• Firstly, we consider condition (3.9a) in Lemma 3.3. A suitable lower bound to V2 can be thought of as
the quadratic K∞-function α3(r) = α̃3 r2 for some α̃3 > 0. This lower-bound exists as can be seen by

pre- and post-multiplying the LMI (B.7d) by
(
ξ(xa) − ξ(xb)

)⊤
and

(
ξ(xa) − ξ(xb)

)
, which yields for all∥∥xa − xb

∥∥ ̸= 0:

P2 + GΩ̄(S3) ≻ 0nx+ny

=⇒
(
ξ(xa) − ξ(xb)

)⊤ (P2 + GΩ̄(S3))
(
ξ(xa) − ξ(xb)

)
> 0

=⇒
∥∥ξ(xa) − ξ(xb)

∥∥2
P2

+ 2sΩ̄(S3, Cxa, Cxb) > 0

=⇒
∥∥ξ(xa) − ξ(xb)

∥∥2
P2

+ 2sΩ̄(S3, Cxa, Cxb) > α̃3
∥∥xa − xb

∥∥2

=⇒
∥∥ξ(xa) − ξ(xb)

∥∥2
P2

≥ α̃3
∥∥xa − xb

∥∥2

=⇒ V2(xa, xb) ≥ α3(r),

Pre- and post-multiply

Substitute (B.6b)

Strict inequality

sΩ̄ ≤ 0

which indeed satisfies the lower bound in (3.9a) for some positive scalar α̃3 and argument r =∥∥xa − xb
∥∥.

A suitable upper bound to V2 can be thought of as the quadratic K∞-function α4(r) = α̃4 r2 for some
α̃4 > 0. This upper-bound exists as can be seen by applying the Rayleigh inequality, see Lemma B.4, to
the quadratic form V2(ξ(xa), ξ(xb)). We have

V2(ξ(xa), ξ(xb)) =
(
ξ(xa) − ξ(xb)

)⊤
P2
(
ξ(xa) − ξ(xb)

)

≤ ρ(P2)
∥∥ξ(xa) − ξ(xb)

∥∥2
2

= ρ(P2)
(∥∥xa − xb

∥∥2
2 +

∥∥φ(ya) − φ(yb)
∥∥2

2

)

≤ ρ(P2)
(∥∥xa − xb

∥∥2
2 + ρ(C⊤Ω̄Ω̄C)

∥∥xa − xb
∥∥2

2

)

= α̃4
∥∥xa − xb

∥∥2
2

= α4(r)

Rayleigh’s inequality

∥ξ∥2
2 = ∥x∥2

2 + ∥φ(y)∥2
2

Substitute (A.71)

which indeed satisfies the upper bound in (3.9a) for a positive scalar α̃4 := ρ(P2)(1 + ρ(C⊤Ω̄Ω̄C) and
the argument r =

∥∥xa − xb
∥∥

2.

• Consecutively, we consider condition (3.9b) in Lemma 3.3. One can define

(
ξ(xa

k) − ξ(xb
k)

ξ(xa
k+1) − ξ(xb

k+1)

)
= M0µk, (A.77)

where

µk :=
(

ξ(xa
k) − ξ(xb

k)
φ(Cxa

k+1) − φ(Cxb
k+1)

)
. (A.78)

note that µk has a similar role as ηk in (A.73) with the difference that ηk depends on the input w,
whereas µk is independent of w.
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One can now pre- and post-multiply LMI (B.7e) by µ⊤
k and µk respectively, such that

µ⊤
k M⊤

0

[
−P2 − GΩ̄(S4) 0nx+ny

0nx+ny
P2 − GΩ̄(S5)

]
M0µk ≺ 0

(
ξ(xa

k) − ξ(xb
k)

ξ(xa
k+1) − ξ(xb

k+1)

)⊤ [−P2 − GΩ̄(S4) 0nx+ny

0nx+ny
P2 − GΩ̄(S5)

