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Abstract–The manual design of con-
trol systems for robotic devices can be challenging. Methods 

for the automatic synthesis of control systems, such as the evolution of 
artificial neural networks, are thus widely used in the robotics community. However, 

in many robotic tasks where multiple interdependent control problems have to be solved 
simultaneously, the performance of conventional neuroevolution techniques declines. In this 

paper, we identify interference between the adaptation of different parts of the control system as 
one of the key challenges in the evolutionary synthesis of  artificial neural networks. As modular net-
work architectures have been shown to reduce the effects of such interference, we propose a novel, 
implicit modular genetic representation that allows the evolutionary algorithm to automatically 

shape modular network topologies. Our experiments with plastic neural networks in a 
simple maze learning task indicate that adding a modular genetic representation to a 

state-of-the-art implicit neuroevolution method leads to better algorithm 
performance and increases the robustness of evolved solutions 

against detrimental mutations.

©
 C

O
R

B
IS

 C
O

R
P

.

I. Introduction

One of the main determinants of the performance of 
a robotic system is the control system. Not surpris-
ingly then, the manual design of control systems 
can be very challenging. An alternative to manual 

design is the use of Evolutionary Algorithms (EAs, [1]) for 
the design of robots and their control systems [2], [3]. In this 
context, Artificial Neural Networks (ANNs) are often used as 
control architectures because they can approximate arbitrary 
mappings from sensory inputs to actuator outputs [4], [5].

Researchers have studied the evolution of ANNs in a variety 
of examples such as wheeled and legged robots (e.g., [6], [7], [8], 
[9], [10]), swimming robots (e.g., [11], [12]), and flying robots 

(e.g., [13], [14], [15]). Evolved control architectures are often sur-
prisingly different from hand-designed  systems and sometimes 
more efficient in terms of computational requirements [16].

However, in tasks that require solving several control prob-
lems simultaneously, there can be interference between parts 
of the evolving neural architecture. As mutations simultane-
ously affect multiple parts of the control system, the probabil-
ity of changing one part of an evolved solution whithout 
disrupting others can be very low.

In [17], we have shown a case of such interference where a 
neural network was evolved to control a wheeled robot mov-
ing in a T-maze (see Fig. 1). In this experiment, the perfor-
mance of the robot depended on both the ability to navigate 
within the maze and the ability to adapt its behavior to the 
changing location of a reward token (see Section III-A). A first Digital Object Identifier 10.1109/MCI.2010.937319
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set of experiments revealed that it was difficult to find optimal 
solutions to this problem because mutations affecting the ability 
of the robot to adapt to the changing environment had a high 
probability of negatively affecting the collision-avoidance 
behavior. In other words, evolvability was impaired by interfer-
ence between the two subproblems. However, when the effect 
of mutations was constrained by a hand-designed modular net-
work structure separating the two subproblems, evolution was 
able to find optimal neural controllers consistently. In the litera-
ture there are other examples where researchers relied on man-
ual decomposition of the control problem by subdividing the 
control architectures into a predefined number of modules, 
based on a priori knowledge of the problem (e.g., [18], [19], 
[20]). However, it is not always obvious how control problems 
should be decomposed into tractable sub-problems [21].

It has thus been suggested to allow the evolutionary algo-
rithm to automatically shape the modularity of evolving 
 networks. Based on the hypothesis that a modular genotype-phe-
notype map (see e.g., [22], [23]) may be largely responsible for 
the evolvability of complex biological organisms [24], researchers 
have implemented genetic representations for ANNs which al-
lowed for modular mapping from genotype to phenotype (i.e. a 
genotype-phenotype map that translates modular genomes into 
modular neural networks). Experiments in a robotic cleaning task 
[25], [26], [27] and a visual discrimination problem [28], [29] in-
dicated that the solutions found using modular mapping per-
formed as well as hand-designed modular network structures and 
were better than non-modular networks. A limitation of these 
experiments is that they relied on simple, non-plastic, feed-for-
ward network architectures and direct encoding of the network 
topology and weights, which restricts scalability.

Other researchers have shown that co-evolving 
populations of modules [30] can lead to automatic 
problem decomposition in various problem domains 
(see e.g., [31], [32], [33], [34], [35]). However, this 
approach requires estimating the contribution of the 
subcomponents to the performance of the whole sys-

tem, which can be difficult [36], [37].
In this paper, we propose an implicit encoding that 

allows the evolution of arbitrary network topologies with 
modular mapping from genotype to phenotype. We com-
pare the performance of the proposed representation to a 
representation without modular mapping and analyze the 
evolved solutions in the robotic T-maze experiment pre-
sented in [17]. In the following we will first address the 
genetic representations of artificial neural networks and 
introduce our implicit modular representation.

II. Genetic Representation
The simplest approach to the genetic representation of ANNs 
is the explicit encoding of all neurons, synaptic connections and 
parameters of the network as a concatenated list of characters 
that form the genome of the evolving individuals. This 
approach, known as direct encoding [4], has the disadvantage that 
the length of the genome grows rapidly with the size of the 
network, which affects evolvability [38]. 

As an alternative to direct encodings, it has been suggested to 
mimic the developmental process of biological cells and to 
encode the parameters of a developmental process which con-
structs the network (see e.g., [39]). In [40], a developmental 
encoding called Cellular Encoding was successfully used to syn-
thesize a gait controller for a six-legged walking robot. However, 
while developmental encodings allow for a compact representa-
tion of large networks, the design of genetic operators is diffi-
cult, because small changes in the developmental process tend to 
have large effects on the resulting networks. Comparison of per-
formance in a pole-balancing problem [41], [42], [43] revealed 
that Cellular Encoding was outperformed by direct encodings. 

More recently, it has been suggested to use representations 
inspired by the principles of genetic regulatory networks [44]. In 
genetic regulatory networks, the interaction between genes is 
not explicitly encoded in the genome, but follows implicitly 
from the physical and chemical environment in which the 
genome is immersed. Based on an abstraction of this process, the 
synaptic connections between neurons of an ANN can be 
encoded implicitly in an artificial genome (see Section II-A). 
This implicit encoding, which has been used not only in the 
domain of neuroevolution [45], [46], [47], but also in the design 
of electronic circuits [48] and the reverse engineering of genetic 
regulatory networks [49], [50], shares to some degree the capa-
bility of developmental encoding to provide a compact represen-
tation, while at the same time allowing for simple, biologically 
inspired mutation and recombination operators [38].

In [45], an implicit encoding called Analog Genetic Encod-
ing (AGE, [48]) was evaluated in the same pole-balancing 
problem mentioned above. The performance of AGE was equal 
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FIGURE 1 A two-wheeled robot navigating a T-maze. At the two 
ends of the maze, there is a high reward (R) and a low reward (r). 
The robot, which could sense the size of collected rewards, was 
evolved to collect as many high rewards as possible while performing 
collision-free navigation with its infrared sensors. From [17].

The proposed encoding allows the evolution 
of arbitrary network topologies with modular 
mapping from genotype to phenotype.
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to the performance of the best direct encoding, and 
it outperformed Cellular Encoding.

However, the implicit representations that have 
been suggested so far do not feature a modular 
mapping from genotype to phenotype. In the fol-
lowing, we introduce a novel implicit encoding 
based on AGE which allows a modular genotype-phenotype 
mapping. While we focus on the synthesis of neural controllers 
here, the presented approach applies to the synthesis of any type 
of  analog network [38].

A. Analog Genetic Encoding
Analog Genetic Encoding consists of a digital genome in 
the form of a string g of characters drawn from a finite 
genetic alphabet (here, the 26 characters of the ASCII 
uppercase alphabet were used). In order to decode the 
network, the genome is scanned for short str ings, so-
called tokens, which separate coding parts from non-cod-
ing parts of the genome (see Fig. 2). Different tokens are 
associated with different types of neurons. For each cod-
ing part indicated by a particular, predefined token in the 
genome, the corresponding type of 
neuron is inserted into the network.

The network topology can then be 
constructed based on the sequences in 
the coding parts. The strength of the 
synaptic connection between two neu-
rons w12 is determined by an interaction 
map I 1 s1, s2 2 , which takes sequences s1 
and s2 from the coding parts associated 
with the two neurons as arguments and 
produces a numeric value for the synap-
tic weight w125 I 1 s1, s2 2 . In the experi-
ments reported below, an interaction 
map based on logarithmic mapping of 
the local alignment score [51] of the two 
sequences s1 and s2 was used (for more 
details see [48], [45]).

In summary, the decoding involves the 
identification of neurons in the genome 
(indicated by the respective tokens) and 
the subsequent application of the interac-
tion map to compute the synaptic 
weights between all neurons in the net-
work (note that the synaptic weight 
between two neurons can be zero).

As mutation operators, we used 
operators that affect individual charac-
ters of the genome with a certain 
probability (character substitution, 
character insertion, character deletion), 
operators which affect randomly select-
ed fragments of genome (genome frag-
ment duplication, genome fragment 
transposition, and genome fragment 

deletion) and an operator that inserts a neuron of random 
type with a random coding sequence (neuron insertion, see 
also [45]).

B. Modular Mapping
The implementation of a modular mapping from genotype to 
phenotype in the case of an implicit encoding such as AGE is 
straight-forward. Instead of storing one string of characters g 
per individual, the modular genome g*5 g1,c, gn is com-
posed of n strings, the so-called modules of the genome. At 
the time of decoding, the modules of the genome are treated 
individually and are separately decoded into modules of the 
neural network (see Fig. 3). As a consequence, there are no 
synaptic connections between neurons encoded in different 
modules of the genome. A particular type of input neurons or 

Input Neuron (In1) Input Neuron (In2) Output Neuron (Out) Hidden Neuron (N)

Coding Part
Noncoding Part

1. Identification of Neurons and Coding Sequences 2. Application of Interaction Map

In1 Token
Out Token

In2 Token End Token

Genome
N Token

In1 (s1)

In2 (s2)

Out (s3)

N (s4)

Decoding

w13 = I(s1, s3)

w14 = I(s1, s4)

w44 = I(s4, s4)

. . .
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FIGURE 2 Implicit representation of a neural network. In the implicit representation used here, 
the genome contains coding and non-coding parts. The coding parts, which comprise a string 
of genetic characters delimited by tokens, represent the neurons of the network. Each type of 
neuron in the network is associated with a different, predefined token. The strength of the syn-
aptic connections between neurons is encoded implicitly in the coding sequences of the two 
respective neurons by means of an interaction map I which takes sequences from the coding 
parts associated to the two neurons as arguments. For example, the synaptic weight between 
input neuron In1 and output neuron Out w135 I 1s1, s3 2  is a function of the string s1 associated 
with In1 and the string s3 associated with Out.

The implementation of a modular mapping from 
genotype to phenotype in the case of an implicit 
encoding such as AGE is straight-forward.
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output neurons can appear in more than one module of the 
genome. In the case of input neurons, the respective input 
signals are simply fed to all modules which contain the corre-
sponding input neuron. In the case of multiple output neu-
rons of the same type, the output neurons Outi of all n 
modules present in the genome are directly connected to the 
respective output of the neural network with a weight of 
wOutiOut5 1/n.

In addition to the mutation operators discussed above 
(which affect the individual modules), module duplication 
and module deletion can affect randomly selected mod-
ules with a certain probability. This provides a possibility 

to alter the number of modules present in the 
genome, which potentially allows for the evolu-
tionary algorithm to adapt the number of genet-
ic modules to the requirements of the problem.

