10 research outputs found

    Neural plasticity and minimal topologies for reward-based learning

    Get PDF
    Artificial Neural Networks for online learning problems are often implemented with synaptic plasticity to achieve adaptive behaviour. A common problem is that the overall learning dynamics are emergent properties strongly dependent on the correct combination of neural architectures, plasticity rules and environmental features. Which complexity in architectures and learning rules is required to match specific control and learning problems is not clear. Here a set of homosynaptic plasticity rules is applied to topologically unconstrained neural controllers while operating and evolving in dynamic reward-based scenarios. Performances are monitored on simulations of bee foraging problems and T-maze navigation. Varying reward locations compel the neural controllers to adapt their foraging strategies over time, fostering online reward-based learning. In contrast to previous studies, the results here indicate that reward-based learning in complex dynamic scenarios can be achieved with basic plasticity rules and minimal topologies. © 2008 IEEE

    Real-time hebbian learning from autoencoder features for control tasks

    Get PDF
    Neural plasticity and in particular Hebbian learning play an important role in many research areas related to artficial life. By allowing artificial neural networks (ANNs) to adjust their weights in real time, Hebbian ANNs can adapt over their lifetime. However, even as researchers improve and extend Hebbian learning, a fundamental limitation of such systems is that they learn correlations between preexisting static features and network outputs. A Hebbian ANN could in principle achieve significantly more if it could accumulate new features over its lifetime from which to learn correlations. Interestingly, autoencoders, which have recently gained prominence in deep learning, are themselves in effect a kind of feature accumulator that extract meaningful features from their inputs. The insight in this paper is that if an autoencoder is connected to a Hebbian learning layer, then the resulting Realtime Autoencoder-Augmented Hebbian Network (RAAHN) can actually learn new features (with the autoencoder) while simultaneously learning control policies from those new features (with the Hebbian layer) in real time as an agent experiences its environment. In this paper, the RAAHN is shown in a simulated robot maze navigation experiment to enable a controller to learn the perfect navigation strategy significantly more often than several Hebbian-based variant approaches that lack the autoencoder. In the long run, this approach opens up the intriguing possibility of real-time deep learning for control

    Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks

    Full text link
    A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules). While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1) induces task-specific learning in groups of nodes and connections (task-specific localized learning), which 2) produces functional modules for each subtask, and 3) yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting

    Genetic representation and evolvability of modular neural controllers

    Get PDF
    The manual design of con- trol systems for robotic devices can be challenging. Methods for the automatic synthesis of control systems, such as the evolution of artificial neural networks, are thus widely used in the robotics community. However, in many robotic tasks where multiple interdependent control problems have to be solved simultaneously, the performance of conventional neuroevolution techniques declines. In this paper, we identify interference between the adaptation of different parts of the control system as one of the key challenges in the evolutionary synthesis of artificial neural networks.As modular net- work architectures have been shown to reduce the effects of such interference, we propose a novel, implicit modular genetic representation that allows the evolutionary algorithm to automatically shape modular network topologies. Our experiments with plastic neural networks in a simple maze learning task indicate that adding a modular genetic representation to a state-of-the-art implicit neuroevolution method leads to better algorithm performance and increases the robustness of evolved solutions against detrimental mutations

    D.: Evolving Neuromodulatory Topologies for Reinforcement Learning-like Problems

    No full text
    Abstract — Environments with varying reward contingencies constitute a challenge to many living creatures. In such conditions, animals capable of adaptation and learning derive an advantage. Recent studies suggest that neuromodulatory dynamics are a key factor in regulating learning and adaptivity when reward conditions are subject to variability. In biological neural networks, specific circuits generate modulatory signals, particularly in situations that involve learning cues such as a reward or novel stimuli. Modulatory signals are then broadcast and applied onto target synapses to activate or regulate synaptic plasticity. Artificial neural models that include modulatory dynamics could prove their potential in uncertain environments when online learning is required. However, a topology that synthesises and delivers modulatory signals to target synapses must be devised. So far, only handcrafted architectures of such kind have been attempted. Here we show that modulatory topologies can be designed autonomously by artificial evolution and achieve superior learning capabilities than traditional fixed-weight or Hebbian networks. In our experiments, we show that simulated bees autonomously evolved a modulatory network to maximise the reward in a reinforcement learning-like environment. I

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore