
AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 11

Peter Dürr, Claudio Mattiussi,
and Dario Floreano

École Polytechnique Fédérale de Lausanne (EPFL),
SWITZERLAND

Abstract–The manual design of con-
trol systems for robotic devices can be challenging. Methods

for the automatic synthesis of control systems, such as the evolution of
artificial neural networks, are thus widely used in the robotics community. However,

in many robotic tasks where multiple interdependent control problems have to be solved
simultaneously, the performance of conventional neuroevolution techniques declines. In this

paper, we identify interference between the adaptation of different parts of the control system as
one of the key challenges in the evolutionary synthesis of artificial neural networks. As modular net-
work architectures have been shown to reduce the effects of such interference, we propose a novel,
implicit modular genetic representation that allows the evolutionary algorithm to automatically

shape modular network topologies. Our experiments with plastic neural networks in a
simple maze learning task indicate that adding a modular genetic representation to a

state-of-the-art implicit neuroevolution method leads to better algorithm
performance and increases the robustness of evolved solutions

against detrimental mutations.

©
 C

O
R

B
IS

 C
O

R
P

.

I. Introduction

One of the main determinants of the performance of
a robotic system is the control system. Not surpris-
ingly then, the manual design of control systems
can be very challenging. An alternative to manual

design is the use of Evolutionary Algorithms (EAs, [1]) for
the design of robots and their control systems [2], [3]. In this
context, Artificial Neural Networks (ANNs) are often used as
control architectures because they can approximate arbitrary
mappings from sensory inputs to actuator outputs [4], [5].

Researchers have studied the evolution of ANNs in a variety
of examples such as wheeled and legged robots (e.g., [6], [7], [8],
[9], [10]), swimming robots (e.g., [11], [12]), and flying robots

(e.g., [13], [14], [15]). Evolved control architectures are often sur-
prisingly different from hand-designed systems and sometimes
more efficient in terms of computational requirements [16].

However, in tasks that require solving several control prob-
lems simultaneously, there can be interference between parts
of the evolving neural architecture. As mutations simultane-
ously affect multiple parts of the control system, the probabil-
ity of changing one part of an evolved solution whithout
disrupting others can be very low.

In [17], we have shown a case of such interference where a
neural network was evolved to control a wheeled robot mov-
ing in a T-maze (see Fig. 1). In this experiment, the perfor-
mance of the robot depended on both the ability to navigate
within the maze and the ability to adapt its behavior to the
changing location of a reward token (see Section III-A). A first Digital Object Identifier 10.1109/MCI.2010.937319

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147959013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

12 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

set of experiments revealed that it was difficult to find optimal
solutions to this problem because mutations affecting the ability
of the robot to adapt to the changing environment had a high
probability of negatively affecting the collision-avoidance
behavior. In other words, evolvability was impaired by interfer-
ence between the two subproblems. However, when the effect
of mutations was constrained by a hand-designed modular net-
work structure separating the two subproblems, evolution was
able to find optimal neural controllers consistently. In the litera-
ture there are other examples where researchers relied on man-
ual decomposition of the control problem by subdividing the
control architectures into a predefined number of modules,
based on a priori knowledge of the problem (e.g., [18], [19],
[20]). However, it is not always obvious how control problems
should be decomposed into tractable sub-problems [21].

It has thus been suggested to allow the evolutionary algo-
rithm to automatically shape the modularity of evolving
 networks. Based on the hypothesis that a modular genotype-phe-
notype map (see e.g., [22], [23]) may be largely responsible for
the evolvability of complex biological organisms [24], researchers
have implemented genetic representations for ANNs which al-
lowed for modular mapping from genotype to phenotype (i.e. a
genotype-phenotype map that translates modular genomes into
modular neural networks). Experiments in a robotic cleaning task
[25], [26], [27] and a visual discrimination problem [28], [29] in-
dicated that the solutions found using modular mapping per-
formed as well as hand-designed modular network structures and
were better than non-modular networks. A limitation of these
experiments is that they relied on simple, non-plastic, feed-for-
ward network architectures and direct encoding of the network
topology and weights, which restricts scalability.

Other researchers have shown that co-evolving
populations of modules [30] can lead to automatic
problem decomposition in various problem domains
(see e.g., [31], [32], [33], [34], [35]). However, this
approach requires estimating the contribution of the
subcomponents to the performance of the whole sys-

tem, which can be difficult [36], [37].
In this paper, we propose an implicit encoding that

allows the evolution of arbitrary network topologies with
modular mapping from genotype to phenotype. We com-
pare the performance of the proposed representation to a
representation without modular mapping and analyze the
evolved solutions in the robotic T-maze experiment pre-
sented in [17]. In the following we will first address the
genetic representations of artificial neural networks and
introduce our implicit modular representation.

II. Genetic Representation
The simplest approach to the genetic representation of ANNs
is the explicit encoding of all neurons, synaptic connections and
parameters of the network as a concatenated list of characters
that form the genome of the evolving individuals. This
approach, known as direct encoding [4], has the disadvantage that
the length of the genome grows rapidly with the size of the
network, which affects evolvability [38].

As an alternative to direct encodings, it has been suggested to
mimic the developmental process of biological cells and to
encode the parameters of a developmental process which con-
structs the network (see e.g., [39]). In [40], a developmental
encoding called Cellular Encoding was successfully used to syn-
thesize a gait controller for a six-legged walking robot. However,
while developmental encodings allow for a compact representa-
tion of large networks, the design of genetic operators is diffi-
cult, because small changes in the developmental process tend to
have large effects on the resulting networks. Comparison of per-
formance in a pole-balancing problem [41], [42], [43] revealed
that Cellular Encoding was outperformed by direct encodings.

More recently, it has been suggested to use representations
inspired by the principles of genetic regulatory networks [44]. In
genetic regulatory networks, the interaction between genes is
not explicitly encoded in the genome, but follows implicitly
from the physical and chemical environment in which the
genome is immersed. Based on an abstraction of this process, the
synaptic connections between neurons of an ANN can be
encoded implicitly in an artificial genome (see Section II-A).
This implicit encoding, which has been used not only in the
domain of neuroevolution [45], [46], [47], but also in the design
of electronic circuits [48] and the reverse engineering of genetic
regulatory networks [49], [50], shares to some degree the capa-
bility of developmental encoding to provide a compact represen-
tation, while at the same time allowing for simple, biologically
inspired mutation and recombination operators [38].

In [45], an implicit encoding called Analog Genetic Encod-
ing (AGE, [48]) was evaluated in the same pole-balancing
problem mentioned above. The performance of AGE was equal

R r

e-Puck Robot

Turning Point Marker

Starting Point

Left Reward Zone Right Reward Zone

FIGURE 1 A two-wheeled robot navigating a T-maze. At the two
ends of the maze, there is a high reward (R) and a low reward (r).
The robot, which could sense the size of collected rewards, was
evolved to collect as many high rewards as possible while performing
collision-free navigation with its infrared sensors. From [17].

The proposed encoding allows the evolution
of arbitrary network topologies with modular
mapping from genotype to phenotype.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 13

to the performance of the best direct encoding, and
it outperformed Cellular Encoding.

However, the implicit representations that have
been suggested so far do not feature a modular
mapping from genotype to phenotype. In the fol-
lowing, we introduce a novel implicit encoding
based on AGE which allows a modular genotype-phenotype
mapping. While we focus on the synthesis of neural controllers
here, the presented approach applies to the synthesis of any type
of analog network [38].

A. Analog Genetic Encoding
Analog Genetic Encoding consists of a digital genome in
the form of a string g of characters drawn from a finite
genetic alphabet (here, the 26 characters of the ASCII
uppercase alphabet were used). In order to decode the
network, the genome is scanned for short str ings, so-
called tokens, which separate coding parts from non-cod-
ing parts of the genome (see Fig. 2). Different tokens are
associated with different types of neurons. For each cod-
ing part indicated by a particular, predefined token in the
genome, the corresponding type of
neuron is inserted into the network.

The network topology can then be
constructed based on the sequences in
the coding parts. The strength of the
synaptic connection between two neu-
rons w12 is determined by an interaction
map I 1 s1, s2 2 , which takes sequences s1
and s2 from the coding parts associated
with the two neurons as arguments and
produces a numeric value for the synap-
tic weight w125 I 1 s1, s2 2 . In the experi-
ments reported below, an interaction
map based on logarithmic mapping of
the local alignment score [51] of the two
sequences s1 and s2 was used (for more
details see [48], [45]).

In summary, the decoding involves the
identification of neurons in the genome
(indicated by the respective tokens) and
the subsequent application of the interac-
tion map to compute the synaptic
weights between all neurons in the net-
work (note that the synaptic weight
between two neurons can be zero).

As mutation operators, we used
operators that affect individual charac-
ters of the genome with a certain
probability (character substitution,
character insertion, character deletion),
operators which affect randomly select-
ed fragments of genome (genome frag-
ment duplication, genome fragment
transposition, and genome fragment

deletion) and an operator that inserts a neuron of random
type with a random coding sequence (neuron insertion, see
also [45]).

B. Modular Mapping
The implementation of a modular mapping from genotype to
phenotype in the case of an implicit encoding such as AGE is
straight-forward. Instead of storing one string of characters g
per individual, the modular genome g*5 g1,c, gn is com-
posed of n strings, the so-called modules of the genome. At
the time of decoding, the modules of the genome are treated
individually and are separately decoded into modules of the
neural network (see Fig. 3). As a consequence, there are no
synaptic connections between neurons encoded in different
modules of the genome. A particular type of input neurons or

Input Neuron (In1) Input Neuron (In2) Output Neuron (Out) Hidden Neuron (N)

Coding Part
Noncoding Part

1. Identification of Neurons and Coding Sequences 2. Application of Interaction Map

In1 Token
Out Token

In2 Token End Token

Genome
N Token

In1 (s1)

In2 (s2)

Out (s3)

N (s4)

Decoding

w13 = I(s1, s3)

w14 = I(s1, s4)

w44 = I(s4, s4)

. . .

