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Abstract

Autonomous systems are today’s trend in the aerospace domain. These systems require more
on-board data processing capabilities. They follow data-flow programming, and have similar soft-
ware architecture. Developing a framework that is applicable for these architectures reduces the
development efforts and improves the re-usability. However, its design’s essential requirement is to
use a programming language that can offer both abstraction and static memory capabilities. As
a result, C++ was chosen to develop the Tasking Framework, which is used to develop on-board
data-flow-oriented applications.

Validating the timing requirements for such a framework is a long, complicated process. Es-
timating the worst-case execution time (WCET) is the first step within this process. Thus, in
this thesis, we focus on performing WCET analysis for C++ model-based applications developed
by the Tasking Framework. This work deals with two main challenges that emerged from using
C++: using objects impose the need for a memory model and using virtual methods implicate
indirect jumps. To this end, we developed a tool based on symbolic execution that can handle both
challenges. The tool showed high precision of nearly 90 % in bounding loops of the Benchmark
suit. We then integrated our advanced analysis with an open toolbox for adaptive WCET analysis.
Finally, we evaluated our approach for estimating the WCET for tasks developed by the Tasking
Framework.
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Chapter 1

Introduction

Today’s software for aerospace systems is complex. This is due to the increasing number of features
and the demand for high safety, quality, and reliability standards. Many design architectures have
been adopted to develop these systems efficiently and reliably. The model-based approach is one of
the most commonly used design patterns due to its ability to handle the systems’ complexity.

The model-based approach involves designing models as elementary blocks which are then used
to develop the complete software for the embedded system through automatically generated code.
Following this pattern improves the productivity and ensures the software’s correctness as the appli-
cations are designed in systematic and error-free methodology. MATLAB/Simulink and Stateflow
are the most commonly model-based frameworks used in designing aerospace applications [30] [81]
[61] [57] [45].

Due to the complexity and the dynamic orientation of the developed models, its analysis is
challenging, especially when considering timing aspects. The most commonly used approaches for
estimating WCET for model-based application are the integration and the measurement approaches.
In the integration method, timing analyzer is inserted in the model workflow to trace the execution
time of each functionality. This approach was used in various projects as [38] [76] [55] to predict
the timing behavior. On the other hand, measurement analysis is a technique used to acquire
timing information by measuring the execution time of the code executed dynamically on the
target hardware. The analysis was used in several projects as [40] [87] [86] to estimate the worst
case execution time.

The Institute for Software Technology at German Aerospace Center (DLR) has developed a
model-based framework called Tasking Framework.1 It is an execution platform for real-time on-
board software systems. It allows the implementation of tasks as task graphs with arbitrary ac-
tivation patterns. It is written in C++ following the event-driven programming paradigm. The
Framework has been used for many real-world aerospace non-safety critical applications as in [78]
and [44].

Certifying the Tasking Framework for safety-critical applications is a long, challenging process.
As for all of its systems, the aerospace industry demands high standards of safety assurance. The
most widely used standard for certifying aerospace-embedded applications as well as qualifying the
implementation and verifying the tools is the ECS-Q-ST-40C standard [1]. It establishes five design
assurance levels, ranging from E-Level, which is the least, to A-Level, which requires extensive

1https://github.com/DLR-SC/tasking-framework

10

https://github.com/DLR-SC/tasking-framework
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testing and intensive verification. To qualify the Tasking Framework for C-Level certification, the
standard requires ensuring the software’s functional safety through proving functional correctness
and hazards absence. The demonstrated proofs have to be beyond any reasonable or logical doubts.

To prove correct time behavior, it is necessary to prove that all the real-time tasks meet their
deadlines, or that violating the deadlines will not harm the safety of the system. The worst-
case execution times (WCET) and later the worst-case response times have to be determined to
demonstrate deadline correctness. Performing WCET analysis using the previously mentioned
approaches will not offer the required proof of correctness. Static worst-case execution time analysis
is a good candidate for this mission. The static worst-case execution time analysis examines the
program timing behavior without executing it directly on the hardware. This approach offers safe,
and sound WCET and thus can be the first step in the validation process. In this thesis, we
investigate the applicability of performing static WCET analysis for C++ model-based application
as Tasking Framework.

1.1 Contribution
• Overview of the state-of-the-art static worst-case execution time analysis tools

and techniques
We provide an overview of the available static analysis techniques and discuss their suitability
for C++ model-based applications.

• New setup for static WCET for C++ model based applications
We introduced a new setup that can over-come the challenges of performing static WCET for
C++ model based applications.

• Comprehensive Evaluation
We evaluate our setup using test-cases from Tasking Framework.

1.2 Structure
This thesis is organized as follows. In chapter two, we present the static analysis and its challenges.
In chapter three, we demonstrate the Tasking Framework and discuss its applicability for static
analysis. After that, chapter four focuses on the available tools’ capabilities to perform WCET
analysis for C++model-based use-cases generated by the Tasking Framework. Chapter five presents
our new symbolic execution approach for bounding loops and solving indirect jumps. Chapter six
discusses the results of our approach. Finally, chapter seven presents our discussion and our future
steps.





Chapter 2

Static Analysis

2.1 Introduction
Designing embedded systems for space applications is a challenging process. It requires accurate
verification of its performance within its strict deadline. These systems are also called hard real-time
embedded systems as they cannot miss their deadlines. Hard real-time embedded systems should
respond and must react within particular time frames related to the events in their environment and
the systems they control. Therefore, understanding the program execution time’s characteristics is
a fundamental key for building a reliable real-time system.

In hard real-time systems, the longest execution time of the program that shall occur must
not exceed the specified time for the task to meet the system’s timing requirements. The longest
execution time is called Worst-Case Execution Time (WCET). The exact prediction of the program’s
WCET is a major issue. As the execution time is not always constant or consistent but instead
shifts with various possibilities of events and inputs. These fluctuations happen due to variance in
inputs and the software/hardware interactions.

The static analysis’s main goal is to determine a given task’s dynamic behavior without executing
it on the target hardware. Instead, the task code is analyzed, sometimes with some annotations, to
get the longest path in the task control flow graph. This control flow information is then combined
with an abstract model of the target hardware to calculate an upper bound for the WCET. This
is contrary to measurement-based analysis which executes every program fragment to calculate the
maximum execution time. The result of the measurements are calculated by forcing the program
to vary the initial conditions and inputs through certain control flow paths.

Recently, standard frameworks have been developed to perform a complete timing analysis for
the code statically. Although most of them look similar from the general view, they have a lot of
conceptual differences in between [56] [33] [37]. This chapter will give a general overview of the
static analysis and the most commonly used techniques in each of its blocks.

13



14 CHAPTER 2. STATIC ANALYSIS

WCET static analysis is a safe technique to estimate a program’s upper bounds for a certain
architecture. A complete overview of the analysis is shown in figure 2.1. Briefly, the analysis starts
by reconstructing and analyzing the program’s control flow graph (CFG). Then, loop analysis and
flow facts are defined through the CFG of the program to bound the execution times of each block
in the program. After that, The WCET for each basic block is weighted by their execution bounds.
Finally, The worst-case execution path and time of the whole function or program are then defined
using integral linear programming(ILP)[48].

In the following section, we will briefly present the stages of the analysis and each stage’s role
in driving the WCET.

Figure 2.1: Static Analysis Stages

2.2 Static Analysis Stages
2.2.1 Control Flow Graph Reconstruction
The program’s flow can be specified by the control flow graph (CFG). This graph consists of two
parts: The basic blocks graph and the call graph. A basic block is defined as a group of
instructions that are executed sequentially ended with a jump instruction. The basic blocks graph
describes the program’s flow and the relations between basic blocks. While the call graph describes
only the caller-callee relations [53].

The first step of the WCET static analysis is reconstructing the CFG. Rebuilding the CFG in
WCET analysis is challenging ass it starts from the binary level, not from the source code level.
The process of reconstructing the CFG started by analyzing the binary and disassembling it. The
control flow is recreated from the disassembled instructions and then translated to intermediate
representation to be furtherly analyzed.
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2.2.2 Flow Analysis
The flow analysis’s main goal is to constrain the program paths to narrow the solution domain. It
aims to find correlations between variable values, basic block iterations, and certain program paths.
In order to achieve this, further analyses are performed as:

• Value Analysis: It defines an upper-bound of the values that a register or memory location
may hold. This analysis is used later for exact control-flow and data-cash analysis [27].

• Loop Bound Analysis: It recognizes loops in the program and attempts to decide upper
bounds for the number of a loop iterations [15][63]. Loop bounding problem can be seen as
an extension of the halting problem. As it does not only ask whether the program will stop
or not, but it also asks after how many times of execution and for this reason no automatic
method for loop bounds analysis can give an exact answer regarding the loop bounds. The
common used methodology is to identify loop counters, and then bound their starting values
through incrementing it to the highest possible value. From this information, an upper bound
for the loop iterations can be estimated [34].

• Infeasible Path Analysis: It detects sets of possible paths and eliminates the infeasible
ones. It uses the result of the value analysis to drive correlations that define the number of
executions of a basic block. These correlations are then used to bound the WCET [27].

2.2.3 Micro-Architectural Analysis
. It defines upper bound for the execution of every basic block using an abstract interpretation of
the program. The analysis is supported by cash and pipeline analysis to improve its result.

• Cache Analysis: It determines upper bound for the cash hit and cash miss at each program
point [36].

• Pipeline Analysis: It analyzes how instructions pass through the processor pipeline [59].

2.2.4 Global bounds analysis
.
The execution time of a basic block is calculated using execution time modeling. Execution time
modeling maps a sequence of instructions to its execution time. One instruction’s execution time
may vary from one basic block to another based on the input parameters’ values, the order of the
instructions, and the processor’s internal state during the execution. The execution time of a basic
block (wceti) is combined with its loop bounds frequency fi to determine the execution time of the
block i. The upper-bound of execution of the program is defined by an implicit path enumeration
through the CFG using ILP. The optimization function for path enumeration is modeled as:

WCET = max(

n∑
i=0

wceti × fi) (2.1)

The target function weights the execution time of each basic block i with its frequency bound f.
A solution of the ILP maximizes the sum of these weights with the path constraints and corresponds
to an upper bound on the execution times [72].
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2.3 C++ Static Analysis Challenges
Performing static analysis is for C++ is challenging whether it is done on the binary of the source
code level for the below reasons [54]:

• Language Evolution at a Breakneck Pace
Language evolution now, unlike earlier stages of C++, is much quicker. The language com-
mittee’s decision for a three-year standardization cycle leads to new standards, e.g., C++14,
C++17, and now C++20 in a shorter time span [2].

• Language Front-end
To accommodate all language features, C++ requires a complex front-end. On the other
hand, the C front-end is simpler to implement and validate. In comparison with C, there are
only a few front-ends that support modern C++.

• Hidden Complexity
C++ offers abstraction level that facilitates the code development process and improves the
production quality. The abstraction and productivity come at the price of hidden underlying
complexity. This complexity affects the analyzability of the code. For example, The standard
libraries depend heavily on dynamic memory allocation, increasing the risk of having unpre-
dicted dynamic allocation scenarios. Although the standard containers has easy-to-use data
structures as maps, they are highly dynamic and hard to analyze.

• Dynamic Memory Allocation
C++ depends heavily on dynamic memory allocations. The life-span of objects in the heap is
not limited by the scope in which the initialization has occurred. Thus, the de-allocation of
such objects is done outside their initialization context. Verification and validation of C++
with objects in the heap is challenging as it requires information about each object’s life-span,
which depends on the input data to the program.

• Dynamic Polymorphsim
Dynamic polymorphism also called dynamic dispatch means that function calls are resolved
during the run-time which implemented in C++ through virtual methods. This mean that
the CFG is dependent on the flow of the data in the program. As a result, precise data-flow
analysis has to be implemented to assist the control-flow analysis to resolve the dynamic
dispatch [89][24].

• Error handling
C++ handles errors through exceptions. The success of throwing exceptions is not always
granted because most C++ compilers generate code which indirectly calls malloc to allocate
heap memory for the exception item. Exception handling magnificently increases control cou-
pling which occurs by adding indirect control path from each program point to the exception
handlers. Therefore, not only the analysis complexity increases but also the accuracy of the
analysis deteriorates. Analyzing exceptions is even more complex at the binary code level.



2.4. STATIC ANALYSIS CHALLENGES FOR C++ SAFETY CRITICAL APPLICATIONS 17

2.4 Static Analysis Challenges for C++ Safety Critical ap-
plications

In this thesis, we are only interested in analyzing a subset of C++ that fits safety-critical applica-
tions. Analyzing applications that are developed following the MISRA [3] standard down-grade the
complexity of the analysis and automatically expel some of the previously mentioned challenges.
This thesis aims to perform the static timing analysis for application as Tasking Framework, which
is developed following safety-critical standards. For example, The most common features of the
MISRA standard are:

• Single Point Function Exit (MISRA Rule 6-6-5)

• No Heap Memory Allocation (MISRA Rule 18-4-1)

• No Recursion (MISRA Rule 7-5-4)

• No Exceptions (MISRA Rule 15-0 -1)

Hardware requirements for safety-critical applications also down-grade the complexity of the
problem dramatically. For safety critical applications, we can safely remove the cache and the
pipeline analysis from our considerations. As due to their non-deterministic behavior, caches and
multi staged pipelines are not allowed to be used in on-board systems. As a result, static WCET
analysis challenges for C++ safety critical applications can be narrow down into two main problems:

• Control Flow Reconstruction due to indirect jumps
In C++ code, indirect jumps result mainly from virtual methods. They ensure that the
correct function is called for an object to achieve polymorphism, which is resolved during
run time. Such behavior is translated on the binary level to indirect jump instructions which
are branch instructions whose values are only known during the run-time, not during the
compilation. These branching statements are challenging for static analysis as they cease the
reconstruction of the CFG during the static analysis. For example, at the end of a basic block,
branch instruction like the one in listing 2.1 will lead to the analysis’s failure as the analysis
will not be able to determine the branch target of the instruction statically.

Listing 2.1: Branch Instruction.
1 add r1 , r2
2 mov r2 , #0x80
3 b r3

• Loop Bounding
Defining loop bounds is an essential step to get accurate WCET. This step is challenging for
C++ code for the many reasons to name a few:

– Most C++ loops iterate over containers as vectors. Information about the container’s
size and its location in the memory is essential to bound the loop. This information is
not available on the source code level and requires binary analysis to extract.
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– In C++ begin_expr and end_expr refer to the iterator start and end points respectively.
As for C++17, the begin_expr and the end_expr may have different types, additionally
the type of the end_expr does not have to be an iterator. Such behaviors increase the
complexity of the analysis on the source code level [2].

– C++ loops may trigger deep copy during iteration if used with non-constant iterators
affecting the code’s execution time dramatically. This behavior is difficult to analyze on
the source code level [2].

– Some C++ loops are hidden behind the constructor. Constructing n objects from the
same class sometimes is translated to loops on the binary-level. These loops are hard to
detect on the source-code level.

2.5 State of the Art Static Analysis Tools
Many static analysis frameworks have been developed to give a precise WCET estimations. To the
best of our knowledge, there are no frameworks that have been dedicated to performing
WCET analysis for C++ code. This section will give a complete overview of existing relevant
frameworks, their capabilities, and limitations. At the end, we will summarize their potentials to
perform static WCET analysis for C++ code.

2.5.1 Bound-T
Bound-T performs static WCET analysis on binary code. The tool design includes target-specific
modules to decode the input files beside generic modules to reconstruct the control-flow graph. To
determine loop bounds, Presburger Arithmetic is used to model the loop counters arithmetically.
Finally, Integral Linear programming (ILP) is used to determine the worst-case execution path
(WCEP) [50].

Bound-T has some challenges in its analysis techniques, for three main reasons [4]:

• Lack of pointer analysis
The absence of pointer analysis affects the accuracy of the complete analysis. The results can
only be relevant if it is guaranteed that the analyzed program has no pointers that may affect
the program’s control flow.

• Variably-sized memory access
The whole CFG can be wrong if the program under analysis is accessing the same variable in
different ways (sometimes as a word and others as a byte).

• Overflow or wrap-around wrong estimations
The main tool that Bound-T uses to analyze CFG and loop bounds is based on Presburger
Arithmetic. Presburger Arithmetic is a weak model for computer Arithmetic. It solves
equations with integer variables assuming that these integers are bounded and can never
overflow.
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2.5.2 SWEET
TheWCET research group has developed SWEET (SWEdish Execution Time tool) at the Mälardalen
Real-Time Research Center. The tool was designed following the classical WCET static analysis
architecture with flow analysis, low-level analysis to get the WCET estimation. The heart of the
tool is the flow analysis, which is based on Abstract Execution. Abstract execution is an abstract
interpretation through which loops and function calls are analyzed and executed separately in the
abstract domain with abstract variables values. These values correspond to the real values that the
variable may hold during execution [33]. The input to SWEET is intermediate representation in
ALF format. ALF is an intermediate representation (IR) developed to facilitates the flow analysis
[41].

The major functions of SWEET tool are [58]:

• Portable analysis across different formats
In order to keep SWEET portable, all analyses are performed in ALF format. Thus, before
using SWEET, any format must be translated to ALF.

• Automatically annotate all program variables
The abstract execution model supports the tool to annotate each variable within the input
source code through value analysis. SWEET abstract execution model outputs annotation
log for every loop and variable in the input ALF file.

Despite its capabilities, SWEET has mainly two limitations:

• There is no C++ to ALF translator
To the best of our knowledge, although it was mentioned in [41], SWEET can not take C++
programs as input. Such a translator has not been developed yet, which makes the tool only
accessible by C programs or PowerPC binaries [62].

• Recursive functions can not be analyzed
The SWEET tool will fail to analyze recursive function calls, making it difficult to be used in
sophisticated industrial applications [58].

2.5.3 Chronos
The Chronos works on C code. If loop bounds are not annotated, data flow analysis is performed
at the beginning to determine loop bounds. The core of the framework performs the analysis on
the binary level. To this end, the binary is disassembled to reconstruct CFG. Timing of each basic
block from the micro-architectural analysis is then combined with the loop-bound data to estimate
WCET. One of the greatest advantages of Chronos that is it supports modeling of pipeline and
branch prediction [60]. Chronos will be a good candidate for C++ code analysis If we manage to
change the Chronos C-based front-end. This is possible as it is an open-source project where the
source code is accessible for doing investigative experiments. However, the framework shows only
one limitation which is the difficulty in analyzing recursion [77].
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2.5.4 OTAWA
The research group of real-time systems developed OTAWA at the University of Toulouse to inte-
grate all kinds of open-source WCET analysis. The main goal is to develop a base framework that
supports experimenting state of the art WCET algorithms. To this end, OTAWA architecture is
a little bit different from the previously mentioned frameworks. As shown in figure 2.2, the base
of OTAWA is an architectural abstraction. Although it supports the Instruction Set Architecture
(ISA) for multi-architectures, It hides the ISA information and only reveals information relevant to
the WCET analysis. This facilitates the framework re-usability for different architectures [16].

The WCET estimation performed by OTAWA starts with the binary decoding and program
reconstructing to get CFG and all basic blocks of the program. The heart of the framework appears
in the next phases, where two kinds of analysis are performed: program and hardware analysis.
The program analysis includes value, loop, and path analysis, while the hardware analysis includes
cash analysis, pipeline, buffer analysis, and every processor feature that may impact the execution
time. An execution graph is then created to collect timing information from the static analysis for
every basic block resulting from program and hardware features. All these data are then encoded
as ILP problem constrained with loop bounds to get the WCET.

OTAWA showed good results in the comparison of the WCET tools challenge [84]. The tool
was able to handle dynamic function calls and recursion. The loop bound analysis tool of OTAWA
showed good performance in detecting static, arithmetic, and infinite loop bounds. However, this
was only tested on C code, not C++.

2.5.5 aiT
ait is the industry-standard static analyzer. The tool is used to inspect the developed applications’
timing behavior and provide a tight upper bound for its WCET. It is based on Abstract Inter-
pretation which offers a proven accurate relation to the architecture’s semantics. The results of
the ait analysis are deterministic for all executions (including cache and pipeline behavior). The
tool depends mainly on static analysis for resolving indirect jumps and bounding loops. If the tool
failed, annotations for loops and branch targets are provided in separate files by the application
developer. Besides, ait covers a wide range of hardware architectures with high precision in esti-
mating the WCET. Additionally, ait’s GUI offers deep insight into the processor’s functionalities,
which can be used for further program optimizations [5].

One of the institute of software technology at DLR long term goal is to proof that it is safe
to design safety-critical model-based aerospace applications using C++ instead o C or Ada. To
present the findings to the research and the industry community a decision was made to use open
source tools through this process and thus closed source analyzers as aiT are out of the scope of
this thesis.
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Figure 2.2: OTAWA Architecture

2.5.6 Summary
Many frameworks have been developed to estimate WCET. The common idea behind most of them
is based on reconstructing the CFG of the executable then combining it with the micro-architecture
analysis in order to estimate the WCET of each basic block [16][4][60]. Table 2.1 summarizes the
tools’ abilities concerning different criteria. Besides showing that some tools may have the potential
to analyze C++ code, our exploration also shows that some tools do not contain loop bound analysis
as a part of their structure. Thus, in the next sections, we will explore the available loop bound
analysis techniques and their conveniences for C++ code.

Table 2.1: WCET Frameworks Comparison

WCET Tool Tool Input Loop bound analysis Applicable for C++
Bound-T Binary 7 7
SWEET ALF IR 3 Maybe
Chronos Binary 3 7
OTAWA Binary 7 Maybe
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2.6 Loop Bound Analysis
In various static program analyses, information about how frequently a loop is iterated is important.
A correct static WCET analysis is based on safe upper bounds of loops. An automated analysis
must be adopted to get safe WCET estimations to skip the error resulting from manually annotating
loop bounds. In this chapter, we will give an overview of the available tools for loop bound analysis.
We survey the annotation languages by investigating their strengths and limitations.

2.6.1 Pattern-Based Technique
Pattern-Based Technique was first introduced in [46]. The analysis uses predefined patterns to trace
loop variants. It provides algorithms to bound loops with multiple exits on the assembly level with
and without using annotations. However, The analysis focused only on instructions within the loop
basic blocks making it difficult to analyze loops with external parameters [63].

As Pattern-Based approach is not only compiler-dependent, but it also depends on the level of
code optimization. The pattern-Based approach was supported in [28] with data-flow analysis to
enhance its abilities to deal with more complex loops structures. Such approach fails in resolving
all kinds of loops completely. User annotations must be provided to ensure safe loop bounds.

The pattern-Based approach is implemented on the binary code. Binary code is the code that is
executed, and thus it carries all the relevant flow information. However, depending only on low-level
information to determine the loop bounds may lead to high-level data loss. For an effective design,
loop bound analysis tools working on the executable level must maintain information as CFG and
annotations in the source code [42]. aiT [5], the standard static WCET analyzer, uses this approach
to provide tight loop bounds. Although applying the pattern-based approach on the binary level
seems to have promising results, it does not provide a generic solution to determine loop bounds.

2.6.2 Slicing and Abstract Interpretation
The approach is based on the fact that each new iteration updates the state of the executing
program. Then, bounding the number of states will deliver an estimation for the loop upper bound.
Since these states may have identical program flow, counting them will lead to the maximum number
of values for loop variables [34].

This analysis is developed using standard program analysis:

• Program Slicing
It is introduced in [85] is a program analysis that analyzes part of the code that affects certain
computation functionality. A slice of a given program regarding certain slicing criteria is a
subset of the program that contains all instructions affecting this property. In loop analysis,
slicing is used to define variables and statements that are relevant when estimating loop
bounds.

• Abstract Interpretation
Abstract Interpretation is an approximation for the semantic model of the program under
analysis. This sound approximation which is first formalized in [27] is mainly used in un-
decidable problems as static loop analysis. Loop bound analysis uses it to define the upper
value of the variables affecting loop bounds at every program’s execution point.
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Various loop analysis tools introduced this approach on the intermediate representation level
(IR) [34][22]. The intermediate representation code is generated by the compiler for purposes of
transformation and optimization. The IR is semantically equivalent to the program being executed
with the following characteristics:

• Smaller number of instructions

• Type safe

• Portable as it is independent of the compiler and target architecture

• Accurate and efficient for static analysis as control-flow, symbolic execution and graph iso-
morphism

These characteristics make it a strong candidate for all kinds of flow analysis [35].
As a part of SWEET [33], The loop bound analysis tool [34] was introduced to work on the

ALF IR. As mentioned before, there is no C++ to ALF translator. Some trials have been done
to translate the LLVM IR into ALF IR, which opens the door for all languages using the LLVM
compiler’s front-end. However, this approach failed because of the unavailability of a complete,
accurate translation to LLVM [82].

2.6.3 Polyhedrons
In addition to the Slicing and Abstract Interpretation, many loop analysis frameworks [63][66][15]
supported their techniques with polyhedron models to get effective and precise computation. A
polyhedron(P) is an N -dimensional figure bounded with a set of linear inequalities such that:

P := {x ∈ ZN |Ax = a,Bx ≥ b} (2.2)

Where A,B ∈ ZmN , a, b ∈ Zm andm ∈ N [35][63].
The polyhedral can precisely represent N-dimensional nested loops as N-dimensional polyhedron

shape. Driving correlation between outer and inner loop is challenging and sometimes impossible,
Yet, polyhedron makes it easier and less time-consuming. Consider the code in listing 2.2.

Listing 2.2: Nested loops modeled using polyhedron
1 for ( i n t i = 1 ; i <= 4 ; i++) {
2 for ( i n t j = i + 1 ; j <= 6 ; j++) {
3 i f ( j > 4) {
4 // Condit ion ;
5 }
6 }
7 }
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To model this loop using polyhedron, the outer and the inner loop bounds has to be expressed
as following: [

1 0
−1 0

] [
i
j

]
≥

[
1
−4

]
(2.3)

[
−1 1
−0 −1

] [
i
j

]
≥

[
1
−6

]
(2.4)

The polyhedron a in figure 2.3 is modeled based on the two previous equations where each (i,
j) point in the figure corresponds to a single iteration in the loop. Therefore, by determining the
number of those pair points in the polyhedral area, we will restrict the loop iteration domain and
obtain the number of iterations.

The polyhedron is also able to define other scenarios with branch conditions. Polyhedron b in
figure 2.3 shows a new polyhedron based on the branch conditions in the code. The dotted line in
polyhedron b in figure one shows the trimmed part from the polyhedron due to the code’s branch
condition [66].

Figure 2.3: Loop Formulation with Polyhedron
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2.7 Loop Bound Analysis Tools
The following section will survey the available tools useful to bound loops of a C++ code. The
survey will discuss the analysis used by the tool besides its strength and weakness concerning C++
loops.

2.7.1 r-TuBound
The pattern-based approach was introduced on the source code level in the r-TuBound loop analysis
tool [56]. The tool’s main goal is to build a control-flow graph for variables from extracted loops in
the C/C++ source code. Applying various analyses and then translating these extracted loops into
the form mentioned in listing 2.3 where a, b, c, d are symbolic integer-valued that are independent
of i, g1..gm are boolean expressions and f1..fm are non-constant linear integer arithmetic functions
independent of i. Based on the WCET 2011 tool challenge, the tool lacks specifying variable input
ranges, it supports limited number of architectures and it also fails to analyze a C++ loop like the
one in listing 2.4.

Listing 2.3: r-TuBound Transformation equation
1 for ( i = a ; i {<,>} b ; i = c∗ i+d) {
2 i = f_0 ( i ) ;
3 i f (g_1) i = f_1 ( i ) ; else i = f_2 ( i ) ;
4 . . . ;
5 i f (g_m) i = f_m( i ) ; else i = f_m( i ) ;
6 }

2.7.2 oRange
oRange, is a very powerful loop analysis tool. It applies all kinds of analysis mentioned above to
supply the user with two values, max, and min, representing the loop’s upper and lower bounds.
Unfortunately, oRange analyzes only C source code, making it so hard to utilize for our case. The
oRange workflow starts by detecting loop indices and constructing symbolic expressions of the loops.
A syntactic tree is then built based on abstract execution to combine the loop running context.
Loop bounds are then formulated in the form of symbolic expressions. Finally, the resulting tree is
resolved to the flow-fact numerically [18].

2.7.3 Polymas
The tool was built on polyhedron with an abstraction execution concept to tackle loop bounds. It
analyzes the binary code running on the machine, which removes the C++ overhead and complexity.
The tool proposes analysis based on polyhedrons to define a subset of registers and memory locations
that may be effective to define loop bounds [15]. The tool was tested using Mälardalen WCET
benchmarks in [17] however; the selected tests were simple loops with simple branching statements
[43]. The tool failed to analyze simple C++ code with pointers as in listing 2.4, which makes the
tool incompatible with our goal.
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Listing 2.4: C++ loop over array
1 i n t main ( ) {
2 i n t aNumber [ ] = { 16 , 2 , 77 , 40 , 12071 } ;
3 i n t counter = 0 ;
4 for ( i n t num : aNumber ) {
5 i f ( counter > 3) {
6 counter ++;
7 }

2.7.4 PAGAI
PAGAI is a tool to automate static analysis with input as LLVM IR [6] and an output as a list of
primary constants for a certain control node in the source code. The tool provides control invariants
based on user given assumptions or assertions using C/C++ standard macros. The tool checks the
failure of a given assertion and indicates a warning in unsuccessful input. The execution of the
tool terminates after falsifying the given assumption/assertion, and thus it can be used to check
loop’s variant values. The PAGAI framework is mainly based on abstract interpretation and convex
polyhedrons to perform relation analysis between control-flow nodes [47].