](
ξ(xa

k) − ξ(xb
k)

ξ(xa
k+1) − ξ(xb

k+1)

)
< 0

∥∥ξ(xa
k+1) − ξ(xb

k+1)
∥∥2

P2
−
∥∥ξ(xa

k) − ξ(xb
k)
∥∥2

P2
− 2sΩ̄(S4, Cxa, Cxb) − 2sΩ̄(S5, Cxa, Cxb) < 0

Use
(A.77)

Use
(B.6b)

Due to the strict inequality and cone bounded sector condition (2.17), we can write this inequality as

V2(xa
k+1, xb

k+1) − V2(xa
k, xb

k) < −α̃5
∥∥xa

k − xb
k

∥∥2
(A.79)

This inequality indeed verifies condition (3.9b) for the quadratic K∞-function α5(s) = α̃5s2, with
some positive coefficient α̃5 and argument s =

∥∥xa − xb
∥∥ ∈ R>0.

Now all assumptions of Lemma 3.3 have been checked for solutions of Theorem B.2 and hence the system is
globally exponentially uniformly asymptotically incrementally stable with respect to dynamics (??).

In conclusion, this proof has shown the existence of a compact, positively invariant set, as well as the global
exponential uniform asymptotic incremental stability property. As a result, Theorem 3.4 defines the system
as GEUC with respect to the considered dynamics for the class of inputs Wγ .
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A.14 Proof of Lemma B.1

Proof.
By definition of M ≻ 0, the condition is trivially satisfied for N = 0. The case ρ(N) > 0 can be considered as
follows:

• Because of the strict inequality M ≻ 0, there exists a scalar κ1 > 0, such that

M − κ1I ≻ 0. (A.80)

• Select
κ∗ = κ1

ρ(N) , (A.81)

such that for all k ∈ [−κ∗, κ∗], by definition of the spectral radius, it holds

−ρ(κN)I ≤ κN ≤ ρ(κN)I. (A.82)

By adding κ1I to these inequalities, we find:

−ρ(κN)I + κ1I ≤ κN + κ1I ≤ ρ(κN)I + κ1I, (A.83)

in which
ρ(κN) = |κ|ρ(N) ≤ κ∗ρ(N) = κ1. (A.84)

From Equations (A.83) and (A.84), we conclude −ρ(κN) + κ1 ≥ 0. This in turn implies

κN + κ1I ⪰ 0. (A.85)

• Finally, we observe that
M + κN = (M − κ1I) + (κN + κ1I) ≻ 0, (A.86)

which concludes this proof.

A.15 Proof of Lemma B.2

Proof.

• For a positive definite matrix X ≻ 0, it holds

zT Xz > 0, ∀z ̸= 0. (A.87)

• Define a new variable y, such that
z = Ty. (A.88)

Furthermore, notice that since T is invertible, such that z = 0 ⇐⇒ y = 0.

• Substitute Equation (A.88) in the positive definite form (A.87), such that

z⊤Xz ≥ 0, ∀z ̸= 0
⇐⇒ (Ty)⊤X(Ty) ≥ 0, ∀y ̸= 0
⇐⇒ y⊤ (T ⊤XT

)
y ≥ 0, ∀y ̸= 0

⇐⇒ T ⊤XT ≻ 0.
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A.16 Proof of Lemma B.3

Proof.

• Choose the following block-structured matrices:

T1 =
[

Ip 0
−D−1C Iq

]
, (A.89) T2 =

[
Ip −A−1B
0 Iq

]
. (A.90)

• Observe that T1 and T2 are block upper- and lower-triangular matrices with identities on their block
diagonal. As a result, all eigenvalues of T1 and T2 equal one and therefore both matrices are invertible
by definition.

• Notice that

T ⊤
1 MT1 =

[
M/D 0

0 D

]
, (A.91) T ⊤

2 MT2 =
[
A 0
0 M/A

]
. (A.92)

• From Lemma B.3 and the structures of Equations (A.91) and (A.92), we can now conclude that indeed
Equation (B.13) holds true.