Input Neuron Input Neuron

Network

Output Neuron

Hidden Neuron

Out

In1 In2

N
W14

W13 W43

W23

W44

FIGURE 2 Implicit representation of a neural network. In the implicit representation used here,
the genome contains coding and non-coding parts. The coding parts, which comprise a string
of genetic characters delimited by tokens, represent the neurons of the network. Each type of
neuron in the network is associated with a different, predefined token. The strength of the syn-
aptic connections between neurons is encoded implicitly in the coding sequences of the two
respective neurons by means of an interaction map I which takes sequences from the coding
parts associated to the two neurons as arguments. For example, the synaptic weight between
input neuron In1 and output neuron Out w135 I 1s1, s3 2 is a function of the string s1 associated
with In1 and the string s3 associated with Out.

The implementation of a modular mapping from
genotype to phenotype in the case of an implicit
encoding such as AGE is straight-forward.

14 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

output neurons can appear in more than one module of the
genome. In the case of input neurons, the respective input
signals are simply fed to all modules which contain the corre-
sponding input neuron. In the case of multiple output neu-
rons of the same type, the output neurons Outi of all n
modules present in the genome are directly connected to the
respective output of the neural network with a weight of
wOutiOut5 1/n.

In addition to the mutation operators discussed above
(which affect the individual modules), module duplication
and module deletion can affect randomly selected mod-
ules with a certain probability. This provides a possibility

to alter the number of modules present in the
genome, which potentially allows for the evolu-
tionary algorithm to adapt the number of genet-
ic modules to the requirements of the problem.

III. Experimental Method

A. T-Maze Setup
In the experiments reported below, we studied the evolu-
tion of a wheeled robot in a T-maze (see Fig. 1). In this
setup (see also [17]), an e-puck robot ([52], see Fig. 4) had
to collect rewards located at both ends of the maze. At the
end of each arm of the T-maze, there was either a high
reward (with a value of 10) or a low reward (with a value
of 1). Starting from the bottom of the T-maze and facing
in the direction of the turning point with a random angle
gs [32p/4, p/4 4, the robot had to collect one of the

rewards by driving into the end-zone
of either the left or the r ight arm.
When the robot reached either end
zone, it was awarded with the respec-
tive reward and repositioned at the
bottom of the maze. The robot was
controlled by an evolved neural net-
work (see Fig. 5) that was connected
to the sensory inputs and a motor
output. Data from the two infrared
distance sensors in the front of the
robot were merged and normalized
i n t o o n e s e n s o r y i n p u t IR5
IR12 IR2 [321, 1 4. A turning point
marker was placed in the middle of
the front wall of maze, and a camera
sensor Cam [E0, 1F indicated if the
turning-point marker was in the field
of view of the robot’s linear camera.
The robot was also equipped with a
floor-color detector to sense the ends
of the maze End [E0, 1F and the size
of the collected reward at the maze
end Reward [30, 1 4. The motor out-
put Out [321, 1 4 was used to con-
trol the two motors of the robot. If
the absolute value of the output 0Out 0
was smaller than a threshold value
Outt5 0.3 the robot drove straight
ahead. If the output was smaller than
the threshold value (Out , 2Outt)
the robot rotated counterclockwise
and if the output was larger than the
threshold (Out . Outt), the robot
rotated clockwise. The robot was eval-
uated in four independent tr ials of
limited duration tend5 300s (from the
start, an optimal robot needed around

Input Neuron (In1)

Input Neuron (In1)Input Neuron (In3)

Input Neuron (In2) Output Neuron (Out)

Output Neuron (Out)

Hidden Neuron (N)

Hidden Neuron (N)

Modular Genome

Modular Network

Decoding of Module 1

In21

N1 N2

Out1
Module 1 Module 2

Out

Out2

In11 In12 In32

Decoding of Module 2

Module 1

Module 2

FIGURE 3 Decoding of a modular genome into a modular network. In this example, a network
with three inputs and one output is encoded in a genome with two separate modules. Module
1 contains an input neuron In11, an input neuron In21, one hidden neuron N1 and an output
neuron Out1. Module 2 contains an input neuron In12, an input neuron In32, a hidden neuron
N2, and an output neuron Out2. The decoded network is split into two separate modules. The
neurons encoded in the modules of the genome are assigned to the respective modules of the
decoded network. Connections between the neurons of each module of the network are
implicitly decoded from the respective module of the genome. At the evaluation of the net-
work, the output is calculated as the average of the outputs of all output neurons from all
modules of the network (in this example Out5 (Out1 + Out2)/2).

Mutation operators allow to adapt the number of
modules to the requirements of the problem.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 15

4.3s to reach either end of the maze). In each trial, the
location of the rewards was swapped after a random
amount of time, uniformly drawn from the interval
tswap [3125s, 175s 4. At the beginning of the first and third
trial, the high reward was located in the right end of the
maze and the low reward was located in the left end of
the maze. At the beginning of the second and fourth trial,
the high reward was located in the left end of the maze
and the low reward was located in the right end of the
maze. The evolutionary exper iments were conducted
using a physics-based simulation of the robot and its envi-
ronment [53].