III. Experimental Method

A. T-Maze Setup
In the experiments reported below, we studied the evolu-
tion of a wheeled robot in a T-maze (see Fig. 1). In this 
setup (see also [17]), an e-puck robot ([52], see Fig. 4) had 
to collect rewards located at both ends of the maze. At the 
end of each arm of the T-maze, there was either a high 
reward (with a value of 10) or a low reward (with a value 
of 1). Starting from the bottom of the T-maze and facing 
in the direction of the turning point with a random angle 
gs [ 32p/4, p/4 4, the robot had to collect one of the 

rewards by driving into the end-zone 
of either the left or the r ight arm. 
When the robot reached either end 
zone, it was awarded with the respec-
tive reward and repositioned at the 
bottom of the maze. The robot was 
controlled by an evolved neural net-
work (see Fig. 5) that was connected 
to the sensory inputs and a motor 
output. Data from the two infrared 
distance sensors in the front of the 
robot were merged and normalized 
i n t o  o n e  s e n s o r y  i n p u t  IR5
IR12 IR2 [ 321, 1 4. A turning point 
marker was placed in the middle of 
the front wall of maze, and a camera 
sensor Cam [ E0, 1F  indicated if the 
turning-point marker was in the field 
of view of the robot’s linear camera. 
The robot was also equipped with a 
floor-color detector to sense the ends 
of the maze End [ E0, 1F  and the size 
of the collected reward at the maze 
end Reward [ 30, 1 4. The motor out-
put Out [ 321, 1 4  was used to con-
trol the two motors of the robot. If 
the absolute value of the output 0Out 0  
was smaller than a threshold value 
Outt5 0.3 the robot drove straight 
ahead. If the output was smaller than 
the threshold value (Out , 2Outt ) 
the robot rotated counterclockwise 
and if the output was larger than the 
threshold (Out . Outt ), the robot 
rotated clockwise. The robot was eval-
uated in four independent tr ials of 
limited duration tend5 300s (from the 
start, an optimal robot needed around 

Input Neuron (In1)

Input Neuron (In1)Input Neuron (In3)

Input Neuron (In2) Output Neuron (Out)

Output Neuron (Out)

Hidden Neuron (N)

Hidden Neuron (N)

Modular Genome

Modular Network

Decoding of Module 1

In21

N1 N2

Out1
Module 1 Module 2

Out

Out2

In11 In12 In32

Decoding of Module 2

Module 1

Module 2

FIGURE 3 Decoding of a modular genome into a modular network. In this example, a network 
with three inputs and one output is encoded in a genome with two separate modules. Module 
1 contains an input neuron In11, an input neuron In21, one hidden neuron N1 and an output 
neuron Out1. Module 2 contains an input neuron In12, an input neuron In32, a hidden neuron 
N2, and an output neuron Out2. The decoded network is split into two separate modules. The 
neurons encoded in the modules of the genome are assigned to the respective modules of the 
decoded network. Connections between the neurons of each module of the network are 
implicitly decoded from the respective module of the genome. At the evaluation of the net-
work, the output is calculated as the average of the outputs of all output neurons from all 
modules of the network (in this example Out5 (Out1 + Out2)/2).

Mutation operators allow to adapt the number of 
modules to the requirements of the problem.
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4.3s to reach either end of the maze). In each trial, the 
location of the rewards was swapped after a random 
amount of time, uniformly drawn from the interval 
tswap [ 3125s, 175s 4. At the beginning of the first and third 
trial, the high reward was located in the right end of the 
maze and the low reward was located in the left end of 
the maze. At the beginning of the second and fourth trial, 
the high reward was located in the left end of the maze 
and the low reward was located in the right end of the 
maze. The evolutionary exper iments were conducted 
using a physics-based simulation of the robot and its envi-
ronment [53].

