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Abstract

Wireless communications is widely employed in modern society and plays an in-

creasingly important role in people’s daily life. The broadcast nature of radio propa-

gation, however, causes wireless communications particularly vulnerable to malicious

attacks, and leads to critical challenges in securing the wireless transmission. Moti-

vated by the insufficiency of traditional approaches to secure wireless communications,

physical layer security that is emerging as a complement to the traditional upper-layer

security mechanisms is investigated in this dissertation. Five novel techniques toward

the physical layer security of wireless communications are proposed. The first two

techniques focus on the security risk assessment in wireless networks to enable a

situation-awareness based transmission protection. The third and fourth techniques

utilize wireless medium characteristics to enhance the built-in security of wireless

communication systems, so as to prevent passive eavesdropping. The last technique

provides an embedded confidential signaling link for secure transmitter-receiver in-

teraction in OFDM systems.

In order to effectively and efficiently defend against malicious attacks in a wire-

less network, the transmission nodes need to understand the communication risk in

the operating environment. A security level awareness scheme is proposed in this

dissertation, where the number of active users in a multipath fading environment is

estimated. A time domain pilot correlation (TDPC) algorithm for detecting OFDM

signals with frequency domain inserted pilots is proposed to recognize the presence

of active users, based on the cyclic correlation between the complex conjugate multi-

plication of received signal segments and a local time domain pilot reference. Taking

ii



advantage of a typical device fingerprint—I/Q imbalance, the number of active users

is estimated through counting all the identified distinct transmitter I/Q imbalances.

With regard to enhancing the built-in security of wireless communication systems

against passive eavesdropping, two novel anti-eavesdropping OFDM systems are pro-

posed by exploiting the reciprocal, location-dependent and time-varying nature of

wireless channels. Based on the instantaneous channel state information (CSI) be-

tween the transmitter and legitimate receiver, dynamic coordinate interleaving and

subcarrier interleaving are employed in the two proposed secure OFDM systems, re-

spectively. In the coordinate interleaving scheme, a transmitter performs coordinate

interleaving at partial subcarriers of each OFDM signal, where the symbol coordi-

nate of an OFDM subcarrier is interleaved in an opportunistic manner depending on

the associated subcarrier channel gain or phase. The subcarrier interleaving strategy

is realized by interleaving subcarriers of each OFDM signal according to the sorted

order of their sub-channel gains. Since wireless channels associated with each pair

of users at separate locations exhibit independent multipath fading, the frequently

renewed security design can only be shared between legitimate users based on channel

reciprocity. Consequently, eavesdropping is prevented due to mismatched information

recovery at the eavesdropper.

In the final part of the dissertation, the proposed anti-eavesdropping OFDM sys-

tems are upgraded by enabling an efficient and confidential side information transmis-

sion mechanism between the legitimate users, without interrupting the data transmis-

sion and requiring additional time and frequency resources. In the design, the cyclic

prefix of an OFDM signal is replaced by a specially tailored orthogonal sequence. The

side information is conveyed by the confidential orthogonal sequence that maintains

the same time and frequency characteristics as the data-carrying OFDM symbol.

Key words: Wireless communications, physical layer security, OFDM, security level

awareness, eavesdropping prevention, embedded confidential signaling.
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Chapter 1

Introduction

1.1 Research Motivation

Wireless communications, which removes the constraint of cable connections for

information exchange, is becoming ubiquitous nowadays. Over the last few decades,

wireless technologies have been widely employed in military, civilian and commercial

services. However, due to the inherent broadcast nature of radio signal propaga-

tion, wireless communications is vulnerable to masses of malicious attacks, including

eavesdropping, jamming, spoofing and so on [1]. Hence, securing wireless commu-

nication systems has become a critical issue along with the proliferation of wireless

applications [1].

Traditionally, security strategies for wired communication systems, such as au-

thentication and encryption at the link and upper layers, are extended to the wireless

counterparts. However, the traditional approaches are not sufficient for securing

wireless communications, due to the lack of a robust physical-layer protection [2]. As

wired communication systems rely on a wire-based physical connection, adversaries

inserting into the original link can be easily detected and illegal access to the network

can be prevented. A secure physical layer is inherently provided by the channel access

mechanism of wired communication systems, so that no special physical-layer protec-
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tion is addressed in the traditional security strategies. Conversely, the physical layer

of wireless communications is the most vulnerable and easy to compromise part of the

system due to the unconstrained propagation of the electromagnetic wave. A secure

physical layer would thus be a determinant in protecting the wireless transmission.

Recently, physical layer security has emerged as an effective and valuable paradigm to

improve the security of wireless communications, as a complement to the traditional

security techniques.

Inherent physical-layer properties of wireless communications can be exploited to

enhance the transmission security, including the situation- and user-dependent ran-

domness from the wireless medium [2] and the unique radio frequency distinct native

attribute (RF-DNA) of wireless devices [3]. These physical-layer properties can be

employed for the transmission confidentiality enhancement, the user authentication,

as well as the intrusion and spoofing detection in wireless networks. Several physical

layer security schemes have been reported in the literature [4–12]. With a compre-

hensive study of the existing physical layer security techniques, we can find that

the present schemes usually require significant modifications to off-the-shelf systems

and have high computational complexity. Intelligent, effective, simple and efficient

physical-layer approaches for securing wireless communication systems have yet to be

investigated.

Orthogonal frequency-division multiplexing (OFDM) has been widely employed in

modern high-speed wireless communication networks, such as Long-Term Evolution

(LTE), Institute of Electrical and Electronics Engineers (IEEE) 802.11 and IEEE

802.16, because of its spectrum efficiency and robustness to multipath distortion.

However, the conventional OFDM signal is vulnerable to malicious eavesdropping

and intervention, due to its distinct time and frequency characteristics [13]. The

traditional security strategies at upper layers of the protocol stack cannot completely

address the security threats in wireless OFDM systems of a physical layer transparent

to adversaries. It is therefore of great importance to enhance the security of OFDM

at the physical layer.
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1.1.1 Security Risk Assessment in Wireless Networks

In order to provide confidential, authenticated, integral and reliable communica-

tion between legitimate users, a wireless communication system needs to take some

proper actions to defend against the malicious attacks. One fact to be addressed is

that the transmission risk of an operating environment is time-varying due to vari-

ations of the channel conditions, the surrounding devices as well as the roles played

by coexistent users [14]. As a result, the security scheme and implementation need

to be evaluated regularly and updated corresponding to the security risk changes in

the communication environment. Otherwise, insufficient defending would fail to pro-

tect the transmission security, and over-performed countermeasures would reduce the

efficiency of the system since any security solution is resource-consuming.

In order to effectively and efficiently defend against malicious attacks in a wireless

network, a wireless device should assess the security risk in the operating environment

in the first place. Intuitively, a wireless device could identify all malicious attacks and

then take corresponding actions to combat the identified attacks, which, however, is

not enough since the detection of the types of attacks cannot indicate the severity of

the security threat. Furthermore, the detection of all malicious attacks is unrealistic

in the practical implementation. First of all, there are a mass of potential attacks

and each typical security attack may have numerous derived varieties [14]. Hence, it

is difficult for legitimate users to identify all malicious attacks in the detection phase.

Second, the attack detection process is time- and power-consuming. Large numbers

of tests have to be carried out in order to cover adequate potential attacks. Putting

aside the latency caused by the attack detection phase to the data transmission, the

detection results may be out-of-date, and legitimate users may suffer power-crisis.

In addition, some attacks are hard to be identified in time, such as eavesdropping,

spoofing, and attacks from adversaries with anti-reconnaissance capabilities. There-

fore, security risk assessment in wireless networks cannot rely on the attack detection

strategy.
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To that end, security risk assessment schemes for wireless communications, which

can effectively and efficiently evaluate the transmission risk in an operating environ-

ment, need to be investigated. In principle, any node in a network, even a present

legitimate user, may intentionally or unintentionally perform hostile attacks such as

eavesdropping and jamming, and becomes a potential threat [15]. It is near impossible

to prevent some amount of data loss or disclosure from devices that can physically

access the network [16]. The communication risk arises along with the increase of

coexistent users. Hence, the number of active users in a network can generally in-

dicate the security level of a wireless environment, and be used to guide developing

the defending strategies. Compared with the risk assessment scheme that attempts

to detect all potential attacks, the estimation of the number of active users is much

simpler and easier to be implemented. Although the number of active users in a net-

work cannot identify the attacks, it would imply the possible existence of attackers

and the defending intensity needed in the operating environment.

Considering that device identities at upper layers of the protocol stack such as

media access control (MAC) and Internet protocol (IP) addresses can be duplicated

with little effort, mature estimation schemes for the number of active uses, which

exploit the device-specific physical-layer characteristics of wireless devices, would be

preferred. Moreover, in order to further improve the overall efficiency of a wireless

communication system, we would like to avoid unnecessary estimation operation for

the number of active users. A triggering mechanism can thus be employed, where the

estimation procedure would only be performed after the confirmation of the existence

of active users.

1.1.2 Eavesdropping-Resilient OFDM Systems

With the security risk assessment in a wireless communication environment, ap-

propriate defending strategies can be designed and implemented. Malicious attacks

in wireless communications can be classified into two categories: passive and ac-
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tive [17]. Legitimate terminals can often perceive active attacks based on the sense

of transmission anomalies, and then carry out corresponding protective measures. In

contrast, even with specific detection procedures, passive attacks are hard to be de-

tected since they usually do not leave any evidence about their illegal behaviors and

crimes. Private information can be intercepted by adversaries without the awareness

of the communicating pair. Accompanied with the fact that information collected by

passive attacks is usually used to further the damage of other forms of attacks by

adversaries, the threat of passive attacks is fatal. Therefore, wireless communication

systems should strengthen their built-in security against passive attacks. Eavesdrop-

ping is a most common form of the passive attacks. This dissertation will concentrate

on the eavesdropping relevant issues for simplicity.

The physical layer is responsible for the physical connection between end stations.

It is the foundation of the information transmission. The security of wireless commu-

nications is thus conditioned on a secure physical layer. Unfortunately, the physical

layer is the most vulnerable part of wireless communication systems since it does

not depend on any human-made logical organization, but rather obeys uncontrollable

laws of electromagnetic wave propagation [12]. As a result, the physical-layer built-in

security of wireless communication systems against passive attacks must be enhanced.

Considering the general acceptance of OFDM technology in modern wireless networks

as well as the security weaknesses of OFDM systems, the built-in security enhance-

ment at the physical layer of wireless OFDM systems needs to be addressed.

The physical-layer built-in information confidentiality can be realized by disrupt-

ing the information recovery in eavesdropping. Technically, plentiful randomness can

be introduced into the signal structure in the legitimate communication, leading to

dynamic signal structure that can only be recognized by legitimate users. In wire-

less communications, legitimate parties can harvest continual influx of randomness

from the time-varying wireless channels. This user- and location-dependent random-

ness can be exploited for the communication security design. Because of channel

reciprocity, the transmitter and receiver would experience and observe an identical
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wireless channel. Consequently, the channel based randomness can be shared between

the two ends of the channel. In contrast, wireless channels associated with different

endpoints at separate locations generally exhibit uncorrelated propagation charac-

teristics. It is thus impossible for an eavesdropper at a third location to track the

randomness involved in the legitimate transmission and perform correct information

recovery. As a result, the physical-layer built-in security of wireless communications

against eavesdropping can be achieved. With regard to a specific design, its effec-

tiveness and efficiency can be improved by consulting the security risk assessment

result.

1.1.3 Secure OFDM Systems with Embedded Confidential

Signaling Link

Secure communication systems should not only defend against malicious attacks

but also maintain reliable legitimate transmission. Under some hostile channel condi-

tions, transmitter-receiver interaction for certain security design relevant parameters

may be needed in secure wireless communication systems, in order to guarantee the

reliability of legitimate transmission while not degrading the transmission security.

One example is the channel-based secure access where channel reciprocity is exploited

by legitimate users to share the security design. Typically, the end stations of a wire-

less link can only have noisy observations of the channel due to the existence of noise

and interference at the two ends. Hence, the channel estimates at the communicat-

ing pair are just correlated though the channel is inherently reciprocal. Under the

situation of strong noise and interference, the transmission of certain security design

relevant parameters between legitimate terminals may be required, so as to mitigate

the impairment from imperfect reciprocity of the channel estimates and improve the

reliability of legitimate transmission.

Generally, the security design relevant parameters do not have much content, but

may be renewed frequently along with the update of the design. The transmitter-
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receiver interaction should thus be always available. Moreover, the side information

interaction with lower priority cannot interrupt or interfere the original data transmis-

sion, but should provide a reliable and confidential information exchange. In addition,

such interaction should not ask for additional time and spectrum resources that are

typically unavailable to the transmission of side information.

A candidate solution to solve the aforementioned problems is to transmit data and

security design relevant parameters concurrently, through a confidential signaling link

embedded into the secure communication system. As an advance of the secure OFDM

systems with physical-layer built-in security enhancement, embedded confidential sig-

naling strategies are worthy of research efforts. OFDM with precoded cyclic prefix

(PCP-OFDM), which was originally proposed for the adaptive transmission in cogni-

tive radio [18], can be extended and specially tailored for the transmission of security

design relevant side information between legitimate users.

1.2 Dissertation Contributions

The main contributions of this dissertation are summarized as follows.

• In order to respond appropriately to malicious attacks in a wireless network,

a security level awareness scheme for effectively and efficiently evaluating the

security risk in wireless communication environments is proposed. Instead of

attempting to detect all potential attacks, the proposed scheme simply estimates

the number of active users in a transmission environment after recognizing their

existence. Robust active user detection is achieved by a proposed time domain

pilot correlation algorithm and its affiliated interference mitigation techniques.

The number of active users is evaluated by a novel estimation method that

exploits a typical device RF-DNA—I/Q imbalance.

• Two novel anti-eavesdropping OFDM systems are proposed by taking advan-

tage of the channel reciprocity and the uncorrelation feature exhibited among
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spatially separate wireless channels in rich multipath environments. Based on

the instantaneous channel state information (CSI) between the transmitter and

legitimate receiver, dynamic coordinate interleaving and subcarrier interleaving

are employed in the two proposed secure OFDM systems, respectively. The

“coordinate interleaving” strategy is carried out by interleaving the symbol co-

ordinates at partial subcarriers of each OFDM signal, where subcarriers that

perform coordinate interleaving are determined by the subcarrier channel gains

or phases. The “subcarrier interleaving” scheme is realized by selectively inter-

leaving subcarriers of each OFDM signal according to the sorted order of the

subcarrier channel gains. In addition, techniques to mitigate the impairment

from imperfect channel reciprocity are also investigated.

• This dissertation extends the previous study on PCP-OFDM in [18], and pro-

vides an embedded confidential signaling link for the transmitter-receiver inter-

action in secure OFDM systems. Specially tailored PCP sequences that have

the same time and frequency characteristics as the data-carrying OFDM sym-

bols are used to reliably and confidentially transmit the security design relevant

system parameters between legitimate terminals.

1.3 Dissertation Organization

The following details the organization of remaining chapters of this dissertation.

It would be beneficial to first provide fundamentals related to the wireless commu-

nication security, including the typical malicious attacks, general security objectives

and countermeasures, as well as principles of the security design. All of these are

explained in Chapter 2. The security vulnerabilities of OFDM physical layer are also

addressed in this chapter, after a review of the general aspects of OFDM technology.

Security risk awareness for wireless communications is investigated in Chapter

3 and Chapter 4. The proposed security level awareness scheme consists of two
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procedures: 1) recognizing the existence of active users; 2) estimating the number of

active users in the operating environment. Chapter 3 focuses on the proposed time-

domain pilot correlation based user detection algorithm, followed by the number of

active users estimation technique using transmitter I/Q imbalance in Chapter 4.

Following the discussions on the proposed security risk awareness techniques,

this dissertation moves on to the proposed novel anti-eavesdropping OFDM sys-

tems. Chapter 5 provides insight into the proposed anti-eavesdropping OFDM system

through CSI-based coordinate interleaving. In Chapter 6, the eavesdropping-resilient

OFDM system using dynamic subcarrier interleaving is analyzed.

In addressing the issue of imperfect channel reciprocity, an embedded confidential

signaling scheme is proposed and investigated in Chapter 7. It enables a reliable

and confidential transmission of security design relevant system parameters between

legitimate users, and thus upgrades the proposed anti-eavesdropping OFDM systems.

Finally, in Chapter 8, conclusions are drawn from the studies and future research

directions are pointed out.
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Chapter 2

Security Issues in Wireless

Communications

This chapter summaries security risks and threats in wireless communication sys-

tems, accompanied with an insight survey of existing solutions to these security issues.

OFDM technology, which has been adopted in lots of modern wireless communication

networks, is also reviewed in this chapter. In addition, the security vulnerabilities of

OFDM due to its distinct physical-layer time and frequency characteristics are ad-

dressed.

2.1 Risks and Threats in Wireless Communica-

tions

Wireless communications is ubiquitous nowadays and continues to flourish world-

wide further. Various wireless communication systems, such as WiFi, WiMax and

LTE, have widely permeated people’s daily life from home to public venues. The

main reason behind its proliferation is plentiful advantages offered by the wireless

technology, such as the freedom of mobility, flexible options of connectivity, and low

cost of network configuration. However, compared with the traditional wired com-
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munications, much more security vulnerabilities are induced by the wireless transmis-

sion mechanism. First and foremost, the wireless medium is inherently an open-air

medium. Adversaries can easily access a wireless network as long as they are within

its coverage range, due to the broadcast nature of radio propagation. Furthermore,

most wireless communication systems are highly standardized. Apart from security

weaknesses in the communication standards, the standardization increases security

risks of wireless transmission. Some system parameters, such as the composition of

data packets and the protocol of network configuration, are public and available to

adversaries. The information of such parameters would lower the technical difficulties

in malicious attacking. In addition, the mobility and portability of wireless devices

further facilitate adversaries to attack wireless communications.

Wireless communications is subject to a number of security risks and threats.

Generally, malicious attacks in wireless communication networks can be classified

into two categories: passive and active [17]. Passive attacks intercept legitimate mes-

sage from wireless channels without interfering with the operation of legal networks.

Conversely, active attacks attempt to disrupt the normal network operation instead

of intercepting the legitimate traffic. The most common forms of passive and active

attacks in wireless communications are listed as follows:

• Eavesdropping : Eavesdropping is the act that an attacker, named eavesdropper,

passively listens to a network and intercepts the ongoing traffic [2]. Due to the

openness of wireless medium, an eavesdropper is possible to access the data

stream as long as it lies in the coverage of the transmitter. In the case that

communication protocols are known by the eavesdropper, it can simply follow

those protocols like normal participants and then intercept the sensitive and

private information.

• Traffic Analysis : Traffic analysis is the process of intercepting and examining

the collected data streams in order to deduce information from patterns of com-

munication. Similar to eavesdropping, traffic analysis is also based on what the
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attacker hears in the network. However, this sort of attack does not have to

demodulate and understand the actual data in transmission [19]. It is often

used to determine the locations, identities and behavior patterns of the commu-

nicating parties. Adversaries can then use the collected information from traffic

analysis to support other forms of attacks [2].

• Jamming : Jamming occurs when intentional or unintentional interferences flood

a communication link [20]. A hostile jammer can broadcast interference signals

over a broad spectral band to degrade the channel condition and disrupt the

legal information transmission. In the situation that the attacker has infinite

power supply, it can even exhaust the resource for legitimate users and then

destroy the legal communication.

• Spoofing : In spoofing, an attacker pretends to be an authorized client, device

or user to gain access to a network protected by some forms of authentication

mechanisms, so as to seize the system resource and intercept the confidential

information [1]. Moreover, an attacker can also impersonate a network resource

by positioning itself between the client and intended resource. When a victim

initiates a connection, the attacker can intercept the connection, and then com-

plete the connection to the intended resource. As a result, all communication

between the client and intended resource is controlled by the adversary [1].

• Injection and Data Modification: Injection happens when an attacker adds com-

mands and data to the existing connection to hijack the ongoing communication,

or maliciously send commands and data to manipulate the available resource [2].

Moreover, adversaries can flood the network access point with connection mes-

sages, thereby tricking the network access point into exceeding a maximum limit

and then denying authorized user access to the network [20]. Data modifica-

tion refers to an attack in which an aggressor adds, deletes or even changes the

network communication contents [2].
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Table 2.1: Classification of security attacks in wireless networks

Security Attacks
Passive Attacks Active Attacks
Eavesdropping Jamming
Traffic Analysis Spoofing

Injection and Data Modification

The classification of these security attacks is shown in Table 2.1. Under active

attacks, communication anomalies can normally provide demonstrable evidence of

malicious attacks, so that legitimate terminals can easily detect the attackers and

then launch corresponding defending operations. In contrast, passive attacks without

leaving much evidence about their illegal behaviors are difficult to be detected. Sensi-

tive and private information may be intercepted by adversaries without the awareness

of the communicating pair. The threats from eavesdropping and traffic analysis would

be inherent risks in wireless networks that cannot be avoided [1]. Please note that

malicious attacks typically do not stand alone. Adversaries usually coordinate sev-

eral attacks to further the damage, where passive attacks such as eavesdropping and

traffic analysis are essentially used to gather information for other forms of attacks.

Therefore, as the foundation of malicious attacking and with the counter-detection

feature, passive attacks can cause fatal damage to a wireless communication system.

It is also noteworthy that the risks and threats in wireless communications are

time- and location-varying, due to the variations of channel conditions, surrounding

devices as well as roles played by coexistent users.

2.2 Solutions to Secure Wireless Communications

Securing communication systems has been a problem of interest since the time of

conception of network based communications [17]. The concept of secure communi-

cation is linked to two main desired objectives: effective defending against malicious

attacks and reliable transmission between legitimate users. The first objective indi-
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cates that a communication system should protect the confidentiality, authentic-

ity, integrity, and availability of data transmission, by defending against various

attacks [14,21], where

• Confidentiality denotes the property that the transmitted information is pre-

vented from unauthorized individuals, entities or processes;

• Authenticity is to provide the assurance of the identities of communicating

nodes, which ensures that a received message comes from a desired transmitter

and vice versa;

• Integrity indicates the capability to protect transmitted messages from being

modified and destroyed by adversaries during the propagation;

• Availability means that a communication system is able to provide services

whenever it is demanded by a legitimate entity.

With regard to the second objective, a message for an intended receiver should be

reliably received by that user. In other words, the demodulation error rate at the

legitimate receiver needs to satisfy an acceptable requirement.

In addition, since the risks and threats in wireless networks are time- and location-

varying, the solutions to secure wireless communication systems need to be evaluated

and updated regularly. In order to effectively and efficiently defend against the ma-

licious attacks, a wireless device should intelligently perform proper security schemes

corresponding to the real-time communication risk in an operating environment.

2.2.1 Traditional Security Approaches and Limitations

Traditional strategies to secure wireless communications mainly rely on a layered

protocol architecture, by exploiting authentication and encryption at the link and

upper layers.

The layered protocol architecture that dominates modern data communications

is illustrated in Fig. 2.1. The physical layer is responsible for the establishment
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Figure 2.1: Layered protocol architecture in communication systems.

and termination of a connection to the communication medium. It is intended for

defining the relationship between a device and the transmission medium. The link

layer transfers data between two directly connected stations, and detects and possibly

corrects errors that may occur at the physical layer. The network layer determines the

route that a packet would need to take from the source to the destination. In addition,

the transport layer provides transparent transfer of data between end users, and the

application layer acts as a user interface in the network [22]. Traditionally, every layer

in the protocol stack is secured with a certain algorithm, except the physical layer.

2.2.1.1 Traditional Authentication and its Limitations

Authentication, a process that a station recognizes the identity of its communica-

tion partner, is typically performed at the link layer, network layer, transport layer
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and application layer. Link-layer authentication is executed by checking the MAC

addresses of stations that attempt to be connected. Unfortunately, this authenti-

cation strategy is vulnerable since that the MAC address of a device is changeable.

Adversaries can spoof a legitimate user by duplicating its MAC address, and then get

the access to the network. Network-layer authentication relies on the IP addresses

to identify nodes in a network, but it becomes vulnerable under route spoofing. An

attacker can pick up any IP address desired. The transport layer utilizes the message

authentication code to provide integrity and authenticity assurances of the data trans-

mission. However, the message authentication code may be disclosed and duplicated

as well. At the application layer, user authentication mechanisms like the login and

password based authentication are employed, which are restricted by the safety of the

password-like information. In addition to the user authentication mechanisms, the

application layer can also make use of secure facilities available from the lower layers,

such as checking the incoming and outgoing data and requiring the use of strong

authentication. In this case, the application layer would inherit all the weaknesses

belonging to lower layers of the protocol stack.

2.2.1.2 Traditional Encryption and its Limitations

Encryption, which is often carried out at all the upper four layers, is controlled

by a private key either shared between legitimate users or only available to the in-

tended receiver. In this approach, the transmitted data is encrypted using an en-

cryption key (a shared private key in the symmetric-key scheme or a public key in

the asymmetric-key scheme), and can only be decrypted by a terminal with a cor-

responding private decryption key. Adversaries without such private decryption key

cannot read the encrypted message. The vulnerabilities of the traditional encryption

are obvious, particularly in its key distribution and protection. In the symmetric-key

scheme, since each possible communicating pair must agree on a secret key before the

communication, the private key may be disclosed during the interaction between the
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communication parties, even during their initial key exchange. In the asymmetric-

key scheme, adversaries can exploit the public key to either conduct active attacks

like injection or pretend to be the legitimate transmitter and then wangle the private

decryption key. Furthermore, certain participants in a network may not have satis-

factory security strength. They are easy to be defeated. As a result, the safety of

the private key cannot be ensured. In addition, adversaries with tremendous power,

memory and computational capability can attempt to crack the private key from the

received signals, especially when the key has been used for a long time.

2.2.1.3 Other Weaknesses of Traditional Security Approaches

Traditional security strategies, such as the traditional authentication and encryp-

tion, merely rely on the inherent computational complexity to protect the transmit-

ted information. They are more and more vulnerable with the significant evolution

of hardware manufacturing technologies and the development of efficient software al-

gorithms. Wireless devices nowadays are much more powerful and possess improved

computational capability. Equipped with these devices, adversaries have high possi-

bilities to crack the traditional authentication and encryption, let alone the inherent

weaknesses of these security strategies.

In addition to the insufficiency of traditional security approaches in securing wire-

less communications, it has been demonstrated that the upper layer security schemes

have low efficiency [23]. All the layers in the protocol stack are secured indepen-

dently under the assumption that the traffic from the lower or upper layers is well

behaved. Without a systematic view, individual security processes developed for dif-

ferent protocol layers may provide redundant security services, and hence consume

more resource than necessary. Also, the layered security schemes are time-consuming

since the operation of a certain layer has to wait for the process at lower or upper

layers. They would induce excessive communication latency. Meanwhile, the layered

security schemes are power inefficient due to the overhead produced by the authenti-
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cation and encryption at each layer. It is noteworthy that most of the wireless mobile

devices are battery-powered so that they are power-limited.

Furthermore, from a business point of view, the main universally available wire-

less systems such as the cellular system do not want to handle a complex security

mechanism like traditional security approaches, because they are intended for mass

use. Implementation of the layer-by-layer measures would make these systems very

expensive and non-profitable to the service providers [12].

In summary, traditional security approaches have some inherent weaknesses that

make them vulnerable to adversaries. Meanwhile, the effectiveness of these schemes,

which depends on the computational complexities introduced into malicious attacks,

is not guaranteed in the event of hardware manufacture and software algorithm break-

throughs. It becomes easier for adversaries to break these schemes as attack devices

become more powerful and less costly and attack algorithms become more efficient.

Moreover, such layered security schemes often lead to system capacity degradation,

excessive communication latency and high power consumption [24].

2.2.2 Physical Layer Security

In wireless communications, the effectiveness and efficiency of traditional upper-

layer security approaches are restricted by their weaknesses. Reviewing the informa-

tion flow through the layered protocol stack, we can see that all upper layers depend

upon the physical layer to deliver the data. The physical layer is the entry point

of malicious attacks. A secure physical layer would therefore be a determinant in

protecting the information transmission. Unfortunately, the physical layer of wireless

communication systems is vulnerable due to the open-air nature of wireless medium.

Hence, physical-layer security enhancement is critical in securing wireless communi-

cations.

In recent years, physical layer security, which improves communication security at

the physical layer, has emerged as an efficient and valuable paradigm to complement
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traditional wireless security techniques [13]. The innovative concept behind wire-

less physical layer security is to exploit the continual randomness from the wireless

medium and the device-dependent RF attributes of wireless devices to secure wire-

less communications. As the new paradigm is independent of the traditional security

techniques, it can be integrated with the upper-layer security solutions to enhance

the total strength of security in wireless communications.

2.2.2.1 Wireless Channel based Physical Layer Security

Wireless channel based physical layer security takes advantage of the continual

randomness inherent in wireless channels to improve the system security. Fundamen-

tal properties of wireless channels, including the reciprocity, spatial and temporal

variations, are exploited in the security designs.

