154 research outputs found

    Performance analysis of MIMO-OFDM systems using complex Gaussian quadratic forms

    Get PDF
    En este trabajo se proponen aportaciones originales para el análisis de prestaciones en sistemas multiantena con múltiples portadoras, mediante el desarrollo de nuevas técnicas matemáticas para el cálculo de probabilidades de error. Así, ha sido posible analizar el efecto de no idealidades (estimación de canal imperfecta, offset de continua, desbalanceo I/Q…) en las prestaciones de sistemas de comunicaciones móviles e inalámbricas

    Semi-Blind Cancellation of IQ-Imbalances

    Get PDF
    International audienceThe technical realization of modern wireless receivers yields significant interfering IQ-imbalances, which have to be compensated digitally. To cancel these IQ-imbalances, we propose an algorithm using iterative blind source separation (IBSS) as well as information about the modulation scheme used (hence the term semi-blind). The novelty of our approach lies in the fact that we match the nonlinearity involved in the IBSS algorithm to the probability density function of the source signals. Moreover, we use approximations of the ideal non-linearity to achieve low computational complexity. For severe IQ-mismatch, the algorithm leads to 0.2 dB insertion loss in an AWGN channel and with 16-QAM modulation

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems

    IR-UWB and OFDM-UWB Transceiver Nodes for Communication and Positioning Purposes

    Get PDF
    Résumé Ultra-wideband (UWB) a suscité l'intérêt de chercheurs et de l'industrie en raison de ses nombreux avantages tels que la faible probabilité d'interception et de la possibilité de combiner la communication des données de positionnement dans un seul système. Il existe plusieurs UWB couche physique (PHY) présentées initialement à la norme IEEE qui convergent en deux propositions principales: des porte-UWB ou Orthogonal Frequency-Division Multiplexing (OFDM-UWB), et à court d'impulsion porteuse à-UWB ou Impulse Radio-(IR-UWB). Une des plus grandes tâches difficiles pour les chercheurs est de nos jours la conception d'émetteurs-récepteurs UWB optimisés qui satisfont à des conditions rigoureuses, dont la simplicité caractéristiques large bande, à faible coût et de conception. Des études antérieures ont montré que les récepteurs à conversion directe basée sur Wave-radio interféromètre (WRI) circuits représentent un bon candidat pour les applications UWB. Circuits IRG ont plusieurs avantages tels que l'exploitation à large bande, à faible coût et la simplicité. Des travaux antérieurs sur l'IRG circuit, cependant, a enquêté sur le circuit de l'IRG sur la base du concept de porteuse unique signaux (par exemple, les signaux sinusoïdaux). L'objectif de ce projet est de fournir les résultats de conception, de simulation, de mise en oeuvre et le test d'un émetteur-récepteur WRI basé sur ce que peut être utilisé comme un noeud ou un pico-réseau dans un détecteur sans fil / réseau de données. Nous allons passer par les étapes de conception et de mise en oeuvre de propositions UWB deux: IR-UWB et OFDM-UWB. Pour la proposition porteuse à nous concentrer sur la conception et la mise en oeuvre de l'émetteur-récepteur en intégrant les opérations de transmission / réception dans un prototype unique, alors que pour la proposition des porte-nous concevoir et mettre en oeuvre l'émetteur-récepteur avec le circuit de l'IRG dans le récepteur seulement utilisé en tant que convertisseur abaisseur directe. Résultats expérimentaux, de simulation et d'analyse ont été obtenus et sont présentés dans cette thèse.----------Abstract Ultra-wideband (UWB) technology has attracted interest from both researchers and the industry due to its numerous advantages such as low probability of interception and the possibility of combining data communication with positioning in a single system. There are several different UWB physical layer (PHY) proposals originally submitted to IEEE which converged into two main proposals: carrier‐based UWB or Orthogonal-Frequency Division Multiplexing (OFDM‐UWB), and short‐pulse carrierless‐UWB or Impulse-Radio (IR-UWB). One of the biggest challenging tasks for researchers nowadays is the design of optimized UWB transceivers that would satisfy rigorous conditions, among which wideband characteristics, low-cost and design simplicity. Previous studies have shown that direct-conversion receivers based on Wave-Radio Interferometer (WRI) circuits represent a suitable candidate for UWB applications. WRI circuits have several advantages such as wideband operation, low cost, and simplicity. Previous works on WRI circuit, however, investigated the WRI circuit based on the concept of single-carrier signals (i.e., sinusoidal signals). The objective of this project is to provide the design, simulation, implementation and testing results of a WRI-based transceiver that can be utilized as a node or a piconet in a wireless sensor/data network. We will go through the design and implementation steps for both UWB proposals: IR-UWB and OFDM-UWB. For the carrierless proposal we will focus on designing and implementing the transceiver by integrating the transmitter/receiver operations in a single prototype, while for the carrier‐based proposal we will design and implement the transceiver with the WRI circuit in the receiver only utilized as a direct downconverter