B. Neural Network
At every point in time t, the activation xi of each neuron i was 
computed as

 xi 1t 2 5awijs 1xj 1 t2 122 , (1)

where wij is the synaptic weight between neuron j and neuron 
i and s 1x 2  is a sigmoid activation function

 s 1x 2 5
1

11 e2gx (2)

with slope parameter g.
While it is possible to evolve recurrent neural networks 

which display learning behavior without plastic synapses 
(see e.g., [54], [55]), it is generally believed that synaptic 
plasticity is one of the basic principles that allows for 
learning and memory in biological nervous systems [56]. 
Different models of synaptic plasticity have been shown to 
contribute to the evolvability of artificial neural networks 
in tasks where learning or memory is required (see e.g., 
[5]). In the experiments described below, we used a het-
erosynaptic plasticity model [46], [17], [57]. This model is 
based on neuromodulation of the synaptic plasticity 
between two neurons by a special type of neuron, the so-
called modulatory neuron, which connects to the post-
synaptic neuron (see Fig. 6). The synaptic weight w12 1 t 2  
between a pre-synaptic neuron N1 with the activation 
x 1 t 2  and a post-synaptic neuron N2 with activation y 1 t 2  at 
time t is 

 w12 1 t 2 5 w12 1 t2dt 2 1Dw12 1 t 2 , (3)

where the initial weight w12 1 t5 0 2  is derived from the decod-
ing of the genome and the plastic change Dw12 1 t 2  for a time 
step dt is 

 Dw12 1 t 2 5m12 1t2h 3Ax 1t 2y 1t 21Bx 1t 21Cy 1t 21D4. (4)

The neuromodulatory factor mxy was computed as the output 
of the modulatory neuron, weighted by a neuromodulatory 
weight wm and h, A, B, C, and D were constant factors encod-
ed with the modulatory neuron. 

C. Evolutionary Algorithm
A simple, generational genetic algorithm with tourna-
ment selection was used [1]. The neural networks were 

IR Cam Reward End Bias

N
N

N

Evolved Network

Out

FIGURE 5 The evolved artificial neural network was connected to 
inputs from the infrared sensors (IR), the linear camera (Cam), a 
reward sensor (Reward), a maze-end sensor (End), and a constant 
bias unit (Bias). The output of the network was used to control the 
motors of the robot.

N2

N1 M

W12 WM2

FIGURE 6 The heterosynaptic plasticity model used in the experi-
ments. The plasticity of the synaptic weight w12 1 t 2  between a pre-
synaptic neuron N1 and a post-synaptic neuron N2 is modulated by 
the weighted activity of a modulatory neuron M connected to the 
post-synaptic neuron [46].

IR Sensors

Linear Camera

Floor-Color Detector

FIGURE 4 The e-puck robot was equipped with two infrared sensors 
in the front, a linear camera, and a floor color detector which fed the 
inputs of an evolved artificial neural network (see Fig. 5). Image 
reprinted from [52].
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 genetically encoded using AGE both with non-modular 
mapping and with the proposed modular mapping (as 
described in Section II). Numerical parameters of the neurons 
were encoded using a self-adaptive representation for real- 
valued parameters based on variable length strings called Cen-
ter of Mass Encoding (CoME, see [58]) with search intervals 
of g [ 30.5, 5 4, h [ 3210,  10 4, EA, B, C, DF [ 321, 14. 
The parameters of the genetic algorithm were identical for 
both the experiments with the non-modular mapping and 
with the modular mapping (see Table 1) and have been 
chosen heuristically, according to earlier experiments [48], 
[45]. In both sets of experiments, the initial population 
consisted of 1,000 randomly generated networks with one 
genetic module.

We conducted 40 independent replicates over 
1,000 generations both with the non-modular rep-
resentation and with the modular representation. 
Fitness was defined as the sum of the values of all 
collected rewards divided by the number of trials. 

IV. Results

A. Non-Modular vs. Modular Representation
The average population fitness in the 40 replicates per con-
dition indicates that the use of a modular representation 
results in a significant evolutionary advantage with respect 
to a non-modular representation (see Fig. 7). At the last gen-
eration, the best solutions found in the 40 replicates with 
the non- modular representation had significantly higher fit-
ness than the best solutions found by the replicates with the 
non-modular representation (Wilcoxon ranksum test, 
p , 0.0001, see Fig. 8). 