In wireless communications, the propagation through a radio link can be char-

acterized by three categories of losses: multipath, shadowing, and distance loss [25].

Multipath refers to the many different propagation paths between the transmitter and

receiver, where each path is characterized by its own phase, delay, and attenuation. It

results into channel variations over distances in the order of a wavelength. Shadowing

refers to local variations in the received signal strength caused by structures, hills,

canyons, vehicles, and so on. Distance loss refers to the phenomenon that the received

signal power decreases as the distance between the transmitter and receiver increases.

Taking all of these factors together, the impulse response of a wireless channel can

be mathematically modeled by [25]

h(t, τ) =
L−1∑
i=0

αi(t)e
θi(t)δ(t− τi), (2.1)

where L denotes the number of channel paths, and the ith path has amplitude αi(t),

phase θi(t), and propagation delay τi at time t.

With plenty of theoretical analysis and experimental verification, it is widely rec-
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ognized that wireless channels have the following properties:

• Reciprocity: A channel behaves in an identical manner irrespective of in which

direction it is observed, so that the two ends of a communication link should

ideally observe the same channel impulse response.

• Spatial decorrelation: Channel responses decorrelate rapidly in space, partic-

ularly in a rich multipath environment. Generally, a third party who lies more

than half a wavelength away from a pair of communicating nodes experiences a

fading channel uncorrelated to that between the communicating terminals [26].

• Time variation: Wireless channels are time-varying. The channel fading is

random over time due to the multipath propagation.

The above properties, which do not exist for wired or optical channels, have been

proved to be true in most terrestrial wireless communication systems [10].

The fading and noise inherently present over wireless channels, accompanied with

the reciprocity, spatial and temporal variation properties of multipath channels can be

exploited to enhance wireless communication security at the physical layer, including

data protection, user authentication, secret key generation and so on.

2.2.2.2 RF-DNA based Physical Layer Security

RF-DNA based physical layer security relies on the device-dependent hardware

imperfections that are caused by the manufacturing variability. The term RF-DNA

is used to indicate the unique physical attributes of a wireless device induced by

embedded processors and other analog circuits, in a manner analogous to biometric

human fingerprint. Hardware imperfections, such as I/Q imbalance, frequency and

magnitude errors, cannot be avoided in the manufacture. Even in the integrated

circuit (IC) fabrication processes that are necessarily precise, structural variations

are still introduced in the final device structure on a very small scale [3]. Meanwhile,

hardware impairments are generally accepted in practical implementations as long as
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process-induced variations are within acceptable tolerances. Therefore, no two devices

can be exactly the same in practice. It has been validated that even wireless devices

are fabricated using the same manufacturing and packaging processes, individual

device exhibits unique RF characteristics that are significant enough for distinguishing

one from another [27,28].

RF-DNA based physical layer security can defend against malicious attacks such

as spoofing and injection at the device level. The device-specific RF-DNAs that can

be exploited to protect wireless communications include I/Q imbalance, transient

phase, frequency error, phase error, and magnitude error [28].

2.2.2.3 State of the Art in Physical Layer Security

Extensive research efforts have been dedicated to physical layer security from both

academia and industry. In the last decade, there has been considerable progress in this

realm. Various methods have been proposed to take advantage of the randomness of

wireless channels and RF-DNAs of wireless devices to enhance the security of wireless

communications at the physical layer.

Theoretical Secrecy Capacity from Wireless Channels Information theoretic

security examines the fundamental ability of the physical layer to secure communi-

cations [11]. Historically, the notion of information theoretic security was first intro-

duced into communication systems by Shannon in [29], and then extended by Wyner’s

work in [30]. The so-called secrecy capacity was defined as the maximum rate achiev-

able between the legitimate transmitter-receiver pair while being able to keep the

message secret from unintended receivers. It was proved that confidential commu-

nication is possible if the desired receiver enjoys better channel conditions than the

eavesdropper under the Gaussian wiretap channel model [31]. More recently, the se-

crecy capacity over fading channels was investigated [32–34]. It was shown that in the

presence of multipath fading, information theoretic security is achievable even when

the eavesdropper has a higher average signal-to-noise ratio (SNR) than the legitimate
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receiver [32]. In addition, space-time diversity in wireless communication systems

using multiple antennas was also exploited to enhance the information security and

information-hiding capabilities [35].

Channel-based Data Protection The reciprocity and spatial decorrelation of

wireless channels have been exploited to protect the confidentiality of data transmis-

sion at the physical layer. A key distribution method using the theory of reciprocity

for antennas and electromagnetic propagation was proposed in [36]. A crosslayer

secure coding scheme based on the statistical knowledge of wireless channels was pre-

sented in [37]. In addition, resource allocation [38, 39], transmit beamforming [40],

artificial noise [41] and cooperation transmission [42] have been investigated to max-

imize the secrecy capacity, so as to realize the transmission confidentiality.

Channel-based Authentication Channel-based authentication algorithms can be

generally divided into two categories: CSI and received signal strength (RSS) assisted

authentication. Physical layer authentication algorithms that exploited the spatial

variability of wireless channels were investigated [43, 44]. RSS, which is determined

by the transmit power and CSI, is also used for authentication at the physical layer

of wireless communication systems. Both RSS similarity and temporal RSS variation

have been utilized to authenticate wireless users [45].

Channel-based Secret Key Generation The randomness inherent in wireless

channels can benefit the secret key generation. [46] introduced a level crossing algo-

rithm for key generation in fading wireless channels. A joint source-channel approach

that combined existing source and channel models for key agreement over wireless

fading channels was developed in [47]. Moreover, key extraction methods based on

both the entire CSI and single channel parameter such as RSS were compared in [48].

RF-DNA based Device Identification and Authentication RF-DNA is gen-

erally employed for the device identification and authentication. A RF fingerprinting
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technique that exploited the transient amplitude and phase responses was introduced

to identify wireless devices in [49]. In [50], the authors used the frequency difference

and phase shift difference between the ideal signal and the one transmitted to pre-

vent spoofing, through a proposed nonparametric Bayesian method. Moreover, more

than one device-specific features are combined to improve the reliability of the RF

fingerprinting for wireless devices in [51]. Physical layer authentication based on the

RF-DNAs of integrated circuits was investigated and validated in [3, 52].

2.3 OFDM and its Security Vulnerabilities

OFDM has been widely adopted in modern high-speed wireless communication

networks such as LTE, IEEE 802.11 and IEEE 802.16, mainly due to its high spectral

efficiency and robustness against multipath fading. Unfortunately, the distinct time

and frequency characteristics of OFDM signals make OFDM communication systems

extremely susceptible to malicious attacks from the adversaries.

2.3.1 Basic Concept of OFDM

OFDM was first introduced by S. Weinstein and P. Ebert in 1971 [53]. Compared

with high data rate single-carrier communication systems, OFDM splits the serial

data stream in parallel and divides the entire channel into many narrowband flat

fading subchannels that are orthogonal to each other. These parallel data streams are

modulated to transmit simultaneously over the orthogonal subcarriers/subchannels

with a one-to-one correspondence and summed up to generate an OFDM symbol. A

time domain OFDM symbol with N subcarriers can be given by

x(t) =
N−1∑
k=0

X(k)ej2πfkt, 0 ≤ t ≤ T, (2.2)

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

time (ms)

am
pl

itu
de

 (
v)

a. Time domain

−2000 −1000 0 1000 2000 3000 4000 5000 6000

−0.2

0

0.2

0.4

0.6

0.8

1

frequency (Hz)

am
pl

itu
de

 (
v)

b. Frequency domain

 

 
1 kHz
1.5 kHz
2 kHz
2.5 kHz
3 kHz

Figure 2.2: Illustration of an OFDM symbol with 5 subcarriers.

where X(k) is the data stream transmitted on the kth subcarrier, and T is the symbol

duration of one OFDM symbol. fk = k∆f is the frequency of the kth subcarrier,

where ∆f is the subcarrier spacing and T∆f = 1. Assuming that the time domain

OFDM symbol x(t) is sampled at an interval of Ts = T
N

, the corresponding samples

of x(t) can be expressed as

x(n) =
N−1∑
k=0

X(k)ej2πfk
nT
N , n = 0, 1, · · · , N − 1. (2.3)
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Figure 2.3: The structure of OFDM signal with cyclic prefix.

Substituting fk = k
T

into (2.3), the above equation can be rewritten as

x(n) =
N−1∑
k=0

X(k)ej2π
k
T
nT
N

=
N−1∑
k=0

X(k)ej2π
kn
N , n = 0, 1, · · · , N − 1. (2.4)

Clearly, equation (2.4) is exactly the expression of inverse discrete Fourier transform

(IDFT) of X(k), which indicates that OFDM modulation process can be effectively

implemented by using IDFT. In order to reduce the computational burden and provide

a more efficient OFDM system, inverse fast Fourier transform (IFFT) can be employed

instead of the IDFT. Figure 2.2 provides an illustration of an OFDM symbol with 5

subcarriers, where Fig. 2.2(a) represents the construction of the time domain OFDM

symbol and Fig. 2.2(b) depicts how the OFDM symbol looks like in the frequency

domain.

To deal with the time dispersion of wireless channels, a cyclic extension of the

OFDM symbol is generally employed in OFDM systems, named cyclic prefix (CP).

The basic idea of CP is to repeat the end part of the time domain OFDM symbol

in the beginning to create a guard period between adjacent OFDM symbols. The

cyclicly extended OFDM symbol is illustrated in Fig. 2.3. As long as the duration of

CP is longer than the maximum excess delay of the wireless channel, the intersymbol

interference (ISI) corrupted part of an OFDM signal stays within the guard period,

and can be removed later at the receiver. Therefore, the impact of multipath dis-

tortion on the orthogonality among subcarriers of an OFDM signal can be removed.
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Figure 2.4: ISI elimination in OFDM using cyclic prefix.

Figure 2.4 demonstrates the principle of ISI elimination in OFDM using CP.

2.3.2 Applications of OFDM Technology

As an exciting technology for the modern wireless communications, OFDM has

been employed by various existing and evolving standards. A brief introduction of

some existing applications of OFDM is provided, including LTE, IEEE 802.11, IEEE

802.16 and Digital Video Broadcasting-Terrestrial (DVB-T).

LTE Long-Term Evolution is a standard for cellular services with high-speed data

transmission [54]. Started in 2008, the 3rd Generation Partnership Project (3GPP)

standard LTE provides an uplink speed of up to 50 megabits per second (Mbps) and a

downlink speed of up to 100 Mbps. OFDM is the modulation scheme for the downlink

of LTE, while its downlink multiplexing is accomplished via orthogonal frequency-

division multiple access (OFDMA). The basic subcarrier spacing of an OFDM signal

in LTE is 15 kHz, with a reduced subcarrier spacing of 7.5 kHz available for some

special scenarios.
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IEEE 802.11 IEEE 802.11, with a marketing name of WiFi, is a set of popular

standards for the broadband wireless local area network (WLAN). OFDM technology

is employed in the IEEE 802.11 family such as 802.11a, 802.11g and 802.11n [55,56].

IEEE 802.11a is an amendment to the original IEEE 802.11 standard, which uses a

52-subcarrier OFDM with a throughput of up to 54 Mbps in the 5 GHz band. Later,

the system is extended to the 2.4 GHz band by the amendment IEEE 802.11g. In

2009, IEEE 802.11n was released, which can increase the network throughput to 600

Mbps by supporting multiple-input multiple-output and frame aggregation [56].

IEEE 802.16 IEEE 802.16, under a marketing name of WiMAX, is another series

of wireless broadband standards developed for the global deployment of broadband

wireless metropolitan area networks (WMAN) [57]. IEEE 802.16 specifies the air

interface of fixed broadband wireless access systems that support multimedia services

during the spectrum band from 10 to 60 GHz. License-exempt frequencies below 11

GHz are also considered in IEEE 802.16, where improved PHY and MAC mecha-

nisms such as dynamic frequency selection are introduced [57]. OFDM technology is

introduced into IEEE 802.16 to improve the overall system performance, including

WMAN-OFDM and WMAN-OFDMA.

DVB-T Digital Video Broadcasting-Terrestrial is the DVB European-based con-

sortium standard for the broadcast transmission of digital terrestrial television in

very-high frequency (VHF) and ultra-high frequency (UHF). DVB-T makes efficient

utilization of spectrum and can transmit Internet pages, compressed digital audio and

video data, and so on. To address the transmission of information with high data rate,

OFDM technology is adopted in DVB-T standard [58]. As one popular digital TV

broadcast standard, DVB-T has been further developed into new standards, such as

Digital Video Broadcasting-Second Generation Terrestrial (DVB-T2) [59] and Digital

Video Broadcasting-Handheld (DVB-H) [60].
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2.3.3 Security Vulnerabilities in OFDM

Due to the distinct time and frequency characteristics, the physical layer of OFDM

systems is transparent to adversaries. Transmission parameters in an OFDM system,

such as the symbol duration, CP length, sampling frequency and number of subcarri-

ers, can be blindly estimated by any user within the listening range of the transmitter.

Consequently, malicious attacks to OFDM systems can be launched by adversaries

without any prior information.

Blind estimation techniques for OFDM system parameters have been extensively

investigated. A blind OFDM receiver that exploited both time- and frequency-domain

correlations of the received signal was designed in [61]. In [62], OFDM symbol du-

ration was estimated using a cyclic correlation of the received signals, and the CP

length was derived by performing a correlation test for the redundancy induced by

the cyclic extension. For the sampling frequency used in an OFDM system, it can be

estimated through a cyclic spectrum analysis method, as reported in [63]. Meanwhile,

the number of subcarriers of an OFDM signal can be figured out through a Gaus-

sianity test [62]. In case that not all subcarriers of an OFDM signal are employed for

the transmission, active subcarriers can also be identified by analyzing the subcarrier

power level at the output of fast Fourier transform (FFT) [64]. Moreover, based on

the second-order cyclostationarity of OFDM signals, the parameter estimation for

OFDM signals impaired by a time-dispersive channel was studied in [65]. Similarly,

a blind OFDM signal recognition algorithm, which could achieve a reasonably good

performance at low SNRs for various channel conditions, was also proposed [66].

To sum up, adversaries can locally derive all necessary physical-layer parameters

of an OFDM system without any prior information, which makes OFDM fragile to

both passive and active attacks from the adversaries. Transmission-level techniques

for enhancing the built-in security of OFDM signals have yet to be investigated.

28



2.4 Summary

Wireless communications is susceptible to malicious attacks due to the open-air

nature of wireless medium. Traditional security approaches that exploit authen-

tication and encryption at the link and upper layers of the protocol stack cannot

completely handle the security issues in modern wireless communication systems, be-

cause of their inherent weaknesses. Thus, physical layer security, which exploits the

physical-layer features such as the continual randomness from wireless medium and

the RF-DNAs of wireless devices to defend against malicious attacks, has emerged

as an effective and valuable paradigm to complement the traditional wireless security

techniques. In a study related to modern wireless communications, OFDM, which

has been widely employed in modern wireless networks due to its high spectral effi-

ciency and robustness against multipath fading, needs to be addressed. Unfortunately,

OFDM is vulnerable to malicious attacks due to its distinct time and frequency char-

acteristics at the physical layer. Therefore, it would be appropriate to consider OFDM

in the investigation of physical layer security due to its wide popularity and inherent

security vulnerabilities. In addition, it is noteworthy that solutions to secure wireless

communications need to be updated regularly based on the situation awareness, since

risks and threats in wireless networks are time- and location-varying.
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Chapter 3

Active User Recognition through

Low Complexity Time Domain

OFDM Signal Detection

Effective and efficient security solutions can be performed by wireless communi-

cation systems based on the security risk assessment of the operating environment.

As any user in a wireless network could be a potential security threat, the number of

active users can be employed to indicate the security level of a wireless environment.

In this chapter, a robust and simple OFDM signal detection algorithm is developed

to recognize the presence of active users. The solution to estimate the number of

active users will be provided later in Chapter 4.

The existence of active users can be recognized by verifying the presence of signals

they radiated. In light of the widespread deployment of OFDM in wireless communi-

cations, a time domain pilot correlation (TDPC) algorithm to detect OFDM signals

with frequency domain inserted pilots is proposed in this chapter. The proposed

method is based on cyclic correlation between the complex conjugate multiplication

of adjacent received signal segments and a local time domain pilot reference derived

from the inserted pilots. The maximum correlation magnitude is compared with a
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properly selected threshold to determine the existence of active users. Interference

mitigation techniques, including periodic signal segmentation and complex conjugate

multiplication based phase rotation locking, are developed in the algorithm to im-

prove the detection reliability. It has been validated by simulation results that the

TDPC algorithm can achieve reliable detection of OFDM signals even at low SNRs

and is robust to both timing and frequency offsets.

3.1 Introduction

Effective and efficient security provisioning can be achieved in wireless communi-

cations relying on the risk awareness of the wireless environment. Since any user in

a network, even a present legitimate user, can be a potential threat to the security

of wireless transmissions [15], a communication system can determine the communi-

cation risk from the number of active users in an operating environment, and then

launch appropriate defending strategies. In order to avoid unnecessary estimation

process for the number of active users and improve the system efficiency, the presence

of active users needs to be first confirmed. Generally, the existence of active users can

be recognized through the detection of signals they radiated. As OFDM is one of the

most widely-used technologies in modern wireless communication systems, reliable

and efficient signal detection techniques for OFDM signals are worthy of research

efforts.

Several technical challenges need to be addressed in the detection of OFDM sig-

nals in wireless networks. First, reliable signal detection should be accomplished

within limited time duration, where the processing time is typically proportional to

the complexity of a detection algorithm. Due to the mobility and flexibility of wire-

less communications, the operating environment is time-varying, leading to temporal

validity of the detection results. Second, the SNR of signals received at the detection

node may be very low since signals of active users may be severely attenuated by

fading and shadowing. The low SNR condition normally results into an incorrect
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detection decision. In addition, timing and frequency synchronization is unavailable

at detection devices, particularly when the received signal strength is low. Since the

existence of signals to be detected is unknown, it is impossible to perform timing

and frequency offset estimation before the signal detection process. This challenge

becomes more pronounced in detecting OFDM signals that are extremely sensitive to

synchronization errors.

The detection of OFDM signals has received substantial attention from both

academia and industry, particularly in the realm of spectrum sensing for cognitive ra-

dio communications. Detection techniques for OFDM can be generally classified into

two categories: blind methods and feature based methods [67]. Energy detection is a

typical blind method which makes a decision by estimating the energy of the received

signals [68]. Non-blind methods rely on certain special features of OFDM signals

that are usually introduced by the cyclic prefix and in-band pilots. The insertion of

CP introduces cyclostationarity into OFDM signals, which can be employed to detect

the presence of OFDM signals [69–72]. However, the performance of these CP-based

signal detection methods highly depend on the length of CP. When the duration of

CP is short, a long detection time is required to achieve satisfactory detection confi-

dence. In-band pilot based frequency domain detection algorithms for OFDM signals

were proposed in [73–76], but their implementations are limited by the computational

complexity of FFT operation in the detection process though they usually have high

detection reliability. Recently, a time domain symbol autocorrelation method for pi-

lot inserted OFDM signals was reported [77]. Unfortunately, it failed to exploit the

pilot patterns to differentiate different communication systems.

In this chapter, a time domain pilot correlation (TDPC) algorithm for detecting

OFDM signals with frequency domain inserted pilots is developed. To be specific,

the complex conjugate multiplication (CCM) of adjacent received signal segments is

cyclicly correlated with a local time domain reference derived from the inserted pilots.

The existence of active users is determined by comparing the maximum correlation

magnitude with a properly selected threshold. In the proposed algorithm, timing
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offset (TO) in the received signals is approximately compensated by the cyclic corre-

lation due to the periodicity of the OFDM pilot sequence in the time domain. The

impact of noise on the detection reliability is mitigated by a time domain segment

averaging following the complex conjugate multiplication enabled phase rotation lock-

ing. The detection robustness to frequency offset (FO) is improved by only taking

into consideration the magnitude of the correlation function, because frequency offset

just leads to a phase rotation of the time domain OFDM signals. It is also noteworthy

that this pilot based detection scheme can achieve a user identification purpose, since

different OFDM systems often have different pilot patterns.

The organization of this chapter is as follows. The system model considered in

this chapter is introduced in Section 3.2. The proposed TDPC detection algorithm

and affiliated interference mitigation techniques are presented in Section 3.3. The

simulation results are provided to validate the analysis and evaluate the performance

of the proposed technique in Section 3.4. At last, this chapter is summarized in

Section 3.5.

3.2 System Model

In this study, an OFDM based wireless network is considered, where OFDM sig-

nals would be present if any active user exists. The same as most of the OFDM based

wireless communication systems, pilots are inserted into OFDM signals for channel

estimation and synchronization [78], and are considered as public information in the

network. In order to simplify the analysis, it is assumed that the same pilots are

inserted at fixed subcarriers of each OFDM signal in the frequency domain. In addi-

tion, a slow time-varying Rayleigh fading channel is considered in the model, in which

the channel impulse response is invariant over at least two adjacent OFDM signals.

With the insertion of the in-band pilots, N subcarriers of each OFDM signal can

be divided into two sets: pilot subcarriers P (k) and data subcarriers D(k). The time
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domain OFDM symbol after N -point IFFT can therefore be expressed as

x(n) = p(n) + d(n), (3.1)

where

p(n) =
1√
N

∑
k∈P

P (k)W kn
N , (3.2)

d(n) =
1√
N

∑
k∈D

D(k)W kn
N , (3.3)

and

WN = exp(j2π/N). (3.4)

P denotes the set of pilot subcarriers, while D denotes the set of data subcarriers.

Before the signals are sent out by the transmitter, a cyclic prefix is inserted at the

beginning of each OFDM symbol to deal with the delay spread of wireless channels

[79]. Suppose the length of the CP is NCP , which is longer than the channel delay

spread, the total symbol duration of each transmitted OFDM signal becomes Ns =

N +NCP . It can be concluded from (3.1), a time domain OFDM signal can be taken

as a summation of two components: time domain data-carrying sequence and time

domain pilot sequence.

Propagated through a wireless channel with a length of L, the OFDM signal

received at the detection device, including the impact of timing and frequency offsets

between the transmitter and detection device1, can be written as

r(n) = W
(n−τ0)ε
N

L−1∑
l=0

h(l)x(n− τ0 − l) + w(n) (3.5)

= W
(n−τ0)ε
N

L−1∑
l=0

h(l)p(n− τ0 − l) +W
(n−τ0)ε
N

L−1∑
l=0

h(l)d(n− τ0 − l) + w(n),

n = 0, 1, · · · , Ns − 1,

1Please refer to Appendix A for a brief introduction of the timing and frequency offsets in OFDM.
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where τ0 represents the timing offset in terms of the sampling interval, ε is the fre-

quency offset normalized by the subcarrier spacing, h(l) denotes the complex fading

gain of the lth path of the multipath channel, and w(n) denotes the additive white

Gaussian noise (AWGN) with a mean of 0 and a variance of σ2
w.

In OFDM, the data subcarriers D(k), k ∈ D can generally be modeled as indepen-

dent random variables. When the size of D is large, the time domain data sequence

d(n) can be considered as a zero-mean Gaussian distributed variable with a vari-

ance of σ2
d, by invoking the central limit theorem (CLT). Under the assumption that∑L−1

l=0 |h(l)|2 = 1, the received data-carrying signal also follows a zero-mean Gaussian

distribution with variance σ2
d. As the pilots and transmitted data are independent

of each other, the time domain data-carrying signal can then be treated as Gaussian

noise to the time domain pilot sequence. Therefore, the received signal r(n) can be

rewritten as

r(n) = W
(n−τ0)ε
N

L−1∑
l=0

h(l)p(n− τ0 − l) + ŵ(n), (3.6)

where ŵ(n) denotes a combined noise consisting of the data-carrying sequence and

AWGN. Since W
(n−τ0)ε
N

∑L−1
l=0 h(l)d(n−τ0−l) and w(n) are independent of each other,

ŵ(n) follows a zero-mean Gaussian distribution with a variance of σ2
d+σ2

w. Obviously,

the time domain pilot sequence provides a distinctive pattern for the detection of

OFDM signals with frequency domain inserted pilots.

Without loss of generality, there are two hypotheses for the OFDM signal detection

in the time domain:

H0 : r(n) = w(n), k = 0, 1, · · · , Ns − 1; (3.7)

H1 : r(n) = W
(n−τ0)ε
N

L−1∑
l=0

h(l)p(n− τ0 − l) + ŵ(n), k = 0, 1, · · · , Ns − 1.

Here, hypothesis H0 means the absence of active users while H1 denotes the presence

of active users.
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3.3 Proposed TDPC Detection Algorithm

3.3.1 Interference Mitigation Techniques

Under the hypothesis that active users are present, the SNR of OFDM signals

received at the detection device may be very low, due to the severe signal attenuation

caused by fading and shadowing. Meanwhile, since the existence of active users is

unknown prior to the detection process, timing and frequency synchronization cannot

be achieved before the detection operation. Therefore, special interference mitigation

techniques are developed to improve the detection reliability of the proposed TDPC

algorithm.

One important fact is that all transmitted OFDM signals have an identical time

domain pilot sequence with a period of Ns. As a result, even with an unknown

timing offset, segmentation with a period of Ns would still provide a complete time

domain pilot sequence in each signal segment but in a circularly rotated order. Cyclic

correlation can thus be adopted to combat against the unknown timing offset. Time

domain averaging can be employed to mitigate the interference from the data-carrying

sequence and AWGN. However, it is noteworthy that frequency offset would cause a

time domain phase rotation of the OFDM signals, so that direct time domain segment

averaging may eliminate the pilot component when segments have inverse phases, and

then degrade the detection performance. Considering that the phase rotation between

each two adjacent OFDM segments is a constant, complex conjugate multiplication

between every two adjacent received signal segments can be performed before the

average operation to mitigate the effect of frequency offset.

The block diagram of the proposed TDPC detection algorithm is presented in Fig.

3.1. The first step of this algorithm is to segment the received signals with an equal

length of Ns. When OFDM signals present, any two adjacent segments m and m+ 1
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Figure 3.1: Block diagram of the proposed TDPC detection algorithm.

can be expressed as

rm(n) = W
(n+(m−1)Ns−τ0)ε
N

L−1∑
l=0

h(l)p(n− τ0 − l) + ŵm(n), (3.8)

n = 0, 1, · · · , Ns − 1,

and

rm+1(n) = W
(n+mNs−τ0)ε
N

L−1∑
l=0

h(l)p(n− τ0 − l) + ŵm+1(n), (3.9)

n = 0, 1, · · · , Ns − 1.

Comparing rm(n) and rm+1(n), we can find that the phase rotation between two

neighboring segments, which is induced by the frequency offset, is a constant WNsε
N .

Complex conjugate multiplication between two adjacent signal segments is thus em-
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ployed in this algorithm to mitigate the damage of frequency offset, that is

Zm(n) = r∗m(n)× rm+1(n) (3.10)

= WNsε
N

∣∣∣∣∣
L−1∑
l=0

h(l)p(n− τ0 − l)

∣∣∣∣∣
2

+ŵm+1(n)W
−(n+(m−1)Ns−τ0)ε
N

[
L−1∑
l=0

h(l)p(n− τ0 − l)

]∗

+ŵ∗m(n)W
(n+mNs−τ0)ε
N

[
L−1∑
l=0

h(l)p(n− τ0 − l)

]
+ ŵ∗m(n)ŵm+1(n) .

It can be found from (3.10) that the variances of the second and third terms

of Zm(n) are proportional to the noise power σ2
d + σ2

w, while the fourth term has

a variance proportional to (σ2
d + σ2

w)
2
. As a result, when the SNR is very low, the

variances of the second and third terms are relatively very small compared to that of

the fourth term while they all have a mean of 0. It is thus reasonable to ignore the

second and third terms. Zm(n) can then be approximated as

Zm(n) ≈ WNsε
N

∣∣∣∣∣
L−1∑
l=0

h(l)p(n− τ0 − l)

∣∣∣∣∣
2

+ ŵ∗m(n)ŵm+1(n)

= WNsε
N

∣∣∣∣∣
L−1∑
l=0

h(l)p(n− τ0 − l)

∣∣∣∣∣
2

+ w′m(n). (3.11)

Further expansion of (3.11) gives us

Zm(n) = WNsε
N

L−1∑
l=0

|h(l)|2 |p(n− τ0 − l)|2

+WNsε
N

L−1∑
l1=0

L−1∑
l2=0,l2 6=l1

h(l1)h∗(l2)p(n− τ0 − l1)p∗(n− τ0 − l2)

+w′m(n). (3.12)
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Under the assumption of Rayleigh fading channel, h(l) for l = 0, 1, · · · , L − 1 can

be modelled as L independent and identically distributed (i.i.d.) complex Gaussian

variables with zero-mean and variance σ2
h. Therefore, |h(l)|2 follows an exponential

distribution with a parameter 1/σ2
h. In the second term of (3.12), h(l1) and h∗(l2) are

two independent zero-mean complex Gaussian variables, while WNsε
N , p(n − τ0 − l1)

and p∗(n − τ0 − l2) can all be taken as constants for a specific communicating pair.