B. Neural Network
At every point in time t, the activation xi of each neuron i was
computed as

 xi 1t 2 5awijs 1xj 1 t2 122 , (1)

where wij is the synaptic weight between neuron j and neuron
i and s 1x 2 is a sigmoid activation function

 s 1x 2 5
1

11 e2gx (2)

with slope parameter g.
While it is possible to evolve recurrent neural networks

which display learning behavior without plastic synapses
(see e.g., [54], [55]), it is generally believed that synaptic
plasticity is one of the basic principles that allows for
learning and memory in biological nervous systems [56].
Different models of synaptic plasticity have been shown to
contribute to the evolvability of artificial neural networks
in tasks where learning or memory is required (see e.g.,
[5]). In the experiments described below, we used a het-
erosynaptic plasticity model [46], [17], [57]. This model is
based on neuromodulation of the synaptic plasticity
between two neurons by a special type of neuron, the so-
called modulatory neuron, which connects to the post-
synaptic neuron (see Fig. 6). The synaptic weight w12 1 t 2
between a pre-synaptic neuron N1 with the activation
x 1 t 2 and a post-synaptic neuron N2 with activation y 1 t 2 at
time t is

 w12 1 t 2 5 w12 1 t2dt 2 1Dw12 1 t 2 , (3)

where the initial weight w12 1 t5 0 2 is derived from the decod-
ing of the genome and the plastic change Dw12 1 t 2 for a time
step dt is

 Dw12 1 t 2 5m12 1t2h 3Ax 1t 2y 1t 21Bx 1t 21Cy 1t 21D4. (4)

The neuromodulatory factor mxy was computed as the output
of the modulatory neuron, weighted by a neuromodulatory
weight wm and h, A, B, C, and D were constant factors encod-
ed with the modulatory neuron.

C. Evolutionary Algorithm
A simple, generational genetic algorithm with tourna-
ment selection was used [1]. The neural networks were

IR Cam Reward End Bias

N
N

N

Evolved Network

Out

FIGURE 5 The evolved artificial neural network was connected to
inputs from the infrared sensors (IR), the linear camera (Cam), a
reward sensor (Reward), a maze-end sensor (End), and a constant
bias unit (Bias). The output of the network was used to control the
motors of the robot.

N2

N1 M

W12 WM2

FIGURE 6 The heterosynaptic plasticity model used in the experi-
ments. The plasticity of the synaptic weight w12 1 t 2 between a pre-
synaptic neuron N1 and a post-synaptic neuron N2 is modulated by
the weighted activity of a modulatory neuron M connected to the
post-synaptic neuron [46].

IR Sensors

Linear Camera

Floor-Color Detector

FIGURE 4 The e-puck robot was equipped with two infrared sensors
in the front, a linear camera, and a floor color detector which fed the
inputs of an evolved artificial neural network (see Fig. 5). Image
reprinted from [52].

16 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

 genetically encoded using AGE both with non-modular
mapping and with the proposed modular mapping (as
described in Section II). Numerical parameters of the neurons
were encoded using a self-adaptive representation for real-
valued parameters based on variable length strings called Cen-
ter of Mass Encoding (CoME, see [58]) with search intervals
of g [30.5, 5 4, h [3210, 10 4, EA, B, C, DF [321, 14.
The parameters of the genetic algorithm were identical for
both the experiments with the non-modular mapping and
with the modular mapping (see Table 1) and have been
chosen heuristically, according to earlier experiments [48],
[45]. In both sets of experiments, the initial population
consisted of 1,000 randomly generated networks with one
genetic module.

We conducted 40 independent replicates over
1,000 generations both with the non-modular rep-
resentation and with the modular representation.
Fitness was defined as the sum of the values of all
collected rewards divided by the number of trials.

IV. Results

A. Non-Modular vs. Modular Representation
The average population fitness in the 40 replicates per con-
dition indicates that the use of a modular representation
results in a significant evolutionary advantage with respect
to a non-modular representation (see Fig. 7). At the last gen-
eration, the best solutions found in the 40 replicates with
the non- modular representation had significantly higher fit-
ness than the best solutions found by the replicates with the
non-modular representation (Wilcoxon ranksum test,
p , 0.0001, see Fig. 8).

The networks in the initial population consisted of only
one module. The modular mapping allowed the algorithm
to adaptively change the number of modular subnetworks.
As can be observed in Fig. 9, the number of modules initial-
ly increased up to an average of three modules around gen-
eration 200 followed by a decrease to two modules. This is
consistent with earlier observations that AGE implicitly
tends to converge to networks with a minimal number of
elements after an initial exploration phase characterized by
the generation of larger networks [60], [45]. In the final
generation, the number of genetic modules which contained

TABLE 1 The parameters of the genetic algorithm
and encoding used in the experiments.