2.7.5 Summary
Loop bound analysis is critical for sounding WCET analysis. In the previous sections, we explored
the available loop bounds analysis tool focusing on their ability to deal with C++ loops. Table
2.2 summarizes the tools’ abilities for different criteria. We found that most of the tools are based
on abstract interpretation (AI) and polyhedron as main analysis techniques. In chapter four, we
explore how we can use such tools to serve our goal. We integrate WCET tools with the loop-bound
tools to match their input types and their analysis abilities.

Table 2.2: Loop Bound Analysis Tools Comparison

Tool Analysis Input Analysis Technique Applicable for C++
r-TuBound C/C++ Pattern-matching 7(limited C++ patterns)
oRange only C Slicing, Polyhedron, AI 7
Polymas Binary Polyhedron, AI Maybe
PAGAI C/C++ Polyhedron, AI Maybe

.
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2.8 Reconstructing The Control Flow Graph
Reconstructing the control flow graph from the binaries is challenging due to the presence of indirect
jumps. An indirect branch has a dynamically defined target that may point towards number of
locations in the program, while a direct jump has a statically specified target that points to a
single location in the program [24]. Indirect jumps are commonly used to realize dynamic program
behaviors by implementing common programming constructs, such as virtual function calls and calls
through function pointers. Although indirect jumps are common and useful, due to their dynamic
nature, it is usually difficult to resolve the target of an indirect jump through static analysis. This
leads to inherent challenges in constructing the complete CFG [90]. In C++ binaries, indirect jumps
are most commonly due to virtual methods where the target is calculated at run-time. Failure in
resolving indirect branches leads to incomplete CFG and thus hinders the abilities of the static
WCET.

Resolving indirect jumps falls into three categories:

• Static Analysis
During the analysis, the behavior of the target program is analyzed without concrete execu-
tion. The approach has the advantage of low cost and high coverage for the whole program.
Thus, it is commonly used in industrial reverse engineering tools as IDA Pro [7]. However,
this approach always leads to incomplete results due to the difficulty of resolving indirect
jumps statically. The most commonly used analysis in the static approach is the data-flow
analysis.
Several data-flow analysis techniques have been used to resolve indirect jumps. However,
data-flow analysis requires a reliable CFG to analyze. This paradox situation is know in the
literature as “chicken and egg” problem [79][73]. Program slicing is the most commonly data-
flow analysis technique used to recover indirect jumps. It is a methodology for determining
the set of statements of a program that potentially affects a variable’s value at some point
in the program. The goal of the analysis is to find all the possible influences on variables.
During slicing analysis, indirect jumps are retrieved from the binary code using the classic
source-destination algorithm, in which the instruction I’ is said to be the lexical successor of
instruction I if deleting I force the CFG to pass to I’. The technique starts with slicing the
code at the indirect jump instruction, and then it performs expression substitution to high-
level language. After that, it checks for pattern matching against indexed branch normal
forms. Although some modifications were introduced, the proposed recovery heuristics were
nearly used by most of the frameworks [25][26][32]. Despite the promising results with some
tool-chains, the approach still result in incomplete CFG.

• Dynamic Analysis
In dynamic execution, the program is executed in order to extract the exact control flow
graph. The idea is to execute programs on a set of test-cases and extract the control-flow
information from the execution traces [90]. The approach can resolve a certain of indirect
jumps and discover precise control flow. However, the completeness of the constructed CFG
by this approach depends on the test-cases’ capability to cover indirect jumps.
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Traditional dynamic analysis techniques cover only a small portion of program execution
paths. To improve code coverage, forced execution was introduced in [88]. In Forced execution,
the code is executed semantically to explore the directions at each branch point and to compute
the targets of indirect branches at run time in a scale-able way. For the same reason, The
state of the art platform for resolving indirect jumps Syder [83] introduced symbolic dynamic
execution support by program slicing to resolve indirect jump. Dynamic symbolic execution
is an approach to systematically identify the program execution given an input value. The
proposed approach was able to resolve indirect jumps in real world application with high
accuracy and reliability.

• Hybrid Approach
Hybrid analysis has been used to resolve indirect jumps and to enhance the incompleteness
of static analysis. In the hybrid approach, a set of seed tests are combined with statically
computed jump targets to reconstruct the CFG. However, the results’ completeness depends
mainly on the generation of test-cases that can handle indirect jumps. Gray-box fuzzing
has been introduced to generate test-case to handle indirect jumps. Gray-box fuzzing is an
approach for software testing that is both salable and functional. It is commonly used in vul-
nerability identification and the generation of test-cases. Current gray-box fuzzing normally
creates test-cases using an evolutionary algorithm based on input information from the exe-
cution. Evolutionary algorithms are randomized search heuristics that can be used to solve a
variety of problems. They are governed by a number of criteria that are critical to the search’s
effectiveness [67]. In summary, the hybrid analysis is a promising approach to construct a
more complete and precise CFG. Generating test-cases that handle more indirect jumps is the
core of a successful hybrid approach. In the state-of-the-art approach to constructing CFGs
[14][68][89], the test-case generation still faces the problem of unreliable test-cases that lead
to incomplete coverage of the CFG.
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Tasking Framework

3.1 Motivation
Space missions are in continuous demand for computing resources to process more complex data
or execute efficient algorithms. Missions like Rosetta [8] or landing of the Mars rover was designed
based on lists of commands to control landing and maneuvering to reduce power consumption
instead of trajectory control advance algorithms which required more power consumption.

During the development of the TET-1 satellite mission (Technology demonstrator) and Bi-
spectral Infrared Detection (BIRD) missions, the estimator and observer control modules were
computed in a fixed manner (order and time). The module’s total computation time was the
waiting time for the sensors’ data plus the additional latency to ensure complete data arrival before
computation. This model leads to a timing problem in the complete control cycle due to the latency
overestimation. This has not been discovered until the launching where timing violation occurs in
another bus application leading to changing the order of the computed tasks in a way that resulted
in corrupted data and faulty behavior in the attitude and the complete orbit control system [65].
Hence, arises a need for a conceptual framework, which allows sharing resources based on certain
configurations for all flight phases.

Figure 3.1: Tasking Framework Scheduling

29
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The starting goal of the On-Board Computer–Next Generation project by DLR was to design
qualified processing and network nodes with an operating system that ensures timing behavior for
satellites. This design has also to cover the timing behavior of multi-cores and distributed systems.
The core element in this design was the Tasking framework. The framework was designed mainly
to improve the attitude control systems performance by dividing the computational data from the
sensor into small parts, each of them called task which are then scheduled based on their availability.

Tasking Framework was designed as an application of inversion of control design pattern, which
is used in designing lightweight frameworks. The framework was firstly used in the ATON (Au-
tonomous Terrain-based Optical Navigation) project, which is a navigation system for a moon
landing scenario using a couple of image processing algorithms [65]. The most important feature
of the framework is changing the time behavior of the tasks being computed. Figure 3.1 shows
the effect of following ASAP scheduling policy on the total response time instead of conservative
scheduling in which computation is started at a predefined time in the computation cycle.

3.2 Task-Channel Application Model
Tasking Framework was developed based on the task-channel model introduced in [39]. The concept
is to have a separation between the data and functionality. In this model, A task is a stateless
executable program, together with its memory and I/O ports while a channel is a message queue
that connects one task’s output port to another task’s input port. In Tasking Framework, the
channel represents a data container that can be handled through the task object. As shown in
figure 3.2, it acts as an interface between tasks and interfaces with the software inputs and outputs.
Using a task-channel model improves code re-usability. It is also very useful in distributed systems
where some software components are needed to be migrated across computation nodes.

Tasking Framework is designed to tackle data-flow-oriented applications. In data-flow designs,
the system’s functionality is comprehended by examining the data flow through the system. Data-
flow oriented techniques imply that the system’s input data must be identified and processed to
produce the required outputs. Using this approach, the program is modeled as a series of sequential
operations happening in a certain order. Tasking Framework uses this design pattern to introduce
structural API that does not depend on the data’s availability but only on its sequence. Except
for the Execution class APIs, All APIs introduce a high level of abstraction, making them
independent of the input data’s availability and the processed task. The framework can be seen as
an abstraction layer similar to the operating systems that control the whole process in the abstract,
generic, and deterministic way [44].

Figure 3.2: Task Channel Model
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3.3 Execution model
In Tasking Framework an instance of a task τ is activated when all the inputs to the task are
activated. For example, in figure 3.3 Task A will be activated when input #1 is activated right
after receiving Msg.A from the sensor A. Another way to activate a task immediately is to mark
one of its inputs as final. If this input is activated, the task will run without considering the other
inputs’ state. For example, in figure 3.3 Task E will be activated when the task event (Timer) marks
the input #0 as final. After that C will be activated instantaneously. An example on how timing
parameters as task activation times and scheduler policy are specified in Tasking environment can
be found in listing A.1.

Figure 3.4 describes the sequence diagram of Tasking Framework. When a message arrives
from a sensor, the main execution thread calls the push() method from the channel class to notify
the associated inputs. If all task inputs are activated, The Tasking Framework will immediately
signal a thread by calling perform() to execute the pending instance of this task. The task starts
immediately with the scheduler of the framework. If a free resource, for example, a processor core,
is available, the task will start immediately; otherwise, the task is queued [44][65].

Figure 3.3: BIRD - Attitude and Orbit Control System (AOCS) and Tasking Framework Elements
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Figure 3.4: Sequence Diagram
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3.4 Tasking Framework in application
Tasking Framework has been used in some DLR projects. The following paragraphs highlight 3
projects in which Tasking Framework has the main role. In Autonomous Terrain-based Optical
Navigation (ATON) [78], Tasking Framework was used to implement the different functionalities as
tasks and connect them via channels. Channels are data-containers storing the data, and component
are activated periodically using events. The developers used 4 threads to execute the software on
the prototype flight computer. In Euglena Combined Regenerative Organic food Production In
Space project (Eu:CROPIS) [64], the Attitude and Orbit Control System (AOCS) was develoed
using Tasking Framework. In Scalable On-Board Computing for Space Avionics (ScOSA) [80], a
DLR project proposes and tests a new onboard computing architecture based on reconfigurable
interconnected commercial off the shelf processors combined in one distributed system. Tasking
Framework is used as a part of the middleware and the main API to develop the applications that
run on ScOSA. An example of an application that will be developed using Tasking Framework
to run on ScOSA is Onboard Data Analysis, Real-time Information System (ODARIS) [74] and
Rendezvous Navigation [71]. Although Tasking Framework has been used in several applications, it
has not been used for developing C-Level safety-critical tasks. Through all the previously mentioned
projects, the WCET was estimated through extensive measurements in the operational environment.

3.5 Tasking Framework as C++ developing library
Tasking Framework is developed at the Institute for Software Technology, German Aerospace Cen-
ter (DLR). It is an event-driven execution platform for real-time on-board software systems. It
allows the implementation of tasks as task graphs with arbitrary activation patterns (periodic and
sporadic). It is written in C++ following the event-driven programming paradigm and supports
multi-threading programming [44].

Although it is not the norm for aerospace application to be developed in C++, it was used in
the developing of this framework for the below reasons:

• First, The language offers modularity through the use of classes and its object-oriented func-
tionality. Although C can also provide similar implementation to classes through struct,
C++ outrages it due to constructors and deconstructors. Constructors and deconstructors
guarantee that objects are always correctly initialized and are always removed after usage,
preventing bugs and leakages.

• C++ allows programming abstractly and generically through templates. A template can be
simplified as a macro that produces a complete full functionality for a different data type.
Templates reuse algorithms for different data types efficiently and at a low resource cost.

• Type safety is another reason to use C++. Type safety means that the compiler ensures that
no mix in data types occurs and that all the variables are correct. Unlike C++, C function
memcpy can copy memory of double into an array of char and ending up with meaningless
data.
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• In large projects, using a unique descriptive naming is hard to achieve and it has always added
prefixes to the names. This leads to long and unreadable names. C++ offers the simplest
solution using namespaces. Namespaces allow multiple uses of the same name in different
contexts, which are resolved later during compiler time. This C++ functionality ensures the
multiple usages of the name in a descriptive, unique way.

• Unlike C, which uses malloc() and free() to allocate and free memory regions, C++ uses new
and delete that adds constructors and destructors, ensuring that no memory leaks or bugs
will occur.

• C++ introduces new concepts that do not exist in C as virtual functions, inheritance, operator
overloading.

• References and smart pointers in C++ are safer than normal C pointers as they ensure that
pointers can not be uninitialized or referenced to NULL.

3.6 Tasking Framework and Static analysis
In this section we discuss the applicability of static analysis to the Tasking Framework as a devel-
opment library and to the applications developed using it. Our argumentation relays on few facts
which we emphasize in the following points:

In data-flow programming the application is modelled as a directed graph, where data is pro-
cessed by tasks then forwarded to subsequent tasks in a pipe-lined manner. The instructions do not
have to wait for the preceding tasks to finish but can be executed as soon as the data are available,
i.e. event-driven. The Tasking Framework API provides abstract classes to design the applications
as directed graph of tasks and channels. The loops in the API that connect the tasks and channels
are therefore bounded. In other words, the API has no dependencies on any data provided at
run-time. The following loop for example in the function TaskInputArray::ConnectTask is bounded
at compile time and its length represents the number of input a task has. In Figure3.5 Task2 has
4 inputs, thus, length = 4.

for (unsigned int i = 0u; i < impl.length; + +i)

In Tasking Framework the channels represent data containers. The mechanism provided by
Tasking Framework to exchange data between tasks and inputs is deterministic and does not rely
on the data’s type or value. For example, the loop in Listing 3.1 is bounded by the number of
inputs associated to the considered channel.

Listing 3.1: Push Function
1 void Tasking : : Channel : : push (void )
2 {
3 for ( InputImpl ∗ i = m_inputs ; i != NULL; i = i−>channelNextInput )
4 {
5 i−>not i f y Input ( ) ;
6 }
7 }
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The tasks in the data-flow application are, in general, stateless bare executors of algorithms.
The developer should override the virtual method execute(void) to implement the proper algorithm
for each task. It is worth clarifying the fact that tasks are generally activated on the arrival of input
data. However, it is not always the case that their CFG depends on the input data type or value.
Therefore, the code in Task::execute() is in general statically analyzable as long as the developer
adheres to implement stateless tasks whose CFG is independent of the input data’s type or value.

Figure 3.5: BIRD - AOCS as realized in Tasking Framework
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3.7 Tasking Framework in This Thesis
In order to use Tasking Framework in hard real-time safety-critical applications, verification and
validations must be carried on to ensure its real-time capabilities. Analyzing the system’s real-time
capabilities and proving its abilities in meeting its deadlines can only be done using static analysis.
Static analysis computes abstract over-approximations for all sets of architectural states at all points
of execution. It provides a safety constrain that a certain condition will never occur at a certain
execution point. This safety property allows proving a safe WCET upper bound. Providing WCET
is the first step towards safety-critical applications being developed by the Framework. In this
thesis, Our main goal is to define a framework that can perform automatic WCET static analysis
for C++ applications as Tasking Framework [44].

Two main reasons make Tasking-Framework a good candidate test-case for our thesis.

• Real-time Guarantees
Tasking Framework is dedicated to develop data handling applications. It introduces a new
scheduling model for satellite on-board data modeling and computation. The Framework does
not follow the standard conservative scheduling where all computation processes have to wait
till the arrival of one message. However, it introduces ASAP scheduling that makes better use
of the available timing and improves the whole on-board system’s worst-case response time.
In this context, performing WCET analysis becomes essential towards computing end-to-end
real-time guarantees on the proposed scheduling model for satellite on-board systems.

• C++ Real world Application
Tasking Framework is not a research platform that includes only subsets of C++. It is a
real-world application through which we can demonstrate whether it is possible to perform
WCET for model-based C++ code. The Framework includes most of the C++ structures
which are used in embedded safety-critical applications. It includes classes, Abstract classes,
virtual methods. This makes it a strong candidate for performing WCET analysis.

3.8 Use-Cases from Tasking Framework
Through this thesis, we selected four use-cases from Tasking Framework to analyze. The use-cases
were carefully designed to cover all the functionalities of the Tasking Framework.

3.8.1 First Use-Case
The first use-case in figure 3.6 is just a Hello World example that contains the basic components of
the framework. The case is composed of handleTask which is activated when new data is pushed
to inChannel. Next handleTask reads the values stored in inChannel and outChannel, saves the
output to outChannel and then sets the timer, modifyTrigger, to 500 ms. After activation by the
timer, modifyTask reads the value stored in outChannel and writes the result to inChannel. Then,
it pushes inChannel, i.e., activating handleTask.
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Figure 3.6: Use-Case Number One

3.8.2 Second Use-Case
The second use-case in figure 3.7 is an actual real application of the Tasking Framework from the
ATON project [78]. It is an application of a data handling model in the navigation of a sub-system.
The system navigates through two cameras which are used to detect craters on the Moon’s surface
and then control the motor based on the craters’ positions. The case consists of seven tasks, five
channels and two timers. camTask1 and camTask2 are activated periodically every 1000 ms by
inputTrigger while, navTask0 is activated periodically every 100 ms.

Figure 3.7: Use-Case Number Two
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3.8.3 Third Use-Case
The third use-case in figure 3.8 is designed to cover the synchronization of the tasks in the Tasking
Framework. The example consists of five tasks synchronized by barrier activated by the same trigger
and another task starts later after the barrier. The five tasks are activated periodically every 1000
ms. When all the tasks finish execution, the barrier activates the example task.

Figure 3.8: Use-Case Number Three

3.8.4 Fourth Use-Case
The fourth example in figure 3.9 is a direct example for asynchronous execution in the Tasking
Framework. The example consists of five tasks that are triggered by different timers. The tasks are
even triggered with different periods ranging from 250 ms to 1500 ms.

Figure 3.9: Use-Case Number Four



Chapter 4

WCET analysis – Opportunities
and Challenge

4.1 Motivation
This chapter will introduce the available opportunities and challenges to perform static WCET
analysis on C++ code. Our main goal through this chapter is to put the literature review into
action through:

• Testing the potentials of the available methodologies to get reliable results for C++

• Showing the effect of tweaking the input types

• Testing the effect of integrating tools to get a reliable static analyzer

Our target here is to answer the following questions:

• Is there an already defined methodology that is capable of analyzing C++ applications?

• If not, does integrating small changes to the current methodologies can lead to any results?
For example, the modifications introduced in [82] to allow SWEET [62] to perform static
WCET analysis on LLVM IR.

• If the above points are not applicable, what should be the next starting point?

4.1.1 Motivation Example
Defining loop bounds is an essential step to get accurate WCET. Automating this step is challenging
especially for C++ code. As an example, listing 4.1 shows a loop from Clock::dequeueAll()
function from Tasking Framework. As shown, the iteration bounds for the loop depend heavily
on the size of data structures in the main memory. The loop iterates over a double-linked list
in the memory and resets every list element. In order to bound such a loop, information about
double-linked list sizes must be exploited. Our motivation here is to explore whether any of the
previously mentioned methodologies can analyze such loop and detect the number of iterations.
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Listing 4.1: dequeueAll Loop from Tasking Framework
1 timeQueueMutex . ente r ( ) ;
2 // Reset p o i n t e r s o f a l l e ven t s in queue
3 EventImpl∗ event = queueHead ;
4 while ( event != NULL)
5 {
6 EventImpl∗ next = event−>next ;
7 event−>queued = fa l se ;
8 event−>next = NULL;
9 event−>prev ious = NULL;
10 event = next ;
11 }

4.2 Using State of the Art Techniques and Tools
To perform a complete automated analysis, we experimented practically the capabilities of the
previously mentioned tools. We divided the analysis into three categories based on the analysis
input code type: source code level analysis, intermediate representation level analysis and binary-
level analysis.

4.2.1 Source Code Level
To the best of our knowledge, no tool can perform complete static analysis for C++ code. However,
there are tools like oRange [18] and PAGAI [47] that perform the loop bound analysis on the source
code. During testing these tools on our Tasking Framework, we faced the following challenges:

• oRange [18] performs analysis only for C Code.

• Although PAGAI [47] performs the analysis on C and C++ code, the analysis runs only on
programs structured in only one file.

To assess the usability of such tools, we compiled the code of the four Tasking Framework
use-cases and lifted them back to C code using RetDec [9], which is a retargetable machine-code
decompiler based on LLVM [6]. It was chosen among various decompilers because it detects and
reconstructs C++ class hierarchies beside its capabilities in reconstructing function, call graphs,
control-flow graphs, types and high-level constructs.

Results

• oRange is not able to calculate loop bounds correctly. It reports NOCOMP for all loops in
the four use-cases from the Tasking Framework.

• PAGAI did not return useful information regarding loop bounds. For example, for lifted
loop in Tasking::Clock::dequeueAll() shown in figure 4.2, PAGAI returned ambiguous
bounding condition for all registers in the loop body. The tool result states that all register
values should be larger than zero to assert that the loop path is reachable.
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• Most of Tasking Framework loops depend heavily on memory accesses. Lifting the binaries
back to C while maintaining a correct memory model is challenging to achieve. As in figure
4.2, the loop in Clock::dequeueAll() was translated to memory pointers initialized with
zeros. This translation makes it hard for tools like oRange or PAGAI to bound the loops
correctly.

Listing 4.2: C-Lifted dequeueAll Loop
1 while ( ( int32_t ) ( v13 | | v12 ) != 0) {
2 // 0xa54c
3 v10 = ( int32_t ) v13 >> 31 ;
4 v11 = v10 + 48 ;
5 ∗( char ∗ ) ( v10 + 10) = 0 ;
6 ∗( int32_t ∗) v11 = 0 ;
7 ∗( int32_t ∗) ( v10 + 52) = 0 ;
8 ∗( int32_t ∗) ( v10 + 56) = 0 ;
9 ∗( int32_t ∗) ( v10 + 60) = 0 ;

10 v12 = ∗( int64_t ∗) v11 >> 32 ;
11 v13 = v12 / 0x100000000 ;
12 }

4.2.2 Intermediate Representation Level
Performing the analysis on the intermediate representation was applicable using SWEET [49]. The
framework performs complete automated analysis, including loop bound analysis. The recently
developed LLVM IR to ALF (SWEET intermediate language) translator [82] offered a generic solu-
tion for our case. Figure 4.1 shows the required steps to perform the analysis using SWEET. Using
the below bash commands in Listing 4.3, C++ code is translated to ALF IR, which is ready to be
analyzed by SWEET.

Listing 4.3: SWEET to ALF
$ c lang++ −Wall −emit−l lvm −S −o − test . cpp |
opt −mem2reg −instcombine − i n s t s imp l i f y −instnamer |
llvm−d i s −o test . l l
$ l l c −march=a l f −a l f−s tanda lone −o test . a l f test . l l

Results

• Although SWEET performs automated loop bound analysis, it fails to bound the loops in
Tasking Framework use-cases. The output flow facts file from SWEET was empty for all
test-cases. In order for the analysis to proceed, flow-facts were given to SWEET.

• SWEET failed to build its abstract execution model due to the LLVM/ALF translator’s failure
in building correct memory model for the translated code.

• SWEET failed to find the worst-case execution path for all the use-cases.
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Figure 4.1: Analysis using SWEET

4.2.3 Binary Level
We move forward to perform WCET analysis on binary-level using OTAWA framework [16]. The
framework was used as an eclipse plugin. The use-cases were built normally for armV7m using
arm-none-eabi toolchain with the same hardware description file given by the tool. In order to
automate the analysis, we integrate POLYMAL [15] as a flow-facts generator to OTAWA.

Results

• OTAWA failed to reconstruct the complete CFG. Although the CFG of most functions was
retrieved, the tool failed to restore the CFG of functions with indirect jump instructions.

• POLYMAL failed to report any loop bounds. As the tool is based on the same infrastructure
analysis of OTAWA, it reports a failure in reconstructing the CFG for the same functions
reported by OTAWA due to indirect jump instructions.

• OTAWA was able to return partial results. The tool could get WCET for functions that do
not contain loops or indirect jumps.
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• OTAWA offers the possibility to annotate loops and resolve indirect jumps manually. However,
this is not an option for our applications because real applications developed by the tasking
frameworks contain hundreds of functions and thousands of function calls. Resolving each
function call manually, which may recursively contain hundreds of function calls, is time-
consuming and introduces human error into the calculations. The same is true for bounding
loops for these applications.

4.3 Summary
In this chapter, we tested all the possible approaches with the available tools to compute the WCET.
We found that no tool can capture loop bounds for industrial code as Tasking Framework. They
were all designed for a simple code structure that does not fit our case. The only positive point was
during testing OTAWA. It showed capabilities in calculating WCET for complicated C++ code.
However, we are still unable to restore the complete CFG due to virtual methods. In the next
chapter, we propose a tool that can be integrated with OTAWA to solve these two problems.





Chapter 5

Symbolic Loop Bound Analysis

As shown in the previous chapters, there is no suitable tool to perform loop-bound analysis for C++
code. This chapter introduces DELOOP, our new concept for bounding loops and resolving indirect
jumps using symbolic execution with Z3 on the low-level IR. At the beginning of the chapter, we
demonstrate some definitions then we present our idea, algorithms, and implementation.

5.1 Motivation
Before moving forward to discuss DELOOP components, we would like to reveal our motive behind
choosing this approach.

• First, performing the analysis on the IR level ensures that the proposed analysis will be
architecture and source code independent. It also resolves and downgrades the complexity of
C++ structures.

• Symbolic execution approach is chosen as it is a powerful technique for program behavior
analysis. It brings together the benefits of both dynamic and static analysis. Given correct
and precise program trace, it generalizes that trace to predict the program’s behavior for a
given input. We used this approach to understand the conditions, under which a program
path is executed to automatically determine the number of iterations of basic blocks in this
path.

• Staring the analysis from the binaries skips the linking problem on the IR level arises from
building tasks developed using libraries as Tasking Framework.
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5.2 preliminaries
This section introduces some of the concepts and notations that will be used throughout the chapter.

• Path: In program flow-graph a path is defined as a finite sequence of basic-blocks B1,B2,...Bk

such that k > 0 and for all 1 ≤ i < k there is a transition from Bi to Bi+1 [23].

• Symbolic execution: It is a technique of executing the program abstractly. The execu-
tion covers multiple inputs of the program that shares the execution path through the code.
The execution treats these inputs symbolically and returns expressions that depend on these
symbols [12]. Symbolic execution is divided into two main categories:

– Static Symbolic execution: It explores the control-flow of a sequential program P to
determine its feasibility by supplying symbols that represent arbitrary values. The goal
is to execute the instructions normally, except that values are symbolic expressions due
to input symbols. This is described by formula Φ(P) that contains the set of inputs i
∈ I that determines the path’s feasibility. The execution is split in case of conditional
branching to find a set of inputs i ∈ I that satisfy each path independently. For each
path, each instruction’s execution is checked against the branching condition. If it is not
possible, then Φ(P) is set to be empty, indicating that no program path can be followed
[51].

– Dynamic Symbolic Execution (DSE): It takes the program exploration one step fur-
ther through the execution of a program P with input i to provide the execution process
with a feasible path. It then uses actual values from the execution P(i) to replace symbol
expressions whenever possible. DSE provides a concrete execution behavior combined
with symbolic expressions. Its major benefit is simplifying the symbolic execution by
combining the concrete execution behavior with the symbolic expressions [51].

To explain the symbolic execution concept, let us consider the example in listing 5.1 and
its equivalent assembly in listing 5.2. In normal execution, the program reads the results
calculated value as an input i (e.g., 6) and allocates it to R0. The program then continues
with the multiplication and the conditional if, which will be evaluated to success.
In symbolic execution, a symbolic value (e.g., Γ) is read and assigned to R0. After that,
the multiplication instruction will be executed and assign Γ << 1 to R0. Then, at the cmp
statement, Γ will be compared with 9. At this point, Γ can take any arbitrary value, and the
symbolic execution can proceed along both branches. The path constraints and the program
state are assigned to each of the paths.
In the below example, the path constraint is Γ * 2 >= 9 for the B2 branch and Γ * 2
< 9 for the B1 branch. Both paths can be symbolically executed independently. When
paths terminate, symbolic execution computes a concrete value for Γ by solving each path’s
accumulated constraints. Dynamic symbolic execution for this program will then use an actual
value to replace symbol expressions Γ whenever possible.
In this thesis, we apply dynamic symbolic execution through the steps of our
proposed analysis.
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Listing 5.1: Symbolic Execution Example in C
in t per f romCalcu la t i ons ( ) {
// re turn a computation va lue
}
i n t f a i l ( ) {return 0 ;}
i n t su c c e s s ( ) {return 1 ;}
i n t main ( ) {
i n t x , z ;

x = per f romCalcu la t i ons ( ) ;
z = x ∗ 2 ;
i f ( z < 10) {

return f a i l ( ) ;
} else {

return su c c e s s ( ) ;
}

}

Listing 5.2: Symbolic Execution Example in armV7m assembly
b l performComputation ( )
s t r r0 , [ sp , #8]
l d r r0 , [ sp , #8]
l s l r0 , r0 , #1
s t r r0 , [ sp , #4]
l d r r0 , [ sp , #4]
cmp r0 , #9
bgt B_2
b B_1

B_1:
b l f a i l ( )
s t r r0 , [ r11 , #−4]
b e x i t

B_2:
b l su c e s s ( )
s t r r0 , [ r11 , #−4]
b e x i t

• Satisfiability Modulo Theories (SMT)
The Satisfiability Modulo Theories problem is to decide a formula’s satisfiability concerning
combinations of background (decidable) first-order theories. Examples of SMT theories are the
real-numbers theory, integer theory and other data structure theories as array and bit-vector
theories. SMT can be considered as a formalized methodology to constrain programming
problems. SMT solvers are mainly used in the test-cases generation and model-bounding [29].
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SMT is considered as an extension of the Boolean Satisfiability problem (SAT). The Boolean
Satisfiability problem determines if it is possible to give values to the variables in a formula
such that the formula yields true. For example, the formula in equation 5.1 is satisfiable if p
is assigned to true and q is set to false, then the three parts conjunction (formula) yields true.

