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Abstract

Neural plasticity and in particular Hebbian learning play an
important role in many research areas related to artficial life.
By allowing artificial neural networks (ANNs) to adjust their
weights in real time, Hebbian ANNs can adapt over their
lifetime. However, even as researchers improve and extend
Hebbian learning, a fundamental limitation of such systems
is that they learn correlations between preexisting static fea-
tures and network outputs. A Hebbian ANN could in principle
achieve significantly more if it could accumulate new features
over its lifetime from which to learn correlations. Interest-
ingly, autoencoders, which have recently gained prominence
in deep learning, are themselves in effect a kind of feature
accumulator that extract meaningful features from their in-
puts. The insight in this paper is that if an autoencoder is
connected to a Hebbian learning layer, then the resulting Real-
time Autoencoder-Augmented Hebbian Network (RAAHN)
can actually learn new features (with the autoencoder) while si-
multaneously learning control policies from those new features
(with the Hebbian layer) in real time as an agent experiences
its environment. In this paper, the RAAHN is shown in a simu-
lated robot maze navigation experiment to enable a controller
to learn the perfect navigation strategy significantly more of-
ten than several Hebbian-based variant approaches that lack
the autoencoder. In the long run, this approach opens up the
intriguing possibility of real-time deep learning for control.

Introduction
As a medium for adaptation and learning, neural plasticity has
long captivated artificial life and related fields (Baxter, 1992;
Floreano and Urzelai, 2000; Niv et al., 2002; Soltoggio et al.,
2008, 2007; Soltoggio and Jones, 2009; Soltoggio and Stan-
ley, 2012; Risi and Stanley, 2010; Risi et al., 2011; Risi and
Stanley, 2012; Stanley et al., 2003; Coleman and Blair, 2012).
Much of this body of research focuses on Hebbian-inspired
rules that change the weights of connections in proportion
to the correlation of source and target neuron activations
(Hebb, 1949). The simplicity of such Hebbian-inspired rules
makes them easy and straightforward to integrate into larger
systems and experiments, such as investigations into the evo-
lution of plastic neural networks (Floreano and Urzelai, 2000;
Soltoggio et al., 2008; Risi et al., 2011). Thus they have en-
abled inquiry into such diverse problems as task switching

(Floreano and Urzelai, 2000), neuromodulation (Soltoggio
et al., 2008), the evolution of memory (Risi et al., 2011), and
reward-mediated learning (Soltoggio and Stanley, 2012).

However, while Hebbian rules naturally facilitate learn-
ing correlations between actions and static features of the
world, their application in particular to control tasks that re-
quire learning new features in real time is more complicated.
While some models in neural computation in fact do enable
low-level feature learning by placing Hebbian neurons in
large topographic maps with lateral inhibition (Bednar and
Miikkulainen, 2003), such low-level cortical models gener-
ally require prohibitive computational resources to integrate
into real-time control tasks or especially into evolutionary
experiments that require evaluating numerous separate indi-
viduals. Thus there is a need for a convenient and reliable
feature generator that can accumulate features from which
Hebbian neurons combined with neuromodulation (Soltoggio
et al., 2008) can learn behaviors in real time.

Interestingly, such a feature-generating system already ex-
ists and in fact has become quite popular through the rise of
deep learning (Bengio et al., 2007; Hinton et al., 2006; Le
et al., 2012; Marc’Aurelio et al., 2007): the autoencoder (Hin-
ton and Zemel, 1994; Bourlard and Kamp, 1988). Autoen-
coders, which can be trained through a variety of algorithms
from Restricted Boltzmann Machines (RBMs) (Hinton et al.,
2006) to more conventional stochastic gradient descent (Le
et al., 2012) (e.g. similar to backpropagation; Rumelhart et al.
1986), aim simply to output the same pattern as they input.
By training them to mimic their inputs, they are forced to
learn key features in their hidden layer that efficiently en-
code such inputs. In this way, they accumulate such key
features as they are exposed to more inputs. However, in
deep learning autoencoders are usually trained for classifica-
tion tasks through an unsupervised pre-training phase and
in fact recent results have raised doubts on their necessity
for such tasks anyway (Cireşan et al., 2012). The idea in
this paper is that in fact autoencoders can instead be put to
good use as feature accumulators that work synergistically
with neuromodulated Hebbian connections that learn from
the accumulating features in real time, as an autonomous
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agent acts in the world. The resulting structure is the Real-
time Autoencoder-Augmented Hebbian Network (RAAHN), a
novel algorithm for learning control policies through rewards
and penalties in real time.