POPULATION SIZE 1,000
TOURNAMENT SIZE 2
ELITE SIZE 1
RECOMBINATION PROBABILITY 0.1
CHARACTER SUBSTITUTION PROBABILITY 0.001
CHARACTER INSERTION PROBABILITY 0.001
CHARACTER DELETION PROBABILITY 0.001
GENOME FRAGMENT DUPLICATION PROBABILITY 0.01
GENOME FRAGMENT TRANSPOSITION PROBABILITY 0.01
GENOME FRAGMENT DELETION PROBABILITY 0.01
MODULE DUPLICATION PROBABILITY 0.01
MODULE DELETION PROBABILITY 0.01
GENOME DUPLICATION PROBABILITY 0.001
NEURON INSERTION PROBABILITY 0.02

600

500

400

300

200

100

0
0 200 400 600

Generations

F
itn

es
s

800 1,000

Modular Representation
Nonmodular Representation
Modular Representation
Nonmodular Representation

FIGURE 7 Median of the average population fitness of the 40 inde-
pendent replicates with the non-modular representation and with
the modular representation. Shaded areas range from the lower
quartile to the upper quartile of the respective distribution.

580

600

620

640

660

680

F
itn

es
s

Nonmodular
Representation

Modular
Representation

FIGURE 8 Boxplot of the fitness of the best solutions found by the
40 independent replicates with the non-modular representation
and with the modular representation at the last generation. The red
line in each box is the median, the borders of the box represent
the upper and the lower quartile. The whiskers outside the box
represent the minimum and maximum values obtained, except
when there are outliers which are shown as small circles. We
define outliers as data points which differ more than 1.5 times the
interquartile range from the border of the box. The notches permit
the assessment of the significance of the differences of the medi-
ans. When the notches of two boxes do not overlap, the corre-
sponding medians are significantly different at (approximately) the
95% confidence level [59].

The use of a modular representation results in a
significant evolutionary advantage with respect to
a non-modular representation.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 17

at least one input neuron and an output neuron n*
was on average n*5 1.95 6 0.20 (note that the
hand-designed network in [17] had two modules).

Closer examination revealed that the possibility
of a modular separation was used in a large majori-
ty of the replicates in experiments with the modu-
lar mapping (80% of the resulting networks of the
last generation had more than one module). The
structure of the networks also indicated an association
between network modules and subtasks of the control system.
The robot had to avoid crashing into the walls of the maze, a
problem which could be solved relying on the input from the
infrared sensors. At the same time, the robot had to choose
the left or the right arm of the maze and possibly adapt its
strategy based on the size of the collected rewards. This task
could be solved using inputs from the reward sensor, the maze
end sensor and the camera. From the networks which were
composed of multiple network modules, 75% had a module
containing the infrared sensor input and a different module
containing the reward sensor (see Fig. 10 for an example).

B. Effects of the Modular Representation
It has been hypothesized that the reason for the higher evolv-
ability of modular representations is that they change the effects
of mutations [29], [61]. In order to analyze the effects of muta-
tions, we subjected the networks of the last generation to muta-
tions and compared the fitness of 1,000 mutant networks to the
fitness of the original networks. The difference in fitness can be
used as a measure of robustness to mutations. Our results indicate
that the networks evolved with modular mapping were more
robust to mutations (see Fig. 11). The mean effect of a mutation
on fitness was significantly smaller in the networks evolved with
the modular mapping than in the networks evolved with the
non-modular mapping (Wilcoxon ranksum test, p , 0.0002).

In order to quantify the incidence of pleiotropic mutations,
i.e. mutations which simultaneously affect different characters,
we measured two behavioral characters during fitness

3

2

1

0
0 200 400 600

Generations

A
ve

ra
ge

 N
um

be
r

of
 M

od
ul

es

800 1,000

FIGURE 9 Average number of network modules used in the solu-
tions of the 40 independent replicates with the modular map-
ping. The shaded area indicates the standard error of the
distribution. Starting from one module in the initial population,
the number of modules could change under the influence of
mutations and selection.

The networks evolved with the modular mapping
displayed a significantly lower ratio of pleiotropic
mutations than the networks evolved with the
non-modular mapping.

IR Cam Cam Reward End Bias

M

Out 1 Out 2

Out

Module 1 Module 2

FIGURE 10 An evolved network with the modular mapping. Black
arrows indicate excitatory synapses, gray arrows indicate inhibitory syn-
apses. The network is split into two modules. Module 1 does not have
plastic synapses and implements a simple collision avoidance behavior
with a tendency to turn to the right when facing the turning point mark-
er. The synapse linking the camera input to the output of Module 2 is
affected by plasticity gated by a modulatory neuron M which allows
adapting network behavior depending on the signals from reward and
maze end sensors. The bias unit is not connected to the network.

−230

−220

−210

−200

−190

−180

−170

−160

−150

M
ea

n
E

ffe
ct

 o
f M

ut
at

io
ns

 o
n

F
itn

es
s

Nonmodular
Representation

Modular
Representation

FIGURE 11 Boxplot of the mean effect of mutations on fitness. For
each condition, the networks of the last generation were subjected to
1,000 mutations and the fitness of the resulting networks was com-
pared to the fitness of the original networks. Higher values equal
higher robustness to mutations. For the details of the boxplot format
see the caption of Fig. 8.

18 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2010

 evaluation: A) The navigation efficiency of a controller can be
quantified by the total number of collected rewards (irrespec-
tive of the reward value). B) The adaptivity of a controller can
be measured by calculating the ratio of the number of high
rewards that the robot collected and the total number of col-
lected rewards (fitness is the product of navigation efficiency
times adaptivity).