Consequently, the second term of (3.12) would have a mean of 0. The averaging of

Zm(n) over G pairs of successive OFDM segments can then be obtained as

Z̄(n) =
1

G

G−1∑
m=0

Z2m(n)

≈ σ2
hW

Nsε
N

L−1∑
l=0

|p(n− τ0 − l)|2 + w̄′m(n)

= σ2
hW

Nsε
N Λ(n− τ0) + w̄′m(n), (3.13)

where

Λ(n− τ0) =
L−1∑
l=0

|p(n− τ0 − l)|2 . (3.14)

Note that the total number of segments employed in this calculation is M = 2G. It

can be seen from (3.13) that the distortions from the multipath channel, data-carrying

sequence and AWGN can be mitigated through the average operation. The reliability

of signal detection can then be enhanced, particularly in low SNR environments.

3.3.2 Proposed Detection Metric

In the proposed OFDM signal detection algorithm, a local time domain pilot

reference Lp(n) is generated from the frequency domain inserted pilots that are public

information in the network. Under a multipath channel with a length of L, the local
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reference Lp(n) can be derived as

Lp(n) = Λ(n) =
L−1∑
l=0

|p(n− l)|2, n = 0, 1, · · · , Ns − 1. (3.15)

In practice, any arbitrary point may be used as the initial sample time instance

at the detection device, so that timing offset usually occurs. Considering that timing

offset just cyclicly rotates the averaged CCM result Z̄(n) which includes a complete

time domain pilot sequence when OFDM signals present, it can be compensated

by cyclicly correlating Z̄(n) with the local reference Lp(n). The cyclic correlation

between Z̄(n) and Lp(n), denoted by T (ν), can be calculated as

T (ν) =
1

Ns

Ns−1∑
n=0

Lp(n)Z̄

(
mod

{
n+ ν

Ns

})
,

ν = 0, 1, · · · , Ns − 1, (3.16)

where mod {·} denotes the modulo operation. Under hypothesis H1, T (ν) can be

rewritten as

T (ν) =
σ2
h

Ns

Ns−1∑
n=0

Lp(n)Λ

(
mod

{
n− τ0 + ν

Ns

})
WNsε
N

+
1

Ns

Ns−1∑
n=0

Lp(n)w̄′m

(
mod

{
n+ ν

Ns

})
,

ν = 0, 1, · · · , Ns − 1. (3.17)

Theoretically, when ν = τ0, a correlation peak should be observed, that is

T (τ0) =
σ2
h

Ns

Ns−1∑
n=0

[Λ(n)]2WNsε
N +

1

Ns

Ns−1∑
n=0

Λ(n)w̄′m(n+ τ0). (3.18)

Since frequency offset would distort the correlation result by introducing a phase

rotation WNsε
N , the magnitude of T (ν) is calculated in this algorithm to further miti-
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gate the effect of FO. As a result, when ν = τ0, we can have

|T (τ0)| =

√√√√{ σ2
h

Ns

Ns−1∑
n=0

[Λ(n)]2
}2

+ V , (3.19)

where V denotes the combining noise as

V =
σ2
h

N2
s

Ns−1∑
n1=0

[Λ(n1)]2WNsε
N

Ns−1∑
n2=0

Λ(n2)w̄′∗m(n2 + τ0) (3.20)

+
σ2
h

N2
s

Ns−1∑
n1=0

[Λ(n1)]2W−Nsε
N

Ns−1∑
n2=0

Λ(n2)w̄′m(n2 + τ0)

+
1

N2
s

Ns−1∑
n1=0

Λ(n1)w̄′∗m(n1 + τ0)
Ns−1∑
n2=0

Λ(n2)w̄′m(n2 + τ0).

As shown in (3.19), the phase rotation WNsε
N now only acts on the noise term V .

Based on the previous average operation, the power of the noise w̄′m(n) is significantly

reduced. Consequently, the effect of the combining noise V on the magnitude of the

correlation T (τ0) is limited. A significant correlation peak should still be observed

from |T (ν)| when ν = τ0 under hypothesis H1. Therefore, the impact of frequency

offset on the OFDM signal detection can be remarkably mitigated. The detection

metric γ can then be obtained as

γ = max {|T (ν)|} . (3.21)

On the other hand, under hypothesisH0, no OFDM signal is present. The received

signal segments m and m+ 1 will be

r′m(n) = wm(n), n = 0, 1, · · · , Ns − 1, (3.22)

r′m+1(n) = wm+1(n), n = 0, 1, · · · , Ns − 1. (3.23)

After the complex conjugate multiplication, the averaged multiplication result over
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G pairs of successive signal segments can be given by

Z̄ ′(n) =
1

G

G−1∑
m=0

w∗2m(n)w2m+1(n). (3.24)

Following the cyclic correlation between Z̄ ′(n) and the local reference Lp(n), the

magnitude of the correlation, |T ′(ν ′)|, can be mathematically written as

|T ′(ν ′)| =

∣∣∣∣∣ 1

Ns

Ns−1∑
n=0

Lp(n)Z̄ ′
(

mod

{
n+ ν ′

Ns

})∣∣∣∣∣ ,
ν ′ = 0, 1, · · · , Ns − 1. (3.25)

Then, the detection metric when active users are absent can be formulated as

γ′ = max {|T ′(ν ′)|} , (3.26)

where ν ′ = τ ′ gives the maximum correlation magnitude.

Comparing γ with γ′, we can find that when active users are present, the local

reference is correlated with correlative OFDM signals, a correlation peak can thus

be observed after the cyclic correlation. In contrast, when active users are absent,

the local reference is just correlated with independent noise, the correlation would

always be low. The proposed detection metric γ can therefore be used to identify the

existence of active users in the OFDM network.

3.3.3 Detection Threshold Selection

The presence of OFDM signals is determined by comparing the detection metric

γ against a properly selected threshold λ. If γ > λ, active users are deemed to be

present. Otherwise, the detected spectrum channel is considered as vacant. Without

loss of generality, the detection threshold in the proposed algorithm is selected with

respect to a requirement of the false alarm probability (FAP) Pfa, i.e. the probability
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that a false decision is made when active users are absent.

For the segment complex conjugate multiplication result Z̄ ′(n) in (3.24), since

w∗2m(n) and w2m+1(n) are independent and identically distributed random variables,

Z̄ ′(n) can be approximated as a Gaussian variable with a mean of 0 and a variance

of 1
G
σ4
w according to the central limit theorem. Due to the property of Gaussian

distribution, T ′(τ ′) in (3.25) is also Gaussian distributed with a mean of 0 and a

variance of

∑Ns−1
n=0 L2

p(n)

GN2
s

σ4
w. As the magnitude of a complex Gaussian variable follows

a Rayleigh distribution, it can be asserted

|T ′(τ ′)| ∼ Rayleigh

√∑Ns−1
n=0 L2

p(n)

2GN2
s

σ2
w

 . (3.27)

Then the false alarm probability Pfa with respect to γ′ can be represented as

Pfa = Prob(γ′ > λ)

= 1− Fray

λ;

√∑Ns−1
n=0 L2

p(n)

2GN2
s

σ2
w

Ns

, (3.28)

where Fray(x;σ) denotes the cumulative distribution function (CDF) of Rayleigh dis-

tribution,

Fray(x;σ) =

∫ x

−∞

u

σ2
exp

(
−u2

2σ2

)
du. (3.29)

Given a required false alarm probability Pfa, the threshold λ can then be selected as

λ = raylinv

(1− Pfa)1/Ns ,

√∑Ns−1
n=0 L2

p(n)

2GN2
s

σ2
w

 , (3.30)

where raylinv(y, σ) is the inverse of the Rayleigh cumulative distribution function.
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3.4 Simulation Results

Simulations are carried out to evaluate the performance of the proposed OFDM

signal detection algorithm using time domain pilot correlation. The robustness of the

proposed TDPC detection algorithm to low SNR, timing offset and frequency offset

are estimated. An OFDM system with 256 subcarriers is employed in the simulations.

Without further specification, 16 pilots are inserted into each OFDM signal in the

frequency domain; the false alarm probability requirement in the threshold selection

is set to 0.1; frequency offset is assumed to be 0.1 and timing offset is randomly

generated by MATLAB. Sixty received signal segments are averaged to mitigate the

interference and noise in the detection operation. In addition, a Rayleigh fading

channel with a length of 12 is taken into account in the simulations.

Figure 3.2 evaluates the miss detection probability (MDP) Pmd (the probability

of making an incorrect decision when active users are present) of the proposed TDPC

algorithm under different false alarm probability requirements when different numbers

of signal segments are averaged. As shown in the figure, a miss detection probability

less than 0.001 can always be achieved when SNR is larger than -1 dB in this simulated

channel condition. Additionally, with a looser false alarm probability requirement, a

better detection performance, in terms of miss detection probability, can be observed.

In the meantime, when more segments are averaged in the detection process, the

interference and noise can be further mitigated, which leads to an enhanced detection

reliability. In order to limit the time cost in the detection process when a large amount

of segments need to be averaged in the low SNR environment, a buffer can be utilized

to store the previous complex conjugate multiplication result Z̄t−1(n). The averaging

process can be reformulated as

Z̄t(n) =
G− 1

G
Z̄t−1(n) +

1

G
Zm(n). (3.31)

As a result, once a new multiplication result is obtained, the averaging operation can
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Figure 3.2: Probability of miss detection under different Pfa requirements when dif-
ferent numbers of signal segments are averaged. FO = 0.1 and TO is randomly
generated.
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Figure 3.3: Robustness of the proposed TDPC algorithm to timing offset when Pfa =
0.1 and FO = 0.1.

be executed and a timely detection decision can be made by the proposed TDPC

algorithm.

The robustness of the proposed detection algorithm to timing and frequency off-

sets is simulated and presented in Fig. 3.3 and Fig. 3.4, respectively. In Fig. 3.3,

we evaluate the Pmd of the detection algorithm with and without random timing off-

set between the transmitter and detection device when different numbers of received

segments are averaged. It can be concluded from the simulation results that the de-

tection performance only experiences little degradation when there is random timing

offset, especially when more segments are averaged in the detection process to further

mitigate the effect of the interference and noise. In the study of the robustness to

frequency offset, carrier frequency offsets between the transmitted and received sig-
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Figure 3.4: Robustness of the proposed TDPC algorithm to frequency offset when
Pfa = 0.1 and TO is randomly generated.
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Figure 3.5: Effect of the number of pilots in each OFDM signal on the detection
performance. Pfa = 0.1, FO = 0.1, and TO is randomly generated.

nals are set to 0, 0.01, 0.1 and 0.5, respectively, in the simulation. Undistinguishable

detection performance in terms of miss detection probability is observed in Fig. 3.4.

Therefore, the proposed OFDM signal detection algorithm is robust to both timing

and frequency offsets.

The effect of the number of pilot subcarriers in an OFDM signal is also studied in

the simulation. While the number of total subcarriers in each OFDM signal is fixed

at 256, the number of pilots changes among 8, 16 and 32. It can be observed from

Fig. 3.5 that a larger number of pilots in the OFDM signals would result into a better

detection performance. This is easy to be explained by (3.5). When more subcarriers

are used to transmit the pilots, a stronger time domain pilot pattern is included in

each received OFDM signal, leading to a lower miss detection probability.
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Figure 3.6: Performance of the proposed TDPC algorithm in multipath channels with
different delay spreads. Pfa = 0.1, FO = 0.1, and TO is randomly generated.

The performance of the proposed TDPC algorithm in Rayleigh fading channels

with different delay spreads is provided in Fig. 3.6. In the simulation, the lengths of

the Rayleigh channels are set to 4, 8, 12, and 16, respectively. Frequency offset with a

value of 0.1 and random timing offset are added. As shown in the figure, our proposed

TDPC algorithm can have higher detection reliability in the Rayleigh fading channel

with a shorter delay spread.

3.5 Summary

In order to enable a robust and simple active user detection in wireless networks,

a time domain pilot correlation algorithm for detecting OFDM signals with frequency
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domain inserted pilots is proposed in this chapter. The time domain cyclic correlation

between the complex conjugate multiplication of adjacent received signal segments

and a local pilot-based reference is utilized to detect the presence of OFDM signals.

The noise effect on the detection reliability is mitigated by a time domain signal seg-

ment average following the phase rotation locking processing. The robustness of the

proposed detection algorithm to timing offset is improved by the time domain OFDM

symbol length based segmentation and the cyclic correlation. The robustness to fre-

quency offset is enhanced by the segment complex conjugate multiplication and the

use of the correlation magnitude. Simulation results show that the performance of the

proposed detection technique is satisfactory in hostile multipath channel conditions

with the presence of both timing and frequency offsets.
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Chapter 4

Exploiting Transmitter I/Q

Imbalance for Estimating the

Number of Active Users

After recognizing the existence of active users in a wireless environment, we would

like to estimate the total number of those active users for further security risk analysis.

The number of active users in a network is crucial for understanding the security

level of wireless operating environments. Since any node in a network could perform

malicious attacks and be a potential threat, the transmission risk arises with the

increase of active users. This chapter proposes a novel estimation technique for the

number of active users by exploiting a typical device RF-DNA—I/Q imbalance, which

has been identified as a device-specific hardware impairment and can be utilized to

distinguish different wireless devices. In the proposed approach, I/Q imbalance of

a transmitter is first estimated from its transmitting signals. The estimate is then

compared with the observed I/Q imbalances of previously identified users through

a hypothesis testing, where the Euclidean distances between the new estimate and

previous observations are adopted as the test metric. If all the Euclidean distances

are larger than a properly selected threshold, a new active user is claimed. Finally,
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the number of active users is determined by counting all the distinct I/Q imbalances.

Simulation results are provided to validate the proposed estimation scheme.

4.1 Introduction

Due to the inherent broadcast nature of radio propagation, wireless communi-

cations is vulnerable to a variety of malicious attacks. In principle, any node in a

network, even a present legitimate user, may perform hostile attacks such as eaves-

dropping and jamming. It is almost impossible to prevent data loss or disclosure from

one device that can physically access the network [16]. The communication security

risk arises along with the increase of coexistent users. Hence, the number of active

users in a network can generally indicate the security level of an operating environ-

ment, and be used to guide the developing of defending strategies [15]. Ideally, the

association mechanism of communication protocols would provide the information of

active users. However, the number of clients associated to an access point (AP) is

usually not the same as the number of active users in a wireless network. Spoofing

attacks can be launched with little effort in wireless communications. Meanwhile,

some adversaries may not need to associate with or even strive to hide themselves

from APs. Thus, sophisticated strategies to estimate the number of active users need

to be developed.

Various techniques for estimating the number of active users have emerged in the

last decade. Most of the existing work exploited the statistics of packet retransmis-

sions to estimate the number of active users, which arises from the fact that the

network throughput is sensitive to the number of stations competing for channel

access [80]. An extended Kalman filter approach, coupled with a change detection

mechanism to capture variations in the number of competing terminals in a network,

was investigated in [81]. Vercauteren et al. proposed two Bayesian estimators, in

which the number of competing terminals was modeled as a Markov chain with un-

known transition matrix [82]. However, although the aforementioned solutions do
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not rely on association mechanisms of network protocols, they are still highly related

to certain protocol specifications such as the contention window size. In addition to

the packet retransmission statistics, station location information was also adopted to

determine the number of active users [83]. Nevertheless, such a scheme only works in

a static network, and its performance exceedingly depends on the relative positions

among active terminals and the locating precision.

Recently, RF-DNAs of wireless devices have drawn much attention from both

academia and industry due to their potential security applications. Hardware im-

pairments, such as I/Q imbalance, frequency and magnitude errors, are acceptable as

long as process-caused variations are within a tolerated range. It has been verified

that even devices are fabricated using the same manufacturing and packaging pro-

cesses, the impairments induced by the analog circuits cannot be identical and are

normally significant enough for distinguishing one device from all others [3, 27, 52].

In the literature, device RF-DNAs were mainly employed for user identification and

authentication using experimental methodologies [27,52]. In [50], Nguyen et al. men-

tioned that device RF-DNAs could be used to determine the number of attackers in

a network. However, they did not pay enough attention on such application. Sys-

tematic analysis and design of estimating the number of active users based on device

RF-DNAs still remain open.

To that end, this chapter investigates a device RF-DNA based estimation scheme

for the number of active users, by exploiting the I/Q imbalance that is recognized as a

typical feature of device-specific front-end imperfection. Specifically, I/Q imbalance

of a transmitter is first estimated from its transmitting signals. A mathematical

model of the I/Q imbalance observation at a receiver, biased by estimation errors,

is derived. Then, a hypothesis testing is adopted to determine whether the estimate

belongs to any of previously identified users, by comparing the Euclidean distance

between the new estimate and previous I/Q imbalance estimate of each identified

user with a properly selected threshold. A different-device decision is made when

the distance is larger than the threshold, and a new active user is claimed if all the

53



comparisons give a different-device decision. At the end, the number of active users

is obtained by counting all the findings. The proposed scheme is independent of the

network protocol and the transmission standard, and it can be easily extended to

other device RF-DNAs.

The reminder of this chapter is organized as follows. Section 4.2 introduces the

system model and transmitter I/Q imbalance. The proposed estimation algorithm for

the number of active users is described in Section 4.3, followed by simulation results

in Section 4.4. Finally, conclusions are drawn in Section 4.5.

4.2 System Model and Preliminaries

4.2.1 System Model

In this chapter, a wireless network that consists of multiple active stations is

considered. Each terminal in the network is surrounded by several wireless devices

which can all be regarded as potential security threats in principle. In order to

evaluate the security level of the operating environment and then perform effective

defending strategies, a station that is going to transmit data would like to estimate

the number of active users in the network.

The wireless network is assumed to be operated in a time-division duplexing

(TDD) scheme, where all the stations alternately transmit their signals. This as-

sumption corresponds to numerous practical wireless communication systems, such

as WiFi and WiMax. Moreover, it is assumed that the network is in a workable

status. Signals transmitted by any node in the network are physically available to all

the other terminals.

4.2.2 I/Q Imbalance Induced by the Transmitter

I/Q imbalance characterizes both the amplitude mismatch and phase mismatch

between the in-phase (I) and quadrature (Q) branches of a signal constellation, as
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illustrated in Fig. 4.1. Generally, I/Q imbalance is caused by two parts of an im-

perfect radio frequency (RF) front-end circuit in a wideband system: imperfect local

oscillator (LO) and imperfect low-pass filter (LPF). Imperfect LO induces frequency-

independent amplitude and phase mismatches, while mismatches caused by the im-

perfection of LPF are frequency-dependent. Since the I/Q imbalance induced by

imperfect LO is typically more significant than that caused by LPF imperfection in

RF circuits [84], this study only targets on the LO-induced I/Q imbalance. The I/Q

imbalance is thus modeled as frequency-independent and constant over the signal

bandwidth.

Letting x(t) = xI(t) + jxQ(t) represent the baseband signal at a transmitter, the

corresponding RF signal s(t), which is distorted by the I/Q imbalance induced by

hardware imperfections of the transmitter RF circuit, can be modeled as

s(t) = xI(t) cos (2πfct)− (1 + ε)xQ(t) sin (2πfct+ φ) , (4.1)

where fc denotes the carrier frequency, ε and φ indicate the amplitude imbalance and

phase orthogonality mismatch between the I and Q branches, respectively. With a

perfect receiver that does not induce any I/Q imbalance, the down-converted signal

after the LPF at the receiver can be written as

yI(t) =
1

2
[xI(t)− (1 + ε)xQ(t) sin (φ)]⊗ h(t) + w′I(t), (4.2)

and

yQ(t) =
1

2
[(1 + ε)xQ(t) cos (φ)]⊗ h(t) + w′Q(t), (4.3)

where yI(t) and yQ(t) represent the in-phase and quadrature components of the re-

ceived signal, respectively. ⊗ indicates the convolution operation. h(t) is the time

domain baseband equivalent channel impulse response with a length of L. Under the

assumption of a slow time-varying wireless channel, the channel impulse response is

taken as invariant during each signal block. w′(t) = w′I(t) + jw′Q(t) is the noise after
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the translation from RF to baseband, which can be approximated as additive white

Gaussian noise by ignoring the impact of LPF on its whiteness. Additionally, the sig-

nal x(t), channel h(t) and AWGN w′(t) are considered as statistically independent.

After the digital signal processing, the baseband received signal can finally be given

by

y(t) = 2 [yI(t) + jyQ(t)]

=
[
xI(t) + j (1 + ε) ejφxQ(t)

]
⊗ h(t) + w(t)

= [µx(t) + (1− µ)x∗(t)]⊗ h(t) + w(t), (4.4)

where µ is a defined I/Q imbalance parameter that characterizes both the amplitude

mismatch ε and phase mismatch φ. Mathematically, µ can be described as

µ =
[1 + (1 + ε)ejφ]

2
. (4.5)

w(t) denotes the AWGN acting on the baseband received signal y(t), which follows

a complex Gaussian distribution with zero mean and variance of σ2, i.e. w(t) ∼

CN (0, σ2).

4.3 Proposed Estimation Technique for the Num-

ber of Active Users

4.3.1 Estimation of the Transmitter I/Q Imbalance

The goal of the proposed technique is to utilize estimates of transmitter I/Q

imbalances to differentiate different transmitters and then determine the number

of active users in a network. Hence, I do not focus on the development of I/Q

imbalance estimation techniques. Various I/Q imbalance estimation algorithms have

been reported in the past decade [84–87]. In this chapter, a training signal based
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Figure 4.1: Illustration of signal constellation distorted by I/Q imbalance.

estimation scheme is taken as an example to extract the transmitter I/Q imbalance.

Since we are merely interested in how many different I/Q imbalances exist but not

the actual values of their amplitude and phase mismatches, only the I/Q imbalance

parameter µ that is highly competent for the differentiation purpose is estimated.

Training signals, which are usually public information in wireless communication

systems for channel estimation and signal synchronization purposes, can be exploited

to estimate the transmitter I/Q imbalance. Under the assumption of perfect syn-

chronization, the I/Q imbalance parameter µ can be extracted from the correlation

between the received and the conjugate of transmitted training signals at baseband.

Given a sampled training signal x(n), n = 0, 1, · · · , N − 1, the correlation between
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x∗(n) and the kth received training signal yk(n) can be expressed as

Γk =
1

N

N−1∑
n=0

[yk(n)x∗(n)]

= µk
1

N

N−1∑
n=0

{[hk(n)⊗ x(n)]x∗(n)}︸ ︷︷ ︸
ck

+(1− µk)
1

N

N−1∑
n=0

{[hk(n)⊗ x∗(n)]x∗(n)}︸ ︷︷ ︸
γk

+
1

N

N−1∑
n=0

[wk(n)x∗(n)] , (4.6)

where the subscript k indicates variables associated with the kth received training

signal. With perfect channel estimation for hk(n), the receiver can easily calculate

ck and γk. As a result, the estimate of the transmitter I/Q imbalance parameter, µ̂k,

can be obtained as

µ̂k =
Γk − γk
ck − γk

= µk +
1

(ck − γk)N

N−1∑
n=0

[wk(n)x∗(n)]

= µk + ∆µk , (4.7)

where ∆µk is the estimation error of µk, which can be modeled as a zero-mean complex

Gaussian variable as

∆µk ∼ CN

(
0, σ2

µk
=

Ēxσ
2
k

N |ck − γk|2

)
, (4.8)

in which Ēx denotes the power of the training signal, i.e. Ēx =
1

N

N−1∑
n=0

|x(n)|2. It

can be concluded from (4.8) that the estimation error ∆µk is independent of the true
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value of the I/Q imbalance parameter µk.

4.3.2 Differentiation of Different Transmitters based on Ob-

served I/Q Imbalances

In order to determine the number of active users in a network, the estimation node

has to differentiate different transmitters by judging whether any two I/Q imbalance

estimates are from an identical device or not. Given two I/Q imbalance observations

µ̂l = µl + ∆µl and µ̂k = µk + ∆µk , the differentiating procedure can be modeled as a

binary hypothesis testing as  H0 : µl = µk

H1 : µl 6= µk
. (4.9)

∆µl and ∆µk are estimation errors of µl and µk, respectively, which are independent

zero-mean Gaussian variables referring to (4.8). In the proposed differentiation algo-

rithm, the Euclidean distance between vectors µ̂l and µ̂k is defined as the test metric,

that is

Λ(l, k) =
∣∣µ̂l − µ̂k∣∣, (4.10)

where |·| denotes the norm operation. Compared with a properly selected decision

threshold T , if Λ(l, k) is larger than T , it is claimed that these two observations

are from different transmitters; otherwise, µ̂l and µ̂k are taken as two I/Q imbalance

estimates of an identical transmitter, which are deviated by distortions from the noise

and multipath channel.

The same as a common binary detection problem, two types of errors may occur

during the testing: false alarm and miss detection. Under hypothesis H0, the test

statistic Λ(l, k) can be rewritten as

Λ(l, k)
∣∣H0 =

∣∣∆µl −∆µk

∣∣. (4.11)

The term ∆µl − ∆µk is zero-mean complex Gaussian distributed with a variance of
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σ2
µl

+ σ2
µk

. As a result, Λ(l, k)|H0 follows a Rayleigh distribution with parameter

δ =

√
σ2
µl

+σ2
µk

2
. The false alarm probability, Pfa, can therefore be derived as

Pfa = P

{
Λ(l, k) > T

∣∣∣H0

}
= P

{
|∆µl −∆µk | > T

}
= e

−T2

σ2
µl

+σ2
µk . (4.12)

Similarly, under hypothesis H1, the test statistic turns to be

Λ(l, k)
∣∣H1 =

∣∣µl − µk + ∆µl −∆µk

∣∣, (4.13)

where the term µl − µk + ∆µl − ∆µk follows a complex Gaussian distribution with

mean µl−µk and variance σ2
µl

+ σ2
µk

. Hence, Λ(l, k)|H1 follows a Rice distribution as

Λ(l, k)|H1 ∼ Rice

(∣∣µl − µk∣∣,√σ2
µl

+ σ2
µk

2

)
. (4.14)

Consequently, the miss detection probability, Pmd, can be calculated as

Pmd = P

{
Λ(l, k) ≤ T

∣∣∣H1

}
= P

{∣∣µl − µk + ∆µl −∆µk

∣∣ ≤ T

}

= 1−Q1

 |µl − µk|√
σ2
µl

+σ2
µk

2

,
T√

σ2
µl

+σ2
µk

2

 , (4.15)

where Q1(·, ·) is the first-order Marcum Q-function,

Q1 (a, b) =

∫ ∞
b

xe−
x2+a2

2

∞∑
i=0

(ax/2)2i

i!Γ (i+ 1)
dx. (4.16)

As shown in (4.12) and (4.15), FAP is just a function of estimation errors, and is
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independent of the true value of the I/Q imbalance; in contrast, MDP is a function

of the I/Q imbalance distance |µl − µk|. In practical implementation, an estimation

node has no prior information about I/Q imbalances of the transmitters, so that the

theoretical MDP cannot be obtained in the differentiating procedure. Therefore, the

decision threshold T in the binary hypothesis test should be chosen based on a given

requirement of FAP. Mathematically, a suitable decision threshold can be selected as

T =

√
−ln

(
Pfa

)(
σ2
µl

+ σ2
µk

)
(4.17)

=

√
−ln

(
Pfa

)(
Ēxσ2

l

N |cl−γl|2
+

Ēxσ2
k

N |ck−γk|2

)
.

Please note that a new I/Q imbalance observation needs to be compared with I/Q

imbalance estimates of all the identified active users. The discovery of a new station

is claimed if and only if all the testings give a different-device decision.

4.3.3 Estimation of the Number of Active Users

Exploiting the proposed transmitter differentiation algorithm, different terminals

can be identified based on their distinct I/Q imbalances. Thereafter, the number of

active users in the network is determined by counting all the findings.

During an observation time window, the estimation node can obtain multiple

transmitter I/Q imbalance estimates from the received training signals. Let Ξ denote

the set of all the I/Q imbalance observations, and Ω indicate the set of I/Q imbalance

estimates belonging to the identified active users. The procedure for determining the

number of active users can be summarized as follows:

1. Estimate Ξ(1) and put it into Ω as the I/Q imbalance estimate of the first

identified active user, and then make a new estimate Ξ(m),m = 2;

2. Choose a suitable decision threshold T (m) for the identification of Ξ(m),m ≥ 2,

according to the used training signal and corresponding channel condition;
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3. Compare the Euclidean distances between Ξ(m) and all the elements in the set

Ω. If all the distances are larger than the selected threshold T (m), put Ξ(m)

into set Ω;

4. If the time window does not expire, make a new estimate Ξ(m),m = m+ 1 and

then go to Step 2; otherwise, go to Step 5;

5. Count the number of elements in the set Ω.

4.4 Simulation Results

Matlab simulations are carried out to validate the proposed estimation technique

for the number of active users. An OFDM signal with 64 subcarriers and 4-QAM

symbol modulation is adopted as the training signal in the simulations. The sampling

frequency is set to 20 MHz. Without further specification, a Rayleigh fading channel

with an exponential power delay profile (PDP) of a root-mean-square (RMS) delay of

50 ns is considered, which leads to a 12-tap time-domain channel impulse response. As

a result, the cyclic prefix length of the OFDM signal, which is 16 in the simulations, is

larger than the delay induced by the multipath channel. In addition, perfect channel

estimation and synchronization are assumed to be achieved in the simulations.