In short, the key idea behind the RAAHN is that a missing
ingredient that can reinvigorate the field of Hebbian learning
is the ability of an autonomous agent to learn new features
as it experiences the world. Those new features are then
simultaneously the inputs to a neuromodulated Hebbian layer
that learns to control the agent based on the accumulating
features. In effect, the RAAHN realizes the philosophy that
real-time reward-modulated learning cannot achieve its full
potential unless the agent is simultaneously and continually
learning to reinterpret and re-categorize its world. Introduc-
ing the RAAHN thereby creates the opportunity to build and
study such systems concretely.

The experiment in this paper is intended as a proof of
concept designed to demonstrate that it is indeed possible to
learn autoencoded (and hence unsupervised) features at the
same time as Hebbian connections are dynamically adapting
based both on correlations with the improving feature set and
neuromodulatory reward signals. In the experiment, simu-
lated robots with two kinds of sensors (one to see the walls
and the other to see a non-uniform distribution of “crumbs”
on the floor) are guided through a maze to show them the op-
timal path, after which they are released to navigate on their
own. However, supervised learning does not take place in the
conventional sense during this guided period. Instead, both
the autoencoder and the Hebbian connections are adjusting
in real time without supervisory feedback to the autoencoder.
Furthermore, to isolate the advantage of the autoencoder, two
other variants are attempted – in one the Hebbian connec-
tions learn instead from the raw inputs and in the other the
Hebbian connections learn from a set of random features
(e.g. somewhat like an extreme learning machine; Huang and
Wang 2011).

The main result is that only the full RAAHN learns the
optimal path through the maze in more than a trivial percent-
age of runs, showing not only that it is possible to train an
autoencoder and Hebbian connections simultaneously, but
that in fact the autoencoder component can be essential for
incorporating the most important features of the world.

While the RAAHN could be viewed in the context of
reinforcement learning (RL), it is important to note that the
approach is rather aimed at issues outside typical RL. In
particular, the RAAHN can be viewed as a platform for later
integrating more advanced and realistic Hebbian learning
regimes, e.g. with distal rewards (Soltoggio et al., 2013) to
demonstrate more convincingly their full potential.

In effect, the RAAHN is a new way to think about plas-
ticity that goes beyond the proof of concept in this paper. It
is among the first methods to suggest the potential for real-
time deep learning for control. In that way it opens up a
large and rich research area for which this paper represents

an initial step. If Hebbian connections can be trained from
a dynamically adjusting autoencoder, then perhaps one day
they will learn in real time from deepening stacked autoen-
coders or within complex evolved networks that incorporate
autoencoders as a basic element. While much remains to be
explored, the initial study here thereby hints at what might
be possible in the future.

Background
This section reviews Hebbian learning in artificial neural
networks (ANNs) and the application of autoencoders in
deep learning.

Hebbian ANNs
The plain Hebbian plasticity rule is among the simplest for
training ANNs:

∆wi = ηxiy, (1)

where wi is the weight of the connection between two neu-
rons with activation levels xi and y, and η is the learning
rate. As an entirely local learning rule, it is appealing both
for its simplicity and biological plausibility. For this reason,
many researchers have sought to uncover the full extent of
functionality attainable by ANNs only of Hebbian rules.