    Digital Front-End Signal Processing with Widely-Linear Signal Models in Radio Devices

    Get PDF
    Necessitated by the demand for ever higher data rates, modern communications waveforms have increasingly wider bandwidths and higher signal dynamics. Furthermore, radio devices are expected to transmit and receive a growing number of different waveforms from cellular networks, wireless local area networks, wireless personal area networks, positioning and navigation systems, as well as broadcast systems. On the other hand, commercial wireless devices are expected to be cheap, be relatively small in size, and have a long battery life. The demands for flexibility and higher data rates on one hand, and the constraints on production cost, device size, and energy efficiency on the other, pose difficult challenges on the design and implementation of future radio transceivers. Under these diametric constraints, in order to keep the overall implementation cost and size feasible, the use of simplified radio architectures and relatively low-cost radio electronics are necessary. This notion is even more relevant for multiple antenna systems, where each antenna has a dedicated radio front-end. The combination of simplified radio front-ends and low-cost electronics implies that various nonidealities in the remaining analog radio frequency (RF) modules, stemming from unavoidable physical limitations and material variations of the used electronics, are expected to play a critical role in these devices. Instead of tightening the specifications and tolerances of the analog circuits themselves, a more cost-effective solution in many cases is to compensate for these nonidealities in the digital domain. This line of research has been gaining increasing interest in the last 10-15 years, and is also the main topic area of this work. The direct-conversion radio principle is the current and future choice for building low-cost but flexible, multi-standard radio transmitters and receivers. The direct-conversion radio, while simple in structure and integrable on a single chip, suffers from several performance degrading circuit impairments, which have historically prevented its use in wideband, high-rate, and multi-user systems. In the last 15 years, with advances in integrated circuit technologies and digital signal processing, the direct-conversion principle has started gaining popularity. Still, however, much work is needed to fully realize the potential of the direct-conversion principle. This thesis deals with the analysis and digital mitigation of the implementation nonidealities of direct-conversion transmitters and receivers. The contributions can be divided into three parts. First, techniques are proposed for the joint estimation and predistortion of in-phase/quadrature-phase (I/Q) imbalance, power amplifier (PA) nonlinearity, and local oscillator (LO) leakage in wideband direct-conversion transmitters. Second, methods are developed for estimation and compensation of I/Q imbalance in wideband direct-conversion receivers, based on second-order statistics of the received communication waveforms. Third, these second-order statistics are analyzed for second-order stationary and cyclostationary signals under several other system impairments related to circuit implementation and the radio channel. This analysis brings new insights on I/Q imbalances and their compensation using the proposed algorithms. The proposed algorithms utilize complex-valued signal processing throughout, and naturally assume a widely-linear form, where both the signal and its complex-conjugate are filtered and then summed. The compensation processing is situated in the digital front-end of the transceiver, as the last step before digital-to-analog conversion in transmitters, or in receivers, as the first step after analog-to-digital conversion. The compensation techniques proposed herein have several common, unique, attributes: they are designed for the compensation of frequency-dependent impairments, which is seen critical for future wideband systems; they require no dedicated training data for learning; the estimators are computationally efficient, relying on simple signal models, gradient-like learning rules, and solving sets of linear equations; they can be applied in any transceiver type that utilizes the direct-conversion principle, whether single-user or multi-user, or single-carrier or multi-carrier; they are modulation, waveform, and standard independent; they can also be applied in multi-antenna transceivers to each antenna subsystem separately. Therefore, the proposed techniques provide practical and effective solutions to real-life circuit implementation problems of modern communications transceivers. Altogether, considering the algorithm developments with the extensive experimental results performed to verify their functionality, this thesis builds strong confidence that low-complexity digital compensation of analog circuit impairments is indeed applicable and efficient

    IQ imbalance in OFDM wireless LAN systems

    Get PDF

    Signal Detection in Ambient Backscatter Systems: Fundamentals, Methods, and Trends

    Full text link
    Internet-of-Things (IoT) is rapidly growing in wireless technology, aiming to connect vast numbers of devices to gather and distribute vital information. Despite individual devices having low energy consumption, the cumulative demand results in significant energy usage. Consequently, the concept of ultra-low-power tags gains appeal. Such tags communicate by reflecting rather than generating the radio frequency (RF) signals by themselves. Thus, these backscatter tags can be low-cost and battery-free. The RF signals can be ambient sources such as wireless-fidelity (Wi-Fi), cellular, or television (TV) signals, or the system can generate them externally. Backscatter channel characteristics are different from conventional point-to-point or cooperative relay channels. These systems are also affected by a strong interference link between the RF source and the tag besides the direct and backscattering links, making signal detection challenging. This paper provides an overview of the fundamentals, challenges, and ongoing research in signal detection for AmBC networks. It delves into various detection methods, discussing their advantages and drawbacks. The paper's emphasis on signal detection sets it apart and positions it as a valuable resource for IoT and wireless communication professionals and researchers.Comment: Accepted for publication in the IEEE Acces
    corecore