The networks in the initial population consisted of only 
one module. The modular mapping allowed the algorithm 
to adaptively change the number of modular subnetworks. 
As can be observed in Fig. 9, the number of modules initial-
ly increased up to an average of three modules around gen-
eration 200 followed by a decrease to two modules. This is 
consistent with earlier  observations that AGE implicitly 
tends to converge to networks with a minimal number of 
elements after an initial exploration phase characterized by 
the generation of larger networks [60], [45]. In the final 
generation, the number of genetic modules which contained 

TABLE 1 The parameters of the genetic algorithm 
and encoding used in the experiments.

POPULATION SIZE 1,000
TOURNAMENT SIZE 2
ELITE SIZE 1
RECOMBINATION PROBABILITY 0.1
CHARACTER SUBSTITUTION PROBABILITY 0.001
CHARACTER INSERTION PROBABILITY 0.001
CHARACTER DELETION PROBABILITY 0.001
GENOME FRAGMENT DUPLICATION PROBABILITY 0.01
GENOME FRAGMENT TRANSPOSITION PROBABILITY 0.01
GENOME FRAGMENT DELETION PROBABILITY 0.01
MODULE DUPLICATION PROBABILITY 0.01
MODULE DELETION PROBABILITY 0.01
GENOME DUPLICATION PROBABILITY 0.001
NEURON INSERTION PROBABILITY 0.02
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FIGURE 7 Median of the average population fitness of the 40 inde-
pendent replicates with the non-modular representation and with 
the modular representation. Shaded areas range from the lower 
quartile to the upper quartile of the respective distribution.
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FIGURE 8 Boxplot of the fitness of the best solutions found by the 
40 independent replicates with the non-modular representation 
and with the modular representation at the last generation. The red 
line in each box is the median, the borders of the box represent 
the upper and the lower quartile. The whiskers outside the box 
represent the minimum and maximum values obtained, except 
when there are outliers which are shown as small circles. We 
define outliers as data points which differ more than 1.5 times the 
interquartile range from the border of the box. The notches permit 
the assessment of the significance of the differences of the medi-
ans. When the notches of two boxes do not overlap, the corre-
sponding medians are significantly different at (approximately) the 
95% confidence level [59].

The use of a modular representation results in a 
significant evolutionary advantage with respect to 
a non-modular representation.
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at least one input neuron and an output neuron n* 
was on average n*5 1.95 6 0.20 (note that the 
hand-designed network in [17] had two modules).

Closer examination revealed that the possibility 
of a modular separation was used in a large majori-
ty of the replicates in experiments with the modu-
lar mapping (80% of the resulting networks of the 
last generation had more than one module). The 
structure of the networks also indicated an association 
between network modules and subtasks of the control system. 
The robot had to avoid crashing into the walls of the maze, a 
problem which could be solved relying on the input from the 
infrared sensors. At the same time, the robot had to choose 
the left or the right arm of the maze and possibly adapt its 
strategy based on the size of the collected rewards. This task 
could be solved using inputs from the reward sensor, the maze 
end sensor and the camera. From the networks which were 
composed of multiple network modules, 75% had a module 
containing the infrared sensor input and a different module 
containing the reward sensor (see Fig. 10 for an example). 

B. Effects of the Modular Representation
It has been hypothesized that the reason for the higher evolv-
ability of modular representations is that they change the effects 
of mutations [29], [61]. In order to analyze the effects of muta-
tions, we subjected the networks of the last generation to muta-
tions and compared the fitness of 1,000 mutant networks to the 
fitness of the original networks. The difference in fitness can be 
used as a measure of robustness to mutations. Our results indicate 
that the networks evolved with modular mapping were more 
robust to mutations (see Fig. 11). The mean effect of a mutation 
on fitness was significantly smaller in the networks evolved with 
the modular mapping than in the networks evolved with the 
non-modular mapping (Wilcoxon ranksum test, p , 0.0002). 