We measured the incidence of pleiotropic mutations by
calculating the relative frequency of mutations that simultane-
ously affect both behavioral traits for the networks of the last
generation in the two experimental conditions (see Fig. 12). A
 mutation was defined as pleiotropic if it simultaneously
changed both behavioral characters by more than 5%. The
networks that evolved with the modular mapping displayed a
significantly lower ratio of pleiotropic mutations than the net-
works that evolved with the non-modular mapping (Wilcox-
on ranksum test, p , 0.0002).

These findings highlight an important difference between
modular representations and other methods which potentially
mitigate the effects of pleiotropic mutations. For example,
there are a number of mechanisms in the literature which

limit the effect of detrimental mutations by reduc-
ing selection pressure (e.g., spatial selection opera-
tors [62], speciation [43], island models [63]). Other
strategies aim at changing the impact of mutations
on individual behavior (e.g., memetic algorithms
[64], [65]). However, unlike the presented approach
based on a modular mapping from genotype to
phenotype, these methods do not allow automatic
evolutionary control of the effect of mutations1.

V. Conclusion
Modular mapping from genotype to phenotype is widely rec-
ognized as a cornerstone of evolvability in biological organisms
[24]. The results of our experiments show that adding the pos-
sibility of modular mapping from genotype to phenotype to an
implicit genetic encoding for artificial neural networks consis-
tently led to improved algorithm performance. The hypothesis
that modular solutions allow for a higher evolvability in cases
where multiple control problems have to be solved simultane-
ously is corroborated by the automatic decomposition of the
control architecture in functionally separate modules.

Further analysis revealed that the presented modular repre-
sentation also led to improved robustness of the networks to
detrimental mutations. In particular, the modular mapping
allowed for a lower incidence of pleiotropic mutations. This is
in line with the hypothesis that modularity in biological organ-
isms evolved by limiting pleiotropic effects of mutations [22].

VI. Acknowledgments
The authors thank Sara Mitri, Pavan Ramdya, Thomas Schaffter,
Andrea Soltoggio, Markus Waibel, and Steffen Wischmann for
reading and commenting on the manuscript. This research was
supported by the Swiss National Science Foundation.

References
[1] T. Bäck. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evo-
lutionary Programming, Genetic Algorithms. Oxford Univ. Press.

[2] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Technology
of Self-Organizing Machines. Cambridge, MA: MIT Press, 2004.

[3] K. A. De Jong, “Evolving intelligent agents: A 50 year quest,” IEEE Comput. Intell.
Mag., vol. 3, no. 1, pp. 12–17, 2008.

[4] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, pp. 1423–1447, 1999.

[5] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from architectures to learn-
ing,” Evol. Intell., vol. 1, no. 1, pp. 47–62, Mar. 2008.

[6] J. Gallagher, R. Beer, and K. Espenschied, “Application of evolved locomotion con-
trollers to a hexapod robot,” Robot. Auton. Syst., 1996.

[7] D. Floreano and F. Mondada, “Evolution of homing navigation in a real mobile robot,”
IEEE Trans. Syst., Man, Cybern., vol. 26, no. 3, pp. 396–407, 1996.

[8] S. Baluja, “Evolution of an artif icial neural network based autonomous land vehicle
controller,” IEEE Trans. Syst., Man, Cybern., 1996.

[9] S. Nolfi and D. Parisi, “Evolving non-trivial behaviors on real robots: A garbage col-
lecting robot,” Robot. Auton. Syst., 1997.

[10] F. Gruau and K. Quatramaran, “Cellular encoding for interactive evolutionary ro-
botics,” in Proc. 4th European Conf. Artificial Life, 1997.

[11] A. Ijspeert and J. Kodjabachian, “Evolution and development of a central pattern
generator for the swimming of a lamprey,” Artif. Life, 1999.

[12] B. V. Haller, A. Ijspeert, and D. Floreano, “Co-evolution of structures and controllers
for Neubot underwater modular robots,” Adv. Artif. Life, 2005.

[13] J. Zufferey, D. Floreano, and M. V. Leeuwen, “Evolving vision-based flying robots,” in Proc.
2nd Int. Workshop Biologically Motivated Computer Vision (BMCV’2002), 2002, pp. 592–600.

0.15

0.2

0.25

0.3

R
el

at
iv

e
Fr

eq
ue

nc
y

of
 P

le
io

tr
op

ic
 M

ut
at

io
ns

Nonmodular
Representation

Modular
Representation

FIGURE 12 Boxplot of the relative frequency of pleiotropic mutations
in the networks of the last generation for both conditions. Pleiotropic
mutations were defined as mutations which simultaneously affect
the navigation efficiency and the adaptivity of a robot by more than
5%. For the details of the boxplot format see the caption of Fig. 8.

1Of course, it is possible to combine one or multiples of these mechanisms with
the suggested modular implicit genetic representation which could further increase
performance.

Adding the possibility of modular mapping
from genotype to phenotype to an implicit
genetic encoding for artificial neural networks
consistently led to improved algorithm
performance.

AUGUST 2010 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 19

[14] F. Gomez and R. Miikkulainen, “Active guidance for a f inless rocket using neuro-
evolution,” in Proc. Genetic and Evolutionary Computation Conf., 2003.