As researchers have gained insight into such networks,
they have also found ways to increase the rule’s sophisti-
cation by elaborating on its central theme of strengthening
through correlated firing (e.g. Oja 1982; Bienenstock et al.
1982). Researchers also began to evolve such ANNs in the
hope of achieving more brain-like functionalities by produc-
ing networks that change over their lifetime (Floreano and
Urzelai, 2000; Niv et al., 2002; Risi and Stanley, 2010; Risi
et al., 2011; Stanley et al., 2003).

One especially important ingredient for Hebbian ANNs
is neuromodulation, which in effect allows Hebbian connec-
tions to respond to rewards and penalties. Neuromodulation
enables the increase, decrease, or reversal of Hebbian plas-
ticity according to feedback from the environment. Models
augmented with neuromodulation have been shown to imple-
ment a variety of typical features of animal operant learning
such as reinforcement of rewarding actions, extinction of
unproductive actions, and behavior reversal (Soltoggio and
Stanley, 2012; Soltoggio et al., 2013). The combination of
Hebbian ANNs with neuromodulatory signals in recent years
has especially inspired neuroevolution and artificial life re-
searchers by opening up the possibility of evolving ANNs
that can learn from a sequence of rewards over their lifetime
(Soltoggio et al., 2008, 2007; Soltoggio and Jones, 2009;
Soltoggio and Stanley, 2012; Risi and Stanley, 2012; Cole-
man and Blair, 2012).

However, one limitation of these cited studies is that the
inputs are generally heavily pre-processed to provide mean-
ingful and useful feature to the neural substrate that performs
Hebbian plasticity. A natural question is whether such use-
ful features can in principle emerge in real-time during the



agent’s lifetime, and in combination with the associative,
reward-driven learning provided by Hebbian plasticity. As
this paper argues, the autoencoder, reviewed next, is an ap-
pealing candidate for playing such a role.

Autoencoders in Deep Learning
The idea behind the autoencoder is to train a network with
at least one hidden layer to reconstruct its inputs. The au-
toencoder can be described as a function f that encodes a
feature vector x (i.e. the inputs) as a set of hidden features
h = f(x). A second function g then decodes the hidden
features h (typically a hidden layer within an ANN) into a
reconstruction r = g(h) (Bengio et al., 2013). The hope of
course is that once trained, r will be as close as possible to
x for any input x. While many possible autoencoder models
exist, the parameters of the autoencoder (which can be rep-
resented as weights in an ANN) are often the same for the
encoder and decoder, which means in effect that the weights
are bidirectional (Bengio et al., 2013). The main property of
the autoencoder that makes it interesting is that by forcing it
to learn hidden features h that can reconstruct input instances,
under the right circumstances the features of h are forced to
encode key features of the input domain. For example, edge
detectors might arise in h for encoding images (Hinton et al.,
2006).

Autoencoders began to gain in popularity considerably
after researchers observed that they can help to train deep
networks (i.e. ANNs of many hidden layers) through a pre-
training phase in which a stack of autoencoders is trained in
sequence, each one from the previous (Bengio et al., 2007;
Hinton et al., 2006; Le et al., 2012; Marc’Aurelio et al., 2007),
leading to a hierarchy of increasingly high-level features.
Because it was thought that backpropagation struggles to
train networks of many layers directly, pre-training a stack of
such autoencoders and then later completing training through
e.g. backpropagation was seen as an important solution to
training deep networks. Although later results have suggested
that in fact such pre-training is not always needed (Cireşan
et al., 2010) (especially in the presence of an abundance
of labeled data), it remains a compelling demonstration of
unsupervised feature accumulation and remains important for
training in the absence of ample labeled data (Bengio et al.,
2013). In any case, typically the main application of such
deep networks is in classification problems like handwriting
recognition.