(p ∨ q) ∧ (¬p ∨ ¬q) ∧ (p ∨ ¬q) (5.1)

The language of Boolean satisfiability solvers is Boolean logic (∨, ∧, ¬, →, ↔ ), while for the
SMT solvers it is the first-order theories. The first-order theories are expressive formal lan-
guage systems that break statements into things((e.g., variables and functions), relations(e.g.,
predicate:assert (x>y)), connectives(e.g., &&, ||) and quantifiers(e.g., ∀, ∃). The satisfiability
problem of the equation in 5.2 is an example of first-order linear inequality theory where the
formula is satisfiable if the variables a,b,c and d are assigned to 30, 27, 32 and 21 respectively.

(2 ∗ a > b+ c) ∧ (2 ∗ b > c+ d) ∧ (2 ∗ c > 3d) ∧ (3 ∗ d > a+ c) (5.2)

Generally, the SMT goal is to determine the satisfiability of the formula Γ for a theory T.
The formula is defined as a set of signatures Σ which includes a set of function symbols and
predicate symbols. The complexity of such a problem varies from polynomial to undecidable
based on Γ and T. Examples for T from [19] are:

– Real Arithmetic Theory with Σ = {+, x,≤} includes all isomorphic structures to real
numbers with +, x and ≤ functionalities.

– Array Theory with Σ = {select, store} includes all the isomorphic structures to the
memory read (select) and memory write (store) functionalities.

• Array Theory
The arrays theory first introduced in [69] has the signature Σ = {select, store,=}. The
function select(a,i) returns the value of array a at index i while the store(a, i, e) function
returns array a, overwritten at index i with element e. The = predicate is only applied to
array elements following the axioms of the array theory [20]:

– First axiom: i = j =⇒ select(a, i) = select(a, j)
– Second axiom: i = j =⇒ select(store(a, i, e), j) = e
– Third axiom: i ̸= j =⇒ select(store(a, i, e), j) = select(a, j)

Additionally, the theory contains the axioms for reflexivity and transitivity of equality; how-
ever, this is not relevant for the topic of our thesis.

• Bit-Vector Theory
A bit vector is an array data structure that stores data compactly in one vector unit and is
defined with its width, indicating the vector’s number of bits. The Bit-Vector theory problem
determines if it is possible to give values to the bit-vector in a formula such that the formula
yields true. This approach is effective in modeling bit-level operations on the hardware level.
The bit-vector theory supports bit-wise operations as ∨, ∧, ¬, <<, >>, etc.
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An example of addition operation using bit-vectors is shown in Equation 5.4 where the addition
of 200 and 100 yields 44 due to overflow. As the theory deals with an array of bits, the
formula in 5.3 that holds for integers does not hold for bit-vectors as overflow may occur [21].
Bit-vector theory is used in the context of this thesis to check the satisfiability of the SSA
instructions operations.

x− z > 0 =⇒ x > z (5.3)

10111110 = 190

+01101110 = 110

= 00101100 = 44

(5.4)

• Z3 SMT Solver
It is an SMT solver from Microsoft Research. The solver was designed to handle software
verification and software analysis problems. Z3 includes SAT solver, core theory solver to
cover equalitities and functions, satellite solver to handle arithmetic and array theories and
E-matching abstract solver for quantifiers [29]. In the context of this thesis, we used the
python API of Z3.

• Single Static Assignment (SSA)
In compiler theory, a single static assignment (SSA) is a characteristic property of the in-
termediate representation, which indicates each variable’s assignment occurs only once and
that this variable must be defined before its usage. The main benefit of using SSA is that it
directly simplifies and improves compiler optimizations [13]. For example, in listing 5.3, In
normal IR assignment in the group (a), it is clear that the value of x comes from the second
instruction and that the first assignment is useless. In order to detect this, a reach definition
analysis is essential. However, in SSA instructions group (b), it is immediate and clear that
y1 is useless.

Listing 5.3: SSA Instructions
y := 5 y1 := 5
y := 10 y2 := 10
x := y x1 := y2
( a ) (b)
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In the case of control flow merges, where an SSA instruction is expected from multiple paths,
an additional ϕ function is added, indicating that such conflicting instruction may have dif-
ferent values based on the control flow path. Listing 5.4 and figure 5.1 show how control-flow
merging is performed in the SSA context. In the bottom basic block in figure 5.1, the y value
can be considered as y1 or y2 depending on the execution path. To resolve this, the ϕ function
was introduced to generate a new definition y3 that may be y1 or y2 based on the control
flow.

Listing 5.4: CFG Mergeing in the SSA Context
i f ( cond i t i on )

y := 10
else

y := 42
x := y

Figure 5.1: Φ Function in the SSA Context
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5.3 DELOOP
To capture loop bounds, we present a new analysis based on the symbolic dynamic execution called
DELOOP shown in Figure 5.2. The main goal of DELOOP is to determine the number of times a
certain basic block B is executed for a given CFG G. DELOOP takes executable binary as program
input and produces an estimation for the loop bounds as output.

5.3.1 Basic Idea
Generally, dynamic symbolic execution explores the CFG of sequential program P using theorem
prover as Z3 [29] to determine the feasibility of a certain path Π. The exploration of the feasibility
of a path Π through program P yields to Φ(P) that illustrates the set of inputs I to the program
P such that for input i ∈ I the execution of P(i) follows the path Π. If I is an empty set, then the
path is not feasible.

We modified this idea a little bit to explore loop bounds. We introduce two main concepts
to be discussed in this chapter. The first approach is DELOOP with data flow analysis called
DELOOP DF. This approach is implemented using data flow analysis supported by dynamic
symbolic execution. For a feasible (reachable) path Π representing a loop path in a program P
with set of inputs Iinit, the approach’s goal is to deduce the number of iterations needed for this
set of inputs to change to Ifinal. Ifinal is defined as the set of inputs that changes the feasibility of
the path Π, i.e. (exit conditions). This concept is a mixed static and dynamic approach in which
the static part (data-flow) is used to define the inputs Iinit while the dynamic symbolic execution
is used to detect the required number of iterations till reaching Ifinal.

The second approach is DELOOP with full program execution DELOOP FE which is imple-
mented using only dynamic symbolic execution. For a program P starting at an initial path Πi with
a set of initial inputs Iin, the approach’s goal is to deduce Iout. Iout is defined as the set of outputs
at the end of the path Πi. Further, the approach defines the next path that can be reached using
Iout as new Iin. Following this concept, we dynamically execute all the feasible paths in the whole
CFG to resolve all the loops. This is contrary to what DELOOP DF does, as it only executes the
loop CFG.

Although each of the two approaches has a different starting point, they follow the same pattern
during the code’s dynamic symbolic execution. In both cases, the symbolic execution will trace the
control flow path Π taken by the execution of P(i). The dynamic solver will generate a path-
condition from Π using a symbolic expression. It will then generate new input i that guide the
search to expose the next path. In DELOOP DF the scope of the next path is only bounded to
the CFG of the loop; this is different from DELOOP FE which explores all the feasible paths in
the CFG.
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Figure 5.2: DELOOP Basic Components

5.4 Implementation
DELOOP is an analysis tool that implements a combined loop detection algorithm, data-flow
analysis, and dynamic symbolic execution. The base of DELOOP is BINARYNINJA [10] which
is a reverse engineering framework used mainly for binary analysis. BINARYNINJA is used to
reconstruct the CFG and lift the input binaries into SSA LLIR. Its API is used to parse and
facilitate all parts of the analysis. The analysis uses Microsoft Z3 [29] through their python API
for the symbolic execution. The tool is implemented as shown in the following sections.

5.4.1 Loop Detection
For a given executable, the code is disassembled and lifted to a single static assignment (SSA) low-
level intermediate representation. During this, the CFG G is reconstructed and cyclic sub-graphs
gi ∈ G are detected to capture loops in the code. The Loop detection algorithm implemented for
DELOOP is a separate static analysis approach and is based on Johnson’s algorithm [52]. The
algorithm finds all the elementary circuits (loop) of a directed graph. A directed graph is defined
as a graph G (V, E) consists of a nonempty set of vertices V and a set of ordered pairs edges
E bounded in time by O((n + e)(c + 1)) and in space by O(n + e), where n is the number
of vertices, e represents the number of edges and c indicates the elementary circuits in the graph.
A single elementary circuit is defined as a closed path where no node appears twice, except that
the first and last nodes are the same. Two elementary circuits are distinct if they are not cyclic
permutations of each other. Our loop detection analysis goal is to detect basic blocks grouped in a
single elementary circuit (i.e., Loop). To identify an elementary circuit, the following is done:

• The algorithm in question firstly breaks down a function into basic blocks.
• Secondly, the incoming and outgoing edges of each basic block are pointed out. An incoming

edge of a basic block indicates the block number of the basic block directly preceding or
jumping to it. On the other hand, an outgoing edge of a basic block indicates the block
number of the basic block that directly follows it.
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• The next step involves utilizing information gathered about each basic block’s edges to con-
struct a cyclic graph. This cyclic graph can be viewed as a map highlighting the control flow
between a group of basic blocks referred to as pathways.

• Finally, such pathways are evaluated against the criteria of whether or not the pathway
connects back to a previously visited basic block on that same pathway. Meeting the proposed
criteria holds the key to identifying what we define as a loop.

Each loop detected by the Loop detection algorithm is given a Loop ID number that reflects the
Block ID number of the last basic block in the acquired cyclic graph of that loop. Recursive
function calls or loops are not handled with the loop detection algorithm. However, they are
handled automatically during the dynamic symbolic execution phase, which will be discussed later
in this chapter.

5.4.2 Data-Flow Analysis
To get the initial state of registers before loop execution, a backward program slicing is performed.
The goal is to find all values of registers used by the loop. The data-flow analysis is only a part of
DELOOP DF. The data-flow analysis includes two steps:

• Tree Generation
For the analysis to find the registers’ initial values, the analysis comprises two parts: Inter-
procedural analysis (inside function scope) and intra-procedural analysis (outside function
scope). For the analysis to combine both scopes, T ∈ G is created for every loop to define the
search area. T is defined as the tree including the chain(s) of basic blocks (Loop Path) that
starts from the code entry and leads to the exit basic block of the loop. The tree is formulated
using the caller-callee API from BINARYNINJA to include the basic blocks outside the
function scope. Ti and To are introduced as sub-trees from T where Ti refers to the path
from the function entry to the last basic block of the loop. To refers to the tree highlighting
the loop’s path outside the function scope. This loop path information is extracted from the
BINARYNINJA control flow analysis API, which can resolve indirect jumps partially. For
example, figure 5.3 shows the construction of the loop path tree T from the CFG. For a loop
starting at B4 and including B5 ,B6 and B7, The tree is generated to define the search paths
for registers initial values.

• Backward Program Slicing
Backward program slicing is the detection of the program points that affected (might affect)
a given program point p [75]. In our analysis, backward static slicing is executed across the
loop path graph T to find initial values of the register(s).
To perform the slicing, the SSA instructions of T are modeled as nodes V with Edges E. Each
node v ∈ V has an input edges ein and an output edge eout. Thus, given T (V,E) and a
register Ri in an instruction inside the loop as a current starting node, the slicing returns a
list of instructions that traces back to the initial value of the register. This is done by iterating
over the previous nodes until finding a node whose output edge eoutprev is equal to the input
edge of the current node eincurrent. In the case of variable input edges, i.e., registers, a deep
first search is executed to find the source(s) of the previous node until reaching the stopping
criteria. If the input of this previous node einprev is constant (constant or load from memory),
then the search stops as the slicing criteria is met.
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Figure 5.3: Tree Generation From The CFG

The presence of the instructions in the SSA form is essential for the program slicing. It facilitates
the slicing and thus finding the initial value of the registers. The SSA form helps limiting the
number of the input edges when modeling the nodes of the GLP graph. In SSA form, the nodes
are modeled with two input edges and one output edge, limiting the graph search space. The use
of non-SSA instruction will increase the algorithm’s complexity by having multiple input edges and
thus increasing the complexity of the slicing and the search algorithm.
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5.4.3 Dynamic Symbolic Execution
• Memory Model

Two memory models are built based on the array theory. The models allow the dynamic
execution of SSA memory-based instructions using SMT formulas. Data inside the arrays are
formulated as bit-vectors, and thus the arrays are defined as arrays of bit-vectors. The first
memory is used for the symbolic execution of the load/store instructions (model the main
memory) while the other is used for the push/pop instructions (model the stack). The main
memory model is initialized with the initial values of all the program’s data variables in the
given input-file.

• Translation to SMT Formula
The first step in the symbolic dynamic execution is to take the program under analysis and
compile it into SMT formulas. Later, we use these formulas to investigate the execution of
the program. This step is the core heart of our analysis. It transforms IR operands into Z3
expressions to be used later by the z3 solver during the code’s dynamic computation. First,
every operand is expressed as a bit vector with a size that matches the target architecture.
This operand is then passed to the Z3 solver in a form that implies the IR instruction’s
mathematical effect on the solution state. The SSA form facilitates the whole translation
process as every SSA instruction is directly mapped to one SMT formula using array and bit-
vector theories. For example, the LLIR SSA instruction R2 = R3 + 1 is translated as shown
in equation 5.5 where a bit-vector variables are defined for the R2, R3 and the immediate
value. Memory instructions are also interpreted in the same way. For example, the LLIR
SSA instruction shown in 5.6 is computed as select(mem,0x808) where mem is the memory
model and 0x808 is the load address. The translator performs the previous steps for all kinds
of IR operations.

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(R3, size) +BitV ec(1, size) (5.5)

R2 = [data_0x8080] =⇒ select(mem, 0x808) (5.6)

• Symbolic Execution Engine
A dynamic execution engine is built using Z3. Its goal is to execute the SMT formulas
dynamically on the memory model. The engine has n number of states each of them captures
the change in registers (∆Φ), memory (∆Γ), or stack (∆β) status for the execution of a single
formula. The total number of n is equal to the number of SSA instructions of the program
under analysis. The concept of the states transformed our execution from a static to a dynamic
symbolic execution. For example, during the translation of R2 = R3 +1, the translator first
checks whether there are previous variables in the engine states for R3 and R2. In the case
of already existed variables, the value of R3 is fetched from the engine and increased by one
and then assigned to R2. If R3 has a previous value of 100, then the translation process is
done as shown in equation 5.7. The same is correct for the memory instruction in equation
5.6. If the address 0x8080 has a value then R2 will be updated as shown in equation 5.8.

R2 = R3 + 1 =⇒ BitV ec(R2, size) = BitV ec(100, size) +BitV ec(1, size) (5.7)
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R2 = [data_0x8080] =⇒ 0xa080 (5.8)

• Initialization
For every loop li, initial state Si is defined, which is a snap of the memory and registers before
the loop’s execution. This initial state is the equivalence of Iinit and Iin in our symbolic
execution model. In the case of DELOOP DF, the data-flow analysis is responsible for
tracing back the registers’ initial values ϕi. To avoid memory aliasing and to ensure that Γi is
set correctly, we used the -ffunction-sections flag option during the building process. This
option generates a separate ELF section for each function in the executable file. The output
section for each function has the same name as the function that generates the section. In the
case of DELOOP FE, the execution starts from the program entry point till the loop head
to get the registers’ ϕi and memory Γi initial values. The initial state Si <ϕi,Γi > is then
passed to the symbolic dynamic execution solver. All instructions are then executed until the
final state Sf is reached. Sf is defined as the state when the loop exit condition is satisfied.
This final state is the equivalence of Ifinal and Iout in our symbolic execution model. In other
words, the SMT solver is given the inputs (loop initial conditions) and the outputs (loop exit
condition) and is asked about the number of the needed transition phases to reach from the
input to the output.

• Execution
The SMT formulas are executed dynamically through the execution engine and the memory
models. The execution engine checks the satisfiability of every formula and then updates
the engine status with the effect of execution. For example, assuming a previous value of
R3 from a previous engine state to be 100. The SMT formula’s execution in 5.9 yields true
and updates the value of R2 in the execution engine to 101. The same concept is true for
memory-related SMT formulas. The execution of formula i changes the engine state from si
to si+1 which belongs to the loop overall state Sj . The resulting state from execution of a
formula is si+1 = si+∆k where k ∈ {ϕ,Γ, β} and depends on the formula type. For example,
a memory formula implies ∆ϕ while a PUSH formula implies ∆β . After executing the loop
instructions, the loop exit condition’s satisfiability is checked to determine whether the loop
should be re-executed or the maximum number of iterations is reached, i.e Sj = Sf .

BitV ec(R2, size) = BitV ec(R3, size) +BitV ec(1, size) (5.9)

During execution, formulas are categorized into four main types, memory-related formulas,
registers-related formulas, stack-related formulas and finally director formulas. Director for-
mulas (branching instructions) are the ones responsible for setting the execution path for the
solver. For example, the SMT formula for the LLIR instruction in listing 5.5 evaluates the
branching condition r1 > 0 and then sets the next basic block to be executed based on the
evaluation result.

Listing 5.5: Branch Instruction (Director Formula)
I f r1>0 then BB1 else BB2
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Algorithm 1 shows how the symbolic dynamic execution is performed for SMT formulas. For
every instruction I in a basic blocks B of the loop cyclic graph gloop the satisfiability of its
formula is checked, and the status si is updated based on its effect on the engine model.
The loop instructions are executed by updating the engine state and evaluating the transition
condition. If the instruction is a branch instruction that may yield to basic blocks Bx or By,
the algorithm checks whether this basic block belongs to gloop or not. This check is considered
as an exit condition for the algorithm. The exit condition is only valid for DELOOP DF.
For DELOOP FE the execution normally runs to the next basic block outside the loop till
the exit function of the program. Through this, DELOOP FE explores all the loops in
the program in a sequential way following the same execution technique mentioned in the
algorithm. To detect the bounds, we investigate all basic blocks inside a loop to get the
maximum loop iterations. The loop bound is max(ni), where n is the basic block execution
number, and i is the basic block index. The flow graph shown in Figure 5.4 is a simple example
to explain the concept. Given the registers’ and memory initial values, Sinit is then set as the
engine state before executing the loop. The first instruction R1=M[R0] is executed updating
the engine state with R1 new value equal to five. At this step the satisfiability of the loop
exit condition (R4<10) is checked resulting in jumping back to point a. The process is then
repeated until satisfying the exit condition where the value of R4 becomes larger than 10. For
the example purpose, we assume that every instruction execution leads to the loop repetition.
From this, the analysis deduces that the loop is required to be executed three times to reach
the point c.

Figure 5.4: Loop Execution with Z3 Engine
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Algorithm 1 Z3 Execution Engine
Input : gloop : loop cyclic graph
Output : N : Number of loop iterations i
Initialize Si < Φi , Γi , βi >
for Bi in gloop do

for Ii in Bi do
if Ii is RegisterSet then
si =⇒ si + ∆ Φi

if Ii is MemoryWrite then
si =⇒ si + ∆ Γi

if Ii is Push || Pop then
si =⇒ si + ∆ βi

if Ii is conditional branch: Bx, By then
Bnext =⇒ Bx || By

if Bnext ̸∈ gloop then
exit

5.4.4 Resolving Indirect Jumps
The state functionality of the execution engine kills two birds with one stone. It does not only
bound loops, but it also resolves indirect jumps. During the dynamic execution of DELOOP FE,
each formula’s satisfiability is checked, and then the engine status is updated as demonstrated in
algorithm 1. Updating the status means that the SMT solver yields SAT and yields the formula
operation’s actual value. Thus, before the execution of any indirect call, the engine’s state contains
the register’s correct value. For example, during the execution of LLIR branch instruction call R3
in listing 5.6, the value of R3 is fetched from the engine where its replacement in the call instruction
yields to the actual jump address. Resolving indirect calls is only available in DELOOP FE.

Listing 5.6: Resolving Indirect Calls
c a l l R3 =⇒ c a l l 0x808a

5.4.5 Proof of Correctness
DELOOP FE drives an automatic proof of correctness. The success of the analysis (loop bounding
and resolving indirect jumps) must and has to lead the execution path to the CFG’s exit function.
Any failure during the analysis will lead to the unsatisfiability of the memory formulas during
execution and thus the analysis failure. The memory formula’s unsatisfiability may result from
out-of-bound storing (store outside the memory model) or incorrect selecting (select uninitialized
value/select from undefined address). Thus, reaching the exit of the CFG not only means the
analysis end but it also means that the results are correct. By correctness we mean that the loops
are bounded and the indirect jumps are resolved.
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5.5 Primary Evaluation
We test our approach based on test-cases from the Mälardalen WCET benchmarks suit [43]. The
Mälardalen benchmark was chosen as it has a common, open-source set of test programs for WCET
methods and tools. The benchmark includes a broad set of program constructs for evaluating and
testing WCET algorithms. For example, [18], [47], and [62] used the Mälardalen benchmark for
performance evaluation. Although the Mälardalen is not as challenging as Tasking Framework use-
cases because it includes trivial ANSI-C programs with mostly static loop bounds. We prefer to
use it as a first evaluation step for two reasons:

• To compare our approach results with other already existed tools that only analyze ANSI-C
code

• To decide on which of the proposed concepts to proceed (DELOOP DF or DELOOP FE)
with Tasking Framework

The test-cases were built for arm-none-eabi tool chain for a single core cortex-m3 as CPU
with armv7-m architecture with the following option flags:
CCFLAG_Optmize : −o0 −f f unc t i on−s e c t i o n s −fdata−s e c t i o n s
CCFLAG_Other : − f i n l i n e −l im i t =10000 −funs igned−char

−funs igned−b i t f i e l d s
−fno−s p l i t−wide−types
−fno−move−loop−i n v a r i a n t s
−fno−t ree−loop−opt imize
−fno−unwind−t ab l e s −f sho r t−wchar

We assess the proposed analysis with two different: approaches DELOOP DF and DELOOP
FE. In the second approach DELOOP FE, the test-cases were executed symbolically from the
beginning till the end using only Z3. During this, the solver is responsible for detecting the initial
condition Si before evaluating the loop. The idea behind this evaluation is to explore both methods’
strengths and weaknesses and to evaluate the efficacy of the data flow analysis in setting the initial
conditions.

We have used 25 programs from the MälardalenWCET Benchmark suite [43] to test our tool. We
choose the most commonly used programs by other tools as comparison test-cases. The benchmarks
are a diverse collection of programs designed to test different parts of the analysis. Our evaluation
includes comparison with other tools as oRange [18], PAGAI [47] and SWEET [62]. Table 5.1 shows
the comparison where BLT and %BLT represent the percentage and number of bounded loops out
of 159 loops respectively. E and %E represent the percentage of exact bounding out of the same
number of loops. For all conditions, DELOOP finds a bounding solution for the loop. The only
exception is very large functions as nischneu where the BINARYNINJA fails to restore the CFG
of the main function.

Table 5.2 shows the benchmarks results for DELOOP where #LC indicates the number of lines
of codes, #L represents the number of loops in the program, E and %E represents the number
and the percentage of exact bounded loops in the program. It highlights that DELOOP in the
full execution mode has higher precision than the data-flow model. The solver correctly captured
the loop bounds in all benchmarks As it follows a certain execution path that ensures correct
initialization before loop execution. It was also able to bound recursive and nested loops as in fac
and ndes. DELOOP DF misestimates some bounds. The reason behind its low precision is the
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Table 5.1: Loop-Bounding Tools Comparison

Tool BLT % BLT E % E
DELOOP FE 158 99% 152 94%
oRange 133 84% 138 87%
PAGAI 116 73% 116 73%
SWEET LP 100 63% 81 51%
DELOOP DF 158 99% 72 47%

registers’ initialization using data-flow. As it sometimes leads to multiple execution paths where
registers’ initial values can be found. This obliges the analysis to run the solver at different times
with a different initial values to get the loop’s upper bound. At this point, the loop bounds are
defined as the result of the registers’ initial value that leads to the highest number of iterations.
This technique ensures a safer upper bound but lowers the precision of the results. The static
data-flow analysis also fails if the register(s) under analysis has been updated during the execution,
which means false results due to the static approach. On the contrary, the full-execution approach
predicts correct values for registers before loop bounding.
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Table 5.2: Benchmark Results

DELOOP DF DELOOP FE
Program #LC #L E1 %E1 E2 %E2
adpcm 879 27 10 37% 26 96%
bs 114 1 1 100% 1 100%
cnt 267 4 2 50% 4 100%
cover 640 3 3 100% 3 100%
crc 128 6 1 16% 6 100%
duff 86 2 0 0% 2 100%
edn 285 12 10 83% 12 100%
expint 157 3 1 33% 3 100%
fac 21 1 0 0% 1 100%
fdct 239 2 2 100% 2 100%
fft 219 30 8 27% 25 83%
fibcal 72 1 1 100% 1 100%
fir 276 2 1 50% 2 100%
inssort 92 2 2 100% 2 100%
jcomplex 64 2 0 0% 2 100%
ludcmp 147 11 8 72% 10 100%
matmult 163 7 4 57% 7 100%
ndes 231 12 0 0% 12 100%
ns 535 4 2 50% 4 100%
nsichneu 4253 1 0 0% 0 0%
prime 535 2 2 100% 2 100%
qsort-exam 121 6 3 50% 6 100%
qurt 166 3 1 33% 3 100%
select 114 4 0 0% 4 100%
ud 161 11 8 72% 11 100%
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Table 5.3: Comparison between DELOOP DF and DELOOP FE

Criteria DELOOP DF DELOOP FE
Entry Point Loop Header Program Entry Point
Approach Data-Flow + DSE DSE

Indirect Jumps BINARYNINJA API Resolved accurately with SMT + DSE
Registers values before SDE Non-deterministic Accurate values
Memory model before SDE Subjected to Aliasing Accurate values

5.6 Conclusion
We presented a loop-bound tool based on dynamic symbolic execution and a mathematical solver. It
proceeds by initializing the solver and then starts to run the loop code symbolically to evaluate the
number of iterations. We showed two separate ways in which the analysis can be used and evaluated
against other available tools. Table 5.3 shows a brief comparison between using DELOOP in a pure
dynamic symbolic execution (DSE) mode and DELOOP as a hybrid methodology between data-
flow and dynamic symbolic execution mode. Thanks to the full-execution technique of DELOOP,
our approach can naturally resolve indirect jumps and determine the overhead resulting from the
tool-chain. While the speed of our method is currently slower than other existing techniques, we
believe that this can be improved in the future.



Chapter 6

Evaluation

In the previous chapters, we explored the challenges and the tools that may be useful to analyze a
real industrial application as the Tasking Framework. In this chapter, we introduce our approach for
calculating the WCET for a C++ application developed by the Tasking Framework using DELOOP
and OTAWA.

6.1 Introduction
We showed in chapter 4 that OTAWA could compute the WCET for some functions in the Tasking
Framework. Therefore, we decided to adopt OTAWA as a static analyzer. However, OTAWA needs
loop bounds and it cannot resolve indirect jumps. For this end, we proposed a dynamic symbolic
execution-based analysis than can compute the loop bounds and resolve indirect jumps using z3
solver.

The Tasking Framework is a static event-driven software development library used to develop
data-flow-based applications. It generates a map of channels and tasks representing the developed
application. The Tasking Framework’s behavior is deterministic and its structure does not depend
on values given at run-time. Loops in the Tasking Framework can be categorized into two types.
Firstly, loops in the architecture of the framework depend only on the designed system’s structure.
Thus, they are known during the compile-time and will never change during the execution of the
application. Secondly, loops exist in the developed tasks. These loops depend on the task being
executed. In this thesis, we focus only on the binary input task-triggered events. In other words,
the input events can be considered as on/off switches for the tasks. Through DELOOP, we can force
the occurrence of events (inputs) and analyze even the executed tasks that have fixed execution
paths.

63
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We showed on the Mälardalen WCET Benchmark suite that running DELOOP FE over-
performs DELOOP DF in terms of precision when bounding loops. Considering the comparison
in table 5.3 in the previous chapter, we found that the full-execution approach fits our application.
To resolve indirect jumps, the data-flow approach depends on BINARYNINJA APIs. The APIs
uses a static analysis which fails to resolve the indirect jumps completely. DELOOP results are
based mainly on the correctness of the initial state before loop execution. This correctness can
not be ensured with the data-flow analysis because registers may have more than one initial value
depending on the slicing results. Memory initial values are also subjected to aliasing. Memory
aliasing means that a previous operation changed the memory content at a certain address and
thus reusing the old-value is a wrong assumption. For the above reasons, we decided to adopt
DELOOP FE to compute the flow facts and resolve the indirect jumps needed by OTAWA.