In order to quantify the incidence of pleiotropic mutations, 
i.e. mutations which simultaneously affect different characters, 
we measured two behavioral characters during fitness 
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FIGURE 9 Average number of network modules used in the solu-
tions of the 40 independent replicates with the modular map-
ping. The shaded area indicates the standard error of the 
distribution. Starting from one module in the initial population, 
the number of modules could change under the influence of 
mutations and selection.

The networks evolved with the modular mapping 
displayed a significantly lower ratio of pleiotropic 
mutations than the networks evolved with the 
non-modular mapping.
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FIGURE 10 An evolved network with the modular mapping. Black 
arrows indicate excitatory synapses, gray arrows indicate inhibitory syn-
apses. The network is split into two modules. Module 1 does not have 
plastic synapses and implements a simple collision avoidance behavior 
with a tendency to turn to the right when facing the turning point mark-
er. The synapse linking the camera input to the output of Module 2 is 
affected by plasticity gated by a modulatory neuron M which allows 
adapting network behavior depending on the signals from reward and 
maze end sensors. The bias unit is not connected to the network.
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FIGURE 11 Boxplot of the mean effect of mutations on fitness. For 
each condition, the networks of the last generation were subjected to 
1,000 mutations and the fitness of the resulting networks was com-
pared to the fitness of the original networks. Higher values equal 
higher robustness to mutations. For the details of the boxplot format 
see the caption of Fig. 8.
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 evaluation: A) The navigation efficiency of a controller can be 
quantified by the total number of collected rewards (irrespec-
tive of the reward value). B) The adaptivity of a controller can 
be measured by calculating the ratio of the number of high 
rewards that the robot collected and the total number of col-
lected rewards (fitness is the product of navigation efficiency 
times adaptivity).

We measured the incidence of pleiotropic mutations by 
calculating the relative frequency of mutations that simultane-
ously affect both behavioral traits for the networks of the last 
generation in the two experimental conditions (see Fig. 12). A 
 mutation was defined as pleiotropic if it simultaneously 
changed both behavioral characters by more than 5%. The 
networks that evolved with the modular mapping displayed a 
significantly lower ratio of pleiotropic mutations than the net-
works that evolved with the non-modular mapping (Wilcox-
on ranksum test, p , 0.0002).

These findings highlight an important difference between 
modular representations and other methods which potentially 
mitigate the effects of pleiotropic mutations. For example, 
there are a number of mechanisms in the literature which 

limit the effect of detrimental mutations by reduc-
ing selection pressure (e.g., spatial selection opera-
tors [62], speciation [43], island models [63]). Other 
strategies aim at changing the impact of mutations 
on individual behavior (e.g., memetic algorithms 
[64], [65]). However, unlike the presented approach 
based on a modular mapping from genotype to 
phenotype, these methods do not allow automatic 
evolutionary control of the effect of mutations1.

V. Conclusion
Modular mapping from genotype to phenotype is widely rec-
ognized as a cornerstone of evolvability in biological organisms 
[24]. The results of our experiments show that adding the pos-
sibility of modular mapping from genotype to phenotype to an 
implicit genetic encoding for artificial neural networks consis-
tently led to improved algorithm performance. The hypothesis 
that modular solutions allow for a higher evolvability in cases 
where multiple control problems have to be solved simultane-
ously is corroborated by the automatic decomposition of the 
control architecture in functionally separate modules.

Further analysis revealed that the presented modular repre-
sentation also led to improved robustness of the networks to 
detrimental mutations. In particular, the modular mapping 
allowed for a lower incidence of pleiotropic mutations. This is 
in line with the hypothesis that modularity in biological organ-
isms evolved by limiting pleiotropic effects of mutations [22].
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