Another appeal of autoencoders is that there are many
ways to train them and many tricks to encourage them to
produce meaningful features (Ranzato et al., 2006; Le et al.,
2012). While RBMs (a kind of probabilistic model) can
play a similar role to autoencoders, classic autoencoders in
deep learning are generally trained through some form of
stochastic gradient descent (Le et al., 2012; Bengio et al.,
2007) (like backpropagation), as is the case in this paper.
However, the important issue in the present investigation

is not the particular details of the autoencoder; in fact an
advantage of the RAAHN formulation is that any autoencoder
can be plugged into the RAAHN. Thus as autoencoders are
refined and improved, RAAHNs naturally benefit from such
improvements and refinements. It is also possible that the
real-time context of RAAHNs will provoke more attention
in the future to identifying autoencoder formulations most
suited to real time.

Approach: Real-time Autoencoder-Augmented
Hebbian Network

The Real-time Autoencoder-Augmented Hebbian Network
(RAAHN) approach introduced in this paper consists of
two distinct components: the autoencoder and the Hebbian
learner. The simplest implementation consists of an ANN
with a single hidden layer; connections from the inputs to
the hidden layer are trained as an autoencoder and connec-
tions from the hidden layer to the outputs are trained with
a Hebbian rule. Thus the hidden layer represents a set of
features extracted from the inputs that a Hebbian rule learns
to correlate to the outputs to form an effective control policy.

Both of these components can be implemented in a number
of different ways. The particular implementation described
in this section, which is tested later in the experiment, serves
as a proof of concept. It is designed accordingly to be as
simple as possible.

Autoencoder Component
The autoencoder in this experiment is a heuristic approxima-
tion of the conventional autoencoder (Bengio et al., 2013)
that was chosen for simplicity and ease of implementation.
It is important to note that it suffices for the purpose of this
experiment because it converges to within 5% of the optimal
reconstruction in every run of the experiment in this paper.
This consistent convergence validates that the simplified au-
toencoder effectively approximates the behavior of an ideal
autoencoder without loss of generality. Of course, more so-
phisticated autoencoder implementations can fill the same
role in future implementations of the RAAHN.

The simplified autoencoder component consists of a single
layer of bidirectional weights that are trained to match the
output of the backwards activation with the input to the for-
ward activation. On each activation of the network, first the
inputs I feed into the the regular forward activation of the
hidden layer H (the input layer is fully connected to the hid-
den layer) in the following manner. For each hidden neuron
j, forward activation Aj is calculated:

Aj = σ

(∑
i∈I

(Ai · wi,j) + bj

)
, (2)

where σ is a sigmoid function, Ai is the value of input neuron
i ∈ I , wi,j is the weight of the connection between neurons
i and j, and bj is the bias on hidden neuron j. Next, the



forward activation values for hidden layer H are used to
calculate the backwards activation to input layer I . For each
input neuron i, backward activation Bi is calculated:

Bi = σ

∑
j∈H

(Aj · wi,j) + bi

 , (3)

where σ is the same sigmoid activation function as in equa-
tion 2, Aj is the forward activation on hidden neuron j ∈ H ,
and bi is the bias on input neuron i.

After backwards activation is calculated, for each input
neuron i, an error Ei is calculated:

Ei = Ai −Bi. (4)

Finally, as a simple heuristic for reducing reconstruction error
(modeled after the perceptron learning rule), each weight is
adjusted according to

∆wi,j = αEiAj , (5)

where α is the learning rate (which is set to a small value
to prevent convergence before an adequate number of input
samples have been seen). This autoencoder was validated on
data from the experiment to ensure that it converges with very
low error (less than 5% from the optimal reconstruction). It is
important again to note that any autoencoder could substitute
for this simple model, whose particular mechanics are not
essential to the overall RAAHN.

The experiment in this paper applies the proposed RAAHN
system to a simulated robot control task. On each simulated
time tick, the agent perceives values on its sensors and ex-
periences a network activation. Thus, each time tick con-
stitutes one training sample for the purpose of training the
autoencoder connections. In this paper, a batch-style train-
ing system is implemented in which training samples are
added to a history buffer of size n and autoencoder training
is applied several times on the entire history buffer every n

2
ticks. Batch-style training is selected because many popular
autoencoder training methods such as L-BFGS require batch
training, although in preliminary experiments the system was
found to perform well with both large and small values of n.

Hebbian Component
In the RAAHN system, connections between learned fea-
tures and the outputs are trained with a modulated Hebbian
learning rule, which is similar to the simple Hebbian rule
(equation 1) with an added term to allow for the influence of
reward and penalty signals. In this way, connections are only
strengthened when a reward signal is received and when a
penalty signal is received, the rule switches to anti-Hebbian
(which serves to weaken connections). The modulated Heb-
bian rule is

∆wi = mηxiy, (6)

where m is the modulation associated with the training sam-
ple. The Hebbian rule without modulation is like assuming
that all training samples are positive; modulation allows train-
ing samples to be marked with varying degrees of positive or
negative signal, which is a more flexible learning regime. The
details of the modulation scheme have a significant impact on
the effectiveness of learning. In the maze-navigating experi-
ment in this paper, a simple modulation scheme is selected in
which modulation is positive when the robot turns away from
a wall, negative when the robot turns towards a wall, and
neutral (m = 0, corresponding to no learning) when there is
no change. Specifically, the modulation component in this pa-
per is calculated as the difference between the front-pointing
rangefinder sensor activation on the previous tick and on the
current tick, normalized to the range −1 to 1.

Modulated Hebbian learning following equation 6 is ap-
plied to every connection of the Hebbian component of the
RAAHN system on each tick. The system in essence learns
correlations between the developing feature set discovered by
the autoencoder component and an output pattern required
for effective control. The Hebbian rule is useful as a learning
mechanism to connect autoencoder features to outputs be-
cause it is invariant to starting conditions. Thus, if the pattern
of features in the learned feature set changes for some reason
(e.g. the nature of the task environment shifts significantly),
the Hebbian component can simply learn new correlations
for the new feature set, enabling calibration in real-time as
the feature set itself is refined.

Experiment
To demonstrate the effectiveness of the proposed RAAHN
system, a maze-navigating control task is introduced in which
a robot agent must make as many laps around the track as
possible in the allotted time. The challenges of the task
are two-fold. The first and more trivial challenge is for the
controller to avoid crashing into walls, which would prevent
it from completing any laps at all (robots that crash into
walls almost always remain stuck on the wall, preventing
any further movement). The second challenge arises because
there are multiple round-trip paths around the track (figure 1).
In particular, the track consists of an optimal path with two
attached “detours” – longer routes that lead the robot off the
optimal path before re-joining it. There is one detour attached
to the inner wall of the track as well as one detour attached
to the outer wall of the track. Both detours take significantly
longer to traverse than the optimal path; thus taking either
detour (or both detours) reduces the amount of laps the robot
can make in the allotted time.

Robots in this task have access to two different types of
sensors (figure 2). First, robots are equipped with a set of 11
wall-sensing rangefinders, each 200 units in length (slightly
longer than the narrowest portions of the track) and equally
spaced across the frontal 180 degrees of the robot (with one
rangefinder pointing directly towards the front). Notice also



Figure 1: Multiple path environment. Robots navigate this
cyclical track that consists of an optimal path (in terms of the
shortest lap time) with two attached suboptimal detours. The
training phase autopilot is denoted by a dotted line. Crumbs
(gray dots) are scattered non-uniformly around the track to
enable the identification of unique locations.

in figure 1 that there are “crumbs” scattered nonuniformly
across the track. The random distribution of these crumbs
means the robot can in principle identify unique locations.
For this purpose, robots are equipped with 33 crumb-density
sensors that sense the density of crumbs within a range-
limited pie slice. The crumb-density sensors are divided
into three sets of 11 (near, mid, and far), each set equally
spaced across the frontal 180 degrees of the robot. Near-type
crumb density sensors sense crumbs between 0 and 132 units
in distance, mid-type between 133 and 268 units, and far-type
between 269 and 400 units. If one crumb is present within a
crumb density sensor’s area, then the sensor experiences 0.33
activation; it experiences 0.67 activation for two crumbs and
1.0 activation for three or more crumbs (it is rare for more
than three crumbs to be present in a sensor’s area). Robots
have a single effector output, corresponding to the ability
to turn right or left. Otherwise, robots are always moving
forward at a constant velocity (5 units per tick).

In the experiment, robots first experience a training phase.
During this phase an autopilot drives the robot around the
track for 30,000 ticks. The robot is shown a path that never
deviates onto suboptimal detours. However, the driving
within the chosen path is not perfect. The autopilot, whose
path (shown in figure 1) is deterministic, does not crash but it
also does not always drive in the precise middle of the road;
that way it is exposed to the penalty for moving too close
to walls. During this training phase the autopilot overrides
the robot’s outputs, forcing it to move along the autopilot’s
route, while both the autoencoder and Hebbian learning are
turned on. After the training phase, autopilot is turned off,
learning is stopped, and agents are released to follow their
learned controller for 10,000 ticks (the evaluation phase).

It is important to note that while this experiment could

(a) Wall Sensors (b) Crumb Sensors

Figure 2: Agent sensor types. Robots have a set of 11
rangefinder sensors (a) for detecting the presence of walls (up
to a maximum distance of 200 units). Robots also have an
array of 33 non-overlapping range-limited pie slice sensors
(b) to sense crumbs in the environment. Each sensor can
detect up to three crumbs with increasing levels of activation,
at which point sensor activation is capped. These crumb
sensors form a semicircular grid up to a distance of 400 units
across the frontal 180 degrees of the robot.

have been performed with a supervised learning framework,
RAAHN is not restricted to supervised learning. Because
RAAHN organizes its feature set and learns a control policy
in real-time as it accumulates information about its environ-
ment, it can in principle perform when there is no autopilot
training phase and robots are simply released into the world
under their own control from the first tick. However, this type
of application of RAAHN would require a more advanced
modulation scheme that also rewards making laps and per-
haps would require confronting the distal reward problem.
In the interest of introducing the core learning mechanism
without other potentially confusing variables, such a study is
reserved for future investigation. It is also critical to note that
the experiment even as devised is not supervised learning
because the autoencoder is accumulating features in real-time
with no error feedback whatsoever, just as would happen if
the agent were allowed to control its own movements while
learning. The autopilot simply ensures that the experience of
the robot is consistent in this initial study so we can under-
stand what is typically learned by a RAAHN when experience
is consistent (though of course from different initial random
starting weights).

Preliminary experiments revealed that a robot controller
consisting of only rangefinder sensors connected directly
to the output with Hebbian connections (i.e. without an au-
toencoder) was able to navigate the track with a trivial wall-
following behavior that keeps close to and parallel to a wall
on either the right or the left side while moving forward
around the track. Because there is a detour attached to both
the inner wall and the outer wall, robots performing such
a trivial wall-following behavior will inevitably take one
of the two detours each lap. The optimal behavior, which
involves avoiding both detours while moving around the
track at maximum speed and avoiding crashing into walls,
therefore requires extra information and neural structure than
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Figure 3: Variant network structures. Three variant networks are compared in the main experiment. Individual neurons within
sensor array layers and hidden layers have been omitted for clarity. Layers shown as connected are fully connected. Dotted lines
represent connections trained with modulated Hebbian plasticity. Dashed lines represent connections trained as an autoencoder.
Solid lines represent static (non-trained) connections.