A.17 Proof of Lemma B.4

Proof. (See [98])
Since A is real and symmetric, it is orthogonally diagonalizable. Specifically, define the n orthonormal eigen-
vectors of A as [v1, v2, . . . , vn] ∈ Rn, and let [λ1, λ2, . . . , λn] ∈ R be their corresponding eigenvalues.
Let P be the matrix whose ith column is vi and let D be a diagonal matrix whose ith diagonal entry is λi. Then

A = PDP ⊤, and P ⊤P = I.

Choose v := P ⊤u, such that

v⊤v =
(
P ⊤u

)⊤ (
P ⊤u

)
= u⊤ (PP ⊤)u = u⊤u.

Furthermore, notice that

u⊤Au = u⊤ (PDP ⊤)u =
(
P ⊤u

)
D
(
P ⊤u

)
= v⊤Dv =

n∑

i=1
λiv

2
i .

Without loss of generality, assume λn ≤ · · · ≤ λi ≤ · · · ≤ λ1, such that

n∑

i=1
λnv2

i ≤
n∑

i=1
λiv

2
i ≤

n∑

i=1
λ1v2

i

=⇒ λnv⊤v ≤
n∑

i=1
λiv

2
i ≤ λ1v⊤v

=⇒ λnu⊤u ≤ u⊤Au ≤ λ1u⊤u

which was the intended result. Finally, notice that the provided bounds are tight, because of

v⊤
n Avn = λnv⊤

n vn ∧ v⊤
1 Av1 = λ1v⊤

1 v1.
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Appendix B

Additional stability conditions

In this appendix we discuss additional stability conditions that are researched as part of this project, but
were not pursued into a main contribution to the system identification algorithm. First we show a set of
conditions with an explicit dependency on feedthrough matrix D that guarantee global, exponential uniform
convergence via Lyapunov functions that are quadratic in the system state. Thereafter, we discuss conditions
that characterise stability via Lyapunov functions that are quadratic in an extended state in an attempt to
reduce the conservatism of our stability analysis. The final section of this appendix addresses some auxiliary
lemmas that were used to proof of at least one set of stability conditions.

B.1 Explicit feedthrough matrix dependency

Theorem B.1 (Suff icient condit ions for global, exponential convergence)
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1). Let Σ and φ verify Assumptions 2.1 and 2.2
respectively. Furthermore, consider symmetric matrices P1, P2 ∈ Snx and positive scalars τ1, τ2, σ and c
such that the following inequalities hold true:




A⊤

B⊤

F ⊤


P1




A⊤

B⊤

F ⊤




⊤

−




τ1P1 −C⊤ΩS1 0nx×nw

⋆ 2S1 −S1ΩD
⋆ ⋆ τ2Inw


 ≺ 0nx+ny+nw

, (B.1a)

−c(1 − τ1) + τ2σ ≤ 0, (B.1b)
[
A⊤

B⊤

]
P2

[
A⊤

B⊤

]⊤

−
[
P2 −C⊤Ω̄S2
⋆ 2S2

]
≺ 0nx+ny . (B.1c)

Then, the assumptions of Theorem 3.4 are verified by considering V1(x) = ∥x∥2
P1

and V2(xa, xb) =∥∥xa − xb
∥∥2

P2
. According to Theorem 3.4, the Lur’e system is globally exponentially uniformly convergent

with respect to the dynamics (2.1) for the class of inputs Wγ = {wk ∈ Rnw , ∥wk∥ ≤ √
σ}. Furthermore,

the steady-state solution x̄w
k belongs to the sellipsoid E(P1, c).

Proof. See Appendix A.12.

As an alternative to the conditions, we can verify the conditions in Theorem 3.5 together with Lemma 3.4.