4.4.1 FAP and MDP of the I/Q Imbalance based Transmitter

Differentiation

Figures 4.2 and 4.3 present the simulated false alarm and miss detection prob-

abilities of the proposed transmitter differentiation algorithm in differentiating two

I/Q imbalance estimates, respectively. A transmitter with I/Q imbalance ε = 0.25

and φ = 5◦ is employed in the simulation for FAP. The decision threshold is selected

based on a FAP requirement varying from 0.1 to 0.001. It can be found from Fig. 4.2

that the simulated FAPs are very close to their theoretical values in the considered
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Figure 4.2: FAP in differentiating two I/Q imbalance estimates of an identical trans-
mitter with I/Q imbalance ε = 0.25 and φ = 5◦.
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Rayleigh fading channel during a signal-to-noise ratio range from 0 dB to 30 dB.

In the simulation for MDP, the two I/Q imbalance estimates are observed from

two distinct transmitters. One transmitter has I/Q imbalance ε = 0.25 and φ = 5◦,

the other suffers I/Q imbalance ε = 0.05 and φ = 15◦. The FAPs used in selecting the

decision threshold are 0.1, 0.01 and 0.001, respectively. As shown in Fig. 4.3, when

SNR is around 20 dB, MDPs in differentiating the two transmitters can be as low as

0.01. Moreover, a lower MDP can be observed under the same SNR condition when

a larger FAP is acceptable in the differentiating process. It is noteworthy that the

MDP also depends on the difference between I/Q imbalances of different transmitters,

as addressed in the theoretical analysis in (4.15). A larger I/Q imbalance distance

would reduce the probability of miss detection in the transmitter differentiation.

4.4.2 Accuracy of the Estimation for the Number of Active

Users

In the evaluation of the proposed estimation algorithm for the number of active

users, six transmitters are assumed to be present in the network. The amplitude and

phase mismatches between I and Q branches of their signal constellations, i.e. (ε, φ),

are (−0.3,−15◦), (−0.3, 15◦), (−0.1,−5◦), (0.1, 5◦), (0.3, 15◦), (0.3,−15◦), respectively.

Two estimates are obtained for each transmitter in the observation time window.

Furthermore, a Rayleigh fading channel with an exponential PDP of 100 ns RMS

delay, which would cause inter-symbol interference to the training signals, is also

considered. Taking the event that the estimated number of active users is not equal

to six as an estimation error in the simulation, error probabilities of the proposed

estimation algorithm under different channel conditions are evaluated, as shown in

Fig. 4.4. Acceptable performance can be observed from the simulation results. In

addition, the estimation accuracy degrades when inter-symbol interference is caused

by the multipath channel.

In order to study the statistics of estimation errors, the frequency of occurrence
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Figure 4.3: MDP in differentiating two I/Q imbalance estimates of distinct transmit-
ters. One transmitter has I/Q imbalance ε = 0.25 and φ = 5◦, the other has ε = 0.05
and φ = 15◦.
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Figure 4.4: Error probability in estimating the number of active users when there are
six transmitters in the network. Their I/Q imbalances are (−0.3,−15◦), (−0.3, 15◦),
(−0.1,−5◦), (0.1, 5◦), (0.3, 15◦) and (0.3,−15◦), respectively.
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Figure 4.5: Statistical analysis for the estimation results when six active transmitters
exist in the network.

for all the estimated numbers of active users is analyzed. Figure 4.5 demonstrates

the frequency of occurrence when SNR = 16 dB and SNR = 20 dB in the Rayleigh

fading channel of 50 ns RMS delay. In most of incorrect estimations, the estimated

number of active users is just one away from the true value, caused by either false

alarm or miss detection. Generally, this small deviation will not significantly affect

perceiving the security level of the operating environment.

4.5 Summary

In this chapter, a novel device RF-DNA based estimation technique for the number

of active users in a wireless network is proposed. As a typical device RF-DNA that
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has device-specific nature, transmitter I/Q imbalance is exploited in the design. I/Q

imbalance of a transmitter is first estimated from its transmitting signals, and then

compared with the I/Q imbalance estimate of each previously identified active user

through a hypothesis testing, where the Euclidean distance between the new and

previous estimates is adopted as the test metric. If the distance is larger than a

selected threshold, the two estimates are considered to be from different wireless

devices. A new active user is claimed if and only if all the comparisons give a different-

device decision. At the end of an estimation time window, the number of active users

is obtained by counting all the identified transmitters. Simulation results have been

provided to validate the proposed estimation technique.
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Chapter 5

Anti-Eavesdropping OFDM

System with CSI-based Coordinate

Interleaving

In light of the security weaknesses of OFDM technology and its general acceptance

in modern wireless communications, the security of OFDM communication systems

needs to enhanced. This dissertation concentrates on the built-in security enhance-

ment of wireless OFDM systems against eavesdropping. Two novel physical-layer

eavesdropping prevention strategies for OFDM are proposed. This chapter provides

insight into the proposed dynamic coordinate interleaving method, which can be em-

ployed in most existing wireless OFDM systems. For situations that the modulated

data symbols transmitted at OFDM subcarriers are not in a complex-number struc-

ture, another dynamic subcarrier interleaving technique is investigated and presented

in Chapter 6.

A novel anti-eavesdropping OFDM system through dynamic subcarrier coordi-

nate interleaving is proposed in this chapter, by exploiting the reciprocal, location-

dependent and time-varying nature of wireless channels. In the proposed OFDM

system, the transmitter performs coordinate interleaving at partial OFDM subcarri-
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ers, where the symbol coordinate of an OFDM subcarrier is interleaved in an oppor-

tunistic manner depending on the instantaneous channel state information between

the transmitter and intended receiver. More specifically, a subcarrier symbol asso-

ciated with a CSI (i.e., channel gain or phase) larger than a predefined threshold

is coordinate interleaved. Since wireless channels associated with each pair of users

at separate locations exhibit independent multipath fading, the frequently updated

coordinate interleaving pattern can only be shared between legitimate users based

on channel reciprocity. Consequently, eavesdropping is prevented due to mismatched

de-interleaving at the eavesdropper. Two coordinate interleaving schemes are inves-

tigated by employing the subcarrier channel gain and phase in determining the inter-

leaving pattern, respectively. In order to simultaneously evaluate the eavesdropping

resilience and transmission reliability of anti-eavesdropping communication systems,

a novel evaluation criterion, named probability of confidential transmission, is also

proposed. Theoretical analysis and simulation results are provided to validate the

effectiveness of the proposed anti-eavesdropping OFDM system. As confirmed by

simulation results, the proposed system significantly outperforms the conventional

OFDM system in terms of the probability of confidential transmission.

5.1 Introduction

Securing wireless communications is a critical challenge due to the inherent broad-

cast nature of radio signal propagation. Adversaries can possibly intercept legitimate

transmissions as long as they lie within the radio transmission coverage. Tradi-

tional communication securing mechanisms largely rely on cryptographic techniques

at upper layers of the protocol stacks, where the security is generally guaranteed

by using either pre-distributed or public cryptography keys between communication

nodes [88]. However, with limited randomness and potential secrecy leakage in such

highly standardized practices, key distribution and protection face severe threats of

being cracked. In recent years, physical layer security, exploiting the continual influx
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of the situation- and user-dependent randomness from wireless multipath channels,

is emerging as an effective means to complement conventional wireless security tech-

niques [13]. The new physical layer security paradigms benefit from fundamental

properties of wireless channels, such as reciprocity, as well as temporal and spatial

variations.

5.1.1 State of the Art in Eavesdropping Prevention

Eavesdropping, particularly passive eavesdropping, is one of the primary security

problems in a wireless network. A passive eavesdropper can overhear wireless signals

and infer the transmitted information without being detected by legitimate users.

Several studies for preventing eavesdropping at the physical layer in wireless com-

munications have been developed. Information theoretic aspects of secrecy [89, 90],

which originated from Shannon’s notion of perfect secrecy [29], demonstrated that

as long as the eavesdropper’s channel is worse than the legitimate receiver’s channel,

perfect secrecy can be achieved without any cryptographic key.

Differing from the theoretical security techniques, several practical approaches

dealing with eavesdropping have also been investigated:

• Transmitter beamforming and friendly jamming. Transmitter beamforming was

proposed to facilitate the transmission confidentiality in [40], where the maxi-

mum secrecy sum rate was achieved when eavesdropper’s channel state infor-

mation was known. Artificial noise [41] was generated using multiple antennas

or cooperative nodes, and was injected into the null-subspace of the intended

receiver’s channel to prevent eavesdropping.

• Network cooperation. The authors of [91] proposed an anti-eavesdropping space-

time network coding scheme to prevent eavesdropping under the collaboration

of the user nodes in a cluster. Similarly, relay technique was utilized to defend

against eavesdroppers in [92,93] at the cost of collaborative nodes.
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• Coded transmission. Security can also be enhanced through spread-spectrum

techniques at the physical layer such as direct-sequence spread-spectrum (DSSS)

and frequency-hopping spread-spectrum (FHSS) [94], in which a signal is typi-

cally spread over a frequency band with frequency bandwidth much wider than

that of the original information. In [95], messages were transmitted over punc-

tured bits to hide data from eavesdroppers by using low-density parity-check

codes.

• Resource allocation. Power and subcarrier allocation techniques have also been

introduced to improve the security against eavesdropping [96,97]. The optimal

resource allocation was studied with respect to instantaneous channel conditions

under a total transmit power constraint and security constraints.

It can be concluded that the aforementioned security approaches require addi-

tional resource, significant changes of the network protocol and device hardware, or

high computational complexity. Effective practical alternatives with minimum ad-

ditional resource requirement, modification to off-the-shelf systems and operational

complexity have yet to be investigated.

5.1.2 Physical Layer Security of OFDM Systems

OFDM has been widely adopted in many high-speed wireless communication

networks, such as Long-Term Evolution Advanced, IEEE 802.16 and IEEE 802.11,

mainly because of its high spectral efficiency and robustness against multipath fad-

ing. Unfortunately, the distinct physical-layer time and frequency characteristics of

conventional OFDM signals can be exploited for interception purposes by adversaries,

resulting in the OFDM system being vulnerable to eavesdropping attacks. Thus, it

is of practical interest to investigate the physical layer security in OFDM due to its

wide popularity and its inherent security weaknesses.

Extensive research efforts have been devoted to improve the physical layer security

of OFDM systems against eavesdropping. Waveform feature suppression strategies,
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including frequency hopping [98], cyclic prefix and pilot tone elimination [99], as

well as CP size variation and random signal insertion [100], have been employed to

enhance OFDM security. Besides significant modifications to off-the-shelf systems,

these approaches have a critical requirement that the feature suppression processing

needs to be kept unknown to adversaries. It cannot be easily fulfilled in practical

implementations. Encryption methods have also been investigated to prevent OFDM

signals from eavesdropping [101, 102]. Nevertheless, aside from their computational

complexity induced by the involved encryption key generation, key distribution and

management in these techniques face severe threats of being cracked.

Recently, the randomness of wireless channels was exploited to strengthen the

security of OFDM transmission as well. The physical layer security of OFDM sys-

tems over wireless channels was investigated from an information-theoretic perspec-

tive in [13]. A secure OFDM system was investigated by degrading the eavesdrop-

per’s channel condition, where distributed transmitters independently send out pre-

equalized OFDM signals [103]. In addition, an optimal power allocation scheme under

power and security constraints for the wire-tap OFDM system was presented in [104].

However, these security techniques require the knowledge of the eavesdropping chan-

nel, which is conditioned on a successful detection of eavesdroppers. Therefore, it

is expected to develop simple proactive eavesdropping prevention for OFDM at the

physical layer, without the requirements of eavesdropping channel information, sig-

nificant modifications to off-the-shelf systems as well as additional resource.

5.1.3 Contributions of the Proposed Secure OFDM System

The concept of coordinate interleaving was originally introduced into communica-

tion systems to improve the reliability of modulated signals in fading channels by in-

creasing the modulation diversity [105,106]. It was later extended to space-time code

designs for multiple-input multiple-output (MIMO) wireless transmission [107, 108].

In [109, 110], coordinate interleaving method was utilized to improve the error rate
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performance in cooperative relay networks. Furthermore, it has been verified that

the peak-to-average power ratio (PAPR) of OFDM signals could be reduced with a

properly designed coordinate interleaving [111]. However, none of these works take

into account the security issues.

In this chapter, a simple and effective anti-eavesdropping OFDM system is pro-

posed by exploiting coordinate interleaving at partial subcarriers of each OFDM sig-

nal. Subcarriers that perform coordinate interleaving are chosen according to the

real-time channel state information between the transmitter and intended receiver.

Both subcarrier channel gain and phase are investigated for determining whether

a subcarrier is to be interleaved, leading to two different coordinate interleaving

schemes. More specifically, the transmitter interleaves the real and imaginary com-

ponents of a subcarrier symbol when its associated channel gain (or channel phase)

is larger than a predefined threshold. Based on channel reciprocity, the legitimate

receiver can locally deduce subcarriers that undergo coordinate interleaving without

any additional signaling. In contrast, due to the independence of spatially separate

wireless channels in a rich multipath environment, the subcarrier coordinate inter-

leaving pattern is unavailable to eavesdroppers at a third location. Consequently,

de-interleaving at eavesdroppers is disrupted and eavesdropping is then prevented.

In order to simultaneously evaluate the eavesdropping resilience and transmission

reliability of anti-eavesdropping communication systems, a novel performance evalua-

tion criterion, named probability of confidential transmission, is also proposed in this

study. Compared to existing security approaches, the proposed anti-eavesdropping

OFDM system does not require eavesdropping channel information or additional in-

formation exchange, only needs minor modifications to off-the-shelf systems, and has

low computational complexity.

Organization The reminder of this chapter is organized as follows. Section 5.2

introduces the system model and preliminaries. The proposed OFDM security tech-

nique exploiting the channel gain based coordinate interleaving is analyzed in Section

5.3, followed by the channel phase based coordinate interleaving scheme in Section
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5.4. System optimization with a trade-off between eavesdropping resilience and trans-

mission reliability, as well as the proposed performance evaluation criterion for anti-

eavesdropping systems, is discussed in Section 5.5. Simulation results are provided in

Section 5.6, and conclusions are finally drawn in Section 5.7.

Notations Boldface letter A identifies a random variable vector A and A(k) de-

notes its kth element. [·]T indicates the complex nonconjugate transposition. Bold

upper case letter with superscript N represents an N×N matrix. Complex Gaussian

random variable X with mean m and variance σ2, and with independent and identi-

cally distributed real and imaginary components, is denoted as X ∼ CN (m,σ2).

5.2 System Model and Preliminaries

5.2.1 System Model

In this study, an OFDM wireless network that consists of three nodes is consid-

ered, where a transmitter communicates with a legitimate receiver in the presence

of a passive eavesdropper, as shown in Fig. 5.1. The forward and reverse channels

between legitimate users are assumed to occupy the same frequency band and re-

main constant over several time slots. Hence, the transmitter and legitimate receiver

would experience and observe an identical common channel (channel between the

transmitter and the legitimate receiver), based on the reciprocity property of wireless

channels.

Generally, a third party that is more than half a wavelength away from the in-

tended receiver experiences a fading process independent of that between legitimate

terminals [26]. For instance, at 2.4 GHz, two receivers that are roughly separated by

6.25 cm would suffer independent channel impairments. In most practical scenarios,

the eavesdropper is spatially separated from the legitimate users with a much farther

distance, in order to avoid being detected. As a result, the common channel and

eavesdropping channel (channel between the transmitter and the eavesdropper) are
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Figure 5.1: Wireless communications in the presence of a passive eavesdropper.

modelled as independent of each other in the analysis.

5.2.2 Multipath Channels in OFDM System

Assume that OFDM signals withN subcarriers are transmitted by the transmitter.

At the legitimate receiver, the frequency domain received signals after removing the

cyclic prefix, R = [R(0), R(1), · · · , R(N − 1)]T , can be written as

R = diag
{
H
}N

S + W, (5.1)

where diag
{
H
}N

, which is an N×N diagonal matrix with all its main diagonal entries

H = [H(0), H(1), · · · , H(N − 1)]T , identifies the complex frequency domain channel

responses of the common channel; N × 1 vector S denotes the modulated symbols

transmitted by the N subcarriers, which are mapped into a two-dimensional constella-

tion; and vector W of size N×1 indicates the white Gaussian noise following the dis-

tribution CN(0, σ2
w). For the frequency domain channel vector H, it is characterized
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by the associated time domain channel coefficients h = [h(0), h(1), · · · , h(L− 1)]T as

H = FNh, (5.2)

where FN is the N -point FFT matrix with its (n, k)th entry (exp{−j2πnk/N}/
√
N).

Under the assumption of a Rayleigh fading channel, h can be modelled as L indepen-

dent and identically distributed zero-mean complex Gaussian random variables, so

that H is also complex Gaussian distributed due to central limit theorem. Through-

out this chapter, {H(0), H(1), · · · , H(N − 1)} are approximated as i.i.d. random

variables following the distribution CN(0, σ2
H).

The same modelling and approximation can be applied to the analysis of the

eavesdropping channel HE. Similarly, {HE(0), HE(1), · · · , HE(N − 1)} are modelled

as i.i.d. complex Gaussian variables following the distribution CN(0, σ2
HE

) in the

discussion.

5.2.3 Channel Estimates in the Network

Estimation errors generally occur at the channel estimators, due to the presence

of noise, interference and hardware limitations in wireless communication systems.

As a result, only a noisy channel estimate can be obtained by all the nodes in the

network. The observations of the common channel at the transmitter and legitimate

receiver, ĤT and ĤR, respectively, can be given by

ĤT/R = H + ∆HT/R, (5.3)

where subscripts T and R indicate vectors associated with the transmitter and le-

gitimate receiver, respectively. ∆HT/R of size N × 1 is the estimation error of the

common channel H at the transmitter/legitimate receiver, which can be modelled as a

zero-mean complex Gaussian variable vector with all its elements being independently

distributed. With a further assumption that estimation errors at all subcarriers of an
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OFDM signal are identically distributed, ∆HT (k) and ∆HR(k) can be modelled as

∆HT (k) ∼ CN(0, σ2
T ), k = 0, 1, · · · , N − 1, (5.4)

and

∆HR(k) ∼ CN(0, σ2
R), k = 0, 1, · · · , N − 1, (5.5)

respectively. Please note that the noise, interference as well as hardware limitations

at the transmitter are usually independent of that at the legitimate receiver, even

when they follow the same statistical distributions at the two ends. The estimation

errors ∆HT and ∆HR would thus be independent of each other as well.

Similarly, the noisy estimate of the eavesdropper’s CSI can be written as

ĤE = HE + ∆HE, (5.6)

where ĤE is the estimate of the eavesdropping channel HE with estimation error

∆HE. ∆HE(k) for k = 0, 1, · · · , N − 1 can also be modeled as i.i.d. zero-mean

complex Gaussian variables with variance σ2
E. It is noteworthy that HE is independent

of H, and ∆HE is independent of both ∆HT and ∆HR. Therefore, ĤE should be

independent of both ĤT and ĤR.

5.3 Proposed Secure OFDM System Using Chan-

nel Gain based Coordinate Interleaving

In the proposed anti-eavesdropping OFDM system, the real and imaginary com-

ponents of modulated symbols at partial OFDM subcarriers are interleaved in an

opportunistic manner. Subcarriers of each OFDM signal that perform coordinate

interleaving are dynamically determined by the CSI of the common channel. Two co-

ordinate interleaving schemes are investigated, which exploit the subcarrier channel
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gain and phase in determining the coordinate interleaving pattern, respectively. The

channel gain based scheme is introduced in this section, and the channel phase based

scheme is discussed later in Section 5.4.

In order to provide a deep insight into the gain and phase of the noisy channel

estimates, we rewrite the observed channel frequency responses in a geometrical form.

Referring to (5.3), the noisy channel observations at the transmitter and legitimate

receiver can be geometrically expressed as

∣∣∣ĤT/R (k)
∣∣∣ejθ̂T/R(k) =

∣∣∣H (k)
∣∣∣ejθ(k) +

∣∣∣∆HT/R (k)
∣∣∣ej∆θT/R(k),

k = 0, 1, · · · , N − 1, (5.7)

where |·| indicates the norm operation, θ̂T/R(k) denotes the estimated channel phase at

the kth subcarrier of the common channel while θ(k) is its exact value, and ∆θT/R(k)

represents the phase of the estimation error ∆HT/R (k). Similarly, the estimate of the

eavesdropping channel can be rewritten in a geometrical form as

∣∣∣ĤE (k)
∣∣∣ejθ̂E(k) =

∣∣∣HE (k)
∣∣∣ejθ(k) +

∣∣∣∆HE (k)
∣∣∣ej∆θE(k),

k = 0, 1, · · · , N − 1, (5.8)

where θ̂E(k), θ(k) and ∆θE(k) denote the phases of the estimated channel response

ĤE (k), the eavesdropper channel HE (k), and the estimation error ∆HE (k), respec-

tively.

Please note that in the proposed anti-eavesdropping OFDM system, we may not

need to involve all N subcarriers of each OFDM signal in the opportunistic coordinate

interleaving. Instead, a subcarrier set M, with M out of the N subcarriers, can be

utilized in the security design, where M ≤ N .
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5.3.1 Subcarrier Channel Gain based Coordinate Interleav-

ing

In the security scheme using channel gain based coordinate interleaving, the in-

stantaneous channel gain of each subcarrier belonging to the set M in an OFDM

signal is compared with a properly selected threshold. If the channel gain of a sub-

carrier is larger than the threshold, the transmitter performs coordinate interleaving

at that subcarrier; otherwise, the modulated symbol at that subcarrier is transmitted

in the original format.

The subcarrier channel gain obtained at the transmitter, which is employed to

initiate the coordinate interleaving pattern, can be given by

λT (k) =
∣∣∣ĤT (k)

∣∣∣2 , k = 0, 1, · · · , N − 1. (5.9)

Since ĤT (k) follows a complex Gaussian distribution CN
(
0, σ2

ĤT

)
, where σ2

ĤT
=

σ2
H+σ2

T , the channel gain λT (k) is exponentially distributed with a probability density

function (PDF) fT (λT (k)) = 1
σ2
ĤT

e
−λT (k)/σ2

ĤT and a CDF FT (λT (k)) = 1−e−λT (k)/σ2
ĤT .

Given a predefined threshold ΛT , the pattern of the channel gain based coordinated

interleaving at the kth subcarrier can be expressed as λT (k) > ΛT , interleaving

λT (k) ≤ ΛT , un-interleaving
, k ∈M. (5.10)

The threshold ΛT needs to be selected to maximize the difficulty of eavesdropping. In

our case, an equal probability of both decisions in (5.10) would achieve this purpose,

that is

P (λT (k) > ΛT ) = P (λT (k) ≤ ΛT ) =
1

2
. (5.11)

Since λT (k) follows an exponential distribution with parameter 1/σ2
ĤT

, the threshold
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ΛT can be chosen as

ΛT = −σ2
ĤT

ln
1

2
. (5.12)

5.3.2 Performance of Eavesdropping Prevention

No information about the coordinate interleaving pattern will be sent out by the

transmitter of the proposed anti-eavesdropping OFDM system. Any node in the

network that wants to de-interleave and demodulate the transmitted data has to

locally derive the coordinate interleaving pattern of each OFDM signal.

Since the eavesdropping channel HE and common channel H, as well as the chan-

nel estimates ĤE and ĤT, are statistically independent, the channel gains λE and λT

should be independent of each other. Consequently, the eavesdropper has no more

information than a random guess about whether the symbol at any OFDM subcarrier

in the setM is coordinate interleaved. Due to the independence between λE and λT,

the derivation of the interleaving pattern from λE can also be taken as a random

guess. With an equal probability of interleaving and un-interleaving at an OFDM

subcarrier in M, the probability that the eavesdropper makes a correct guess of the

coordinate interleaving pattern at one subcarrier would be

pE(k) =
1

2
, k ∈M. (5.13)

Under the assumption that M subcarriers are involved in the opportunistic coordinate

interleaving for the security purpose, the probability that the eavesdropper makes an

incorrect decision for the interleaving pattern of an OFDM signal, PE, can be given

by

PE = 1− 1

2M
. (5.14)

Let PS denote the symbol error rate (SER) of the conventional OFDM system

using a certain modulation scheme in a Rayleigh fading channel. The SER of eaves-

dropping under the same channel condition when legitimate users adopt the proposed
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channel gain based coordinate interleaving, PS,E, can be calculated as

PS,E = 1− (1− PE) (1− PS) . (5.15)

5.3.3 Performance of Legitimate Transmission

In the proposed anti-eavesdropping OFDM system, the legitimate receiver locally

derives the coordinate interleaving pattern from its own estimate of the common chan-

nel, and then performs de-interleaving and data demodulation. Ideally, the transmit-

ter and intended receiver could have the same channel observations due to channel

reciprocity. The opportunistic coordinate interleaving would thus not degrade the

reliability of legitimate transmission. In practice, the legitimate node pair can only

have two noisy estimates of the common channel due to their independent estima-

tion errors. Hence, the performance of legitimate transmission with noisy channel

estimates needs to be evaluated.

Referring to the analysis in Section 5.2, the noisy channel estimate of the common

channel at the legitimate receiver follows a complex Gaussian distribution CN
(
0, σ2

ĤR

)
,

where σ2
ĤR

= σ2
H+σ2

R. Therefore, the channel gain λR (k) =
∣∣∣ĤR (k)

∣∣∣2 is exponentially

distributed with parameter 1/σ2
ĤR

. In order to derive the interleaving pattern initi-

ated at the transmitter, the receiver compares its observed subcarrier channel gains

with a threshold ΛR. Similar to the analysis in (5.12), we can obtain the threshold

used at the intended receiver, ΛR, as

ΛR = −σ2
ĤR

ln
1

2
. (5.16)

The reliability of legitimate transmission is degraded when the transmitter and

legitimate receiver generate mismatched coordinate interleaving patterns. The prob-

ability of disagreement between the transmitter and legitimate receiver on whether
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one subcarrier in the set M is interleaved, pL(k), can be calculated as

pL(k) = P (λR (k) > ΛR|λT (k) ≤ ΛT ) + P (λR (k) ≤ ΛR|λT (k) > ΛT ) (5.17)

=
1

2
P (λR (k) > ΛR, λT (k) ≤ ΛT ) +

1

2
P (λR (k) ≤ ΛR, λT (k) > ΛT ).

Challenges here are to derive P (λR (k) > ΛR, λT (k) ≤ ΛT ) and P (λR (k) ≤ ΛR,

λT (k) > ΛT ). Considering that ĤT (k) and ĤR(k) are two Gaussian variables condi-

tioned on the common channel H(k), we can take ĤR(k) as a noisy version of ĤT (k),

that is

ĤR(k) = ĤT (k) + ∆HTR(k), k = 0, 1, · · · , N − 1, (5.18)

where

∆HTR(k) = ∆HR(k)−∆HT (k) (5.19)

identifies the composed channel estimation error of the transmitter/receiver and re-

ceiver/transmitter transmission link. It follows a zero-mean complex Gaussian distri-

bution with a variance of σ2
TR = σ2

T +σ2
R. Consequently, ĤR(k) can be approximated

as a complex Gaussian random variable with a mean of ĤT (k) and a variance of σ2
TR.

The channel gain λR (k) is thus noncentral Chi-square distributed with 2 degree of

freedom, with a PDF

fR (λR(k)) =
1

σ2
TR

e−(λT (k)+λR(k))/σ2
TRI0

(√
λR (k)λT (k)

2σ2
TR

)
, (5.20)

and a CDF

FR (λR(k)) = 1−Q1

(√
2λT (k)

σTR
,

√
2λR(k)

σTR

)
, (5.21)

where IA(x) represents the Bessel function of Ath order as

IA(x) =
∞∑
k=0

(x/2)A+2k

k!Γ (A+ k + 1)
, (5.22)
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and Qc (a, b) denotes the Marcum Q-function, that is

Qc (a, b) =

∫ ∞
b

x
(x
a

)c−1

e−
x2+a2

2 Ic−1 (ax) dx. (5.23)

The disagreement probability pL(k) for the kth subcarrier can then be derived as

pL(k) =
1

2

∫ ΛT

−∞
fT (λT (k))

{∫ +∞

ΛR

fR (λR(k)) dλR (k)

}
dλT (k)

+
1

2

∫ +∞

ΛT

fT (λT (k))

{∫ ΛR

−∞
fR (λR(k)) dλR (k)

}
dλT (k)

=
1

2

∫ ΛT

−∞
fT (λT (k)) [1− FR (ΛR)] dλT (k)

+
1

2

∫ +∞

ΛT

fT (λT (k))FR (ΛR) dλT (k) . (5.24)

Unfortunately, the integral of the Marcum Q-function in (5.24) cannot be worked out,

and thus pL(k) cannot be evaluated in a closed form. However, it can be concluded

from (5.24) that pL(k) would be a variable independent of the subcarrier index k after

the definite integral, since the boundaries of the integral interval are uncorrelated to

k. Therefore, the index k can be removed from pL(k). In this study, numerical results

will be provided to evaluate this disagreement probability pL.

