132 research outputs found

    WCRT algebra and interfaces for esterel-style synchronous processing

    Full text link
    Abstract—The synchronous model of computation together with a suitable execution platform facilitates system-level timing predictability. This paper introduces an algebraic framework for precisely capturing worst case reaction time (WCRT) characteris-tics for Esterel-style reactive processors with hardware-supported multithreading. This framework provides a formal grounding for the WCRT problem, and allows to improve upon earlier heuristics by accurately and modularly characterizing timing interfaces. I

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF

    Ernst Denert Award for Software Engineering 2020

    Get PDF
    This open access book provides an overview of the dissertations of the eleven nominees for the Ernst Denert Award for Software Engineering in 2020. The prize, kindly sponsored by the Gerlind & Ernst Denert Stiftung, is awarded for excellent work within the discipline of Software Engineering, which includes methods, tools and procedures for better and efficient development of high quality software. An essential requirement for the nominated work is its applicability and usability in industrial practice. The book contains eleven papers that describe the works by Jonathan Brachthäuser (EPFL Lausanne) entitled What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style, Mojdeh Golagha’s (Fortiss, Munich) thesis How to Effectively Reduce Failure Analysis Time?, Nikolay Harutyunyan’s (FAU Erlangen-Nürnberg) work on Open Source Software Governance, Dominic Henze’s (TU Munich) research about Dynamically Scalable Fog Architectures, Anne Hess’s (Fraunhofer IESE, Kaiserslautern) work on Crossing Disciplinary Borders to Improve Requirements Communication, Istvan Koren’s (RWTH Aachen U) thesis DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering, Yannic Noller’s (NU Singapore) work on Hybrid Differential Software Testing, Dominic Steinhofel’s (TU Darmstadt) thesis entitled Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules, Peter Wägemann’s (FAU Erlangen-Nürnberg) work Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems, Michael von Wenckstern’s (RWTH Aachen U) research on Improving the Model-Based Systems Engineering Process, and Franz Zieris’s (FU Berlin) thesis on Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics – which actually won the award. The chapters describe key findings of the respective works, show their relevance and applicability to practice and industrial software engineering projects, and provide additional information and findings that have only been discovered afterwards, e.g. when applying the results in industry. This way, the book is not only interesting to other researchers, but also to industrial software professionals who would like to learn about the application of state-of-the-art methods in their daily work

    Model-based symbolic design space exploration at the electronic system level: a systematic approach

    Get PDF
    In this thesis, a novel, fully systematic approach is proposed that addresses the automated design space exploration at the electronic system level. The problem is formulated as multi-objective optimization problem and is encoded symbolically using Answer Set Programming (ASP). Several specialized solvers are tightly coupled as background theories with the foreground ASP solver under the ASP modulo Theories (ASPmT) paradigm. By utilizing the ASPmT paradigm, the search is executed entirely systematically and the disparate synthesis steps can be coupled to explore the search space effectively.In dieser Arbeit wird ein vollständig systematischer Ansatz präsentiert, der sich mit der Entwurfsraumexploration auf der elektronischen Systemebene befasst. Das Problem wird als multikriterielles Optimierungsproblem formuliert und symbolisch mit Hilfe von Answer Set Programming (ASP) kodiert. Spezialisierte Solver sind im Rahmen des ASP modulo Theories (ASPmT) Paradigmas als Hintergrundtheorien eng mit dem ASP Solver gekoppelt. Durch die Verwendung von ASPmT wird die Suche systematisch ausgeführt und die individuellen Schritte können gekoppelt werden, um den Suchraum effektiv zu durchsuchen

    WCRT Algebra and Scheduling Interfaces for Esterel-Style Synchronous Multithreading