6.2 Experimental Setup
Figure 6.1 shows our proposed setup for measuring the WCET. The analysis is based primarily
on OTAWA as a static analyzer and DELOOP as a flow facts generator. This setup expands the
capabilities of OTAWA in estimating WCET for C++ code.

Given OTAWA [16] hardware description file for armv-7m, the WCET estimation starts with
reconstructing the CFG. The results of the loop analysis performed by DELOOP are then passed
to OTAWA for the WCET analysis. Analysis information from OTAWA is then collected in an
execution graph which then gathers timing data for every basic block. The analysis is performed
for a Bare-metal implementation with no caches. Caches are not part of our analysis as we are
analyzing C-level safety-critical applications. Due to their unpredicted behavior as per ISO 17770
[70], caches are turned off. The setup gives the execution-time of every function in the binary input
file.
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Figure 6.1: DELOOP with OTAWA
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6.3 Loops Results
This section presents the results of DELOOP as tested on selected loops from the Tasking Framework use-cases
mentioned in chapter 3. The loops in question are categorized as follows: Task related loops, Input related loops
and Channel related loops. In the following subsections each loop category will be analysed, firstly, by explaining
the functionality of the function to which the loops belong to. Secondly, we highlight the source code of the loops
followed by its low level intermediate representation. Finally, we tabulate the results of DELOOP.

6.3.1 Inputs Related Loops
• Input Array Provider

Input array provider is used to initialize a static memory for each input. Although there are no loops to bound
from the source code shown in listing 6.1, DELOOP discovered a loop that iterates to initialize static memory
for each task’s input. Figure 6.2 shows the loop in the input array provider on the IR level. BINARYNINJA’s
GUI shows a loop through the blue arrow; however, its API does not have any loop analysis functionality and
the loop detection is only possible using the loop detection algorithm of DELOOP.

Listing 6.1: Input Array Provider Constructor
1 template<size_t n> InputArrayProvider<n>: : InputArrayProvider (void ) :
2 InputArray ( inputMemory , n) {
3 }

Figure 6.2: Loop in Input Array Provider
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Table 6.1: Snippet of DELOOP Results For Input Array Provider

ID Address Function Name Bound Expected
Use-Case #1

22 0x8754 18InputArrayProviderILj1EEC2Ev 1 1
23 0x84ae 18InputArrayProviderILj1EED2Ev 1 1

Use-Case #2
22 0x8ad0 18InputArrayProviderILj1EEC2Ev 1 1
23 0x87e2 18InputArrayProviderILj3EED2Ev 3 3

Use-Case #3
22 0x86b4 18InputArrayProviderILj1EEC2Ev 1 1

Use-Case #4
32 0xc0dc 18InputArrayProviderILj1EEC2Ev 1 1

The table 6.1 shows a snippet of DELOOP results for the input array provider loop in the four use-cases. ID
in the table refers to the loop ID, which is the ID of the last basic block in the loop body. ID numbers in
BINARYNINJA restart from zero for every function, so we add every function’s address to distinguish between
basic blocks of the same IDs but in different functions. DELOOP reported 20 loops for the input provider
functionality in the four use-cases covering all input array provider loops. Since most of the four use-cases
tasks are only connected to one-input, DELOOP reported a bound of one indicating the initialization of the
static memory for only one input. Except for the task ILj3EED2Ev in the second use-case, which relates to
navTask on the source code level, DELOOP reported three iterations, which is the same number of inputs
to be initialized for this task as shown in figure 3.7.
Detecting and bounding loops for the case mentioned in figure 6.2 is essential for WCET estimation. Consider
the case when the developer goes directly to OTAWA to estimate theWCET for the Tasking::InputArrayProvider
function. OTAWA will report unbounded WCET due to unbounded loop as shown in figure 6.3. Returning to
the source code, the developer will find no loops. DELOOP facilitates catching such kind of behavior where
the loops are hidden behind the constructor class.

Figure 6.3: Unbounded Input Array Provider Loop in OTAWA



68 CHAPTER 6. EVALUATION

• Input Array Connect Task and Reset
The loops in InputArray::conectTask in listing 6.2 iterates over the inputs to connect the input array to the
task. The loop in InputArray::reset function in listing 6.3 iterates over the inputs to reset the input Array.
Both loops depend mainly on the number of inputs of every task. DELOOP detects the loops on the IR level
and reports correct bounds as shown in table 6.2. Same as in table 6.1, ID in the table 6.2 refers to the loop
ID, which is the ID of the last basic block in the loop body and address refers to the function starting address.
The table shows the bounds dependency on the number of tasks and the correct estimations from DELOOP.
Since most of the four use-cases tasks are only connected to one-input, DELOOP reported a bound of one
indicating the connection of one input array to the task or resetting the values of one input array. Except for
the task ILj3EED2Ev in the second use-case, which relates to navTask on the source code level, DELOOP
reported three iterations, which is the same number of inputs to be initialized for this task as shown in 3.7.
The loops structure on the IR level are shown in figure ??.

Listing 6.2: InputArray::connectTask
1 /∗ In func t i on Tasking : : InputArray : connectTask ( TaskImpl & t a s k )
2 The loop i t e r a t e s over a l l d e f i ned inpu t s
3 to connect the array o f inpu t s to the de s i gna t ed t a s k .
4 The number o f inpu t s i s de f i ned in compi le time
5 ∗/
6 for ( unsigned i n t i = 0u ; i < impl . l ength ; ++i ) {
7 impl . inputs [ i ] . connectTask ( task ) ;
8 }

Listing 6.3: Loop in InputArray::reset
1 // In func t i on Tasking : : InputArray : : r e s e t ( vo id )
2 //The loop i t e r a t e s over inpu t s to r e s e t them
3 for ( unsigned i n t i = 0 ; i < impl . l ength ; ++i ) {
4 impl . inputs [ i ] . r e s e t ( ) ;
5 }

Table 6.2: Snippet of DELOOP Results For the loops in Connect and Reset functions

ID Address Function Name Bounds Expected
Use-Case #1

17 0xaf22 10InputArray11connectTaskERNS8TaskImplEEC2EV 1 1
17 0x820a 10InputArray11connectTaskERNS8TaskImplEED2EV 1 1
16 0xaa60 10InputArray5resetEvTaskERNS8TaskImplEED2EV 1 1

Use-Case #2
17 0xaae6 10InputArray11connectTaskERNS8TaskImplEEC2EV 1 1
17 0x9a2c 10InputArray11connectTaskERNS8TaskImplEED2EV 3 3
16 0x82ae 10InputArray5resetEvTaskERNS8TaskImplEED2EV 3 3
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(a) Loop in InputArray::reset

(b) Loop in InputArray::connectTask

Figure 6.4: reset and connectTask functions in InputArray
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6.3.2 Tasks Related Loops
The loop in Scheduler::restart function in listing 6.4 iterates over tasks in the application to reset them at the end
of the execution. DELOOP detected the loop on the IR level and reported correct bounds as shown in table 6.3.
Same as in table 6.1, ID in the table 6.3 refers to the loop ID, which is the ID of the last basic block in the loop
body and address refers to the function starting address. The table shows the bounds dependency on the number
of tasks and the correct estimations from DELOOP. Since the use-cases from one to four have two, seven, six and
five tasks, respectively, the detected loop bounds were exactly the same numbers.

Listing 6.4: Loop in Scheduler::restart
1 /∗ In func t i on Schedu ler : : r e s t a r t
2 The loop i t e r a t e s over t a s k s in the a p p l i c a t i o n to r e s e t them .
3 The number o f t a s k s i s known during compi le time .
4 ∗/
5 for ( TaskImpl∗ task = impl . a s soc ia t edTasks ; ( task != NULL) ;
6 task = task−>nextTaskAtScheduler ) {
7 // Doing a r e s e t i f op t ion i s s e t
8 task−>parent . r e s e t ( ) ;
9 }

Table 6.3: DELOOP Results for the reset Loop in Scheduler::restart

ID Address Function Name Bounds Expected
Use-Case #1

34 0x92a2 9Scheduler5restartEb 2 2
Use-Case #2

34 0x970a 9Scheduler5restartEb 7 7
Use-Case #3

34 0x91a2 9Scheduler5restartEb 6 6
Use-Case #4

34 0x9050 9Scheduler5restartEb 5 5
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Figure 6.5: Loop in Scheduler::restart

6.3.3 Events Related Loops
The loop in Clock::dequeueAll function shown in listing 6.5 and in figure 6.6 iterates over all events in the application
during termination. DELOOP detected the loop on the IR level and reported correct bounds as shown in table 6.4.
Same as in table 6.1, ID in the table 6.3 refers to the loop ID, which is the ID of the last basic block in the loop
body and address refers to the function starting address. The table shows the bounds dependency on the number
of events and the correct estimations from DELOOP. Since the use-cases from one to four has one, two, one and
five events respectively, the detected loop bounds were exactly the same numbers.

Listing 6.5: Clock::dequeueAll
1 /∗ In func t i on Clock : : dequeueAl l ( vo id )
2 The loop i t e r a t e s over a l l e ven t s in the event queue .
3 I t i s c a l l e d in case o f t e rmina t ing the a p p l i c a t i o n .
4 ∗/
5 while ( event != NULL) {
6 EventImpl∗ next = event−>next ;
7 event−>queued = fa l se ;
8 event−>next = NULL;
9 event−>prev ious = NULL;
10 event = next ;
11 }
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Table 6.4: DELOOP Results For the loop in Clock::DequeueAll

ID Address Function Name Bounds Expected
Use-Case #1

29 0x8d52 5Clock10dequeueAllEv 1 1
Use-Case #2

29 0x91ba 5Clock10dequeueAllEv 2 2
Use-Case #3

29 0x91a2 5Clock10dequeueAllEv 1 1
Use-Case #4

29 0x9ba4 5Clock10dequeueAllEv 5 5

Figure 6.6: Loop in Clock::dequeueAll
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6.3.4 Channel Related Loops
The channel related loops shown in listing 6.6, 6.7 and 6.8 depend on the number of inputs that are connected to
the channel. Since in the use-cases, all the channels are connected to one input, we expect the execution of these
loops only one time, which is proved by DELOOP as shown in table 6.5.

Table 6.5: Channel Related Loops

Address Function Name Bounds Expected
Use-Case #1

0x9a8a 7Channel4PushEEC2Ev 1 1
0x9826 16SynchronizeStartEEC2Ev 1 1
0x9878 16SynchronizeEndEEC2Ev 1 1

Listing 6.6: Loop in Channel::push
1 // In fucn t i on Channel : : push ( vo id )
2 //The loop i t e r a t e s over the a s s o c i a t e d inpu t s to n o t i f y the channel .
3 for ( InputImpl ∗ i = m_inputs ; i != NULL; i = i−>channelNextInput ) {
4 i−>not i f y Input ( ) ;
5 }

Listing 6.7: Loop in TaskImpl::synchronizeStart
1 /∗ In func t i on TaskImpl : : s ynch ron i z eS ta r t ( vo id )
2 i t e r a t e over the inpu t s to s t a r t synchron i z ing the
3 access to a shared channel
4 ∗/
5 for ( unsigned i n t i = 0 ; ( i < inputs . s i z e ( ) ) ; i++) {
6 static_cast<ProtectedInputAccess&>(inputs [ i ] ) . s ynchron i z eS ta r t ( ) ;
7 }

Listing 6.8: Loop in TaskImpl::synchronizeEnd
1 /∗ In func t i on TaskImpl : : synchronizeEnd ( vo id )
2 i t e r a t e over the inpu t s to f i n i s h synchron i z ing the
3 access to a shared channel
4 ∗/
5 for ( unsigned i n t i = 0 ; ( i < inputs . s i z e ( ) ) ; i++){
6 static_cast<ProtectedInputAccess&>(inputs [ i ] ) . synchronizeEnd ( ) ;
7 }
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6.3.5 Application Related Loops
The loop presented in listing 6.9 is not a part of the Tasking Framework API and its bounding depends on the
occurrence of an external event (such as a timer). Since the execution of the loop depends on the event activation, we
are not able to analyze this loop or proceed in the analysis unless this event takes place. To overcome this problem,
we simulate the occurrence of the event by forcing the symbolic execution to evaluate the event.isActivated() check
to true. This simple modification allows the continuity of the analysis, especially for applications like the ones
considered in this thesis, whose execution path does not depend on the input data. As a result, DELOOP bounds
this loop to the maximum number, which is the total number of tasks.

Listing 6.9: Loop in SchedulerExecutionModel::Executor::run
1 /∗ In func t i on SchedulerExecut ionModel : : Executor : : run
2 This loop i s not par t o f the API , i t i s par t o f the execu t i on p la t form .
3 This i s an example o f l oops t h a t depend on the input−data
4 ∗/
5 for ( Tasking : : TaskImpl∗ task = schedulerImpl−>po l i c y . nextTask ( ) ; ( task != nu l l p t r ) ;

task = schedulerImpl−>po l i c y . nextTask ( ) ) {
6
7 i f ( task−>event . i sAc t i va t ed ( ) ) {
8 schedulerImpl−>execute (∗ task ) ; ;
9 }
10 }
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6.3.6 DELOOP Bounding Results
DELOOP bounding results are generated typically as the results shown in table 6.6. The tool shows
its ability to detect loop bounds for tool-chain functions as memset and libc-initarray. Tasking
Framework allows only static memory allocation based on MISRA standards [3]. Thus, all memory
allocations functionalities as memset are bounded and known during the compile time.

Table 6.6: Complete DELOOP Results For The first Use-Case

ID Address func. Name Bounds
49 0xd970 memset 30
44 0xd970 memset 123
41 0xd970 memset 495
32 0xd2dc libc-initarray 4
22 0x8754 18InputArrayProviderILj1EEC2Ev 1
17 0xaaba 10InputArray11connectTaskERNS8TaskImplE 1
34 0x92a2 9Scheduler5startEb 2
16 0xaa60 10InputArray5resetEv 1
15 0x9a8a 7Channel4PushEEC2Ev 1
28 0x9826 16SynchronizeStartEv 1
28 0x9878 14SynchronizeEndEv 1
49 0xaf42 23SchedularExecution6SignalEv 1
29 0x8d52 5Clock10dequeueAllEv 1
76 0xec14 call-exitprocs 7
88 0xec14 call-exitprocs 7
23 0x84ae 18InputArrayProviderILj1EED2Ev 1
86 0xec14 call-exitprocs 7
95 0xec14 call-exitprocs 7
69 0xf07c call-exitprocs 7
18 0xd260 libc-fini-array 1
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6.4 Re-construing the Control Flow Graph
Indirect jumps in Tasking Framework occurs mainly due to virtual methods. Virtual methods
lead to the indirect jumps on the assembly level and hinder the ability to reconstruct the control-
flow graph. Through its dynamic symbolic execution engine DELOOP is able to reconstruct the
control-flow graph. For example, the graph in appendix B shows the reconstructed CFG on the
function-level resulted from DELOOP for the first use-case shown in figure 3.6. In the graph in
appendix B, the numbers inside the graph nodes indicate the function addresses, the red arrows
joining nodes indicates call operation resulting from indirect branch and the numbers on the arrows
refer to the order of the function-call execution.