When M subcarriers are involved in the channel gain based coordinate interleaving

which are independent of one another, the interleaving pattern mismatch probability

for an OFDM signal at the legitimate receiver, PL, would be

PL = 1− (1− pL)M . (5.25)

Then, we can have the SER of legitimate transmission in the proposed anti-eavesdropping

OFDM system using channel gain based coordinate interleaving, that is

PS,L = 1− (1− PL) (1− PS) . (5.26)
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5.4 Proposed Secure OFDM System Using Chan-

nel Phase based Coordinate Interleaving

Channel phase is another typical CSI parameter in wireless communications.

OFDM eavesdropping prevention technique that exploits channel phase based co-

ordinate interleaving is investigated in this section.

5.4.1 Subcarrier Channel Phase based Coordinate Interleav-

ing

In the channel phase based security scheme, the transmitter compares the instan-

taneous channel phases of OFDM subcarriers involved in the security design with a

properly selected threshold to determine whether the real and imaginary parts of the

symbols at those subcarriers are interleaved. As the noisy channel estimate ĤT fol-

lows a zero-mean complex Gaussian distribution CN
(
0, σ2

ĤT

)
, the estimated phases

of the N subcarriers in an OFDM signal,
{
θ̂T (0), θ̂T (1), · · · , θ̂T (N − 1)

}
, are i.i.d.

variables uniformly distributed over [0, 2π). Similar to the subcarrier channel gain

based scheme, the pattern of the channel phase based coordinate interleaving at the

kth subcarrier can be mathematically expressed as θ̂T (k) > Λ′T , interleaving

θ̂T (k) ≤ Λ′T , un-interleaving
, k ∈M, (5.27)

where Λ′T denotes the threshold used by the transmitter in the channel phase based

scheme. In order to maximize the difficulty of eavesdropping, an OFDM subcarrier in

the setM should have equal probability of being and not being coordinate interleaved.

Considering that θ̂T (k) follows a uniform distribution over [0, 2π), the threshold Λ′T

can be selected as

Λ′T = π. (5.28)
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5.4.2 Performance of Eavesdropping Prevention

As addressed previously, the eavesdropper at a third location experiences a mul-

tipath channel independent of the common channel. The subcarrier channel phase

estimate at the eavesdropper θ̂E is uncorrelated to that observed at the transmitter,

i.e. θ̂T. Hence, the eavesdropper can only make a random guess of the coordinate in-

terleaving pattern initiated by the transmitter. Again, as a binary hypothesis problem

where both possible outcomes have the same occurrence probability, the probability

that the eavesdropper makes a correct decision of whether the modulated symbol at

a subcarrier is coordinate interleaved would be

p′E(k) =
1

2
, k ∈M. (5.29)

In the situation that M subcarriers are included in the opportunistic coordinate

interleaving for the security enhancement, the probability that the eavesdropper ob-

tains a mismatched interleaving pattern for an OFDM signal can be calculated as

P ′E = 1− 1

2M
. (5.30)

Consequently, the SER of eavesdropping in the subcarrier channel phase based sub-

carrier coordinate interleaving scheme, P ′S,E, can be given by

P ′S,E = 1− (1− P ′E) (1− PS) . (5.31)

5.4.3 Performance of Legitimate Transmission

Since the observation of the common channel at the legitimate receiver, i.e. ĤR,

follows a zero-mean complex Gaussian distribution CN
(
0, σ2

ĤR

)
, the corresponding

subcarrier channel phases
{
θ̂R(0), θ̂R(1), · · · , θ̂R(N − 1)

}
are also i.i.d. variables uni-

formly distributed over [0, 2π). Therefore, the threshold used to derive the channel

phase based coordinate interleaving pattern at the legitimate receiver, Λ′R, should
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also be π, i.e. Λ′R = π. The probability of disagreement between the two nodes of

the common channel on whether the kth subcarrier is coordinate interleaved in the

channel phase based scheme, p′L(k), can then be calculated as

p′L(k) = P
(
θ̂R (k) > Λ′R|θ̂T (k) ≤ Λ′T

)
+ P

(
θ̂R (k) ≤ Λ′R|θ̂T (k) > Λ′T

)
=

1

2
P
(
θ̂R (k) > π, θ̂T (k) ≤ π

)
+

1

2
P
(
θ̂R (k) ≤ π, θ̂T (k) > π

)
. (5.32)

The subcarrier channel phase estimates at the transmitter and legitimate receiver,

i.e. θ̂T and θ̂R, respectively, are conditioned on the exact phase of the common channel

θ. As a result, we can treat θ̂R(k) as a noisy version of θ̂T (k) for all N subcarriers of

an OFDM signal. Mathematically, it can be expressed as

θ̂R(k) = θ̂T (k) + ∆θ(k), k = 0, 1, · · · , N − 1, (5.33)

where ∆θ(k) is the phase estimation error between the estimates θ̂R(k) and θ̂T (k).

As illustrated in Fig. 5.2, ∆θ(k) can be derived from the noisy channel estimate as

∆θ(k) = tan−1


∣∣∣∆HTR(k)

∣∣∣ sin [∆θTR(k)− θ̂T (k)
]

∣∣∣ĤT (k)
∣∣∣+
∣∣∣∆HTR(k)

∣∣∣ cos
[
∆θTR(k)− θ̂T (k)

]
 . (5.34)

For the trigonometric function tanx, it can be approximated to x when x is small.

Therefore, during a high SNR range that typically leads to a small estimation error,

∆θ(k) can be approximated as

∆θ(k) ≈

∣∣∣∆HTR(k)
∣∣∣ sin [∆θTR(k)− θ̂T (k)

]
∣∣∣ĤT (k)

∣∣∣ . (5.35)

Referring to the statistics study in [112], the numerator of (5.35) follows a zero-

mean Gaussian distribution with variance σ2
TR/2. Meanwhile, the denominator

∣∣∣ĤT (k)
∣∣∣

is a Rayleigh distributed variable with a parameter
√
σ2
ĤT
/2. Based on the results
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Figure 5.2: Derivation of the phase estimation error from the noisy channel estimates.

in [113] for the probability distribution of the ratio between a zero-mean Gaussian

variable and a Rayleigh variable, the PDF and CDF of ∆θ(k), i.e. fθ (∆θ(k)) and

Fθ (∆θ(k)), respectively, can be derived as

fθ (∆θ(k)) =
σ2
TRσĤT

2
(
σ2
ĤT

∆θ(k)2 + σ2
TR

)3/2
(5.36)

and

Fθ (∆θ(k)) =
1

2
+

σĤT∆θ(k)

2
√
σ2
ĤT

∆θ(k)2 + σ2
TR

. (5.37)

The probability of disagreement between the transmitter and legitimate receiver

on whether the kth subcarrier is coordinate interleaved in the channel phase based
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security scheme, p′L(k), can then be calculated as

p′L(k) = P (θ̂R (k) > Λ′R|θ̂T (k) ≤ Λ′T ) + P (θ̂′R (k) ≤ Λ′R|θ̂T (k) > Λ′T )

=
1

2

∫ π

0

[∫ 2π−θ̂T (k)

π−θ̂T (k)

fθ (∆θ(k)) d∆θ(k)

]
1

2π
dθ̂T (k)

+
1

2

∫ 2π

π

[∫ π−θ̂T (k)

−θ̂T (k)

fθ (∆θ(k)) d∆θ(k)

]
1

2π
dθ̂T (k)

=
1

2

∫ π

0


σĤT

[
2π − θ̂T (k)

]
2

√
σ2
ĤT

[
2π − θ̂T (k)

]2

+ σ2
TR

−
σĤT

[
π − θ̂T (k)

]
2

√
σ2
ĤT

[
π − θ̂T (k)

]2

+ σ2
TR


1

2π
dθ̂T (k)

+
1

2

∫ 2π

π


σĤT

[
π − θ̂T (k)

]
2

√
σ2
ĤT

[
π − θ̂T (k)

]2

+ σ2
TR

+
σĤT θ̂T (k)

2

√
σ2
ĤT

[
θ̂T (k)

]2

+ σ2
TR


1

2π
dθ̂T (k).

(5.38)

Let t = π − θ̂T (k), t′ = 2π − θ̂T (k), and t′′ = θ̂T (k), we can rewrite (5.38) as

p′L(k) =
1

4π

∫ 2π

π

σĤT t
′

2
√
σ2
ĤT
t′2 + σ2

TR

dt′ − 1

4π

∫ π

0

σĤT t

2
√
σ2
ĤT
t2 + σ2

TR

dt

+
1

4π

∫ 0

−π

σĤT t

2
√
σ2
ĤT
t2 + σ2

TR

dt+
1

4π

∫ 2π

π

σĤT t
′′

2
√
σ2
ĤT
t′′2 + σ2

TR

dt′′

=
1

2π

√
σ2
ĤT

4π2 + σ2
TR −

√
σ2
ĤT
π2 + σ2

TR

2σĤT

+
1

4π

σTR −
√
σ2
ĤT
π2 + σ2

TR

2σĤT
−

√
σ2
ĤT
π2 + σ2

TR − σTR
2σĤT


=

√
σ2
ĤT

4π2 + σ2
TR −

√
σ2
ĤT
π2 + σ2

TR

4πσĤT
+
σTR −

√
σ2
ĤT
π2 + σ2

TR

4πσĤT

=

√
σ2
ĤT

4π2 + σ2
TR + σTR − 2

√
σ2
ĤT
π2 + σ2

TR

4πσĤT
. (5.39)
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In the case that M subcarriers are involved in the channel phase based subcarrier

coordinate interleaving, the interleaving pattern mismatch probability between the

transmitter and legitimate receiver for an OFDM signal can be given by

P ′L = 1− (1− p′L)
M
. (5.40)

Similarly, we can have the SER of the legitimate transmission in the proposed anti-

eavesdropping OFDM system using channel phased based coordinate interleaving as

P ′S,L = 1− (1− P ′L) (1− PS) . (5.41)

5.5 System Optimization with the Trade-off be-

tween Eavesdropping Resilience and Transmis-

sion Reliability

One superior anti-eavesdropping communication system should effectively pre-

vent eavesdropping and concurrently maintain reliable legitimate transmission. As

the eavesdropping prevention operation may degrade the legitimate transmission, a

trade-off between the resilience against eavesdropping and the reliability of legitimate

transmission needs to be realized. It can be concluded from the performance analysis

of the proposed anti-eavesdropping system, including both channel gain and channel

phase based schemes, the resilience of the proposed system against eavesdropping is

decided by the number of subcarriers involved in the opportunistic coordinate inter-

leaving in each OFDM signal. Meanwhile, the reliability of legitimate transmission

depends on estimation errors in the channel estimates, as well as the number of sub-

carriers involved in the security design. Therefore, the proposed anti-eavesdropping

OFDM system can be optimized by choosing a proper size of subcarrier set involved

in the security design, and mitigating channel estimation errors to a tolerable level.
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5.5.1 Proposed Evaluation Criterion for Anti-Eavesdropping

Communication Systems

An anti-eavesdropping communication system should effectively defend against

eavesdropping attacks and also minimize the impairment from the performed se-

curity processing to the legitimate transmission. Therefore, the evaluation of an

anti-eavesdropping communication system must take into account its performances of

eavesdropping prevention and legitimate transmission simultaneously. Unfortunately,

no evaluation criterion can be found in the literature for assessing anti-eavesdropping

communication systems in such a proper way.

To that end, a novel evaluation criterion for anti-eavesdropping communication

systems, named probability of confidential transmission, is proposed in this study. It

is defined as the probability that the transmitted data is correctly received by the

legitimate receiver but not intercepted by the eavesdropper. Mathematically, we can

express the probability of confidential transmission as

Π = P
(
EL,C , EE,D

)
, (5.42)

where EL,C denotes the event that the transmitted data is correctly received by the

legitimate receiver, and EE,D indicates the event that eavesdropping is successfully

prevented by the anti-eavesdropping communication system.

In the proposed anti-eavesdropping OFDM system, the performances of legitimate

transmission and eavesdropping prevention are associated with two independent wire-

less channels. The two events EL,C and EE,D can be modelled as two independent

variables. Consequently, the probability of confidential transmission in the channel

gain based subcarrier coordinate interleaving scheme can be calculated as

Πg = P
(
EL,C

)
P
(
EE,D

)
=

(
1− PS,L

)
PS,E, (5.43)
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and the probability of confidential transmission in the channel phase based security

scheme can be given by

Πp =
(
1− P ′S,L

)
P ′S,E. (5.44)

5.5.2 Selection of the Size of Subcarrier Set Involved in the

Opportunistic Coordinate Interleaving

It has been proved in (5.14) and (5.30) that the probability an eavesdropper mak-

ing an incorrect guess of the interleaving pattern in an OFDM signal, for both the

channel gain and phase based schemes, equals to (1−1/2M). This probability reflects

the resilience of the system against eavesdropping, and can be used to guide the se-

lection of number of subcarriers involved in the opportunistic coordinate interleaving

in each OFDM signal. Given a requirement of such probability Ξ, the size of the

subcarrier set, M , can be decided as

M =

⌈
log2

(
1

1− Ξ

)⌉
, (5.45)

where d·e denotes the ceiling function. It can be found from (5.45) that a strong

eavesdropping prevention capability can be achieved by just involving a few subcar-

riers of each OFDM signal in the security design. For instance, when M = 10, PE

and P ′E have already been larger than 0.999, which would lead to a SER that almost

equals to 100% at the eavesdropper.

From the perspective of legitimate transmission, the interleaving pattern mismatch

probability at the intended receiver reduces along with the decrease of M , as demon-

strated in (5.25) and (5.40). Consequently, we need to keep M as low as possible in

order to maintain a reliable legitimate transmission. As an anti-eavesdropping com-

munication system, it first needs to guarantee an acceptable resilience against eaves-

dropping, and then endeavors to enhance the reliability of legitimate transmission.

Thus, the number of subcarriers involved in the opportunistic coordinate interleaving
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of the proposed anti-eavesdropping OFDM system can be decided by (5.45), based

on minimum requirements of PE and P ′E.

5.5.3 Channel Estimation Error Mitigation Technique

In addition to restricting the number of subcarriers involved in the opportunistic

coordinate interleaving in each OFDM signal, the reliability of legitimate transmission

can be further improved through mitigating the channel estimation errors. Consid-

ering that errors in the channel estimates are i.i.d. zero-mean Gaussian variables,

one candidate solution is to average multiple channel estimates that have an identical

true value. In a slow time-varying wireless channel, the channel impulse response

can be invariant over several signal periods. For instance, in the IEEE 802.11g sys-

tem, the channel coherence time is approximately 53 ms according to the typical

pedestrian walking speed 1 m/s, while the period of an OFDM signal is 4 us. As a

result, the channel fading can ideally be considered as invariant over more than 10000

successive OFDM signals. The averaging based channel estimation error mitigation

technique is thus exercisable in practice. Assuming that Ω estimates are averaged to

provide a more accurate channel estimate, the variance of the estimation error after

the averaging processing can be reduced by 1/Ω.

5.6 Simulation Results

Simulations are carried out following the specifications of IEEE 802.11g standard.

Each OFDM signal is generated through a 64-point IFFT, and has a cyclic prefix of

length 16. 4-QAM is adopted as the modulation scheme for all subcarriers. Unless

stated otherwise, the transmitted OFDM signals are propagated through a Rayleigh

fading channel with exponential power delay profile of 50 ns RMS delay. Moreover,

training symbols with unit energy at each subcarrier are transmitted and exploited

for the channel estimation, while least-square (LS) channel estimation technique is
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adopted at all nodes in the network. In order to achieve a fair comparison, the statis-

tical models of the common channel and eavesdropping channel, as well as the noise

power levels at all nodes, are set to be the same. In addition, perfect synchronization

is assumed to be achieved at both the legitimate receiver and the eavesdropper.

The probability of confidential transmission in the conventional OFDM system is

provided as a benchmark reference in the simulations. Since the conventional OFDM

system has a physical layer that is transparent to eavesdroppers, its eavesdropping

prevention performance can be characterized by the SER under the eavesdropping

channel. As a result, the probability of confidential transmission in the conventional

OFDM system, Πc, can be given by

Πc = (1− PS)PS. (5.46)

5.6.1 Performance of the Channel Gain based Security Scheme

5.6.1.1 Interleaving Pattern Mismatch Probabilities in the Channel Gain

based Scheme

First of all, the interleaving pattern mismatch probability between the transmitter

and eavesdropper is evaluated, where the transmitter derives the coordinate inter-

leaving pattern from the channel gain of the common channel and the eavesdropper

estimates the interleaving pattern from the channel gain of the eavesdropping chan-

nel. Simulation results are presented in Fig. 5.3. In the left subfigure, we change the

number of subcarriers involved in the opportunistic coordinate interleaving in each

OFDM signal, but fix the amount of channel estimates averaged for the estimation

error mitigation to 30. The mismatch probability PE decreases when the size of the

subcarrier set reduces. However, the variation is ignorable and the mismatch proba-

bility is always close to 100%. In the right subfigure, we fix the number of subcarriers

involved in the coordinate interleaving to 32 and study the impact of the number

of averaged channel estimates on PE. Since the interleaving pattern mismatch be-
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tween the transmitter and eavesdropper is dominated by the independence between

the common channel and eavesdropping channel, the estimation errors almost have

no impact on PE that is always close to 100% in the simulations.

The mismatch probability between the coordinate interleaving pattern at the

transmitter and that at the legitimate receiver is simulated and plotted in Fig. 5.4.

As shown in the figure, when the number of averaged channel estimates is fixed to 30,

the mismatch probability PL significantly reduces with the decrease of the number

of subcarriers involved in the opportunistic coordinate interleaving. Moreover, when

more channel estimates are averaged to mitigate the estimation errors, the transmitter

and legitimate receiver are more likely to derive an identical coordinate interleaving

pattern.

5.6.1.2 Probability of Confidential Transmission in the Channel Gain

based Scheme

The performance of the proposed channel gain based anti-eavesdropping OFDM

system, in terms of the probability of confidential transmission Πg, is depicted in

Fig. 5.5. As a benchmark reference, the probability of confidential transmission of

the conventional OFDM system is also provided in the evaluation. In the simulation,

we set Ω = 30 and vary the size of the subcarrier set from 16 to 64. Compared

with the conventional OFDM, the proposed anti-eavesdropping OFDM system has

a little worse performance in the low SNR range when the resilience against eaves-

dropping and the reliability of legitimate transmission are simultaneously evaluated.

The reason for this phenomenon is that the legitimate transmission in the proposed

system is not so reliable as that in the conventional OFDM system during the low

SNR range, caused by the interleaving pattern mismatch between the transmitter and

legitimate receiver. However, when the SNR is larger than 15 dB, which is the typical

SNR condition in wireless communications, the proposed system has a probability of

confidential transmission much higher than that of the conventional OFDM system.
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Figure 5.3: Interleaving pattern mismatch probability at the eavesdropper in the
channel gain based scheme.
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Figure 5.4: Interleaving pattern mismatch probability at the legitimate receiver in
the channel gain based scheme.
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Figure 5.5: Comparison of confidential transmission probabilities between the channel
gain based anti-eavesdropping system and the conventional OFDM when Ω = 30.

Moreover, during the low SNR range, a smaller number of subcarriers involved in the

security design would lead to a better performance of the proposed anti-eavesdropping

system. Nevertheless, the impact of M on Πg turns to be indistinct during the high

SNR range. In addition, there is an interesting finding that the conventional OFDM

system reaches a peak performance when SNR is around 14 dB. After that, its

probability of confidential transmission decreases with the increase of SNR since the

conventional OFDM system is easier to be intercepted in a better channel condition.
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Figure 5.6: Probability of confidential transmission in the channel gain based scheme
under different channel models when Ω = 30.

5.6.1.3 Probability of Confidential Transmission in the Channel Gain

based Scheme under Different Channel Models

The probability of confidential transmission in the channel gain based security

scheme under different wireless channel models is also evaluated in the study. An-

other Rayleigh fading channel with an uniform PDP of 800 ns delay spread, which

introduces a more hostile multipath environment, is considered in the simulation.

As presented in Fig. 5.6, a more hostile multipath environment would degrade the

confidential transmission probability of the proposed anti-eavesdropping OFDM sys-

tem, where the performance loss mainly comes from the degradation of the legitimate

transmission.
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5.6.2 Performance of the Channel Phase based Security Scheme

5.6.2.1 Interleaving Pattern Mismatch Probabilities in the Channel Phase

based Scheme

The eavesdropper’s interleaving pattern mismatch probability in the channel phase

based security scheme is provided in Fig. 5.7, where the transmitter and eavesdropper

derive the coordinate interleaving patterns from subcarrier channel phases of the

common channel and eavesdropping channel, respectively. It can be found that the

mismatch probability P ′E is always close to 100%, no matter how many subcarriers are

involved in the opportunistic coordinate interleaving and how many channel estimates

are averaged to mitigate the estimation errors.

Figure 5.8 plots the interleaving pattern mismatch probability at the legitimate

receiver in the channel phase based security scheme, denoted by P ′L. Similar to the

mismatch probability PL in the channel gain based scheme, P ′L can be reduced by

involving less subcarriers in the opportunistic coordinate interleaving and averaging

more channel estimates to mitigate the channel estimation errors.

5.6.2.2 Probability of Confidential Transmission in the Channel Phase

based Scheme

The probability of confidential transmission in the proposed channel phase based

anti-eavesdropping OFDM system, Πp, is evaluated in Fig. 5.9. The channel phase

based scheme has a confidential transmission probability similar to that of the con-

ventional OFDM when the SNR is lower than 12 dB. With the increase of SNR, the

proposed system can achieve an obviously higher probability of confidential trans-

mission. In addition, no significant impact of M on the probability of confidential

transmission can be found in the proposed channel phase based scheme.
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Figure 5.7: Interleaving pattern mismatch probability at the eavesdropper in the
channel phase based scheme.
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Figure 5.8: Interleaving pattern mismatch probability at the legitimate receiver in
the channel phase based scheme.
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Figure 5.9: Comparison of confidential transmission probabilities between the channel
phase based anti-eavesdropping system and the conventional OFDM when Ω = 30.
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Figure 5.10: Probability of confidential transmission in the channel phase based
scheme under different channel models when Ω = 30.

5.6.2.3 Probability of Confidential Transmission in the Channel Phase

based Scheme under Different Channel Models

The Rayleigh fading channel with an uniform PDP of 800 ns delay spread is also

considered for evaluating the probability of confidential transmission in the channel

phase based security scheme. Similar to the results in the channel gain based coor-

dinate interleaving, the channel phase based anti-eavesdropping system has a worse

performance in the more hostile Rayleigh fading channel, as shown in Fig. 5.10.
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5.6.3 Performance Comparison between the Channel Gain

and Channel Phase based Schemes

A comprehensive comparison between the proposed channel gain and channel

phase based coordinate interleaving schemes is conducted in this subsection, using

the previously presented simulation results. From the perspective of the interleaving

pattern mismatch probability, the channel gain and channel phase based schemes can

both achieve quite high mismatch probabilities between the transmitter and eaves-

dropper. However, regarding to the interleaving pattern mismatch probability be-

tween the transmitter and legitimate receiver, the channel phase based scheme has

a lower mismatch probability under the same channel condition. The main reason

for this phenomenon is that channel gains are more sensitive to the noise and inter-

ference, compared to channel phases [88]. When we simultaneously evaluate their

eavesdropping resilience and transmission reliability, as shown in Figs. 5.5, 5.6, 5.9

and 5.10, the channel phase based scheme performs slightly better than the channel

gain based scheme, particularly in a low SNR range.

Merely considering the probability of confidential transmission, the proposed chan-

nel phase based scheme would be slightly better than the channel gain based security

design. However, when more factors, such as the computational complexity and

hardware limitations in the implementation, are taken into account, the channel gain

based scheme may be preferred since it is easier to perform and can also effectively

defend against eavesdropping. Overall, both the channel gain and channel phase

based dynamic coordinate interleaving can effectively prevent eavesdropping and, at

the same time, provide a reliable legitimate transmission. The selection between the

proposed channel gain and channel phase based security schemes would depend on the

operating environment, the available power and hardware, as well as the acceptable

computational complexity.
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5.7 Summary

In this chapter, an eavesdropping prevention strategy in OFDM systems through

dynamic subcarrier coordinate interleaving is proposed, by taking advantage of the

reciprocal, location-dependent and time-varying nature of wireless channels. Symbol

coordinates of the subcarriers in each OFDM signal are interleaved in an oppor-

tunistic manner depending on the reciprocal channel state information between the

transmitter and legitimate receiver. Two coordinate interleaving schemes are in-

vestigated, which employ the subcarrier channel gain and phase in determining the

interleaving pattern, respectively. More specifically, the transmitter performs coor-

dinate interleaving at subcarriers with channel gains (or channel phases) larger than

a predefined threshold. Since wireless channels associated with each pair of users

at separate locations exhibit independent propagation characteristics, the frequently

updated selection of subcarriers undergoing coordinate interleaving is only shared be-

tween legitimate users based on channel reciprocity. Without a matched subcarrier

coordinate de-interleaving pattern, erroneous information recovery is carried out at

the eavesdropper so that eavesdropping is prevented. In order to simultaneously eval-

uate the eavesdropping resilience and transmission reliability of anti-eavesdropping

communication systems, a novel evaluation criterion, named probability of confiden-

tial transmission, is also proposed in this study. Theoretical analysis and simulation

results are provided to validate the proposed anti-eavesdropping OFDM system.
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Chapter 6

Eavesdropping-Resilient OFDM

Using Dynamic Subcarrier

Interleaving

The built-in security of wireless OFDM communication systems against eaves-

dropping can be remarkably improved through the proposed dynamic coordinate in-

terleaving strategy in Chapter 5. One noteworthy prerequisite of that strategy is that

data symbols transmitted at OFDM subcarriers must be in a complex-number struc-

ture. It is true that most modulation schemes adopted in modern wireless OFDM

networks produce complex data symbols, such as QPSK and QAM. However, we can-

not neglect the possible utilization of modulation schemes that modulate data bits

into a real-number structure, like BPSK. Eavesdropping prevention techniques with-

out the restriction of symbol modulation schemes utilized in OFDM systems thus

need to be investigated.

This chapter proposes a novel and effective eavesdropping-resilient OFDM system

through dynamic subcarrier interleaving, without any restriction of the adopted sym-

bol modulation scheme. The built-in security of the proposed secure OFDM system

is enhanced by exploiting the channel reciprocity and uncorrelation feature exhibited
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among spatially separate wireless channels in rich multipath environments. The trans-

mitter employs its dynamic and reciprocal channel state information to the intended

receiver in designing the subcarrier interleaving pattern. More specifically, subcar-

riers are interleaved according to the sorted order of their channel gains. In order

to mitigate the impairment of imperfect channel reciprocity, only partial subcarriers

of each OFDM symbol are included in the interleaving. A subcarrier selection algo-

rithm is also investigated to realize a trade-off between the eavesdropping resilience

and legitimate transmission reliability. Because of channel reciprocity, identical CSI

information is shared between legitimate parties, so that the subcarrier interleaving

scheme initiated by the transmitter can be figured out at the legitimate receiver lo-

cally without any feedback from the transmitter. In contrast, due to the fact that

spatially separate wireless channels are independent of each other, an eavesdropper

at a third location cannot derive the identical subcarrier interleaving pattern used

at the transmitter. Consequently, mismatched information recovery occurs at the

eavesdropper, thus preventing malicious eavesdropping. The proposed secure OFDM

system is validated through both theoretical analysis and simulations. From simula-

tion results, eavesdropping on the proposed system suffers a SER close to 100% while

the legitimation transmission has a SER matching to that of conventional OFDM

systems.

6.1 Introduction

OFDM has been widely employed in modern high-speed wireless communication

networks. Unfortunately, the conventional OFDM signal is vulnerable to malicious

eavesdropping and intervention, due to its distinct time and frequency characteristics

[13]. Traditional upper-layer security mechanisms cannot completely address the

security threats in wireless OFDM systems, because of the transparence of their

physical layer transmission parameters, It is therefore of significant importance to

enhance the security of OFDM systems at the physical layer.
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Physical layer security, which targets the communication security at the physi-

cal layer, is emerging as an effective complement to the traditional security strate-

gies in securing wireless transmissions [13]. Extensive research efforts have been

devoted to improve the physical layer security of OFDM systems against eavesdrop-

ping recently [13, 98–104]. Generally, the existing security enhancement techniques

for wireless OFDM systems are conditioned on the knowledge of eavesdropping chan-

nel, additional resource, significant modifications to off-the-shelf systems, or high

operational complexity. Simple but effective security approaches for OFDM at the

physical layer have yet to be investigated. Chapter 5 of this dissertation proposes a

simple and effective anti-eavesdropping OFDM system based on dynamic coordinate

interleaving, which can prevent eavesdropping and concurrently maintain a reliable

legitimate transmission. However, such anti-eavesdropping OFDM system would ask

for a symbol modulation scheme that modulates data bits into a complex-number

structure. In light of the possible employment of modulation schemes generating real

data symbols in OFDM systems, eavesdropping prevention techniques without any

restriction of symbol modulation schemes also need to be investigated for wireless

OFDM communication networks.