    Get PDF
    The abstractions used in system design typically limit themselves to encapsulate and guarantee functionality, not timing. Hence, it is very difficult to transfer results on timing behavior across layers, e.g., from the application level through the operating system level to the hardware level. The choice of the model of computation plays a big role in facilitating this transfer. In the realm of reactive systems, the synchronous model of computation has some appeal here, as it inherently limits the number of operations per reaction, and addresses concurrency and preemptive behavior at the language level. Recently, reactive processing architectures have been proposed as execution platform for synchronous languages, notably Esterel. Initially, these architectures were driven by the desire for high performance with low resource usage, including low power consumption. However, by now they have also demonstrated their benefits in terms of predictability. Preliminary work on worst case reaction time (WCRT) analysis has been promising---fairly simple heuristics already achieve an accuracy typically in the 30--40% range. However, these methods so far lack formal grounding, and do not exploit knowledge about signal consistency etc. To provide a formal basis for WCRT analysis, we here propose a type-theoretic, algebraic approach. This approach not only allows to verify the correctness of WCRT analyses methods, but also opens the door for more exact analyses, as it allows to capture functionality and timing precisely and to trade off precision against analysis effort. This approach is still under development; this report presents first results on suitable interface types and the proper characterization of instantaneous nodes, delay nodes and concurrency. As a concrete application, it builds on a multi-threaded Esterel processor, the Kiel Esterel Processor (KEP)

    Worst-Case Execution Time Analysis for C++ based Real-Time On-Board Software Systems

    Get PDF
    Autonomous systems are today’s trend in the aerospace domain. These systems require more on-board data processing capabilities. They follow data-flow programming, and have similar software architecture. Developing a framework that is applicable for these architectures reduces the development efforts and improves the re-usability. However, its design’s essential requirement is to use a programming language that can offer both abstraction and static memory capabilities. As a result, C++ was chosen to develop the Tasking Framework, which is used to develop on-board data-flow-oriented applications. Validating the timing requirements for such a framework is a long, complicated process. Estimating the worst-case execution time (WCET) is the first step within this process. Thus, in this thesis, we focus on performing WCET analysis for C++ model-based applications developed by the Tasking Framework. This work deals with two main challenges that emerged from using C++: using objects impose the need for a memory model and using virtual methods implicate indirect jumps. To this end, we developed a tool based on symbolic execution that can handle both challenges. The tool showed high precision of early 90 % in bounding loops of the Benchmark suit. We then integrated our advanced analysis with an open toolbox for adaptive WCET analysis. Finally, we evaluated our approach for estimating the WCET for tasks developed by the Tasking Framework

    Ernst Denert Award for Software Engineering 2020

    Get PDF
    This open access book provides an overview of the dissertations of the eleven nominees for the Ernst Denert Award for Software Engineering in 2020. The prize, kindly sponsored by the Gerlind & Ernst Denert Stiftung, is awarded for excellent work within the discipline of Software Engineering, which includes methods, tools and procedures for better and efficient development of high quality software. An essential requirement for the nominated work is its applicability and usability in industrial practice. The book contains eleven papers that describe the works by Jonathan Brachthäuser (EPFL Lausanne) entitled What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style, Mojdeh Golagha’s (Fortiss, Munich) thesis How to Effectively Reduce Failure Analysis Time?, Nikolay Harutyunyan’s (FAU Erlangen-Nürnberg) work on Open Source Software Governance, Dominic Henze’s (TU Munich) research about Dynamically Scalable Fog Architectures, Anne Hess’s (Fraunhofer IESE, Kaiserslautern) work on Crossing Disciplinary Borders to Improve Requirements Communication, Istvan Koren’s (RWTH Aachen U) thesis DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering, Yannic Noller’s (NU Singapore) work on Hybrid Differential Software Testing, Dominic Steinhofel’s (TU Darmstadt) thesis entitled Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules, Peter Wägemann’s (FAU Erlangen-Nürnberg) work Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems, Michael von Wenckstern’s (RWTH Aachen U) research on Improving the Model-Based Systems Engineering Process, and Franz Zieris’s (FU Berlin) thesis on Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics – which actually won the award. The chapters describe key findings of the respective works, show their relevance and applicability to practice and industrial software engineering projects, and provide additional information and findings that have only been discovered afterwards, e.g. when applying the results in industry. This way, the book is not only interesting to other researchers, but also to industrial software professionals who would like to learn about the application of state-of-the-art methods in their daily work

    Efficient Analysis and Synthesis of Complex Quantitative Systems

    Get PDF
    • …
    corecore