Hebbian learning from the raw rangefinder information. For
the purposes of the main experiment, the crumb sensors and
a layer of features extracted from the crumb sensors serve
as this extra information. With the crumb sensors, robots
in principle have the ability to distinguish between different
parts of the track that have different “density signatures” (e.g.
the opening for the outer detour causes a very different ac-
tivation pattern on the crumb sensors than the opening for
the inner detour). This distinguishing information makes it
possible to enact different policies at different parts of the
track (e.g. switching to following walls on the left side rather
than the right side after passing the outer detour going around
the track clockwise), which is essential for avoiding both
detours and proceeding around the track along the optimal
path. Thus an optimal agent must somehow encode these
higher-level features.

The main experiment consists of a comparison between
three very different learning regimes: RAAHN, RNDFEAT
(random features), and HEBB. These methods differ only
in the way that they process the extra information from the
crumb sensors; all three methods include direct Hebbian con-
nections from the wall-sensing rangefinders to the output.
RAAHN (figure 3a) includes an autoencoder-trained feature
set of 7 neurons drawn from the 33 crumb sensors. This fea-
ture set then feeds into the output via Hebbian connections.
RNDFEAT (figure 3b) has the same structure as RAAHN,
except autoencoder training is turned off. This configuration
means that RNDFEAT has a set of 7 static random features.
Results for RNDFEAT with 30 and 100 random features are
also included (as RNDFEAT30 and RNDFEAT100, respec-
tively), which resemble the idea behind extreme learning ma-
chines (Huang and Wang, 2011). Finally, HEBB (figure 3c)
consists of all inputs directly connected to the output via
Hebbian connections. In all variants, connection weights are
randomly initialized with a uniform distribution of small mag-
nitude (with average magnitude equal to 5% of the maximum
weight of 3.0); increasing the magnitude of initial weights
in preliminary experiments did not significantly impact the
results.

Experimental Parameters
Batch autoencoder training occurs every 800 ticks on a his-
tory buffer of training samples spanning the past 1,600 ticks,
which is roughly equivalent to the amount of time required to
make a full lap during the training phase (recall that training
encompasses 30,000 total ticks). The learning rate α for au-
toencoder training is 0.001. Each time batch training occurs,
the buffer of training samples is spun through 10 times, with
backwards activations recalculated after each pass. The re-
sult is that the autoencoder mostly converges by the end of a
single training pass (autoencoder error is reduced to less than
5% of the optimal reconstruction). The Hebbian learning
rate η for all variants is 0.2. These parameter settings were
found to be robust to moderate variation through preliminary
experimentation.

Results
In the results reported in this section, performance is based
on the kinds of paths followed over the 10,000 tick evaluation
period, averaged across 1,000 trials. Learned behaviors were
found to be consistent, that is, the behavior observed during
the first lap is very similar to the behavior on all other laps,
especially with respect to which detours are taken (if any).
Therefore, it is possible to place behaviors that navigate the
maze into two key categories: First are robots that follow
the optimal path; these best-performing robots never take a
detour and thereby stay on the best path. Second are wall-
avoiding robots who deviate from the optimal path by taking
at least one detour but still effectively avoid crashing and
thereby make several clean laps around the track. Learned
behaviors that do not fall into either of these two categories
do not complete the course because they crash into walls.
Experimental results are reported in figure 4 as the percent-
age of robots trained with each scheme that fall into either
category.

The main result is that the RAAHN learns the optimal path
four times more often than the closest variant (RNDFEAT30).
HEBB never learns the optimal path. However, the results
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Figure 4: Percentage of wall-avoiding and optimal path
followers. Results for each variant are percentages calculated
over 1 000 evaluations.

confirm that pure Hebbian learning (HEBB) is invariant to
starting conditions – it performs exactly the same in each
of 1,000 trials (each with different initial weights). HEBB
robots always follow the inner detour. Both RAAHN and
RNDFEAT variants experience some failed trials, though
RAAHN experiences the least. These failures come in many
forms: robots that get stuck on sharp corners when exiting
a detour are a common observed failure. Some robots fail
immediately after leaving autopilot by spinning in tight cir-
cles – this type of failure (immediate failure) is not consistent
across all methods. Interestingly, immediate failure occurs in
1.7% of RAAHN runs, 15.3% of RNDFEAT runs, 33.4% of
RNDFEAT30 runs, and 58.6% of RNDFEAT100 runs.