An effective and simple eavesdropping-resilient OFDM system is proposed in this

chapter by exploiting the dynamic subcarrier interleaving, inspired by the channel

reciprocity between legitimate user terminals and the uncorrelated behavior of spa-

tially separate wireless channels in rich multipath environments. Although subcarrier

interleaving has been introduced into OFDM systems to improve the transmission

reliability [114–118], the transmission security in OFDM systems has been largely ig-

nored. In this contribution, the CSI between the transmitter and legitimate receiver

are utilized to defend against eavesdropping. To be specific, partial subcarriers of each

OFDM signal are selected and then interleaved according to the sorted order of their

channel gains. A subcarrier selection algorithm is investigated to combat the imper-

fect channel reciprocity between legitimate users, so as to realize a trade-off between

the eavesdropping resilience and legitimate transmission reliability. Based on channel
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reciprocity, the frequently renewed subcarrier selection and interleaving scheme can

be shared between legitimate terminals without involving the exchange of secret infor-

mation. Due to the channel spatial decorrelation, the subcarrier interleaving pattern

is not available to eavesdroppers that experience independent channels, so that the

information recovery for eavesdropping is interrupted. The proposed system is vali-

dated through analytical and simulation results. Compared to conventional OFDM

systems, our approach is much more resilient to eavesdropping. Differing from prior

works, the proposed scheme can avoid additional resource consumption, has limited

computational complexity, only needs minor modifications of existing systems, and is

free from the restriction of modulation schemes adopted in the OFDM systems.

The reminder of this chapter is organized as follows. Section 6.2 introduces the

system model and relevant background about the multipath channel in OFDM sys-

tems. The proposed eavesdropping-resilient OFDM system is described in Section

6.3, followed by a performance evaluation in Section 6.4. The interleaved subcarrier

selection algorithm is investigated in Section 6.5. Simulation results are provided in

Section 6.6. Finally, the conclusions are drawn in Section 6.7.

Notations Throughout the chapter, bold letters are used to identify a vector, i.e.

X = {X(1), X(2), · · · , X(N − 1)}. Complex Gaussian random variable X with mean

m, variance σ2, and with independent and identically distributed real and imaginary

components is denoted as X ∼ CN (m,σ2).

6.2 Problem Formulation and Preliminaries

6.2.1 System Model

The wireless communication system model considered in this chapter is presented

in Fig. 6.1. A source node communicates with a legitimate receiver using OFDM, in

the presence of a passive and silent eavesdropper in a richly scattered radio environ-

ment. The eavesdropper can overhear all the communications between the legitimate
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Figure 6.1: Wireless communication scenario consisting of two legitimate terminals
and an eavesdropper.

users but it is not interested in disrupting the legitimate transmission. The forward

and reverse channels between legitimate users occupy the same frequency band and

remain constant over several time slots. In addition, the underlying noise and inter-

ference in both the common channel and the eavesdropping channel can be modeled

as additive white Gaussian noise.

Generally, a third party who is at a distance larger than half a wavelength from

the intended receiver, experiences fading conditions that are uncorrelated to those

between the original legitimate communicating terminals [26]. In most practical sce-

narios, the eavesdropper has to be sufficiently separated from the legitimate terminals

to avoid being detected, that is, with a distance more than half a wavelength. There-

fore, the common channel and the eavesdropping channel are modeled as independent

of each other throughout this chapter.
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6.2.2 Multipath Channel in OFDM Systems

Considering an OFDM system with N subcarriers, the received signal at the

output of fast Fourier transform can be described as

R (k) = H (k)S (k) +W (k) , k = 0, 1, · · · , N − 1, (6.1)

where S (k) and R (k) represent the data transmitted and received at the kth subcar-

rier, respectively, W (k) indicates a complex AWGN with variance of σ2
k, and H (k) is

the frequency domain channel response at the kth subcarrier, which can be represented

as

H (k) =
1√
N

L−1∑
n=0

h (n) e−j2π
kn
N , (6.2)

where h (n) denotes the time domain channel response associated with the nth channel

tap. In Rayleigh fading, {h(0), h(1), · · · , h(L− 1)} can be considered as independent

and identically distributed zero-mean complex Gaussian random variables. Therefore,

H (k), which is characterized by the L time domain channel taps, can be modeled

as CN (0, σ2
H) due to central limit theorem. Assuming that the subcarrier interval is

larger than the coherence bandwidth of the wireless channel, all the subcarriers, i.e.

H(k), k = 0, 1, · · · , N − 1, experience independent and identically distributed fading.

Since OFDM subcarriers, as well as the channel responses acting on the subcarriers,

are independent of each other, all subcarriers of an OFDM signal can be treated

independently.

6.2.3 Principle Behind the Proposed Design

The randomness of wireless multipath channels is exploited to enhance the trans-

mission security at the physical layer in the design. A dynamic subcarrier interleav-

ing scheme is proposed for securing OFDM systems against eavesdropping, by taking

advantage of the reciprocity, spatial decorrelation and time variation of wireless chan-

nels.

112



Channel reciprocity indicates that the wireless channel behaves in an identical

manner irrespective of in which direction it is observed. Therefore, both the trans-

mitter and the legitimate receiver would theoretically have an identical estimate of

the common channel H(k) and then derive the same CSI-based interleaving pattern.

In practice, all nodes in a network can only obtain a noisy version of the channels due

to estimation errors at channel estimators, induced by interference, noise, as well as

hardware limitations [119]. Thus, the frequency domain channel responses observed

at the legitimate nodes during a channel coherence time take the form as

ĤT (k) = H(k) + ∆HT (k), k = 0, 1, · · · , N − 1, (6.3)

and

ĤR(k) = H(k) + ∆HR(k), k = 0, 1, · · · , N − 1, (6.4)

where ĤT (k) and ĤR(k) denote the estimates of the common channel H(k) at the

transmitter and the legitimate receiver, respectively. ∆HT (k) and ∆HR(k) are the

corresponding estimation errors, which can be modeled as zero-mean Gaussian ran-

dom variables. Following the assumption that H(k), k = 0, 1, · · · , N − 1 are i.i.d.,

∆HT/R(k) for k = 0, 1, · · · , N − 1 should also be statistically independent but may

not be identically distributed. In order to facilitate the analysis, ∆HT/R(k), k =

0, 1, · · · , N − 1 are assumed to be i.i.d. in the following discussion, so that

∆HT/R(k) ∼ CN
(
0, σ2

T/R

)
, (6.5)

where σ2
T/R is the variance of the estimation errors. Since H(k) and ∆HT/R(k) are

independent, ĤT/R (k) also follows a complex Gaussian distribution with zero mean

and variance of σ2
ĤT/R

= σ2
H + σ2

T/R. Therefore, the estimates of the common channel

at the transmitter and intended receiver may not be perfectly reciprocal in practice,

but they are correlated at least.

Channel spatial decorrelation denotes the fact that wireless channels associated
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with different endpoints at separate locations typically exhibit uncorrelated propa-

gation characteristics [10]. As a result, for an eavesdropper at a third location, the

eavesdropping channel HE(k) would be uncorrelated to the common channel H(k).

It is thus hard for the eavesdropper to track the subcarrier interleaving scheme in-

volved in the legitimate transmission and to recover the information in transmission.

Eavesdropping can then be prevented. Considering that estimation errors exist in the

channel estimate, the noisy channel observations at the eavesdropper, ĤE(k), can be

expressed as

ĤE(k) = HE(k) + ∆HE(k), k = 0, 1, · · · , N − 1. (6.6)

Similarly, the channel estimation error ∆HE(k) follows a complex Gaussian distri-

bution CN (0, σ2
E) and ĤE(k), k = 0, 1, · · · , N − 1 can be modeled as i.i.d. complex

Gaussian variables. Since ∆HE(k) is independent of ∆HT (k) and ∆HR(k), the chan-

nel estimate at the eavesdropper, ĤE(k), should also be independent of the estimates

ĤT (k) and ĤR(k) obtained at legitimate terminals.

In addition, wireless channels are time-varying and thus introduce continual influx

of randomness. Consequently, the CSI-based subcarrier interleaving scheme would be

renewed frequently, which further strengthens the security.

6.3 Proposed Secure OFDM System with Dynamic

Subcarrier Interleaving

The proposed eavesdropping-resilient OFDM system with dynamic subcarrier in-

terleaving is illustrated in Fig. 6.2. At the transmitter, M out of the N subcarriers

of an OFDM signal are selected and interleaved after the symbol modulation. Ac-

cordingly, subcarrier deinterleaving is carried out at the receiver between equalization

and the symbol demodulation processes. The selection of M subcarriers and the in-

terleaving permutation are determined by the real-time CSI between the transmitter

and the legitimate receiver. The other processing steps of the proposed system are
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Figure 6.2: Block diagram of the proposed eavesdropping-resilient OFDM system
using dynamic subcarrier interleaving.

identical to those of a conventional OFDM system.

6.3.1 Interleaved Subcarrier Selection

In practical systems, the transmitter can estimate the CSI of the common channel

via handshaking signals or feedback such as acknowledgement (ACK) packet from the

intended receiver, while the receiver can obtain the temporal channel estimation from

training signals or inserted pilots. Their observations are ideally identical but only

correlated in practice, because of the asymmetric observations caused by the noise,

interference and hardware limitations, as shown in (6.3) and (6.4). Although the radio

channel is reciprocal, estimates of the radio channel are not perfectly reciprocal [120].

In order to mitigate the impairment of imperfect channel reciprocity between legit-

imate users, a combination of M subcarriers that can provide an interleaving pattern

robust to estimation deviations under the current channel condition is selected for

the interleaving at the transmitter, where M ≤ N . A trade-off between the resilience

to eavesdropping and the reliability of legitimate transmission is realized in the pro-

posed subcarrier selection algorithm. A detailed discussion of the subcarrier selection

algorithm will be presented in Section 6.5, after analyzing how the proposed inter-

leaving scheme acts on the performances of eavesdropping prevention and legitimate
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transmission in Section 6.4. A side information indicator I is adopted to indicate the

M selected subcarriers as follows

I(k) =

 1, selected

0, otherwise
, k = 0, 1, · · · , N − 1. (6.7)

If the transmitter claims that the kth subcarrier is included in the interleaving, we

have I(k) = 1; otherwise, I(k) = 0.

6.3.2 Subcarrier Interleaving

Following the subcarrier selection, the M collected subcarriers are interleaved

according to the descending order of their channel gains observed at the transmitter.

The order of the M subcarriers can be expressed as

∣∣∣ĤT (0)k

∣∣∣2 ≥ · · · ≥ ∣∣∣ĤT (ι)k

∣∣∣2 ≥ · · · ≥ ∣∣∣ĤT (M − 1)k

∣∣∣2 . (6.8)

Without further indication, indices k and ι will be included in the subcarrier specifi-

cation, where k denotes the exact position of the subcarrier among the N subcarriers

and ι represents the descending order of the subcarrier sorted according to the channel

gains of the M selected subcarriers.

6.3.3 Sharing of the Side Information I

Essentially, no signalling for the subcarrier selection indicator I and the subcarrier

interleaving permutation between the legitimate parties is expected in the proposed

system. Owing to channel reciprocity, the legitimate receiver should be able to figure

out the interleaving permutation as well as the indicator I based on its own channel

estimate ĤR, and then de-interleave the M interleaved subcarriers accordingly. Al-

ternatively, the side information indicator I can also be sent out along with the data

by the transmitter. The “I hiding” scheme can avoid a leak of any side information
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to eavesdroppers but may reduce the reliability of the legitimate transmission since

a mismatched I derivation may occur due to the asymmetric CSI observations. In

contrast, the “I sharing” scheme can improve the transmission reliability between le-

gitimate participants, but faces a potential threat that an eavesdropper may intercept

I that is transmitted in radio channels.

It will be proved in Section 6.4 that the subcarrier interleaving permutation dom-

inates the eavesdropping prevention capability, rather than the side information I.

Even if an eavesdropper has by “chance” intercepted the subcarrier selection indica-

tor, eavesdropping is still difficult due to the rapid spatial decorrelation and temporal

variation of radio channels. Therefore, in the proposed secure OFDM system, the

transmitter is allowed to send the subcarrier selection indicator I to the intended

receiver to improve the legitimate transmission reliability.

6.4 Performance Evaluation

In this section, the performance of eavesdropping prevention achieved by the CSI-

based dynamic subcarrier interleaving, as well as the reliability of legitimate transmis-

sion under noisy channel observations, is investigated. The probabilities of deriving

an identical interleaving permutation and demodulated symbol error rates at both

the eavesdropper and legitimate receiver are evaluated in the performance analysis.

6.4.1 Performance of Eavesdropping Prevention

In the proposed OFDM system, M out of the N subcarriers of each OFDM signal

are selected and interleaved. Two scenarios have to be taken into consideration in

the evaluation: eavesdroppers with, and without, the side information I.
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6.4.1.1 Probability of Identical Interleaving Permutation at the Eaves-

dropper’s End

The radio channels decorrelate rapidly in space, particularly in typical wireless

scenarios with rich scattering conditions. Under the assumption that the common

channel H and the eavesdropping channel HE are independent, the estimated fre-

quency domain channel responses at the transmitter and the eavesdropper, ĤT and

ĤE respectively, as well as their channel gains
∣∣∣ĤT

∣∣∣2 and
∣∣∣ĤE

∣∣∣2, should be statisti-

cally independent. Furthermore, the orders of the channel gains among the total N

subcarriers or any subset of the N subcarriers are also statistically independent. Con-

sequently, an eavesdropper has no more information than a random guess about the

interleaving scheme. Throughout this chapter, it is assumed that the eavesdropper

attempts to derive the subcarrier interleaving scheme based on its own channel state

estimate of the eavesdropping channel. Note that the interleaving pattern developed

from the channel gain order of an uncorrelated channel can also be taken as a random

guess of the interleaving scheme employed at the transmitter.

Under the scenario that the subcarrier selection indicator I is available to the

eavesdropper, the eavesdropper only needs to guess the subcarrier interleaving per-

mutation. For the M selected subcarriers, there are in total M ! potential permuta-

tions. Therefore, the probability that an eavesdropper derives an interleaving pattern

identical to that developed by the transmitter, PEM , is

PEM =
1

M !
. (6.9)

In the situation where the eavesdropper has no information about I, in addition to

determining the interleaving permutation, the eavesdropper has also to guess which

M out of the N subcarriers are interleaved for each OFDM signal with a success

probability 1/
(
N
M

)
. In this case, the probability to derive the interleaving pattern

118



utilized by the transmitter, PENM , is

PENM =
1(
N
M

) 1

M !

=
(N −M)!

N !
. (6.10)

Although PENM is smaller than PEM when M 6= N , it can be observed that

PEM can already reach a negligible value even though M is small. For instance, when

M = 8, PEM can be as low as 2.5×10−5. As a result, an interception of the subcarrier

selection indicator I at the eavesdropper will not menace the eavesdropping prevention

capability of the proposed system, owing to the security achievement obtained from

the interleaving permutation. Therefore, the indicator I can be sent out by the

transmitter to improve the reliability of legitimate transmissions in the proposed

OFDM system, as introduced in Section 6.3.

6.4.1.2 Symbol Error Rate at the Eavesdropper

Let PS denote the SER of the conventional OFDM system using a certain modula-

tion scheme in a Rayleigh fading channel. The SER of eavesdropping under the same

channel condition when legitimate users adopt the proposed eavesdropping-resilient

OFDM system, PS,E, can be evaluated as

PS,E = 1− PEM/NM (1− PS) . (6.11)

6.4.2 Performance of Legitimate Transmission

6.4.2.1 Probability of Identical Interleaving Permutation at the Legiti-

mate Receiver

Ideally, the legitimate receiver could derive the same subcarrier selection indicator

I and interleaving permutation as that used at the transmitter due to channel reci-

procity. As a result, the performance of legitimate transmission should be identical
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to that of the conventional OFDM system. In practice, however, channel reciprocity

is susceptible to the noise, interference and hardware limitations, which would lead

to an estimation deviation at the channel estimator. The performance of legitimate

transmission thus needs to be evaluated under a more practical assumption: imperfect

channel reciprocity. Since the instantaneous subcarrier selection indicator I is sent

to the intended receiver by the transmitter, instead of being purely developed by the

receiver in the proposed system, we suppose that no errors are made about I at the

legitimate receiver in the following analysis. In other words, it is assumed that the

imperfect channel reciprocity can only cause a misunderstanding of the interleaving

permutation at the legitimate receiver.

In order to study the probability that the transmitter and the legitimate receiver

derive an identical interleaving permutation based on their CSI observations of the

common channel, we first investigate the correlation between their observed frequency

domain channel responses. Substituting (6.3) into (6.4), the channel estimate at the

legitimate receiver can be rewritten as

ĤR(k) = ĤT (k)−∆HT (k) + ∆HR(k) (6.12)

= ĤT (k) + ∆HTR(k), k = 0, 1, · · · , N − 1,

where ∆HTR(k) = −∆HT (k) + ∆HR(k) is the composed channel estimation error

of the transmitter/receiver and receiver/transmitter transmission links. Since the

two terminals of a communication link generally experience independent interference

and noise, the estimation errors at the transmitter and the receiver, i.e. ∆HT (k)

and ∆HR(k) respectively, can be taken as independent. Consequently, the composed

channel estimation error ∆HTR(k) can be modeled as a zero mean complex Gaussian

variable as

∆HTR(k) ∼ CN
(
0, σ2

T + σ2
R

)
. (6.13)

In the proposed eavesdropping-resilient OFDM system, the legitimate receiver
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seeks to derive the interleaving pattern that is dynamically designed based on the

estimate ĤT at the transmitter. As shown in (6.12), the observation ĤR at the

legitimate receiver can be considered as a noisy version of ĤT. Therefore, ĤR can be

modeled as a complex Gaussian random variable with the mean of ĤT and a variance

equal to σ2
TR = σ2

T + σ2
R. The channel gain λ̂Rk =

∣∣∣ĤR(k)
∣∣∣2 is then noncentral Chi-

square distributed with 2 degree of freedom, with a probability density function

fRk

(
λ̂Rk

)
=

1

σ2
TR

e
−
(
|ĤT (k)|2+λ̂Rk

σ2
TR

)
I0


√
λ̂Rk

∣∣∣ĤT (k)
∣∣∣2

2σ2
TR

 , (6.14)

and a cumulative distribution function

FRk

(
λ̂Rk

)
= 1−Q1

√2
∣∣∣ĤT (k)

∣∣∣
σTR

,

√
2λ̂Rk
σTR

 , (6.15)

where Iθ(x) represents the θth order Bessel function as

Iθ(x) =
∞∑
k=0

(x/2)θ+2k

k!Γ (θ + k + 1)
, (6.16)

and Qθ (a, b) denotes the Marcum Q-function, that is

Qθ (a, b) =

∫ ∞
b

x
(x
a

)θ−1

e−
x2+a2

2 Iθ−1 (ax) dx. (6.17)

Let ΦT denote the event that
∣∣∣ĤT (0)k

∣∣∣2 ≥ · · · ≥ ∣∣∣ĤT (ι)k

∣∣∣2 ≥ · · · ≥ ∣∣∣ĤT (M − 1)k

∣∣∣2
and ΦR denote the event that

∣∣∣ĤR(0)k

∣∣∣2 ≥ · · · ≥ ∣∣∣ĤR(ι)k

∣∣∣2 ≥ · · · ≥ ∣∣∣ĤR(M − 1)k

∣∣∣2.

The probability that the legitimate receiver derives the same interleaving permutation

based on the channel estimate ĤR, PL, can be described as

PL = P (ΦR|ΦT ) =
P (ΦR ∩ ΦT )

P (ΦT )
. (6.18)
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The M subcarrier channel gains of the common channel observed at the trans-

mitter, λ̂Tk for k = 0, 1, · · · ,M − 1, are independent and identically distributed

exponential random variables with parameter σ2
ĤT

. Referring to the order statistics

theory [121], P (ΦT ) can be calculated as

P (ΦT ) =

∫ +∞

−∞

∫ +∞

λ̂T0

∫ +∞

λ̂T1

· · ·
∫ +∞

λ̂T (M−2)

f
(
λ̂T0, · · · , λ̂T (M−1)

)
dλ̂T0dλ̂T1 · · · dλ̂T (M−1), (6.19)

where f
(
λ̂T0, · · · , λ̂T (M−1)

)
is the joint PDF of the M subcarrier channel gains ob-

served at the transmitter. Since ĤT (k) follows a complex Gaussian distribution

CN
(

0, σ2
ĤT

)
, the channel gain of an estimated subcarrier channel, λ̂Tk =

∣∣∣ĤT (k)
∣∣∣2, is

exponentially distributed, with a PDF f
(
λ̂Tk

)
= 1

σ2
ĤT

e
−λ̂Tk/σ2

ĤT and a CDF F
(
λ̂Tk

)
=

1− e−λ̂Tk/σ
2
ĤT . Meanwhile, considering that all the subcarriers are independently dis-

tributed, we have

f
(
λ̂T0, · · · , λ̂T (M−1)

)
=

M−1∏
ι=0

f
(
λ̂Tι

)
(6.20)

=

(
1

σ2
ĤT

)M

e
−
∑M−1
ι=0 λ̂Tι/σ

2
ĤT .

Then, P (ΦT ) in (6.19) can be integrated as follows:

P (ΦT ) =

∫ +∞

−∞

∫ +∞

λ̂T0

∫ +∞

λ̂T1

· · ·
∫ +∞

λ̂T (M−2)

f
(
λ̂T0, · · · , λ̂T (M−1)

)
dλ̂T0dλ̂T1 · · · dλ̂T (M−1)

=

∫ +∞

−∞
f(λ̂T0)dλ̂T0

∫ +∞

λ̂T0

f(λ̂T1)dλ̂T1 · · ·

· · ·
∫ +∞

λ̂T (M−2)

f(λ̂T (M−1))dλ̂T (M−1)
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=

∫ +∞

−∞
f(λ̂T (M−1))dλ̂T (M−1)

∫ λ̂T (M−1)

−∞
f(λ̂T (M−2))dλ̂T (M−2) · · ·

· · ·
∫ λ̂T2

−∞
f(λ̂T1)dλ̂T1

∫ λ̂T1

−∞
f(λ̂T0)dλ̂T0

=

∫ +∞

−∞
f(λ̂T (M−1))dλ̂T (M−1)

∫ λ̂T (M−1)

−∞
f(λ̂T (M−2))dλ̂T (M−2) · · ·

· · ·
∫ λ̂T3

−∞
f(λ̂T2)dλ̂T2

∫ λ̂T2

−∞
f(λ̂T1)F (λ̂T1)dλ̂T1

=

∫ +∞

−∞
f(λ̂T (M−1))dλ̂T (M−1)

∫ λ̂T (M−1)

−∞
f(λ̂T (M−2))dλ̂T (M−2) · · ·

· · ·
∫ λ̂T4

−∞
f(λ̂T3)dλ̂T3

∫ λ̂T3

−∞
f(λ̂T2)

1

2
F 2(λ̂T2)dλ̂T2

=

∫ +∞

−∞
f(λ̂T (M−1))dλ̂T (M−1)

∫ λ̂T (M−1)

−∞
f(λ̂T (M−2))dλ̂T (M−2) · · ·

· · ·
∫ λ̂T5

−∞
f(λ̂T4)dλ̂T4

∫ λ̂T4

−∞
f(λ̂T3)

1

3× 2
F 3(λ̂T3)dλ̂T3. (6.21)

Following the pattern of this integral, we can finally obtain

P (ΦT ) =

∫ +∞

−∞
f(λ̂T (M−1))

1

(M − 1)!
FM−1(λ̂T (M−1))dλ̂T (M−1)

=

∫ +∞

−∞

1

(M − 1)!
FM−1(λ̂T (M−1))dF (λ̂T (M−1))

=
1

M !
FM(λ̂T (M−1))

∣∣∣+∞
−∞

=
1

M !
. (6.22)

Similarly, the probability P (ΦR ∩ ΦT ) can also be derived based on the order

statistics theory result as

P (ΦR ∩ ΦT ) =

∫ +∞

−∞

∫ +∞

λ̂T0

· · ·
∫ +∞

λ̂T (M−2)

f
(
λ̂T0, · · · , λ̂T (M−1)

)
{∫ +∞

−∞

∫ +∞

λ̂R0

· · ·
∫ +∞

λ̂R(M−2)

f
(
λ̂R0, · · · , λ̂R(M−1)

)
dλ̂R0dλ̂R1 · · · dλ̂R(M−1)

}
dλ̂T0dλ̂T1 · · · dλ̂T (M−1), (6.23)
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where f
(
λ̂R0, · · · , λ̂R(M−1)

)
denotes the joint PDF for the M subcarrier channel gains

observed at the legitimate receiver. Because the channel gains of the subcarriers are

independent, this joint PDF can be expressed as

f
(
λ̂R0, · · · , λ̂R(M−1)

)
=

M−1∏
ι=0

fRι

(
λ̂Rι

)
. (6.24)

Therefore, (6.23) can be rewritten as

P (ΦR ∩ ΦT ) =

∫ +∞

−∞

∫ +∞

λ̂T0

· · ·
∫ +∞

λ̂T (M−2)

f
(
λ̂T0

)
· · · f

(
λ̂T (M−1)

)
{∫ +∞

−∞
fR0(λ̂R0)dλ̂R0

∫ +∞

λ̂R0

fR1(λ̂R1)dλ̂R1 · · ·

· · ·
∫ +∞

λ̂R(M−2)

fR(M−1)(λ̂R(M−1))dλ̂R(M−1)

}
dλ̂T0dλ̂T1 · · · dλ̂T (M−1). (6.25)

Unfortunately, the integration of (6.25) cannot be worked out analytically, and

thus the probability of deriving an identical interleaving permutation at the legitimate

user, PL, cannot be expressed in a closed form. Therefore, in this study, the prob-

ability PL will be evaluated and compared with PEM and PENM through computer

simulations.

6.4.2.2 Symbol Error Rate at the Legitimate Receiver

Similar to the SER analysis for the eavesdropper, the SER at the legitimate re-

ceiver of the proposed OFDM system can be described as

PS,L = 1− PL (1− PS) . (6.26)
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6.5 Interleaved Subcarrier Selection Algorithm

It can be concluded from the performance evaluation that the selection of inter-

leaved subcarriers impacts both eavesdropping prevention and legitimate transmis-

sion in the presence of imperfect channel reciprocity. A combination of M subcarriers,

which can make the interleaving pattern unrecognizable to eavesdroppers while being

robust to the deviation of channel estimations between the legitimate participants,

needs to be collected. In the selection of the M interleaved subcarriers, a trade-off be-

tween the eavesdropping resilience and the legitimate transmission reliability can be

realized by answering two questions: 1) How many subcarriers have to be interleaved?

2) Which M out of the N subcarriers should be selected?

6.5.1 Size M of the Set of Interleaved Subcarriers

Referring to the analysis in Section 6.4, the probability that an eavesdropper

successfully derives the actual interleaving permutation used by the transmitter is

uniquely determined by the size, M , of the set of selected and interleaved subcarri-

ers, as shown in (6.9) and (6.10). A system which can successfully defend against

eavesdropping when the side information I has been intercepted by eavesdroppers,

should also work well when I is not available to eavesdroppers. Therefore, the mini-

mum requirement of M , Mmin, can be determined from PEM . Given the constraint of

PEM in preventing eavesdropping, Ω, Mmin can be decided by conducting the inverse

factorial of 1/Ω. Mathematically, the derivation of Mmin can be represented as

Mmin =

⌈
FIF

(
1

Ω

)⌉
, (6.27)

where FIF (·) denotes the inverse factorial function and d·e is the ceiling function. As

a result, we have (1/Mmin!) ≤ Ω. For instance, for Ω constraints [0.0001, 0.001, 0.01],

Mmin would be [8, 7, 5], respectively.
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6.5.2 Location of the M Subcarriers

The minimum amount of interleaved subcarriers is determined according to a given

requirement of eavesdropping prevention. Meanwhile, the location of the M subcarri-

ers needs to be selected to mitigate the impairment of imperfect channel reciprocity on

the derivation of the subcarrier interleaving permutation at the intended receiver. In

the proposed subcarrier interleaving scheme, the selected subcarriers are interleaved

according to the sorted order of their channel gains. Subcarriers having large channel

gain intervals between them can thus provide an interleaving permutation insensitive

to distortions caused by interference, noise, etc.