[15] Y. Sit and R. Miikkulainen, “Learning basic navigation for personal satellite assistant
using neuroevolution,” in Proc. 2005 Conf. Genetic and Evolutionary Computation, 2005.

[16] D. Floreano and C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods, and
Technologies. Cambridge, MA: MIT Press, 2008.

[17] P. Dürr, C. Mattiussi, A. Soltoggio, and D. Floreano, “Evolvability of neuromodu-
lated learning for robots,” in Proc. 2008 ECSIS Symp. Learning and Adaptive Behavior in
Robotic Systems, 2008, pp. 41–46.

[18] R. De Nardi, J. Togelius, O. E. Holl, and S. M. Lucas, “Neural networks for heli-
copter control: Why modularity matters,” in Proc. IEEE Congr. Evolutionary Computation,
2006.

[19] S. Nolfi. (1997). Using emergent modularity to develop control systems for mobile robots.

[20] J. Reeder, R. Miguez, J. Sparks, M. Georgiopoulos, and G. Anagnostopoulos. (2008,
Dec.). Interactively evolved modular neural networks for game agent control. Proc. 2008
IEEE Symp. Computational Intelligence and Games, pp. 167–174.

[21] A. Christensen and M. Dorigo. (2006). Incremental evolution of robot controllers for a
highly integrated task. From Animals to Animats 9 (Lecture Notes in Computer Science). Berlin:
Springer-Verlag 4095, pp. 473–484.

[22] G. P. Wagner. (1996, Feb.). Homologues, natural kinds and the evolution of modu-
larity. Integr. Comp. Biol. 36(1), pp. 36–43.

[23] G. P. Wagner and L. Altenberg, “Perspective: Complex adaptations and the evolution
of evolvability,” Evolution, vol. 50, no. 3, pp. 967–976, 1996.

[24] T. F. Hansen, “Is modularity necessary for evolvability? Remarks on the relationship
between pleiotropy and evolvability,” Biosystems, vol. 69, no. 2–3, pp. 83–94, 2003.

[25] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner, Emergence of Functional Modularity
in Robots. Cambridge, MA: MIT Press, 1998.

[26] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner, “A case study of the evolution
of modularity: Towards a bridge between evolutionary biology, artif icial life, neuro- and
cognitive science,” in Proc. 6th Int. Conf. Artificial Life, 1998, pp. 275–284.

[27] R. Calabretta, S. Nolf i, D. Parisi, and G. P. Wagner, “Duplication of modules
facilitates the evolution of functional specialization,” Artif. Life, vol. 6, no. 1, pp. 69–84,
2000.

[28] A. Di Ferdinando, R. Calabretta, and D. Parisi, “Evolving modular architectures
for neural networks,” in Proc. 6th Neural Computation and Psychology Workshop: Evolution,
Learning, and Development, R. French and J. Sougné, Eds. London: Springer-Verlag, 2001,
pp. 253–262.

[29] R. Calabretta, A. Di Fernando, G. P. Wagner, and D. Parisi, “What does it take to
evolve behaviorally complex organisms?,” BioSystems, vol. 69, pp. 245–262, 2002.

[30] M. A. Potter and K. A. De Jong. (2000, Jan.). Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents. Evol. Comput. 8(1), pp. 1–29.

[31] D. Moriarty and R. Miikkulainen. (1997). Forming neural networks through
eff icient and adaptive coevolution. Evol. Comput. 5(4), pp. 373–399.

[32] J. Reisinger, K. O. Stanley, and R. Miikkulainen, “Evolving reusable neural mod-
ules,” in Proc. Genetic and Evolutionary Computation Conf. (GECCO-2004). Berlin: Spring-
er-Verlag, 2004, pp. 69–81.

[33] V. R. Khare, X. Yao, B. Sendhoff, Y. Jin, and H. Wersing, “Co-evolutionary
modular neural networks for automatic problem decomposition,” in Proc. 2005 IEEE
Congr. Evolutionary Computation, CEC 2005. Edinburgh, U.K.: IEEE Press, 2005, pp.
2691–2698.

[34] V. Khare, X. Yao, and B. Sendhoff. (2006). Multi-network evolutionary systems and
automatic decomposition of complex problems. Int. J. General Syst. 35(3), pp. 259–274.

[35] X. Yao and M. M. Islam, “Evolving artif icial neural network ensembles,” IEEE
Comput. Intell. Mag., vol. 3, no. 1, pp. 31–42, 2008.

[36] N. García-Pedrajas, C. Hervás-Martínez, and J. Muñoz Pérez. (2002, Dec.). Multi-
objective cooperative coevolution of artif icial neural networks (multi-objective coopera-
tive networks). Neural Netw. 15(10), pp. 1259–1278.

[37] N. García-Pedrajas, C. Hervás-Martínez, and D. Ortiz-Boyer. (2005, June). Coop-
erative coevolution of artif icial neural network ensembles for pattern classif ication. IEEE
Trans. Evol. Comput. 9(3), pp. 271–302.

[38] C. Mattiussi, D. Marbach, P. Dürr, and D. Floreano. (2008). The age of analog net-
works. AI Mag. 29(3), pp. 63–76.