Discussion and Future Work
The HEBB variant, which attempts to incorporate the crumb
sensor inputs directly as a static feature set, never achieves op-
timal behavior. Thus, raw crumb sensor information appears
to be insufficient for Hebbian learning to discover optimal be-
haviors on this task, suggesting the necessity of higher-level
features. While HEBB’s performance could in principle be
manipulated by manually changing the set of static features
(e.g. preprocessing the inputs), doing so is like the human
playing the role of the RAAHN. This paper focuses instead
on the automated generation of features with the intent of
building a learning system that is generally applicable to
future domains that may be too complicated for manual pre-
processing of features or where adaptation of the feature set
is required (e.g. large, open-ended artificial life worlds).

One naive way to automatically generate higher level
features is through a hidden layer with random incoming
weights, such as in RNDFEAT. While such random features
bring optimal behaviors in this task into the realm of possi-
bility, they do not constitute a strong method for achieving
such behaviors – even the best RNDFEAT-type variant (RND-
FEAT30) achieves the optimal behavior only 7% of the time.
Adding more random features (as in RNDFEAT100) only
causes performance to deteriorate. Indeed, the rate of im-
mediate failures increases sharply as more random features
are added to the feature set (compared to 7 features in RND-

FEAT), which suggests that additional random features are
destructive as they wash out the useful signal from the wall
sensors (e.g. leading to many immediate failures).

RAAHN does not suffer from the pathology of immedi-
ate failures because training the feature set as an autoen-
coder encourages the discovery of a more balanced feature
set. RAAHN also discovers optimal behaviors four times
as often (28%) as the best RNDFEAT-type variant (RND-
FEAT30), which demonstrates the autoencoder’s ability to
learn useful information about the environment. Furthermore,
RAAHN’s feature set is dynamic, enabling it in principle
to adapt to changing environmental conditions, while RND-
FEAT’s feature set cannot. Future RAAHNs might even add
new layers over time, yielding a kind of real-time deep learn-
ing for control. A deeper analysis of neural activity within
the autoencoder layer as well as experiments with larger
quantities of autoencoded features will indicate the extent of
the RAAHN’s potential to be expanded in real-time in this
way. Furthermore, as the state of the art in Hebbian learning
advances, such as by addressing distal rewards (Soltoggio
and Steil, 2013), the RAAHN benefits from the advancing
capabilities as well.

Finally, while 28% optimality still may appear to leave
room for improvement, it is important to note that it is ac-
tually impressive for the simple training regimen in this ex-
periment. In particular, during training, robots were never
actually shown the detours that they are expected to avoid,
so there can be little to no representation of the inside of
detours within the autoencoder. Furthermore, robots were
not explicitly rewarded for taking the optimal path or pe-
nalized for taking detours. Rather, the reward scheme only
rewards steering away from walls. Thus optimal paths were
acquired entirely implicitly through observing the path taken
by the autopilot and encoding its key features, suggesting
the power of the RAAHN to derive behaviors from such fea-
tures based on sparse and indirect feedback. In the future,
when RAAHN-controlled networks are released to explore
completely on their own while rewards are experienced, they
have the potential to acquire a significantly wider breadth of
abilities.

Conclusion
The experiment in this paper showed that a Hebbian layer
can learn during ongoing behavior in real time from an au-
toencoder placed below it under controlled conditions. The
implication of this initial step is that the RAAHN is a syner-
gistic union that opens up many opportunities for new inves-
tigations. For example, what is possible to achieve when the
RAAHN is allowed to acquire new features while exploring
on its own without an autopilot? Can increasingly complex
skills be acquired if the depth of the autoencoder is allowed
to expand during learning? Can ANNs be evolved to incor-
porate both autoencoders and Hebbian plasticity? These are
among the intriguing possibilities created by the RAAHN.
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