6.4.1 Resolving Indirect Jump Example
Estimating the WCET time of the TaskImpl::synchronizeEnd function in figure 6.7 is challenging
due to the indirect call instruction ”call(r3)”. From the snippet of the symbolic execution graph
in figure 6.8, we can easily detect that the indirect branch instruction calls Input::synchronizeEnd
function shown in figure 6.9 which itself has indirect call that resolves to Channel::synchronizeEnd
function. In figure 6.8 the red arrows indicate indirect jumps, the numbers before the function
name indicate the function address and the numbers on the arrows indicate the execution order of
the function. Following the sequence diagram in figure 3.4 for the synchronization start and end
functions, we can ensure the correctness of the indirect jump resolution.

Figure 6.7: Indirect Jump in TaskImpl::synchronizeEnd Function (address:0x9878)
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Figure 6.9: Indirect Jump in Input::synchronizeEnd Function (address:0xa7f8)
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6.5 WCET Estimation
In this section, we present the WCET results for our proposed setup. Table 6.7 shows the static
WCET resulting from integrating DELOOP with OTAWA for selected functions from Tasking
Framework. The Scheduler::restart function has an indirect branch which is resolved and leads to
another 75 function calls. This explains the large execution over-head resulting from this function
call.

Table 6.7: WCET Results from Integrating DELOOP with OTAWA

Address Function Name # Loops Indirect Jump WCET (cycles)
Use-Case #1

0x8754 18InputArrayProviderILj1EEC2Ev 1 No 670
0xaf22 10InputArray11connectTaskERNS8TaskImplE 1 No 245
0x8d52 5Clock10dequeueAllEv 1 No 350
0x92a2 9Scheduler5restartEb 2 Yes 11,200

Use-Case #2
0x87e2 18InputArrayProviderILj3EED2Ev 3 No 1000
0x8ad0 18InputArrayProviderILj1EEC2Ev 1 No 670
0x9a2c 10InputArray11connectTaskERNS8TaskImplE 3 No 560
0x91ba 5Clock10dequeueAllEv 2 No 440
0x970a 9Scheduler5restartEb 7 Yes 38,310

Use-Case #3
0x8650 18InputArrayProviderILj1EEC2Ev 1 No 670
0xaab2 10InputArray11connectTaskERNS8TaskImplE 1 No 245
0x91a2 5Clock10dequeueAllEv 1 No 350
0x820a 18InputArrayProviderILj1EED2Ev 1 No 270
0xd99c 9Scheduler5restartEb 6 Yes 32,470

Use-Case #4
0xc0dc 18InputArrayProviderILj1EEC2Ev 1 No 670
0xaab2 10InputArray11connectTaskERNS8TaskImplE 1 No 245
0x9ba4 5Clock10dequeueAllEv 5 No 1025
0x9050 9Scheduler5restartEb 5 Yes 28,150

Measurement analysis was performed to measure the execution time of some of the functions
in order to verify the efficacy of our proposed setup. The measurement was done using STM de-
velopment board model STM32L152RET6 with cortex M3 processor connected with logic analyzer
to measure the execution time. To measure the execution time of a function, an output pin is
initialized to low just before calling the function to be measured. Then this pin is set to high at
the beginning of the function and to a low state at the end of the function. The pin is connected to
the logic analyzer and the execution time is then calculated. Given the CPU frequency we are able
to calculate the CPU cycles for every function. The measurements were repeated 50 times and the
average execution time was recorded in graph 6.10.
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Figure 6.10 shows the comparison between the static computedWCET and the average measured
execution time for selected functions. The number before the function name in the figure indicates
the use-case number. For all the functions, our proposed setup results in a safe upper bound for the
WCET. The graph also shows the difference in the overhead of some of the framework’s functions.
The execution time of some functions as InputArray::connectTask or Clock::dequeueAll can be
nearly rounded to zero while it should be accurately examined for function as Scheduler::restart,
especially when calculating the WCRT of the developed tasks. Although we showed the results
of some selected functions, we can calculate the WCET for all the Tasking Framework functions
thanks to our proposed analysis.

6.6 Performance
Table 6.8 shows the performance results during the analysis of the 4 use-cases. The analysis was
executed on a workstation with a linux operating system, i7-9750H processor and 16GB RAM. Our
analysis is slow compared to other analysis as oRange [18] or PAGAI [47] however this is irrelevant
for our goal as the analysis is executed offline during the design verification and validation phase.

Table 6.8: Performance Results

Use-Case Binary Size (Kbyte) %CPU Average Memory ( MiB ) Execution Time (sec)
1 630 24 % 335 15
2 664 25% 640 81
3 683 25% 1200 103
4 687 26% 1300 114
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Figure 6.10: WCET for Selected Functions from the Use-Cases





Chapter 7

Discussion

7.1 Conclusion
On-board embedded systems play a critical role in space exploration. Satellites and probes are
equipped with such systems to collect a massive amount of data continuously. These applications,
which are used to process on-board data, follow the data-flow programming, and they have similar
software structures. Developing software libraries that facilitate the development of such systems
reduce the development efforts and improve the re-usability. However, they need a programming
language that is both machine-oriented and abstraction capable for a better software development
practices. Machine oriented means that the language should be supported with static memory
implementation capabilities to meet the embedded system requirement of on-board data handling
applications. C++ is the programming language that offers both features. The DLR Institute for
Software Systems took the initiative and developed a C++-based software library to develop an
on-board data application. The library is called Tasking Framework.

This thesis investigates the opportunities to perform a static worst-case execution analysis on
applications developed using the Tasking Framework. The goal is twofold: compute to the WCET
to perform a schedulability analysis and to enable the software architect to make a design decision
on a budget of the computation blocks. The majority of static analyses are dedicated to C-based
embedded software or can work on very simple C++ code. This work explors the available open-
source tools such as SWEET and OTAWA and defines the main challenges to perform a static
WCET analysis, namely the indirect jumps and loop bounds.

We found that OTAWA, which works on the binary level, is promising and can perform some
functionalities of Tasking Frameworks. We proposed an analysis based on dynamic symbolic ex-
ecution to overcome the two main challenges, indirect jumps, and loop bounds. We developed a
tool called DELOOP to perform the proposed analysis that works on an intermediate representa-
tion level using the Z3 SMT solver to detect the loops, compute their bounds, and resolve indirect
jumps. The tool shows high precision when bounding loops of the Mälardalen WCET Benchmark
suite. To perform the WCET analysis on the Tasking Framework, we feed OTAWA with the loop
bounds flow facts, and the function addresses flow facts obtained from DELOOP to resolve loop
bounds and indirect jumps. Experimental results show that the proposed solution is practical and
capable of evaluating the WCET of tasks developed using the Tasking Framework.
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Using DELOOP with tasks developed by Tasking Framework eases the WCET analysis. From
one side, tasks developed by Tasking Framework do not face code translation challenges as they are
developed in C++ following MISRA standard [3]. Tasks developed by other data-flow frameworks
as MATLAB require a specialized translator to transform the MATLAB model into analyzable
assembly code. This translation process is difficult due to the high level of abstraction of the
MATLAB models [55].

On the other side, analyzing data-flow tasks is challenging as each task has its operation modes
and signals that conditionally eliminate each other. Depending on the current input condition/-
mode, different computation blocks are triggered. Static timing analyzers as aiT [5] do not com-
prehend conditions. Thus, it takes the longest execution path resulting in over-approximation of
the WCET. This is not the case with DELOOP, through which the symbolic dynamic execution
can be tuned to examine the program behavior for a certain path/condition resulting in reasonable
WCET. Through this thesis, symbolic dynamic execution proved a lot of benefits when it comes to
examining the timing behavior of model-based applications.

7.2 Limitations
• One limitation of our proposed analysis is its disability to analyze parallel executing threads

sharing the same resources. The single-path symbolic execution technique analyzes just one
control-flow path in the program under analysis, which makes it hard to predict the behavior
of parallel executing binaries.

• Additionally, the tool reports only loop bounds for a given control flow graph with a given
input. Such behavior limits its ability to bound loops for state machine-designed programs,
where the number of loops differs based on the state.

• Another limiting factor for the proposed tool is that it is built based on the BINARYNINJA
framework. Despite its strong capabilities in lifting arm instructions, the generated IR are
not consistent. Some instructions produce unpredictable variables during the analysis, which
makes it hard to capture during the analysis. Besides, it still has a limited number of un-lifted
instructions.

7.3 Future Work
To the best of our knowledge, BINARYNINJA was the only available tool for us to perform correct
lifting. Other tools as [11] requires integration with IDA PRO [7], which is outside the budget
of this thesis. We recommend that the next step is to develop a generic lifter that can integrate
different instruction sets. We suggest that whether the developed lifter should lift the instruction
to the generic LLVM IR or to a reverse engineering IR as REIL IR [31]. Lifting to LLVM IR
facilitates the integration of LLVM analysis as value analysis and data flow analysis. On the other
hand, lifting to reverse engineering IR like REIL simplifies the whole analysis as it only includes
15 IR instructions. Integration with other lifters affects both the performance and the precision of
the tool. Another important next step in this project is introducing parallel executing SMT solver
threads that are synchronized to perform symbolic-execution for parallel-threads architectures.



Appendix A

Hello World Example from Tasking
Framework

Listing A.1: Hello world example from Tasking Framework.
1 #inc lude <schedu l e rProv ide r . h>
2 #inc lude <schedu l ePo l i c yF i f o . h>
3 #inc lude <taskChannel . h>
4 #inc lude <taskEvent . h>
5 #inc lude <task . h>
6 class InputChannel : public Tasking : : Channel {
7 public :
8 void doPush (void ) ;
9 const i n t& getValue (void ) const ;
10 void setValue ( i n t ) ;
11 protected :
12 i n t sensValue = 10 ;
13 } ;
14 void InputChannel : : doPush (void ){ push ( ) ; }
15 const i n t&InputChannel : : getValue (void ) const { return sensValue ; }
16 void InputChannel : : setValue ( i n t va lue ){ sensValue = value ; }
17
18 class OutputChannel : public Tasking : : Channel {
19 public :
20 void doPush (void ) ;
21 const i n t& getProcessedValue (void ) const ;
22 void se tProcessedValue ( i n t ) ;
23 protected :
24 i n t sensProcessedValue ;
25 } ;
26
27 void OutputChannel : : doPush (void ) {push ( ) ; }
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28 const i n t& OutputChannel : : getProcessedValue (void ) const {return sensProcessedValue ; }
29 void OutputChannel : : s e tProcessedValue ( i n t va lue ) sensProcessedValue = value ; }
30
31 // −−−−−−−−−−−−−−−−−−−−−−−−−−
32 class HandleInput : public Tasking : : TaskProvider<1u , Tasking : : Schedu lePo l i cyF i fo> {
33 public :
34 HandleInput ( Tasking : : Scheduler& scheduler , OutputChannel& outChannel ,
35 Tasking : : Event& outTime ) ;
36 virtual void execute (void ) ;
37 private :
38 OutputChannel& out ;
39 Tasking : : Event& outTr igger ;
40 } ;
41
42 HandleInput : : HandleInput ( Tasking : : Scheduler& scheduler , OutputChannel& outChannel ,
43 Tasking : : Event& outTime ) :
44 TaskProvider ( s chedu l e r ) ,
45 out ( outChannel ) ,
46 outTr igger ( outTime ) {
47 inputs [ 0 u ] . c on f i gu r e (1u ) ;
48 }
49
50 void HandleInput : : execute (void ) {
51 i n t sensValue =
52 getChannel<InputChannel >(0u)−>getValue ( ) + out . getProcessedValue ( ) + 10 ;
53 out . se tProcessedValue ( sensValue ) ;
54 // Wait 5 seconds
55 outTr igger . t r i g g e r (5000u ) ;
56 }
57 // −−−−−−−−−−−−−−−−−−−−−−−−−−
58 class Modif iyValue : public Tasking : : TaskProvider<1u , Tasking : : Schedu lePo l i cyF i fo> {
59 public :
60 Modif iyValue ( Tasking : : Scheduler& scheduler , InputChannel& inChannel ,
61 OutputChannel& outChannel ) ;
62 virtual void execute (void ) ;
63 private :
64 InputChannel& in ;
65 OutputChannel& out ;
66 } ;
67 Modif iyValue : : Modif iyValue ( Tasking : : Scheduler& scheduler , InputChannel& inChannel ,
68 OutputChannel& outChannel ) :
69 TaskProvider ( s chedu l e r ) ,
70 in ( inChannel ) ,
71 out ( outChannel ){
72 // S t a r t when i t i s t r i g g e r on input
73 inputs [ 0 u ] . c on f i gu r e (1u ) ;
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74 }
75 voidModif iyValue : : execute (void ) {
76 i n t sensValue = out . getProcessedValue ( ) + 3 ;
77 i f ( sensValue < 247){
78 in . setValue ( sensValue ) ;
79 in . doPush ( ) ;
80 } // e l s e end o f the program
81 }
82 // <<<<<<== ins t ance s ==>>>>>
83 /// I n s t a n t i a t e the input channel
84 Tasking : : SchedulerProvider <1u , Tasking : : Schedu lePo l i cyF i fo> schedu l e r ;
85 InputChannel inChannel ;
86 OutputChannel outChannel ;
87 Tasking : : Event modi fyTrigger ( s chedu l e r ) ;
88 HandleInput handleTask ( schedu ler , outChannel , modi fyTrigger ) ;
89 Modif iyValue modifyTask ( schedu ler , inChannel , outChannel ) ;
90
91 // <<<<<< == program code == >>>>>
92
93 i n t main (void ) {
94 // Connect t a s k s to channe l s
95 handleTask . con f i gu r e Input (0u , inChannel ) ;
96 modifyTask . con f i gu r e Input (0u , modi fyTrigger ) ;
97 // S t a r t Tasking s chedu l e r
98 schedu l e r . s t a r t ( ) ;
99 // Make the f i r s t push to n o t i f y handleTask

100 inChannel . doPush ( ) ;
101 // Stop Tasking s chedu l e r
102 schedu l e r . terminate ( true ) ;
103 return 0 ;
104 }
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Appendix B

Symbolic Execution Graph
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