12 research outputs found

    Exact Recovery Conditions for Sparse Representations with Partial Support Information

    Get PDF
    We address the exact recovery of a k-sparse vector in the noiseless setting when some partial information on the support is available. This partial information takes the form of either a subset of the true support or an approximate subset including wrong atoms as well. We derive a new sufficient and worst-case necessary (in some sense) condition for the success of some procedures based on lp-relaxation, Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS). Our result is based on the coherence "mu" of the dictionary and relaxes the well-known condition mu<1/(2k-1) ensuring the recovery of any k-sparse vector in the non-informed setup. It reads mu<1/(2k-g+b-1) when the informed support is composed of g good atoms and b wrong atoms. We emphasize that our condition is complementary to some restricted-isometry based conditions by showing that none of them implies the other. Because this mutual coherence condition is common to all procedures, we carry out a finer analysis based on the Null Space Property (NSP) and the Exact Recovery Condition (ERC). Connections are established regarding the characterization of lp-relaxation procedures and OMP in the informed setup. First, we emphasize that the truncated NSP enjoys an ordering property when p is decreased. Second, the partial ERC for OMP (ERC-OMP) implies in turn the truncated NSP for the informed l1 problem, and the truncated NSP for p<1.Comment: arXiv admin note: substantial text overlap with arXiv:1211.728

    On Probability of Support Recovery for Orthogonal Matching Pursuit Using Mutual Coherence

    Full text link
    In this paper we present a new coherence-based performance guarantee for the Orthogonal Matching Pursuit (OMP) algorithm. A lower bound for the probability of correctly identifying the support of a sparse signal with additive white Gaussian noise is derived. Compared to previous work, the new bound takes into account the signal parameters such as dynamic range, noise variance, and sparsity. Numerical simulations show significant improvements over previous work and a closer match to empirically obtained results of the OMP algorithm.Comment: Submitted to IEEE Signal Processing Letters. arXiv admin note: substantial text overlap with arXiv:1608.0038

    Relaxed Recovery Conditions for OMP/OLS by Exploiting both Coherence and Decay

    Full text link
    We propose extended coherence-based conditions for exact sparse support recovery using orthogonal matching pursuit (OMP) and orthogonal least squares (OLS). Unlike standard uniform guarantees, we embed some information about the decay of the sparse vector coefficients in our conditions. As a result, the standard condition ÎŒ<1/(2k−1)\mu<1/(2k-1) (where ÎŒ\mu denotes the mutual coherence and kk the sparsity level) can be weakened as soon as the non-zero coefficients obey some decay, both in the noiseless and the bounded-noise scenarios. Furthermore, the resulting condition is approaching ÎŒ<1/k\mu<1/k for strongly decaying sparse signals. Finally, in the noiseless setting, we prove that the proposed conditions, in particular the bound ÎŒ<1/k\mu<1/k, are the tightest achievable guarantees based on mutual coherence

    Recovery of Sparse Signals Using Multiple Orthogonal Least Squares

    Full text link
    We study the problem of recovering sparse signals from compressed linear measurements. This problem, often referred to as sparse recovery or sparse reconstruction, has generated a great deal of interest in recent years. To recover the sparse signals, we propose a new method called multiple orthogonal least squares (MOLS), which extends the well-known orthogonal least squares (OLS) algorithm by allowing multiple LL indices to be chosen per iteration. Owing to inclusion of multiple support indices in each selection, the MOLS algorithm converges in much fewer iterations and improves the computational efficiency over the conventional OLS algorithm. Theoretical analysis shows that MOLS (L>1L > 1) performs exact recovery of all KK-sparse signals within KK iterations if the measurement matrix satisfies the restricted isometry property (RIP) with isometry constant ÎŽLK<LK+2L.\delta_{LK} < \frac{\sqrt{L}}{\sqrt{K} + 2 \sqrt{L}}. The recovery performance of MOLS in the noisy scenario is also studied. It is shown that stable recovery of sparse signals can be achieved with the MOLS algorithm when the signal-to-noise ratio (SNR) scales linearly with the sparsity level of input signals

    Joint Block-Sparse Recovery Using Simultaneous BOMP/BOLS

    Full text link
    We consider the greedy algorithms for the joint recovery of high-dimensional sparse signals based on the block multiple measurement vector (BMMV) model in compressed sensing (CS). To this end, we first put forth two versions of simultaneous block orthogonal least squares (S-BOLS) as the baseline for the OLS framework. Their cornerstone is to sequentially check and select the support block to minimize the residual power. Then, parallel performance analysis for the existing simultaneous block orthogonal matching pursuit (S-BOMP) and the two proposed S-BOLS algorithms is developed. It indicates that under the conditions based on the mutual incoherence property (MIP) and the decaying magnitude structure of the nonzero blocks of the signal, the algorithms select all the significant blocks before possibly choosing incorrect ones. In addition, we further consider the problem of sufficient data volume for reliable recovery, and provide its MIP-based bounds in closed-form. These results together highlight the key role of the block characteristic in addressing the weak-sparse issue, i.e., the scenario where the overall sparsity is too large. The derived theoretical results are also universally valid for conventional block-greedy algorithms and non-block algorithms by setting the number of measurement vectors and the block length to 1, respectively.Comment: This work has been submitted to the IEEE for possible publicatio
    corecore