[39] H. Kitano, “Designing neural networks by genetic algorithms using graph generation
system,” Complex Syst. J., vol. 4, pp. 461–476, 1990.

[40] F. Gruau. (1995). Automatic definition of modular neural networks. Adaptive Behav.
3(2), pp. 151–183.

[41] F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cellular encoding and
direct encoding for genetic neural networks,” in Proc. 1st Annu. Conf. Genetic Program-
ming 1996, J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds. CA, Stanford
University, 1996, pp. 81–89.

[42] F. J. Gomez and R. Miikkulainen, “Solving non-markovian control tasks with
neuro-evolution,” in Proc. Int. Joint Conf. Artif icial Intelligence (IJCAI), 1999, pp.
1356–1361.

[43] K. O. Stanley and R. Miikkulainen. (2002). Evolving neural networks through aug-
menting topologies. Evol. Comput. 10(2), pp. 99–127.

[44] J. Bongard. (2002). Evolving modular genetic regulatory networks. Proc. 2002 Congr.
Evolutionary Computation, vol. 2, pp. 1872–1877.

[45] P. Dürr, C. Mattiussi, and D. Floreano. (2006). Neuroevolution with analog genetic encod-
ing. Parallel Problem Solving from Nature—PPSN iX (LNCS) 9, pp. 671–680.

[46] A. Soltoggio, P. Dürr, C. Mattiussi, and D. Floreano, “Evolving neuromodulatory
topologies for reinforcement learning-like problems,” in Proc. IEEE Congr. Evolutionary
Computation (CEC), 2007.

[47] J. Reisinger and R. Miikkulainen, “Acquiring evolvability through adaptive
representations,” in Proc. Genetic and Evolutionary Computation Conf. (GECCO 2007),
2007.

[48] C. Mattiussi and D. Floreano, “Analog genetic encoding for the evolution of circuits
and networks,” IEEE Trans. Evol. Comput., 2007.

[49] D. Marbach, C. Mattiussi, and D. Floreano. (2007). Bio-mimetic evolutionary
reverse engineering of genetic regulatory networks. Proc. 5th European Conf. Evolu-
tionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2007),
pp. 155–165.

[50] D. Marbach, C. Mattiussi, and D. Floreano. (2009). Replaying the evolutionary tape: Bio-
mimetic reverse engineering of gene networks. Ann. New York Acad. Sci. 1158, pp. 234–245.

[51] D. Gusfield. (1997). Algorithms on Strings, Trees, and Sequences. Cambridge, U.K., Cambridge
Univ. Press.

[52] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot designed for educa-
tion in engineering,” in Proc. 9th Conf. Autonomous Robot Systems and Competitions, 2006,
pp. 59–65.

[53] S. Magnenat, M. Waibel, and A. Beyeler. (2009). Enki—An open source fast 2D robot
simulator.

[54] B. M. Yamauchi and R. D. Beer, “Sequential behavior and learning in evolved
dynamical neural networks,” Adaptive Behav., vol. 2, pp. 219–246, 1994.

[55] J. Blynel, “Evolving reinforcement learning-like abilities for robots,” in Evolvable
Systems: From Biology to Hardware. 2003, pp. 320–331.

[56] Y.-T. Wang, “Synaptic plasticity in learning and memory,” Int. J. Develop. Neurosci.,
vol. 24, no. 8, pp. 492–493, 2006.

[57] A. Soltoggio, J. A. Bullinaria, C. Mattiussi, P. Dürr, and D. Floreano, “Evolutionary
advantages of neuromodulated plasticity in dynamic, reward- based scenarios,” in Proc.
11th Int. Conf. Artificial Life (Alife XI), 2008, S. Bullock, J. Noble, R. Watson, and M. A.
Bedau, Eds. 2008, pp. 569–576.

[58] C. Mattiussi, P. Dürr, and D. Floreano. (2007). Center of mass encoding: A self-
adaptive representation with adjustable redundancy for real-valued parameters. Proc.
Genetic and Evolutionary Computation Conf.

[59] R. Mcgill, J. W. Tukey, and W. A. Larsen, “Variations of box plots,” The Amer. Stat-
ist., vol. 32, no. 1, pp. 12–16, 1978.

[60] C. Mattiussi. (2005). Evolutionary synthesis of analog networks. Ph.D. dissertation,
Lausanne, Switzerland.

[61] V. Kvasnicka and J. Pospíchal. (2002, Jan.). Emergence of modularity in genotype-
phenotype mappings. Artif. Life 8(4), pp. 295–310.

[62] J. Sarma and K. De Jong, “An analysis of the effects of neightborhood size and shape
on local selection algorithms,” in Parallel Problem Solving from Nature—PPSN IV. 1996,
pp. 236–244.

[63] D. Whitley, S. Rana, and R. B. Heckendorn. (1998). The island model genetic
algorithm: On separability, population size and convergence. J. Comput. Inform. Technol.
7, pp. 33–47.

[64] P. Moscato. (1989). On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms.

[65] Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong. (2006). Classif ication of adaptive
memetic algorithms: A comparative study. IEEE Trans. Syst., Man, Cybern. B 36(1), pp.
141–152.