B.2 Quadratic Lyapunov functions in the extended state

The next conditions can be used as a starting point to reduce the conservatism in our stability conditions.
Here, we once more assume no direct feedthrough from w into y, hence D = 0ny

. We can extend our scope of
Lyapunov function candidates by going beyond quadratic functions in the system state. To that end, let us
define an extended state ξk : Rnx → Rnx+ny as

ξk =
(

xk

uk

)
=
(

xk

φ(Cxk)

)
, (B.2)
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such that the class of generalized Lyapunov functions can be introduced as

Ṽ (xk) = ∥ξk∥2
P̃ , P̃ =

[
P̃a P̃b

⋆ P̃c

]
, (B.3)

where 0n ≺ P̃a ∈ Snx . Furthermore, P̃b ∈ Rnx×ny and P̃c ∈ Rny×ny are indefinite. The commonly used Lur’e
type Lyapunov functions are inside this class for P̃b = C⊤RΩ and P̃c = 0, given some diagonal R ≻ 0. For
clarification and readability of the sequel, the following notation is adopted:

• Matrices GΩ(S) and GΩ̄(S) are introduced as

GΩ(S) =
[
0n −C⊤SΩ
⋆ 2S

]
, (B.4) GΩ̄(S) =

[
0n −C⊤SΩ̄
⋆ 2S

]
. (B.5)

As a result, the cone bounded sector constraints (2.16) and (2.17) can be written into the following
negative semidefinite quadratic forms for any diagonal matrix 0 ≺ S ∈ Sny :

2sΩ(S, Cx) = ∥ξ(x)∥2
GΩ(S) ≤ 0, (B.6a)

2sΩ̄(S, Cxa, Cxb) =
∥∥ξ(xa) − ξ(xb)

∥∥2
GΩ̄(S) ≤ 0, (B.6b)

• Matrices M0, M1 depend solely on a priori known system matrices of dynamics (??) and are defined as

M0 :=




Inx 0nx×ny 0nx×ny

0ny×nx
Iny

0nx×ny

A B 0nx×ny

0ny×nx
0ny

Iny


 ,

M1 :=




M0

0(nx+ny)×nw

F
0ny×nw

0nw×(nx+ny) Inw


 .

We can now formally introduce the conditions in Theorem B.2 that are sufficient for the global exponential
uniform convergence property via Lyapunov-like functions that are quadratic in the extended state.

Theorem B.2 (Quadrat ic Lyapunov funct ions in the extended state [75, Th. 6])
Consider a Lur’e-type system (Σ, φ) according to Equation (2.1) and assume D = 0ny

. Let Σ and φ verify
Assumptions 2.1 and 2.2 respectively. Furthermore, consider symmetric matrices P̃1, P2 ∈ Snx+ny and
diagonal positive definite matrices S0, S1, S2, S3, S4, S5 ∈ Sny . In addition, consider positive scalars
τ1, τ2, σ and c such that the following inequalities hold true:

P̃1 + GΩ(S0) ≻ 0nx+ny (B.7a)

M⊤
1




−τ1P̃1 − GΩ(S1) 0nx+ny
0(nx+ny)×nw

0nx+ny
P̃1 − GΩ(S2) 0(n+p)×nw

0m×(n+p) 0m×(n+p) −τ2Inw


M1 ≺ 0nx+2ny+nw (B.7b)

−c(1 − τ1) + τ2σ ≤ 0 (B.7c)

P2 + GΩ̄(S3) ≻ 0nx+ny
(B.7d)

M⊤
0

[
−P2 − GΩ̄(S4) 0nx+ny

0nx+ny
P2 − GΩ̄(S5)

]
M0 ⪯ 0nx+2ny

(B.7e)

Then, the assumptions of Theorem 3.4 are verified by considering the (incremental) Lyapunov functions
Ṽ1(x) = ∥x∥2

P̃1
and Ṽ2(xa, xb) =

∥∥xa − xb
∥∥2

P2
. By Theorem 3.4, the considered Lur’e-type system is

globally exponentially uniformly convergent for the class of inputs Wγ = {w(k) ∈ Rm, ∥w(k)∥ ≤ √
σ}.