Assume that subcarrier i and subcarrier j observed at the transmitter have channel

gains
∣∣∣ĤT (i)

∣∣∣2 and
∣∣∣ĤT (j)

∣∣∣2, respectively, where
∣∣∣ĤT (i)

∣∣∣2 ≥ ∣∣∣ĤT (j)
∣∣∣2. The order

mismatch probability of these two subcarriers at the legitimate receiver, using the

noisy channel estimates, can be expressed as

Pe = P

{∣∣∣ĤR(i)
∣∣∣2 < ∣∣∣ĤR(j)

∣∣∣2}
= P

{∣∣∣ĤR(i)
∣∣∣2 − ∣∣∣ĤR(j)

∣∣∣2 < 0

}
. (6.28)

Based on the statistic theory result about the difference of two independent noncentral

Chi-Square random variables with 2 degree of freedom [122], the order mismatch

probability Pe can be calculated as

Pe = Q1

√2
∣∣∣ĤT (j)

∣∣∣
σTR

,

√
2
∣∣∣ĤT (i)

∣∣∣
σTR

 (6.29)

−1

2
e

[
−|ĤT (i)|2+|ĤT (j)|2

σ2
TR

]
I0

2
∣∣∣ĤT (i)

∣∣∣ ∣∣∣ĤT (j)
∣∣∣

σ2
TR

 ,

where Q1(·, ·) is the first-order Marcum Q-function, I0(·) represents the 0th-order

Bessel function. Let D denote the observed channel gain interval between subcarriers
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i and j at the transmitter, i.e.
∣∣∣ĤT (i)

∣∣∣2 =
∣∣∣ĤT (j)

∣∣∣2 + D, equation (6.29) can be

rewritten as

Pe = Q1


√

2

√∣∣∣ĤT (i)
∣∣∣2 −D

σTR
,

√
2
∣∣∣ĤT (i)

∣∣∣
σTR

 (6.30)

−1

2
e

[
− 2|ĤT (i)|2−D

σ2
TR

]
I0

2
∣∣∣ĤT (i)

∣∣∣√∣∣∣ĤT (i)
∣∣∣2 −D

σ2
TR

 .

Obviously, the order mismatch probability Pe is determined by the channel gain∣∣∣ĤT (i)
∣∣∣2, the channel gain difference D, as well as the noise power σ2

TR.

Given a limitation for the order mismatch probability of two adjacent interleaved

subcarriers, denoted by Λ , the required channel gain interval between two adjacent

interleaved subcarriers under a certain channel condition can be determined from the

inversion of (6.30), which can then be utilized as a criterion to choose the interleaved

subcarriers. Unfortunately, D cannot be evaluated in a closed form from (6.30), and

thus numerical techniques, or an approximation, has to be used. In this study, a

look-up table for D under different channel conditions with various order mismatch

probabilities Pe, is generated by simulations. Part of the look-up table for Pe = 0.01

is shown in Table 6.1.

6.5.3 Summary of the Interleaved Subcarrier Selection Al-

gorithm

In the proposed eavesdropping-resilient OFDM system, interleaved subcarriers are

selected based on the constraints of PEM and Pe, i.e. Ω and Λ, respectively. Ω de-

termines the minimum number of interleaved subcarriers, while Λ determines which

subcarriers can be interleaved. It is noteworthy that when we select the location of

the interleaved subcarriers using Λ, the size of the set of qualified subcarriers, M ,
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may be either larger or smaller than Mmin, depending on the channel conditions. As

an eavesdropping-resilient system, it should ensure the capability to defend against

eavesdropping first, and then endeavour to mitigate the side-effect on the legitimate

transmission. Therefore, the subcarrier selection should give top priority to the Mmin

requirement. In the situation where M < Mmin, the requirement of Pe can be relaxed

to include more subcarriers in the interleaving. When M > Mmin, all the M subcar-

riers can be selected and interleaved to further improve the eavesdropping prevention

capability.

The proposed subcarrier selection algorithm can be summarized as follows:

1. The minimum number of subcarriers that need to be interleaved is decided by

Ω;

2. All the N subcarriers of an OFDM signal are descendingly ordered according

to their channel gains observed at the transmitter;

3. The subcarrier having the largest channel gain is selected first;

4. With the channel gain of the previously selected subcarrier, the estimated noise

power and the Pe ≤ Λ requirement, the channel gain distance between the

previously selected subcarrier and the next subcarrier, D, can be updated by

referring to the look-up table such as Table 6.1;

5. The subcarrier, which has a channel gain at least D smaller than that of the

previously selected subcarrier and at the same time is closest to the previously

selected subcarrier among all the qualified subcarriers, is selected;

6. Steps 4 and 5 are repeated until reaching the end of the order for the N sub-

carriers. Then M out of the N subcarriers have been selected out;

7. If M ≥Mmin, the subcarrier selection is completed; otherwise, one has to relax

the requirement of Pe, and then repeat steps 4 and 5 until M ≥ Mmin can be

achieved.
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6.6 Simulation Results

Simulations are carried out to validate the proposed eavesdropping-resilient OFDM

system following the specifications of the IEEE 802.11g system. The OFDM signal

is generated using 64-point IFFT with a cyclic prefix of length 16. The modulation

scheme 4-QAM is adopted for all the subcarriers and the sampling frequency is 20

MHz. For the interleaved subcarrier selection, parameter Ω is set to 0.01, leading to

Mmin = 5. Meanwhile, parameter Λ is set to 0.01 and 0.001, respectively. Unless

stated otherwise, the subcarrier selection indicator I is assumed to be known by the

legitimate receiver as well as by the eavesdropper. In addition, a Rayleigh fading

channel is considered in the simulations. Training symbols with unit energy at each

subcarrier are sent out and exploited for the channel estimation, while least-square

channel estimation technique is employed at all the nodes in the network. Conse-

quently, the channel estimates can be expressed as

Ĥ(k) =
Y (k)

X(k)
= H(k) +

W (k)

X(k)

= H(k) +W ′(k), k = 0, 1, · · · , N − 1, (6.31)

where W ′(k) and W (k) have the same statistical properties.

In order to make a fair comparison, it is assumed that the common channel and

the eavesdropping channel follow an identical statistical model, and the noise level at

all the nodes is the same as well. Perfect synchronization is also assumed at both the

legitimate receiver and eavesdropper’s end.

6.6.1 Security and Reliability of the CSI-based Subcarrier

Interleaving Scheme

As the interleaving permutation mismatch probabilities at both the legitimate re-

ceiver and the eavesdropper, directly determine the security against eavesdropping

and the reliability of legitimate transmission in the proposed system, they are evalu-
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ated in this subsection. A Rayleigh fading channel with uniform power delay profile,

with a delay spread as long as the CP length, i.e. 800 ns, for the 802.11g system,

is used in the simulations. As shown in Fig. 6.3, the interleaving permutation mis-

match probabilities at the eavesdropper are always close to 100% in the simulated

channel conditions, whether Pe = 0.01 or Pe = 0.001. Accordingly, the information

recovery by eavesdropping is severely disrupted, which makes the transmitted data

unrecognizable to eavesdroppers. In contrast, the interleaving permutation mismatch

probabilities at the legitimate user is negligible when the SNR is larger than 24 dB.

In other words, the legitimate transmission of the proposed system would be as good

as the conventional OFDM system in a high SNR range. Please note that the in-

terleaving permutation mismatch between legitimate users is mainly caused by the

channel estimation errors. Thus, a channel estimation technique inducing smaller

estimation errors can further improve the reliability of the legitimate transmission.

6.6.2 Performance of the Proposed Secure OFDM System

In this subsection, SERs at the legitimate receiver and the eavesdropper are

compared under different channel environments to validate the security of the pro-

posed OFDM system against eavesdropping. Meanwhile, the SER of the conventional

OFDM system is also provided as a bench-mark reference to evaluate the reliability

of legitimate transmissions in the proposed system.

Figure 6.4 presents the SERs of the proposed and the conventional OFDM systems

under a Rayleigh fading channel with uniform PDP of 800 ns delay spread. It can be

observed from this figure that the eavesdropper always has a SER close to 100% when

it strives to intercept signals transmitted from the proposed eavesdropping-resilient

OFDM system. In contrast, the performance of the legitimate transmission can be

as good as that of the conventional OFDM system in that simulated rich multipath

environment.

A simultaneous evaluation of the eavesdropping resilience and transmission relia-
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Figure 6.3: Interleaving permutation mismatch probabilities at the legitimate receiver
and eavesdropper under a Rayleigh fading channel with uniform PDP of 800 ns delay.
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Figure 6.4: SERs at the legitimate receiver and eavesdropper under a Rayleigh fading
channel with uniform PDP of 800 ns delay.
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PDP of 800 ns delay.
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Figure 6.6: SERs at the legitimate receiver and eavesdropper under a Rayleigh fading
channel with exponential PDP of 50 ns RMS delay.

bility of this eavesdropping-resilient OFDM system, in terms of our proposed evalu-

ation criterion for anti-eavesdropping communication systems in Chapter 5, i.e. the

probability of confidential transmission, is also performed. The novel evaluation cri-

terion is defined as the probability that the transmitted data is correctly received

by the legitimate receiver but not intercepted by the eavesdropper. In the proposed

eavesdropping-resilient OFDM system, the probability of confidential transmission

can be calculated as

Π =
(
1− PS,L

)
PS,E. (6.32)

As depicted in Fig. 6.5, the proposed OFDM system outperforms the conventional

OFDM system, particularly in the high SNR range.
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The SER vs. SNR performance of the proposed secure OFDM system under a

different channel condition is depicted in Fig. 6.6, where a Rayleigh fading channel

with exponential PDP of 50 ns RMS delay spread is considered. This represents a

multipath channel with much less scattering in comparison with the one used before.

As illustrated in this figure, the eavesdropper still suffers from a very high SER though

the SER is a bit less than that observed in Fig. 6.4. Comparing the performance of the

legitimate transmission with that of the conventional OFDM under the same channel

condition, legitimate users of the proposed OFDM system would now experience a

performance loss. However, the performance degradation becomes less significant

when the SER is less than 0.1. In addition, by using a smaller value of Pe in the

selection of the interleaved subcarriers, the legitimate receiver can obtain a lower

SER, such that the SER gap between the proposed system and the conventional

OFDM system can be reduced.

Comparing the performance results in Fig. 6.4 and Fig. 6.6, which are under

different Rayleigh fading conditions, the performance degradation of the proposed

eavesdropping-resilient OFDM system can be explained as follows: the reciprocity

and spatial variation properties of time-varying wireless channels, which are exploited

as the principle behind the proposed system, are more effective and reliable in rich

multipath environments. Therefore, a rich scattering multipath environment is highly

favorable to the proposed secure OFDM system.

6.6.3 Impact of the Side Information I on Eavesdropping

Prevention

As discussed in Section 6.3, the subcarrier selection indicator I may, or may not, be

available to the eavesdropper, depending on whether it is sent out by the transmitter.

The impact of the side information I on the eavesdropping prevention is also studied

in the simulations. SERs of eavesdroppers with and without the side information I

are compared in Fig. 6.7 and Fig. 6.8 for Rayleigh fading channels with uniform PDP
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of 800 ns delay spread and exponential PDP of 50 ns RMS delay spread, respectively.

In the simulations, the eavesdropper estimates the subcarrier selection based on its

own channel observations and the information of Ω and Λ, when the side information

I is not available. It is noteworthy that this operation can be taken as a random

guess of the indicator I since the common channel and the eavesdropping channel are

uncorrelated.

In both simulated communication environments, the eavesdropper experiences a

higher SER when the subcarrier selection indicator I is not available, compared to

the case where I has been intercepted. However, as shown in the figures, the SERs

of eavesdropping are all considerably high, even when eavesdroppers can intercept,

by chance, the indicator I. This is because the eavesdropping prevention capability

is dominated by the interleaving permutation but not the side information I as such.

The eavesdropper at a separate location observes an uncorrelated channel such that

it is hard for the eavesdropper to derive an identical interleaving permutation, even

though it knows exactly which subcarriers have been interleaved. As a result, infor-

mation recovery for eavesdropping is severely affected, thus leading to high SERs. In

addition, it can be observed from both Fig. 6.7 and Fig. 6.8 that there is a fluctua-

tion in the eavesdropper’s SNR values over the whole SNR range. The reason for this

phenomenon is that the amount of interleaved subcarriers, M , varies in the subcar-

rier selection according to the channel conditions, and this parameter would directly

affect the SER of eavesdropping as shown in (6.11). Moreover, the fluctuations of

SERs are minor, particularly when the subcarrier selection indicator I has not been

intercepted by the eavesdropper.

6.7 Summary

In this chapter, an eavesdropping-resilient OFDM system without any restriction

of the utilized symbol modulation scheme is achieved through dynamic subcarrier

interleaving. Exploiting the CSI between the transmitter and legitimate receiver,
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Figure 6.7: SER comparison for eavesdroppers with and without the subcarrier se-
lection indicator under a Rayleigh fading channel with uniform PDP of 800 ns delay.
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partial subcarriers of each OFDM signal are selected and then interleaved according

to the sorted order of their channel gains. Since wireless channels associated with each

pair of users at separate locations exhibit independent fading processes, the frequently

renewed subcarrier interleaving scheme can only be shared between legitimate nodes

based on channel reciprocity. As a result, mismatched information recovery is carried

out at the eavesdropper without an identical subcarrier interleaving pattern, so that

eavesdropping is prevented. In order to mitigate the impairment from imperfect

channel reciprocity between legitimate parties, the interleaved subcarriers are selected

to achieve a trade-off between the eavesdropping resilience and legitimate transmission

reliability. Theoretical analysis and computer simulation results have been provided

to validate the proposed eavesdropping-resilient OFDM system. It is observed from

the simulation results that eavesdropping on the proposed system suffers from SER

values close to 100% while the legitimation transmission has a SER performance

similar to that of conventional OFDM systems.
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Chapter 7

Secure OFDM Systems with

Embedded Confidential Signaling

Two nodes of a communication link would theoretically experience and observe

the same channel fading due to channel reciprocity. Security design based on the

randomness of the common channel can therefore be shared between legitimate ter-

minals. In practical implementations, as channel estimates are generally distorted by

noise, interference and hardware limitations, estimates at the two nodes of a wireless

channel are not perfectly reciprocal though the channel is reciprocal inherently. The

reliability of legitimate transmission will thus be impaired once misunderstanding of

the channel based security design occurs at the legitimate receiver. Hence, solutions

to mitigate the impact of imperfect channel reciprocity on the channel based security

strategies need to be investigated, such as the inherent robustness improvement of

the security algorithm and the transmission of insensitive side information relevant

to the security design.

Techniques to enhance the inherent robustness of security designs to imperfect

channel reciprocity have been studied in Chapter 5 and Chapter 6. In this chapter,

an efficient side information transmission mechanism between the transmitter and

legitimate receiver is provided, in order to assist the security design understanding at
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the intended receiver and then strengthen the reliability of legitimate transmission.

OFDM with precoded cyclic prefix (PCP-OFDM), which was originally proposed for

the adaptive transmission in cognitive radio, is extended and specifically tailored for

the confidential transmission of side information between legitimate users. In this

design, the side information relevant to the security design is conveyed by a specially

tailored PCP, and concurrently transmitted with the data-carrying OFDM symbol.

A set of orthogonal sequences, which is only known by legitimate users, is one-to-one

mapped to all the potential side information. An orthogonal sequence is chosen in the

transmission of each OFDM symbol corresponding to the present security design. The

PCP symbol is then generated by passing the selected orthogonal sequence through

an OFDM modulator, so as to maintain the same time and frequency characteristics

as the data-carrying OFDM symbol. With the inherent orthogonality among all

the candidate PCPs, the information conveyed by the PCP symbol can be reliably

detected through cross correlations between the received PCP and elements in the

local PCP library of the receiver. The local candidate PCP that leads to the maximum

correlation peak will be taken as the PCP sent out by the transmitter, and then used

to assist the understanding of the adopted security design. Theoretical analysis and

simulation results are provided to validate the proposed design.

7.1 Introduction

In secure wireless OFDM systems where transmitted OFDM signals are con-

structed according to the real-time status of the common channel, no signaling be-

tween the transmitter and legitimate receiver is needed ideally due to channel reci-

procity. Practically, all the nodes in a network can only observe a noisy version of

their undergoing channels because of estimation errors caused by the noise, interfer-

ence and hardware limitations. Although the radio channel is reciprocal, estimates

of the radio channel are not perfectly reciprocal. As a result, the real-time security

design initiated at the transmitter and that locally derived at the legitimate receiver,
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which are based on their individual estimates of the common channel, may not be

identical. Data demodulation error is then caused by the misunderstanding of the

security design. Consequently, the reliability of legitimate transmission is degraded.

As a superior secure communication system, it should effectively defend against

malicious attacks but also maintain reliable legitimate transmission. It has been

demonstrated in Chapter 6, the sharing of certain insensitive side information rele-

vant to the security design, such as the subcarrier selection indicator I in the proposed

eavesdropping-resilient OFDM system using dynamic subcarrier interleaving, can sig-

nificantly enhance the reliability of legitimate transmission. On the other hand, even

this type of side information happens to be intercepted by the eavesdropper during

the transmission, the damage to the system security is ignorable. Therefore, the

transmission of such side information between the transmitter and legitimate receiver

can be performed, particularly in a hostile communication environment.

There are several challenges in sharing the side information relevant to the channel

based security design in a wireless OFDM system:

• The transmission needs to be always available. Since the secure OFDM sys-

tem is designed according to the real-time wireless channel, the relevant side

information would be updated frequently, even symbol by symbol.

• The sharing of the side information should not interrupt or interfere the data

transmission. The data transmission in a secure OFDM system would have a

higher priority than the sharing of side information. As a result, we cannot

stop data transmission to send the side information. Also, the transmission of

the side information should minimize or even avoid the interference to the data

transmission.

• The transmission cannot occupy additional time and spectrum resources. The

time and spectrum resources are limited for wireless communications. The

sharing of side information needs to be completed within the time and spectrum
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resources allocated for the original data transmission in the OFDM system. No

additional resource is available and can be provided.

• The transmission should be reliable and confidential. The shared side infor-

mation is used to mitigate the impairment from the imperfect reciprocity of

channel estimates between the transmitter and legitimate receiver, and then

improve the reliability of legitimate transmission. Therefore, the transmission

of the side information itself should be reliable. Moreover, although the leakage

of such side information would only cause minor damage to the security of the

system, we still need to keep this transmitter-receiver interaction as confidential

as possible.

Several simultaneous communication strategies have been reported in the litera-

ture. In [123, 124], the inphase and quadrature branches of the signal constellation

are used to carry different data that need to be transmitted concurrently. By do-

ing this, the throughput of each data stream reduces compared to the scenario that

one data stream occupies both I and Q branches of the signal constellation. An-

other concurrent transmission strategy is to make the two data streams orthogonal

to each other and then mix them physically [125, 126], conditioned on a perfect or-

thogonality. Moreover, Zhao et al. proposed to enable simultaneous communications

by using the multiple-input and multiple-output technology, at the cost of additional

antennas [127].

In [18], a novel OFDM system with a precoded cyclic prefix, named PCP-OFDM,

was proposed for fast transmitter-receiver interaction in adaptive transmission. In

the original PCP-OFDM, the traditional cyclic prefix is replaced by two precoded

Kasami sequences that convey system parameters related to the current adaptation

scheme. Since the cyclic prefix is typically included in OFDM signals as a guard

interval to eliminate the inter-symbol interference, no additional time and spectrum

resources are required by the PCP signaling link. Moreover, the PCP caused ISI and

inter-carrier interference (ICI) to the data-carrying OFDM symbol in a multipath
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channel can be removed through a proposed interference cancellation algorithm. As

a result, a reliable data transmission comparable to the traditional OFDM system

can be achieved by the PCP-OFDM system.

This chapter extends the previous study on the PCP-OFDM system, and provides

an embedded confidential signaling link for the transmission of security design relevant

side information in secure OFDM systems. Technically, the side information relevant

to the security design is conveyed by a specially tailored PCP, and concurrently

transmitted with the data-carrying OFDM symbols. A set of orthogonal sequences,

which is only known by legitimate users, is one-to-one mapped to all the potential

information to be transmitted. An orthogonal sequence is chosen in the transmission

of each OFDM symbol corresponding to the present security design. The PCP symbol

is then generated by passing the selected orthogonal sequence through an OFDM

modulator, so as to maintain the same time and frequency characteristics as the data-

carrying OFDM symbol. With the inherent orthogonality among all the candidate

PCPs, the information transmitted through the PCP signaling link can be reliably

identified by cross correlations between the received PCP and elements in the local

PCP library at the receiver. The local candidate PCP that leads to the maximum

correlation peak will be taken as the PCP sent out by the transmitter, and then used

to assist the understanding of the adopted security design. It can be found that the

PCP enabled side information transmission mechanism does not interrupt the data

transmission and requires no additional time and frequency resources.

The rest of this chapter is organized as follows. Section 7.2 introduces the trans-

mitter and receiver design in the PCP-OFDM system. The PCP generation and de-

tection for the embedded confidential signaling are addressed in Section 7.3, followed

by the performance analysis of the PCP detection and PCP-OFDM demodulation in

Section 7.4. Simulation results are provided in Section 7.5. At last, the chapter is

summarized in Section 7.6.
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7.2 Transmitter and Receiver Design for PCP-OFDM

System

The block diagram of the PCP-OFDM system is illustrated in Fig. 7.1. The trans-

mitter in Fig. 7.1(a) is basically the same as that in a traditional OFDM system,

except that the cyclic prefix is now replaced by a precoded sequence. More specif-

ically, the PCPs are generated from orthogonal sequences modulated by an OFDM

modulator, corresponding to the real-time security design. Generation and detection

of such PCPs will be discussed in Section 7.3. The PCPs are considered as known in

this section.

7.2.1 Transmitter Design for PCP-OFDM System

Each OFDM symbol in Fig. 7.1(a) is specified by an N -point time-domain vector

x obtained via an inverse fast Fourier transform of the complex data vector X of size

N . Without loss of generality, the data-carrying OFDM symbol in time domain can

be expressed in vector form as

x =
(
FN
)∗

X, (7.1)

where FN is the FFT transform matrix with its (n, k)th entry (exp{−j2πnk/N}/
√
N).

Operator (·)∗ denotes the conjugate transpose.

Before the transmission of the data-carrying OFDM symbol in (7.1), PCP se-

quence with length of Ncp is inserted as its prefix. Generation and demodulation of

the PCP will be discussed in Section 7.3. Here we just need to take the PCP as a ran-

dom sequence with the same time and frequency characteristics as the data-carrying

OFDM symbol. With the purpose of a complete removal of ISI, the duration of PCP

is set to be longer than or at least equal to the delay spread of the multipath channel.

A generated PCP-OFDM signal after the PCP insertion can be written as

xpcp = [cp (0) , · · · , cp (Ncp − 1) , x (0) , · · · , x (N − 1) , ] , (7.2)
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where cp = [cp (0) , · · · , cp (Ncp − 1)] denotes the generated PCP symbol.

When there is no change in the system security design, the information needs to

be sent out through the PCP link is not renewed. Consequently, each data-carrying

OFDM symbol is preceded and succeeded by the same PCP. This is equivalent of

generating a new OFDM signal of N + 2Ncp samples with one PCP sequence as its

last Ncp samples and the other identical sequence as its cyclic prefix in the first Ncp

samples, as illustrated in Fig. 7.2. Hence, it creates a series of new OFDM signals

with cyclic structure similar to traditional OFDM signals protected by cyclic prefix.

In a more general scenario, the OFDM symbol is preceded and succeeded by two

different PCPs, due to the variation of the wireless channel and corresponding security

design. This also includes the scenario of zero vector as the second PCP, representing

the end of the transmission. Therefore, the following signal vector x′ can be used for

the interference analysis and PCP-OFDM signal demodulation, that is

x′ = [cp1 (0) , · · · , cp1 (Ncp − 1) , x (0) , · · · , x (N − 1) ,

cp2 (0) , · · · , cp2 (Ncp − 1)]T , (7.3)

where cp1 and cp2 denote the PCP sequences with identical bandwidth for preced-

ing and subsequent OFDM symbols, respectively. When there is no change in the

information to be transmitted in the PCP signaling link, we have,

cp1(n) = cp2(n), n = 0, 1, · · · , Ncp − 1. (7.4)
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Considering an L-tap static complex channel within one OFDM signal, h =

[h0, h1, · · · , hL−1]T , for the signal propagation and interference analysis, including

the worst case L = Ncp + 1, the received signal r corresponding to the transmitted

signal vector x′, with a size of (N + 2Ncp + L− 1)× 1, can be expressed as

r =



h0 0 · · · 0 0 · · · 0

h1 h0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

hL−1 hL−2 · · · h0 0 · · · 0

0 hL−1 · · · h1 h0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · hL−1 hL−2 · · · h0

0 0 · · · 0 hL−1 · · · h1

...
...

. . .
...

...
. . .

...

0 0 · · · 0 0 · · · hL−1



x′ + w′, (7.5)

where the size of the channel matrix in (7.5) is (N + 2Ncp + L − 1) × (N + 2Ncp),

and w′ is an AWGN vector with the same size as r. The received signal over one

OFDM symbol and two adjacent PCPs, r, is depicted in Fig. 7.3. As highlighted by

the shaded region in the figure, the transmitted signal appearing at the receiver is

spread by the multipath channel, resulting into ISI and ICI. The ISI from the adjacent

blocks and ICI within the current OFDM symbol have to be canceled for a successful

demodulation of the data-carrying symbol.

7.2.2 Receiver Design for PCP-OFDM System

The receiver of the PCP-OFDM system, with a frequency domain equalization and

time domain interference cancellation, is presented in Fig. 7.1(b). The transmitted

PCP is first identified. After that, the data-carrying OFDM symbol is demodulated,

following the ISI and ICI cancellation. The same as the observation period (OP)
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normally used in a traditional OFDM receiver for the data demodulation, only N

samples from the received signal are considered for demodulating the data-carrying

OFDM symbol in the proposed receiver. The exact location of OP and the channel

impulse response can be determined using the techniques in [128–130].

The PCP detection technique will be presented in Section 7.3. With the identified

PCP sequences and estimated channel impulse response, ISI from the preceding PCP

sequence due to the dispersive nature of multipath channel, can be computed and

subtracted from the received signal. Meanwhile, ICI, which exists because of the lack

of the cyclic structure in the PCP-OFDM signal when only N samples of the received

signal are used for the demodulation process, needs to be eliminated by rebuilding

the cyclic structure. To provide insights into the ISI and ICI within an PCP-OFDM

signal in a multipath channel, two N × N matrices are constructed to describe the
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impact from the channel. The first matrix

C =



h0 0 · · · 0 0 · · · 0

h1 h0 · · · 0 0
. . . 0

...
...

. . .
...

...
. . .

...

hL−1 hL−2 · · · h0 0 · · · 0

0 hL−1 · · · h1 h0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · hL−1 hL−2 · · · h0


, (7.6)

represents the channel seen by the data-carrying OFDM symbol. The second matrix

CT =



0 · · · 0 hL−1 hL−2 · · · h1

0 · · · 0 0 hL−1 · · · h2

...
. . .

...
...

...
. . .

...

0 · · · 0 0 0 · · · hL−1

0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0


, (7.7)

stands for the tail part of the channel impulse response that generates ISI in the

succeeding symbol. These two matrices have an interesting property that

C + CT = Ccycl, (7.8)

where Ccycl is the “ideal” channel matrix, i.e. the matrix that results in a cyclic

convolution between the transmitted signal and the channel [130]. Based on (7.5),

(7.6) and (7.7), we can express the received data-carrying OFDM symbol in the OP,

i.e. [r (Ncp) , r (Ncp + 1) , · · · , r (Ncp +N − 1)]T , as

r1 = Cx + CTRcp1 + w′N , (7.9)
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where Rcp1 is zero-padded signal vector of cp1, which can be expressed as

Rcp1 = [ 0, · · · , 0︸ ︷︷ ︸
(N−L+1)

, cp1(P − L+ 1), · · · , cp1(P − 1)︸ ︷︷ ︸
(L−1)

]T . (7.10)

w′N is the noise acting on the samples during the OP, i.e. w′N = [w′ (Ncp) ,

w′ (Ncp + 1) , · · · , w′ (Ncp +N − 1)]T .

In order to utilize a simple equalization and demodulation procedure like that in

the traditional OFDM system, the following ideal received signal vector ri has to be

constructed

ri = r1 −CTRcp1 + CTx. (7.11)

The signal structure depicted in (7.11) suggests that the first step of the proposed

hybrid domain receiver in demodulating x is to remove the ISI term by subtracting

CTRcp1 from the preceding PCP sequence. For any reasonable channel signal-to-noise

ratio of interest, the error from the estimated channel is small enough and hence we

will have reliable ISI cancellation.

After ISI removal, the next step is to remove the ICI term, or equivalently to

perform cyclic reconstruction for the received data-carrying OFDM symbol. Here we

employ an ICI cancellation approach in the time domain. Consider the propagation

of signal vector x′ in (7.3), as illustrated in Fig. 7.3. Let r2 of size N denote the

received signal vector lying out of the OP but containing part of the data-carrying

OFDM symbol due to the channel multipath distortion, that is

r2 = [ r (Ncp +N) , · · · , r (Ncp +N + L− 2)︸ ︷︷ ︸
(L−1)

, 0, · · · , 0︸ ︷︷ ︸
(N−L+1)

]T . (7.12)

r2 consists of signal components from both the data-carrying OFDM symbol and its

following PCP. When r1 is used for the demodulation of the PCP-OFDM signal, we

can find the remaining tail from the previous OFDM symbol in r2 is actually the signal

needed to reconstruct the signal cyclic structure. By subtracting the signal component
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of the second PCP from (7.12), the remaining tail from the previous data-carrying

OFDM symbol, which is used to eliminate ICI, can be obtained using [131]

CTx = r2 −CHRcp2 , (7.13)

where the N ×N matrix CH is

CH =



h0 0 · · · 0 0 · · · 0

h1 h0 · · · 0 0
. . . 0

...
...

. . .
...

...
. . .

...

hL−2 hL−3 · · · h0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0


, (7.14)

and Rcp2 is the identified PCP following the data-carrying OFDM symbol, i.e

Rcp2 = [ cp2(0), · · · , cp2(L− 2)︸ ︷︷ ︸
(L−1)

, 0, · · · , 0︸ ︷︷ ︸
(N−L+1)

]T . (7.15)

Therefore, the ideal signal vector for the equalization and demodulation of the data-

carrying OFDM symbol can be derived as

ri = r1 −CTRcp1 + r2 −CHRcp2 . (7.16)

When the channel estimation is accurate, the ideal signal in the above equation turns

to be

ri = Ccycl

{(
FN
)∗

X
}

+ wN . (7.17)

As for an OFDM system with cyclic prefix, the circulant matrix Ccycl can be

diagonalized by N×N (I)FFT matrices [131]. For the equalization and demodulation

153



purposes, applying an FFT matrix to the above equation leads to

FNri = FN
{
Ccycl

{(
FN
)∗

X
}

+ wN

}
= DN(H̃N)X̃, (7.18)

where DN(H̃N) is N × N diagonal matrix with the estimated frequency domain

channel transfer function as its diagonal elements. As a result, the complete zero-

forcing demodulation process is

X̃ = D−1
N (H̃N)

{
FNri

}
. (7.19)

7.3 PCP Design for the Secure OFDM Systems

In the secure OFDM systems using channel based security techniques, the side

information relevant to the security design can be shared between legitimate parties

to mitigate the impairment from imperfect channel reciprocity and then improve the

reliability of legitimate transmission. Usually, the side information does not contain

much content. However, the transmission of such information needs to be reliable and

confidential, without the requirement of additional time and spectrum resources and

interruption to the data transmission. In the proposed strategy, the side information

is conveyed by specially tailored PCPs, which are transmitted in a concurrent manner

with the data-carrying OFDM symbols.

7.3.1 PCP Generation

In order to achieve a secure and reliable transmission through the PCP link, the

side information to be transmitted is represented by a set of orthogonal sequences,

where each orthogonal sequence uniquely indicates a potential value of the side infor-

mation. Please note that the side information in a security design typically has limited

content. The used orthogonal sequences are kept privately, and are only available to

the legitimate users. In case the orthogonal sequences are cracked by adversaries,
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they will be renewed immediately.

Let Υ denotes the set of Ms orthogonal sequences indicating the potential in-

formation to be transmitted in the PCP, where each sequence has a length of Ncp

according to the length of the PCP. We have

Υ = [ε0, ε1, · · · , εMs ] , (7.20)

where

1

Ncp

Ncp−1∑
n=0

εi(n)ε∗v(n) =

 0, i 6= v

1, i = v
. (7.21)

It is noteworthy that the size of Ms is decided by the selected orthogonal sequences

and the sequence length Ncp. Since the design of orthogonal sequences is out of the

scope of this study, this dissertation does not focus on this issue. The development

of orthogonal sequences can be found in [132–134].

Generally, the orthogonal sequences are in a binary form, which would occupy

infinite bandwidth and have time and frequency characteristics distinct from the data-

carrying OFDM symbol. The time- and frequency-characteristic difference between

PCPs and data-carrying symbol can facilitate eavesdropping and traffic analysis at

adversaries, thus needs to be removed. For this reason, we would like to pass the

orthogonal sequence through an OFDM modulator. For an orthogonal sequence with

a length of Ncp, an OFDM modulator with Ncp-point IFFT is employed. Under

the assumption that εi is selected to be transmitted according to the present side

information, the output of the Ncp-point IFFT, which is used as the PCP symbol,

can be expressed as

cp,i(n) =

√
1

Ncp

Ncp−1∑
k=0

εi(k)e
j2π kn

Ncp , n = 0, 1, · · · , Ncp − 1. (7.22)

It is noteworthy that the same sampling frequency is adopted for both PCPs and

data-carrying OFDM symbols to make they occupy the same bandwidth.
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In the case that εi is orthogonal to εv, we can prove that cp,i(n) is also orthogonal

to cp,v(n) as follows:

1

Ncp

Ncp−1∑
n=0

cp,i(n)c∗p,v(n) =
1

Ncp

1

Ncp

Ncp−1∑
n=0

{
Ncp−1∑
ki=0

εi(ki)e
j2π

kin

Ncp

Ncp−1∑
kv=0

ε∗k(kv)e
−j2π kvn

Ncp

}

=
1

N2
cp

Ncp−1∑
ki=0

Ncp−1∑
kv=0

εi(ki)ε
∗
v(kv)

Ncp−1∑
n=0

e
j2π

(ki−kv)n

Ncp . (7.23)

If ki 6= kv, we can always have

Ncp−1∑
n=0

e
j2π

(ki−kv)n

Ncp = 0. (7.24)

If ki = kv, equation (7.23) can be rewritten as

1

Ncp

Ncp−1∑
n=0

cp,i(n)c∗p,v(n) =
1

Ncp

Ncp−1∑
ki=0

εi(ki)ε
∗
v(ki)

= 0. (7.25)

Therefore, the Fourier transform would not change the orthogonality of the sequences.

cp,i(n) is still orthogonal to cp,v(n).

Considering that both the real and imaginary parts of PCP symbols can convey

information, the information of 2 log2(Ms) bits can be transmitted by each generated

PCP symbol with a length of Ncp.

7.3.2 PCP Detection

The legitimate receiver, which has the information of all the candidate orthogonal

sequences, can locally generate all the possible PCP symbols that are orthogonal to

each other. Depending on the orthogonality, the transmitted PCP can be detected
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by correlating the received PCP with all the possible PCPs in the local library at the

receiver. Under a multipath channel h = [h0, h1, · · · , hL−1]T , the correlation peak

corresponding to the strongest path hk will be used for the PCP detection.

Assuming that perfect synchronization is achieved through training signals or

in-band pilot of the PCP-OFDM signal, the PCP detection process can be mathe-

matically expressed as

Cm =

Ncp−1∑
n=0

r(n)c∗p,m(n), m = 0, 1, · · · ,Ms − 1, (7.26)

where cp,m is the mth locally generated PCP symbol at the receiver. The candidate

PCP cp,m that leads to the maximum output in (7.26) will be taken as the PCP signal

sent out by the transmitter, and then used to assist the understanding of the current

security design. The correlation peak corresponding to the strongest path hk when

cp,m is transmitted can be given by

Cm,k = hkNcp + wc, (7.27)

where wc denotes the interference to the correlation result. Please note that signal

components from other multipath taps would act as interference to the correlation

peak, in addition to the AWGN. Consequently, the interference wc can be approxi-

mated as a zero-mean Gaussian noise with a variance

σ2
wc ≈ Ncp

(
L−1∑

l=0,l 6=k

|hl|2
[
σ2
P +
|l − k|
Ncp

(σ2
s − σ2

P )

]
+ σ2

w

)
, (7.28)

where σ2
P denotes the variance of the shifted autocorrelation of PCP symbol cp,m,

σ2
s denotes the variance of correlation between the data-carrying OFDM symbol and

PCP sequence cp,m, and σ2
w is the variance of the AWGN.
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7.4 Performance Analysis

7.4.1 Error Probability of PCP Detection

Under the assumption that cp,m is used for the current PCP-OFDM signal at

the transmitter, the correlation result of a correct PCP detection can be written as

(7.27). In contrast, when other local PCPs are correlated with the received PCP, we

can obtain a result as 0 +w′c. If hkNcp ≤ w′c−wc, an incorrect PCP detection occurs.

Therefore, the error probability of each test in the PCP detection can be derived as

Pe,m = P
{
hkNcp ≤ w′c − wc

}
= Q

 hkNcp√
σ2
wc + σ2

w′c

 , (7.29)

where

Q(a) =

∫ ∞
a

1√
2π
e−

y2

2 dy. (7.30)

The overall error probability after Ms cross correlations can then be calculated as

Pe = 1− (1− Pe,m)Ms−1

= 1−

1−Q

 hkNcp√
σ2
wc + σ2

w′c

Ms−1

. (7.31)

It can be found from (7.31) that the error probability of PCP detection is independent

of the transmitted PCP symbols. In other words, all the potential PCPs that are

orthogonal to each other would have the same detection error rate.

7.4.2 Error Probability of PCP-OFDM Demodulation

In this evaluation, we concentrate on the demodulation errors of the data-carrying

OFDM symbol, caused by imperfect ISI and ICI cancellation with incorrect PCP
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detection. The errors induced by the misunderstanding of the security processing,

which primarily depend on the reliability of a specific security design, are not covered

in the analysis.

With the overall PCP detection error rate derived in (7.31), the data demodulation

performance of the PCP-OFDM system can be determined. Note that two PCPs need

to be decided for demodulating a data-carrying OFDM symbol. The detection errors

for cp1 and cp2 may result into different impacts on the data demodulation, as the

impairments from cp1 and cp2 are different. Assume Pe1 is the symbol error rate in

demodulating the data-carrying OFDM symbol when the two PCP detections are

correct, Pe2 is the SER when the detection of cp1 is incorrect but the detection of cp2

is correct, Pe3 is the SER under a correct cp1 detection but incorrect cp2 detection,

and Pe4 is the SER when both PCP detections are incorrect. The overall error rate

for the PCP-OFDM data demodulation, under the assumption that each of the Ms

orthogonal sequences has an equal probability to be transmitted, can be evaluated as

Pe,o =
1

Ms

Ms−1∑
m=0

[
(1− Pe)2 × Pe1 + (1− Pe)× Pe × Pe2 (7.32)

+(1− Pe)× Pe × Pe3 + P 2
e Pe4

]
=

1−Q

 hkNcp√
σ2
wc + σ2

w′c

2(Ms−1)

× Pe1

+


1−Q

 hkNcp√
σ2
wc + σ2

w′c

Ms−1

−

1−Q

 hkNcp√
σ2
wc + σ2

w′c

2(Ms−1)
×

(
Pe2 + Pe3

)

+

1−

1−Q

 hkNcp√
σ2
wc + σ2

w′c

Ms−1
2

× Pe4.

When the PCP detection error rate is low, the data demodulation performance of the
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PCP-OFDM system would be close to that of the traditional OFDM system.

7.5 Simulation Results

Computer simulations have been carried out to verify the proposed secure OFDM

system with embedded confidential signaling. PCP-OFDM signals are generated as

Fig. 7.1(a), where each data-carrying OFDM symbol has 64 subcarriers and the

length of the PCP is 16. Walsh codes with a size of 16 are adopted as the orthogonal

sequences to generate the PCP symbols. Sampling frequency for both the PCPs and

data-carrying OFDM symbols is set to 20 MHz. Moreover, Rayleigh fading channels

with exponential power delay profile of RMS delays 10 ns, 15 ns, 30 ns, 50 ns and

70 ns, are considered. Under the sampling frequency of 20 MHz, the lengths of the

corresponding Rayleigh fading channels are 3, 5, 8, 12, 16, respectively. In addition,

perfect synchronization and channel estimation are assumed in the simulations.

The error probabilities of the PCP detection under different Rayleigh fading chan-

nels are presented in Fig. 7.4. The error probability of PCP detection increases with

the increase of the channel delay spread. Please note that no channel equalization is

carried out for the PCP detection in the design, in order to reduce the operational

complexity. As the PCP symbol does not have a cyclic structure, equalization of the

PCP symbol has to seek help from the time domain iterative equalization techniques,

which would result into a huge computation burden. Without the channel equal-

ization, ISI from previous signals would disrupt the PCP detection. A longer delay

spread would cause a stronger ISI, and then degrade the detection performance more

severely. Fortunately, with the employment of orthogonal sequences, satisfactory

PCP detection performance can still be obtained without the channel equalization.

As shown in the figure, even when the delay spread is equal to the length of the PCP,

the detection error rate has already reduced to 0.1 when SNR is 10 dB. In addition,

it can be observed that the error probability curves turn to be flat during the high

SNR range. This is because that the PCP detection is mainly distorted by the ISI
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Figure 7.4: Error probability of the PCP enabled confidential signaling under different
channel conditions.

from multipath spread but not the noise when the SNR is high.

Since the ISI from multipath delay spread dominates the PCP detection perfor-

mance, particularly in the high SNR range, interference mitigate techniques can be

executed to improve the PCP detection reliability. Consider the duration of a PCP-

OFDM signal is usually much less than the channel coherence time. For example, in

an IEEE 802.11 network, the duration of an OFDM symbol is 4 us while the channel

coherence time is approximately 53 ms according to a pedestrian walking speed of

1 m/s. There is a big chance that a data-carrying OFDM symbol is accompanied

by two identical PCPs, since the channel based security design is not renewed so

frequently. As a result, the two PCPs can be averaged to mitigate the interference
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Figure 7.5: Error probability of the PCP enabled confidential signaling with interfer-
ence mitigation process.

and AWGN. Simulation results when two successively received PCPs are averaged

for the PCP detection are compared with the detection performance using only one

PCP in Fig. 7.5. Significant performance improvement of the PCP detection can be

observed when the interference mitigation process is operated.

The bit error rate (BER) and SER of data demodulation in the proposed secure

OFDM system with embedded confidential signaling are depicted in Fig. 7.6 and

Fig. 7.7, respectively. No interference mitigation process is carried out for the PCP

detection in these simulations. The BER and SER of the traditional CP-OFDM sys-

tem are provided as a benchmark in the study. As shown in the figures, the data

demodulation performance of the PCP-OFDM system is comparable to that of the
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Figure 7.6: BER of the secure OFDM system with embedded confidential signaling
under different channel conditions.
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Figure 7.7: SER of the secure OFDM system with embedded confidential signaling
under different channel conditions.
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traditional CP-OFDM system, especially in a multipath channel with a short delay

spread. When ISI on the PCP symbol is strong because of a long multipath channel,

the performance of PCP-OFDM is worse than that of the CP-OFDM. The perfor-

mance loss of data demodulation comes from the imperfect ISI and ICI cancellation

for the data-carrying OFDM symbol, essentially due to the incorrect PCP detection.

7.6 Summary

An embedded confidential signaling strategy for secure OFDM systems is inves-

tigated in this chapter, in which the traditional cyclic prefix of an OFDM signal is

replaced by a specially designed orthogonal sequence, named PCP. The security de-

sign relevant side information is conveyed by the PCP, and concurrently transmitted

with the data-carrying OFDM symbol. Consequently, information sharing between

the transmitter and legitimate receiver is enabled by the PCP signaling link with-

out interrupting the data transmission and requiring additional time and spectrum

resources. In order to achieve a secure and reliable transmission through the PCP

link, a set of orthogonal sequences, which is only known by legitimate users, is one-to-

one mapped to the potential information to be transmitted. An orthogonal sequence

is chosen in the transmission of each OFDM symbol corresponding to the present

security design. The PCP symbol is then generated by passing the selected orthog-

onal sequence through an OFDM modulator, so as to maintain the same time and

frequency characteristics as the data-carrying OFDM symbol. With the inherent or-

thogonality among all the candidate PCPs, the transmitted side information can be

reliably detected through cross correlations between the received PCP and elements

in the local PCP library of the receiver. The local candidate PCP that leads to the

maximum correlation peak will be taken as the PCP sent out by the transmitter, and

then used to assist the derivation of the adopted security design. Theoretical anal-

ysis and simulation results have been provided to validate the proposed embedded

confidential signaling link in secure OFDM systems.
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Chapter 8

Conclusions & Future Work

8.1 Conclusions

Securing wireless communications is challenging due to the inherent broadcast na-

ture of radio propagation. Traditional security mechanisms that do not address the

security issues at the physical layer cannot completely protect wireless networks. To

that end, physical layer security is emerging as a complement to traditional strate-

gies for securing wireless communications. This dissertation has investigated physical

layer security to: 1) evaluate the security level of wireless environments for develop-

ing adaptive security strategies, 2) enhance the built-in security of wireless OFDM

communication systems against passive eavesdropping, and 3) provide an embedded

signaling link for reliably and confidentially transmitting the data and security design

relevant parameters simultaneously.

Chapter 2 provides fundamentals related to the wireless communication security,

including risks and threats in wireless communication systems, general security objec-

tives, and constraints of traditional upper-layer security approaches. The concept of

physical layer security in wireless communications along with a literature survey of ex-

isting techniques is also presented. Furthermore, OFDM technology is reviewed. The

security weaknesses of OFDM physical layer due to its distinct time and frequency
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characteristics are addressed.

Chapter 3 investigates a time domain pilot correlation based detection technique

for recognizing the existence of active users in a wireless network. The proposed tech-

nique is based on a cyclic correlation between the complex conjugate multiplication

of adjacent received signal segments and a local reference derived from the in-band

pilots. The noise effect on the detection reliability is mitigated by a time domain

segment averaging following the phase rotation locking processing. The robustness

of the proposed detection algorithm to timing offset is improved by the time domain

OFDM symbol length based segmentation and the cyclic correlation. The robustness

to frequency offset is enhanced by the complex conjugate multiplication and the use

of the correlation magnitude. Simulation results show that the detection performance

of the proposed technique is satisfactory under low SNR conditions, even though both

timing and frequency offsets exist.

Chapter 4 proposes a novel device RF-DNA based estimation technique for the

number of active users in a network. Since any node in a network may act as a

malicious attacker and be a potential threat, the number of active users in a network is

crucial for understanding the security level of the wireless operating environment. As

a typical device RF-DNA that has device-specific nature, transmitter I/Q imbalance

is explored in the design. I/Q imbalance of a transmitter is first estimated from its

transmitting signals, and then compared with the I/Q imbalance estimate of each

previously identified active user through a hypothesis testing, where the Euclidean

distance between the new and previous estimates is adopted as the test metric. If

all the distances are larger than a properly selected threshold, a new active user is

claimed. Finally, the number of active users is obtained by counting all the distinct

I/Q imbalances. Simulation results have been provided to validate the proposed

estimation technique.

Chapter 5 proposes a novel and effective anti-eavesdropping OFDM system through

dynamic coordinate interleaving, by exploiting the channel reciprocity and uncorre-

lation feature exhibited among spatially separate wireless channels. Two coordinate
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interleaving based security schemes are investigated, which employ the subcarrier

channel gain and phase in determining the interleaving pattern, respectively. Depend-

ing on the CSI associated with the transmitter and legitimate receiver, the symbol

coordinate at a subcarrier with channel gain or channel phase larger than a predefined

threshold is interleaved. Since wireless channels associated with each pair of users

at separate locations exhibit independent propagation characteristics, the frequently

renewed selection of subcarriers undergoing coordinate interleaving is only shared

by legitimate users based on channel reciprocity. Without a matched subcarrier co-

ordinate de-interleaving pattern, erroneous information recovery is performed at the

eavesdropper so that eavesdropping is prevented. Theoretical analysis and simulation

results have been provided to validate the effectiveness of the proposed secure OFDM

system against eavesdropping.

In Chapter 6, another novel eavesdropping-resilient OFDM system through dy-

namic subcarrier interleaving is investigated as an alternative solution to prevent

eavesdropping, by taking advantage of the reciprocal, location-dependent and time-

varying nature of wireless channels. A transmitter employs its instantaneous CSI to

an intended receiver in designing the subcarrier interleaving pattern, where partial

subcarriers of each OFDM signal are selected and interleaved according to the sorted

order of their channel gains. Since wireless channels associated with each pair of

users at separate locations exhibit independent frequency selectivity, the frequently

renewed subcarrier interleaving scheme is only shared between legitimate nodes based

on channel reciprocity. As a result, mismatched information recovery is carried out

at the eavesdropper without an identical subcarrier interleaving pattern, thus pre-

venting malicious eavesdropping. In order to mitigate the impairment from imperfect

channel reciprocity between legitimate parties, a subcarrier selection algorithm is also

investigated to realize a trade-off between the eavesdropping resilience and legitimate

transmission reliability. It is observed from simulation results that eavesdropping on

the proposed system suffers a SER close to 100% while the legitimate transmission

has a SER matching to that of conventional OFDM systems.
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Chapter 7 provides an embedded confidential signaling link for the transmission

of security design relevant side information in secure OFDM systems. Extending our

previous study on PCP-OFDM, the sharing of the security design relevant side infor-

mation between legitimate users is enabled by a specially tailored PCP sequence. To

be specific, a set of orthogonal sequences, which is only known by legitimate users,

is one-to-one mapped to the potential information to be transmitted. An orthogo-

nal sequence is chosen in the transmission of each OFDM symbol corresponding to

the present security design. The PCP sequence is then generated by passing the se-

lected orthogonal sequence through an OFDM modulator, in order to maintain the

same time and frequency characteristics as the concurrently transmitted data-carrying

OFDM symbol. With the inherent orthogonality among all the candidate PCPs, the

side information transmitted through the PCP signaling link can be reliably identified

through cross correlations between the received PCP and elements in the local PCP

library at the receiver, and then used to assist the derivation of the security design

initiated by the transmitter. The validity of the PCP enabled signaling link has been

demonstrated by theoretical analysis and simulation results.

8.2 Future Work

There are several topics related to the presented research worthwhile for further

study. Some of them are listed as follows:

• On the topic of security level assessment in wireless networks, the presented

scheme explores the number of active users as the evaluation metric. However,

other network relevant parameters that can also indicate the security status in

wireless environments can be exploited to increase the evaluation accuracy.

• In the proposed device RF-DNA based estimation technique for the number

of active users in a network, only one typical hardware impairment in wireless

devices—I/Q imbalance, is addressed. The proposed estimation technique can
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be further extended to other device RF-DNAs as well, such as frequency and

magnitude errors.

• Regarding the enhancement of the built-in security in wireless communication

systems, this dissertation concentrates on the security against passive attacks,

considering that passive attacks often cause fatal damage to a wireless commu-

nication system. It is thus necessary to extend the current work to a general

scenario consisting of both passive and active attacks.

• In the wireless channel based physical layer security approaches, the random-

ness of the wireless channel between the transmitter and legitimate receiver

is exploited for the security design. As a precondition, the identity of the le-

gitimate receiver must be accurately verified. Therefore, reliable and efficient

authentication techniques also need to be investigated.
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Appendix A

Timing and Frequency Offsets in

OFDM

A.1 Timing Offset

Timing offset, which comes from the effect of sampling time error at the receiver

side, is a serious problem in OFDM system. Since large timing offset can be eas-

ily corrected with OFDM frame synchronization, the timing offset addressed in the

appendix is the residue error after the frame synchronization. Assume X(k) is the

frequency domain data to be transmitted using the OFDM system. After the pro-

cessing of the OFDM transmitter introduced in Chapter 2, the corresponding time

domain OFDM signal x(t) is up-converted and transmitted over the wireless channel.

At the receiver side, the received signal is sampled with the analog-to-digital converter

(ADC) for demodulation and information recovery, where timing errors may exist and

thus degrade the receiver performance. The OFDM process chain with timing offset

is shown in Fig. A.1, where y(n) denotes the received time domain signal and Y (k)

stands for the output of the FFT.
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X(k) x(n) y(n) Y(k)
IFFT FFTTiming offset

Figure A.1: OFDM process chain with timing offset.

With IFFT, the time domain transmitted OFDM signal from X(k) is obtained as

x(n) =
N−1∑
k=0

X(k)ej2π
kn
N , n = 0, 1, · · · , N − 1. (A.1)

Let ∆n denote the relative timing offset, which is the ratio of the timing offset to the

sampling interval. If the received signal is sampled with the timing error ∆n, y(n)

will be a time shifted version of x(n). Mathematically,

y(n) = x(n+ ∆n)

=
N−1∑
k=0

X(k)ej2π
k(n+∆n)

N , n = 0, 1, · · · , N − 1. (A.2)

Since large timing offset is easy to be compensated, usually only the residual error

(fractional timing offset) exists in the following processing, and the orthogonality of

the OFDM signal will normally not be destroyed by the timing offset. In this case,

the recovered data after FFT at the receiver can be expressed as

Y (k) =
1

N

N−1∑
n=0

[
N−1∑
l=0

X(l)ej2π
l(n+∆n)

N

]
e−j2π

kn
N

=
1

N

N−1∑
l=0

X(l)ej2π
l∆n
N

[
N−1∑
n=0

ej2π
(l−k)n
N

]
= X(k)ej2π

k∆n
N , k = 0, 1, · · · , N − 1. (A.3)

Equation (A.3) shows that the fractional timing offset causes a phase rotation of the

recovered signal, which is linearly proportional to the subcarrier index.
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A.2 Frequency Offset
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Figure A.2: Illustration of frequency offset in OFDM signals.

Since there are local oscillator errors and Doppler frequency shifts in wireless

OFDM system, frequency offset always exists between the transmitter and receiver,

as illustrated in Fig. A.2. Similar to the analysis of timing offset, the OFDM process

chain with frequency offset is given as Fig. A.3.

X(k) x(n) y(n) Y(k)
IFFT FFTFreuqency offset ~ ~

Figure A.3: OFDM process chain with frequency offset.

In order to avoid potential confusion, the received signal with frequency offset is

represented by ỹ(n) and the corresponding recovered data is denoted by Ỹ (k). Let
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∆k represent the relative frequency offset, which is defined as the ratio of the actual

frequency offset to the subcarrier spacing. The received signal with frequency offset

∆k can be written as

ỹ(n) =
N−1∑
k=0

X(k)ej2π
(k+∆k)n

N

=
N−1∑
k=0

X(k)ej2π
kn
N ej2π

∆kn
N

= x(n)ej2π
∆kn
N , n = 0, 1, · · · , N − 1. (A.4)

As shown in (A.4), the effect of frequency offset on each time domain OFDM sample

x(n) is a phase shift of 2π∆kn/N . The data symbol after the FFT can thus be given

by

Ỹ (k) =
1

N

N−1∑
n=0

[
N−1∑
l=0

X(l)ej2π
(l+∆k)n

N

]
e−j2π

kn
N

=
1

N

N−1∑
n=0

[
N−1∑
l=0

X(l)ej2π
(l−k+∆k)n

N

]

=
1

N

N−1∑
l=0

X(l)

[
N−1∑
n=0

ej2π
(l−k+∆k)n

N

]
,

k = 0, 1, · · · , N − 1. (A.5)

With the geometric series expansion, i.e.
N−1∑
n=0

an =
1− aN

1− a
, equation (A.5) can be
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rewritten as

Ỹ (k) =
1

N

N−1∑
l=0

X(l)
1− ej2π(l−k+∆k)

1− ej2π l−k+∆k
N

=
1

N

N−1∑
l=0

X(l)
ejπ(l−k+∆k)

(
e−jπ(l−k+∆k) − ejπ(l−k+∆k)

)
ejπ

l−k+∆k
N

(
e−jπ

l−k+∆k
N − ejπ l−k+∆k

N

)
=

1

N

N−1∑
l=0

X(l)
ejπ(l−k+∆k)

ejπ
l−k+∆k

N

−2j sin(π(l − k + ∆k))

−2j sin(π l−k+∆k
N

)

=
1

N

N−1∑
l=0

X(l)ejπ(l−k+∆k)N−1
N

sin(π(l − k + ∆k))

sin(π l−k+∆k
N

)
,

k = 0, 1, · · · , N − 1. (A.6)

For a small x, sin(x) ≈ x. It can be used to simplify the above equation, especially

when N is very large. Thus,

Ỹ (k) ≈
N−1∑
l=0

X(l)ejπ(l−k+∆k)N−1
N

sin(π(l − k + ∆k))

π(l − k + ∆k)

= X(k)ejπ(∆k)N−1
N

sin(π∆k)

π∆k

+
N−1∑

l=0,l 6=k

X(l)ejπ(l−k+∆k)N−1
N

sin(π(l − k + ∆k))

π(l − k + ∆k)
,

k = 0, 1, · · · , N − 1, (A.7)

where
N−1∑

l=0,l 6=k
X(l)ejπ(l−k+∆k)N−1

N
sin(π(l−k+∆k))
π(l−k+∆k)

is referred to as inter-carrier interference

caused by the sidelobes of other subcarriers due to frequency offset. It can be con-

cluded from (A.7) that a phase shift and an amplitude attenuation are introduced

by the frequency offset to the demodulated output. At the same time, the recovered

data is interfered by the signals from other subcarriers of the same OFDM symbol

due to the loss of the orthogonality.
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