Proof. See Appendix A.13
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B.3 Auxiliary lemmas

This section features a selection of theorems and lemmas that are required to understand the reasoning in
the main text of this report.

Schur complements are often of interest in the analysis of positive definite matrices. The results in Lemmas B.1
to B.3 were used in the proof of Theorem 3.6.

Lemma B.1
For a symmetric, positive definite matrix M ≻ 0, and a (possibly indefinite) matrix N of the same dimension,
there exists a sufficiently small scalar κ∗, such that for any κ ∈ [−κ∗, κ∗], it holds:

M + κN ≻ 0. (B.8)

Proof. See Appendix A.14

Lemma B.2 (Sylvester Law of Iner t ia [99, Th. 8.1.17])
Consider an invertible matrix T . Then:

X ≻ 0 ⇐⇒ T ⊤XT ≻ 0. (B.9)

Proof. See Appendix A.15

Lemma B.3 (Schur complement and posit ive definite matr ices [100, Prop. 16.1])
Suppose p, q are nonnegative integers such that A ∈ Rny×ny , B ∈ Rq×q and M is a symmetric block-
structured matrix

M =
[
A B
C D

]
. (B.10)

Note that C = B⊤ due to the symmetric property of M . Schur complements of M can then be defined as
follows:

• If D is invertible, then the Schur complement of the block D in M is defined by

M/D := A − BD−1C (B.11)

• If A is invertible, then the Schur complement of the block A in M is defined by

M/A := D − CA−1B (B.12)

For these Schur complements, the following properties hold true:

M ≻ 0 ⇐⇒ A ≻ 0 ∧ M/A ≻ 0 (B.13a)

M ≻ 0 ⇐⇒ D ≻ 0 ∧ M/D ≻ 0 (B.13b)

Proof. See Appendix A.16

Rayleigh’s inequality is applied multiple times in the proofs of Theorem B.2 that can be found in Ap-
pendix A.13.
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Lemma B.4 (Rayleigh’s inequal i ty [101, p. 34])
Let A be a n × n real symmetric matrix. Furthermore, let λmin and λmax be the minimum and maximum
eigenvalues of A, with vmin and vmax being their corresponding eigenvectors. Then

λminu⊤u ≤ u⊤Au ≤ λmaxu⊤u ∀u ∈ Rn. (B.14)

Proof. See Appendix A.17.

The well-known S-procedure is applied in the proof of Theorem B.2, which can be found in Appendix A.13.

Lemma B.5 (S -procedure [102, p. 103])
Let us consider the statement

W (x) < 0 | {G1(x) ≤ 0, G2(x) ≤ 0, . . . , Gk(x) ≤ 0, x ̸= 0}. (B.15)

Suppose that we define a weighted sum of Gi’s with weighting factors λi according to

S(x) =
k∑

i=1
λiGi(x), λi ≥ 0, ∀i ∈ {1, . . . , k}.

Furthermore, suppose that there exist nonnegative λi’s such that the following statement holds true

W (x) − S(x) < 0 | {x ̸= 0}. (B.16)

Then statement (B.16) implies (B.15).

Finally, the well-known contraction mapping theorem is applied in the proof of Theorem 4.2, which can be
found in Appendix A.11.

Theorem B.3 (Contract ion Mapping Theorem [103, Th. A.3.1])
Let X be a Banach space, T a mapping from X to X, m ∈ N, and α < 1. Suppose that T satisfies

∥T m(x1) − T m(x2)∥ ≤ α∥x1 − x2∥ ∀x1, x2 ∈ X, (B.17)

Then:

1. There exists a unique fixed point of T : x∗ ∈ X, such that T (x∗) = x∗.

2. For any x0 ∈ X, the sequence {xn, n ≥ 1} defined by xn := T n(x0) converges to x∗ as n → ∞.

Proof. See reference in [103, Th. A.3.1]
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